1
|
Alenezi FO, Nader MA, El-Kashef DH, Abdelmageed ME. Dapansutrile mitigates concanavalin A- induced autoimmune hepatitis: Involvement of NLRP3/IL-1β and JNK/ p38 MAPK pathways. Biomed Pharmacother 2025; 186:118026. [PMID: 40164046 DOI: 10.1016/j.biopha.2025.118026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
AIM Dapansutrile (Dapan) is a newly developed anti-inflammatory molecule that supresses the production of NLRP3 inflammasome-dependent IL-1β. Its hepatoprotective effects against autoimmune hepatitis (AIH) have not yet been explored. Hence, this study was conducted to examine the possible protective effects of Dapan against concanavalin A (Con A)-induced hepatitis in mice. MAIN METHODS Mice were randomly divided into five groups (n = 6): control, Con A (15 mg/kg), Dapan (60 mg/kg), Dapan (6 mg/kg) + Con A, and Dapan (60 mg/kg) + Con A. Mice were euthanised at the end of the study, and blood and hepatic tissues were collected. KEY FINDINGS Hepatic function testing using lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels, in addition to hepatic tissue histological examination, revealed that intraperitoneal administration of Dapan noticeably ameliorated Con A-induced hepatic enzyme impairment and histopathological disruption. Moreover, Dapan-treated mice had significantly lower malondialdehyde hepatic content and elevated reduced glutathione, superoxide dismutase, and total antioxidant capacity levels than non-treated mice in a dose-dependent manner. The Dapan-treated groups showed significantly lower levels of the inflammatory mediators, NLRP3, TNF-α, IL-6, and IL-1β, in addition to the immunomodulators CD8, CD4, INF-γ, and NFκB and inhibition of JNK and p38 MAPK levels compared to the Con A-treated group. SIGNIFICANCE Our results showed that intraperitoneal administration of Dapan could be a therapeutic opportunity to inhibit the development of AIH via inhibition of inflammatory pathways.
Collapse
Affiliation(s)
- Fahad O Alenezi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Forensic Toxicology Services Center, Ministry of health, Qassim, Saudi Arabia
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Shao W, Huang W, Wang Y, Sima H, Ma K, Chen R, Han H, Yang Y, Bao Y, Pei X, Zhang L. Exosome-Modified AAV Gene Therapy Attenuates Autoimmune Hepatitis via Enhanced Regulatory T Cell Targeting and Immune Modulation. Microorganisms 2025; 13:823. [PMID: 40284659 PMCID: PMC12029567 DOI: 10.3390/microorganisms13040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disorder driven by immune dysregulation, marked by reduced regulatory T cells (Tregs) and unchecked inflammation. Current therapies lack specificity and efficacy, necessitating novel approaches. This study explores gene therapy using exosome-associated adeno-associated virus (exo-AAV) to deliver the Foxp3 gene, aiming to restore Treg-mediated immune tolerance in AIH. We engineered exosomes expressing the CD4-targeting antibody on their surface, encapsulating AAV6/Foxp3, to enhance lymphoid cell specificity. In a ConA-induced murine AIH model, engineered exo-AAV administration significantly increased hepatic Treg proportions while reducing Th17 cells and inflammatory cytokines (IFN-γ, TNF-α, IL-6), compared to control groups (unmodified exo-AAV or empty exosomes). Liver histopathology and serum ALT levels also improved in engineered exo-AAV treated mice. Mechanistically, engineered exo-AAV demonstrated superior targeting via CD4 binding, validated by immunofluorescence and nanoparticle tracking. Despite transient reductions in splenic Tregs, localized hepatic immune modulation underscored exo-AAV's efficacy. These findings highlight engineered exo-AAV as a promising strategy for precision gene therapy in AIH, overcoming limitations of traditional AAV delivery by enhancing lymphocyte-specific transduction and immune balance restoration. This approach presents a novel therapeutic avenue for systemic autoimmune diseases reliant on Treg reinforcement.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (W.H.); (H.S.)
- Medical School, Tianjin University, Tianjin 300072, China; (K.M.); (R.C.); (H.H.); (Y.Y.); (Y.B.)
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin 300072, China
| | - Weilin Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (W.H.); (H.S.)
| | - Yixuan Wang
- State Key Laboratory of Experimental Hematology of China, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; (Y.W.); (X.P.)
| | - Helin Sima
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (W.H.); (H.S.)
| | - Kai Ma
- Medical School, Tianjin University, Tianjin 300072, China; (K.M.); (R.C.); (H.H.); (Y.Y.); (Y.B.)
| | - Rongtao Chen
- Medical School, Tianjin University, Tianjin 300072, China; (K.M.); (R.C.); (H.H.); (Y.Y.); (Y.B.)
| | - Heqiao Han
- Medical School, Tianjin University, Tianjin 300072, China; (K.M.); (R.C.); (H.H.); (Y.Y.); (Y.B.)
| | - Yixuan Yang
- Medical School, Tianjin University, Tianjin 300072, China; (K.M.); (R.C.); (H.H.); (Y.Y.); (Y.B.)
| | - Yuchen Bao
- Medical School, Tianjin University, Tianjin 300072, China; (K.M.); (R.C.); (H.H.); (Y.Y.); (Y.B.)
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology of China, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; (Y.W.); (X.P.)
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology of China, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China; (Y.W.); (X.P.)
| |
Collapse
|
3
|
Li L, Wang F, Mo S, Deng J, Wang X, Ai J, Xiao Y, Zeng Y, Li Q, Zhang Y, Cai L, Li Z. A Spatially Distributed Microneedle System for Bioorthogonal T Cell-Guided Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416841. [PMID: 39921874 PMCID: PMC11967824 DOI: 10.1002/advs.202416841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/01/2025] [Indexed: 02/10/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents a promising strategy for cancer treatment. However, the diversity of solid tumor antigens and the poor infiltration of CAR-T cells significantly hinder the efficacy of CAR-T therapies against tumors. Here, a spatially distributed microneedle system (SDMNS) is developed that leverages bioorthogonal reactions to activate and guide endogenous T cells to tumors for effective destruction. The SDMNS consists of two dissolving microneedles, each loaded with complementary bioorthogonal groups and applied separately to lymph nodes and tumor sites. One microneedle loaded with two dibenzocyclooctyne (DBCO)-modified antibodies activates T cells and labels them with bioorthogonal groups in lymph nodes. The other microneedle, containing N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz) for glycometabolic labeling of tumor cells, and the T cell chemotactic factor IP10, is applied directly to the tumor site. The in vivo studies demonstrate that SDMNS effectively directs the migration and infiltration of endogenous activated T cells into the tumors. Through a bioorthogonal click reaction, DBCO-modified T cells conjugate with azide (N3)-modified tumor cells, eliciting robust antitumor immune responses and durable immune memory. The SDMNS offers a novel strategy to overcomes tumor heterogeneity by facilitating the directed migration of endogenous T cells.
Collapse
Affiliation(s)
- Lanya Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- Dongguan Key Laboratory of Basic, Clinical and Digital Research on Common Orthopedic DiseasesDongguan523059China
| | - Fei Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Shushan Mo
- College of Pharmaceutical ScienceKey Laboratory of Pharmaceutical Quality Control of Hebei ProvinceHebei UniversityBaoding071002China
| | - Junyao Deng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Xueyi Wang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Jiacong Ai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Yan Zeng
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Qishan Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhou510515China
| | - Yixin Zhang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
| | - Limin Cai
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- Dongguan Key Laboratory of Basic, Clinical and Digital Research on Common Orthopedic DiseasesDongguan523059China
| | - Zhenhua Li
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital)Dongguan523059China
- Guangdong Provincial Key Laboratory of Cardiac Function and MicrocirculationGuangzhou510515China
| |
Collapse
|
4
|
Seefried MC, Mittelberger J, Franitza M, Garrido F, Wild CM, Ditsch N, Protsepko O, Kuhn C, Dannecker C, Jeschke U, Altevogt P, Sammar M. Expression of the mucin-like glycoprotein CD24 and its ligand siglec-10 in placentas with acute and post SARS-CoV-2 infection. J Reprod Immunol 2025; 167:104400. [PMID: 39612561 DOI: 10.1016/j.jri.2024.104400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
CD24 is a mucin-like glycoprotein expressed on trophoblast cells and endothelial tissue of first and third trimester placentas. As an immune suppressor, CD24 may contribute to maternal immune tolerance to the growing fetus. CD24 is known to interact with the sialic acid-binding immunoglobulin-type lectins (Siglecs), specifically siglec-10. The aim of this study was to investigate the expression of both, CD24 and siglec-10 on placental tissue slides from acute covid patients, patients who survived a covid-19 infection and normal term controls. For the evaluation of CD24 & siglec-10 we used a total of 60 placentas, 10 acute covid-19 female, 10 acute covid-19 male, 10 post-covid-19 female, 10 post-covid-19 male, 10 female term controls and 10 male term controls. Immunohistochemical staining against CD24 and siglec-10 was performed and the expression of both markers was done with an immunoreactive score (IRS). Identity of CD24- or siglec-10 expressing cells was analyzed by double immune fluorescence analyses. The expression of CD24 is significantly downregulated on the extravillous trophoblast and on Hofbauer cells of female acute covid placentas. In the contrary, CD24 is significantly upregulated on male post-covid-19 Hofbauer cells. The CD24-ligand siglec-10 is significantly downregulated in post-covid-19 Hofbauer cells independently of fetal sex, whereas it shows significant higher expression in control female Hofbauer cells. CD24 and its ligand siglec-10 are differentially expressed in placentas of patients who survived a covid-19 infection. Surprisingly this effect is related to the fetal gender. Further investigation is necessary to analyze especially the imprinting effect of this infection.
Collapse
Affiliation(s)
- Marina C Seefried
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Johanna Mittelberger
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Manuela Franitza
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Fabian Garrido
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Carl Mathis Wild
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Nina Ditsch
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Oleksii Protsepko
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Christina Kuhn
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Christian Dannecker
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Udo Jeschke
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany.
| | - Peter Altevogt
- DKFZ and University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Germany
| | | |
Collapse
|
5
|
Lv X, Zhu L, Feng S, Yang S, Li G, Zhan J, Tan Y, Liu Y, Zhang J, Wang Y, Cheng Y, Fu P, Xu Y, Zheng C. Hsa_circ_0109623 regulates the progression of autoimmune liver disease through Hsa_miR_146b-3p/Sortilin 1-mediated activation of CD4+ T cells. Hepatol Commun 2025; 9:e0607. [PMID: 39774281 PMCID: PMC11717529 DOI: 10.1097/hc9.0000000000000607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune-mediated liver inflammation. Despite its global prevalence, the pathogenesis of AIH remains poorly understood, and there is a lack of specific biomarkers and targeted treatments. This study aimed to investigate the role of hsa_circ_0109623, hsa-miR-146b-3p, and Sortilin 1 (SORT1) in AIH and their potential as therapeutic targets. METHODS We collected liver tissue samples and peripheral blood mononuclear cells from patients with AIH and healthy controls and performed RT-PCR, western blotting, flow cytometry, and other molecular biology techniques to analyze the expression of hsa_circ_0109623, hsa-miR-146b-3p, and SORT1. We also used bioinformatics tools to predict the interaction between these molecules and conducted luciferase reporter assays to confirm their binding. RESULTS hsa_circ_0109623 was significantly upregulated in patients with AIH and positively correlated with inflammatory activity. We also found that hsa_circ_0109623 could enhance CD4+ T-cell activation and promote the expression of proinflammatory cytokines. Conversely, hsa-miR-146b-3p was downregulated in patients with AIH and negatively correlated with the expression of hsa_circ_0109623 and SORT1. In addition, hsa-miR-146b-3p acted as a sponge for hsa_circ_0109623, inhibiting CD4+ Th1 cell polarization and cytokine production. SORT1 was also upregulated in patients with AIH and acted as a sponge for hsa-miR-146b-3p, promoting CD4+ Th1 cell polarization and cytokine expression. Furthermore, hsa_miR_146b-3p/SORT1 can regulate the STAT1/STAT4 signaling pathway mediating the progression of AIH. CONCLUSIONS The hsa_circ_0109623/hsa-miR-146b-3p/SORT1 axis plays a crucial role in the pathogenesis of AIH by regulating CD4+ T-cell activation and cytokine production. These molecules may serve as potential biomarkers and therapeutic targets for AIH. Further research is needed to validate these findings and explore their clinical applications.
Collapse
Affiliation(s)
- Xinliang Lv
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Li Zhu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Shijie Feng
- Department of Rheumatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Siyu Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Guohua Li
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Jinqin Zhan
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yuchun Tan
- Department of Anesthesiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yuquan Liu
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Jinliang Zhang
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
| | - Yujin Wang
- Department of Cardiology Department, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| | - Yucheng Cheng
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Ping Fu
- Department of Rheumatology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Chenhong Zheng
- Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot, P.R. China
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Department of Cardiology Department, Chinese People’s Liberation Army General Hospital, Beijing, P.R. China
| |
Collapse
|
6
|
Gopee NH, Winheim E, Olabi B, Admane C, Foster AR, Huang N, Botting RA, Torabi F, Sumanaweera D, Le AP, Kim J, Verger L, Stephenson E, Adão D, Ganier C, Gim KY, Serdy SA, Deakin C, Goh I, Steele L, Annusver K, Miah MU, Tun WM, Moghimi P, Kwakwa KA, Li T, Basurto Lozada D, Rumney B, Tudor CL, Roberts K, Chipampe NJ, Sidhpura K, Englebert J, Jardine L, Reynolds G, Rose A, Rowe V, Pritchard S, Mulas I, Fletcher J, Popescu DM, Poyner E, Dubois A, Guy A, Filby A, Lisgo S, Barker RA, Glass IA, Park JE, Vento-Tormo R, Nikolova MT, He P, Lawrence JEG, Moore J, Ballereau S, Hale CB, Shanmugiah V, Horsfall D, Rajan N, McGrath JA, O'Toole EA, Treutlein B, Bayraktar O, Kasper M, Progatzky F, Mazin P, Lee J, Gambardella L, Koehler KR, Teichmann SA, Haniffa M. A prenatal skin atlas reveals immune regulation of human skin morphogenesis. Nature 2024; 635:679-689. [PMID: 39415002 PMCID: PMC11578897 DOI: 10.1038/s41586-024-08002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Human prenatal skin is populated by innate immune cells, including macrophages, but whether they act solely in immunity or have additional functions in morphogenesis is unclear. Here we assembled a comprehensive multi-omics reference atlas of prenatal human skin (7-17 post-conception weeks), combining single-cell and spatial transcriptomics data, to characterize the microanatomical tissue niches of the skin. This atlas revealed that crosstalk between non-immune and immune cells underpins the formation of hair follicles, is implicated in scarless wound healing and is crucial for skin angiogenesis. We systematically compared a hair-bearing skin organoid (SkO) model derived from human embryonic stem cells and induced pluripotent stem cells to prenatal and adult skin1. The SkO model closely recapitulated in vivo skin epidermal and dermal cell types during hair follicle development and expression of genes implicated in the pathogenesis of genetic hair and skin disorders. However, the SkO model lacked immune cells and had markedly reduced endothelial cell heterogeneity and quantity. Our in vivo prenatal skin cell atlas indicated that macrophages and macrophage-derived growth factors have a role in driving endothelial development. Indeed, vascular network remodelling was enhanced following transfer of autologous macrophages derived from induced pluripotent stem cells into SkO cultures. Innate immune cells are therefore key players in skin morphogenesis beyond their conventional role in immunity, a function they achieve through crosstalk with non-immune cells.
Collapse
Affiliation(s)
- Nusayhah Hudaa Gopee
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chloe Admane
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - April Rose Foster
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rachel A Botting
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fereshteh Torabi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Anh Phuong Le
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Luca Verger
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Diana Adão
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London Guy's Hospital, London, UK
| | - Kelly Y Gim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Sara A Serdy
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - CiCi Deakin
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Issac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lloyd Steele
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mohi-Uddin Miah
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Win Min Tun
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Pejvak Moghimi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Ben Rumney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Catherine L Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Keval Sidhpura
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Englebert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Antony Rose
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Vicky Rowe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sophie Pritchard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - James Fletcher
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Elizabeth Poyner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Dubois
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alyson Guy
- Rare Skin Disease Laboratory, Synnovis, Guy's Hospital, London, UK
| | - Andrew Filby
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roger A Barker
- Department of Clinical Neuroscience and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ian A Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - John E G Lawrence
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Josh Moore
- German BioImaging, Gesellschaft für Mikroskopie und Bildanalyse, Konstanz, Germany
| | - Stephane Ballereau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Christine B Hale
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Vijaya Shanmugiah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Neil Rajan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A McGrath
- St Johns Institute of Dermatology, King's College London Guy's Campus, London, UK
| | - Edel A O'Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Laure Gambardella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA.
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
7
|
Nabekura T, Matsuo S, Shibuya A. Concanavalin-A-Induced Acute Liver Injury in Mice. Curr Protoc 2024; 4:e1117. [PMID: 39126326 DOI: 10.1002/cpz1.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Acute liver injury is a life-threatening disease. Although immune responses are involved in the development and exacerbation of acute liver injury, the cellular and molecular mechanisms are not fully understood. Intravenous administration of the plant lectin concanavalin A (ConA) is widely used as a model of acute liver injury. ConA triggers T cell activation and cytokine production by crosslinking glycoproteins, including the T cell receptor, leading to the infiltration of myeloid cells into the liver and the subsequent amplification of inflammation in the liver. Thus, the pathogenesis of ConA-induced acute liver injury is considered a model of immune-mediated acute liver injury or autoimmune hepatitis in humans. However, the severity of the liver injury and the analyses of immune cells and non-hematopoietic cells in the liver following ConA injection are significantly influenced by the experimental conditions. This article outlines protocols for ConA-induced acute liver injury in mice and evaluation methods for liver injury, immune cells, and non-hematopoietic cells in the liver. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Induction of acute liver injury by ConA injection Basic Protocol 2: Evaluation of inflammatory cytokines in mouse plasma Basic Protocol 3: Preparation of liver sections and histological analysis of liver injury Basic Protocol 4: Preparation of liver immune cells Basic Protocol 5: Preparation of hepatocytes, endothelial cells, and hepatic stellate cells Basic Protocol 6: Flow cytometry of immune and non-hematopoietic liver cells Basic Protocol 7: Flow cytometric sorting of endothelial cells and hepatic stellate cells Basic Protocol 8: Quantitative reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Soichi Matsuo
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Advanced Medical Technologies, National Cerebral and Vascular Cancer Center Research Institute, Suita, Osaka, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Song J, Dai J, Chen X, Ding F, Ding Y, Ma L, Zhang L. Bifidobacterium mitigates autoimmune hepatitis by regulating IL-33-induced Treg/Th17 imbalance via the TLR2/4 signaling pathway. Histol Histopathol 2024; 39:623-632. [PMID: 37916940 DOI: 10.14670/hh-18-669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The present work aims to evaluate the efficacy of Live Combined Bifidobacterium, Lactobacillus and Enterococcus Capsules (LCBLECs), a probiotic drug containing Bifidobacterium, in the treatment of autoimmune hepatitis (AIH). In this study, a mouse model of experimental autoimmune hepatitis (EAH) was established to investigate the effects of LCBLECs on AIH. The results showed that LCBLECs improved dysbiosis of gut microbiota, reduced liver injury, restored liver function, and maintained Treg/Th17 balance in EAH mice. In addition, LCBLECs restored Treg/Th17 balance in EAH mice by downregulating IL-33 production. Besides, LCBLECs also suppress IL-33 upregulation in EAH mice by inhibiting the TLR2/4 signaling pathway. Furthermore, LCBLECs also mitigated dysbiosis of gut microbiota and enhanced the efficacy of conventional treatment for AIH patients. To sum up, our findings revealed that LCBLECs exerted therapeutic effects on EAH mice by improving Treg/Th17 imbalance in an IL-33-dependent manner via the TLR2/4 signaling pathway and relieved the clinical symptoms of AIH patients, indicating Bifidobacterium supplementation with LCBLECs might be a potential adjuvant therapy for AIH treatment.
Collapse
Affiliation(s)
- Jianguo Song
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Juan Dai
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xueping Chen
- Department of Gastroenterology, The People's Hospital of Wuqia, Xinjiang, China
| | - Fei Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yanbo Ding
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Liang Ma
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Gastroenterology, The Fifth People's Hospital of Xinjiang Uygur Autonomous Region, Xin Jiang, China.
| | - Liwen Zhang
- Department of Pediatrics, the Second People's Hospital of Changzhou, Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
9
|
Gan H, Cai J, Li L, Zheng X, Yan L, Hu X, Zhao N, Li B, He J, Wang D, Pang P. Endothelium-targeted Ddx24 conditional knockout exacerbates ConA-induced hepatitis in mice due to vascular hyper-permeability. Int Immunopharmacol 2024; 129:111618. [PMID: 38354508 DOI: 10.1016/j.intimp.2024.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Acute hepatitis is a progressive inflammatory disorder that can lead to liver failure. Endothelial permeability is the vital pathophysiological change involved in infiltrating inflammatory factors. DDX24 has been implicated in immune signaling. However, the precise role of DDX24 in immune-mediated hepatitis remains unclear. Here, we investigate the phenotype of endothelium-targeted Ddx24 conditional knockout mice with Concanavalin A (ConA)-induced hepatitis. METHODS Mice with homozygous endothelium-targeted Ddx24 conditional knockout (Ddx24flox/flox; Cdh5-Cre+) were established using the CRISPR/Cas9 mediated Cre-loxP system. We investigated the biological functions of endothelial cells derived from transgenic mice and explored the effects of Ddx24 in mice with ConA-induced hepatitis in vivo. The mass spectrometry was performed to identify the differentially expressed proteins in liver tissues of transgenic mice. RESULT We successfully established mice with endothelium-targeted Ddx24 conditional knockout. The results showed migration and tube formation potentials of murine aortic endothelial cells with DDX24 silencing were significantly promoted. No differences were observed between Ddx24flox/flox; Cdh5-Cre+ and control regarding body weight and length, pathological tissue change and embryogenesis. We demonstrated Ddx24flox/flox; Cdh5-Cre+ exhibited exacerbation of ConA-induced hepatitis by up-regulating TNF-α and IFN-γ. Furthermore, endothelium-targeted Ddx24 conditional knockout caused vascular hyper-permeability in ConA-injected mice by down-regulating vascular integrity-associated proteins. Mechanistically, we identified Ddx24 might regulate immune-mediated hepatitis by inflammation-related permeable barrier pathways. CONCLUSION These findings prove that endothelium-targeted Ddx24 conditional knockout exacerbates ConA-induced hepatitis in mice because of vascular hyper-permeability. The findings indicate a crucial role of DDX24 in regulating immune-mediated hepatitis, suggesting DDX24 as a potential therapeutic target in the disorder.
Collapse
Affiliation(s)
- Hairun Gan
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Jianxun Cai
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Luting Li
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaodi Zheng
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Leye Yan
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xinyan Hu
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Ni Zhao
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Bing Li
- Department of Ophthalmology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Jianan He
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Dashuai Wang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
10
|
Zou KL, Lan Z, Cui H, Zhao YY, Wang WM, Yu GT. CD24 blockade promotes anti-tumor immunity in oral squamous cell carcinoma. Oral Dis 2024; 30:163-171. [PMID: 36056698 DOI: 10.1111/odi.14367] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Our study elucidates the prognostic role of cluster of differentiation (CD) 24 expression in oral squamous cell carcinoma (OSCC) and determines whether targeting CD24 enhances the anti-tumor immune response by inhibiting tumor-associated macrophages (TAMs). MATERIALS AND METHODS The expression of CD24 and CD68 was analyzed immunohistochemically via tissue microarrays constructed using 56 cohorts of patients with OSCC and 20 control specimens. Further, CD24 was inhibited in an allograft squamous cell carcinoma (SCC) related mouse model with CD24mAb to determine the tumor volume and weight. Changes in immune cells such as TAMs and T cells in the tumor microenvironment (TME) were analyzed by Flow cytometry. The expression of CD4, CD8, and Ki67 was analyzed via immunohistochemistry. The inhibition of CD24 was confirmed by Western blot and immunohistochemistry. RESULTS CD24 was overexpressed in OSCC. High expression of CD24 indicated poor survival in patients with OSCC (p = 0.0334). CD24 expression was significantly correlated with CD68 (p = 0.0424). The inhibition of CD24 delayed tumor growth in vivo. A decrease in TAMs number and an increase in T cell number were confirmed, while the ability of tumor proliferation was impaired. CONCLUSION Targeting CD24 could enhance anti-tumor immune response by inhibiting TAMs.
Collapse
Affiliation(s)
- Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zeng X, Liu MH, Xiong Y, Zheng LX, Guo KE, Zhao HM, Yin YT, Liu DY, Zhou BG. Pien Tze Huang alleviates Concanavalin A-induced autoimmune hepatitis by regulating intestinal microbiota and memory regulatory T cells. World J Gastroenterol 2023; 29:5988-6016. [PMID: 38130997 PMCID: PMC10731150 DOI: 10.3748/wjg.v29.i45.5988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine has used the drug Pien Tze Huang (PTH), a classic prescription, to treat autoimmune hepatitis (AIH). However, the precise mode of action is still unknown. AIM To investigate the mechanism of PTH in an AIH mouse model by determining the changes in gut microbiota structure and memory regulatory T (mTreg) cells functional levels. METHODS Following induction of the AIH mouse model induced by Concanavalin A (Con A), prophylactic administration of PTH was given for 10 d. The levels of mTreg cells were measured by flow cytometry, and intestinal microbiota was analyzed by 16S rRNA analysis, while western blotting was used to identify activation of the toll-like receptor (TLR)2, TLR4/nuclear factor-κB (NF-κB), and CXCL16/CXCR6 signaling pathways. RESULTS In the liver of mice with AIH, PTH relieved the pathological damage and reduced the numbers of T helper type 17 cells and interferon-γ, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-2, IL-6, and IL-21 expression. Simultaneously, PTH stimulated the abundance of helpful bacteria, promoted activation of the TLR2 signal, which may enhance Treg/mTreg cells quantity to produce IL-10, and suppressed activation of the TLR4/NF-κB and CXCL16/CXCR6 signaling pathways. CONCLUSION PTH regulates intestinal microbiota balance and restores mTreg cells to alleviate experimental AIH, which is closely related to the TLR/CXCL16/CXCR6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Miao-Hua Liu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yi Xiong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lin-Xin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Kai-En Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yu-Ting Yin
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Bu-Gao Zhou
- Office of Academic Research, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
12
|
Qin H, Sun C, Kong D, Zhu Y, Shao B, Ren S, Wang H, Zhang J, Xu Y, Wang H. CD73 mediates the therapeutic effects of endometrial regenerative cells in concanavalin A-induced hepatitis by regulating CD4 + T cells. Stem Cell Res Ther 2023; 14:277. [PMID: 37775797 PMCID: PMC10543328 DOI: 10.1186/s13287-023-03505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND As a kind of mesenchymal-like stromal cells, endometrial regenerative cells (ERCs) have been demonstrated effective in the treatment of Concanavalin A (Con A)-induced hepatitis. However, the therapeutic mechanism of ERCs is not fully understood. Ecto-5`-nucleotidase (CD73), an enzyme that could convert immune-stimulative adenosine monophosphate (AMP) to immune-suppressive adenosine (ADO), was identified highly expressed on ERCs. The present study was conducted to investigate whether the expression of CD73 on ERCs is critical for its therapeutic effects in Con A-induced hepatitis. METHODS ERCs knocking out CD73 were generated with lentivirus-mediated CRISPR-Cas9 technology and identified by flow cytometry, western blot and AMPase activity assay. CD73-mediated immunomodulatory effects of ERCs were investigated by CD4+ T cell co-culture assay in vitro. Besides, Con A-induced hepatitis mice were randomly assigned to the phosphate-buffered saline treated (untreated), ERC-treated, negative lentiviral control ERC (NC-ERC)-treated, and CD73-knockout-ERC (CD73-KO-ERC)-treated groups, and used to assess the CD73-mediated therapeutic efficiency of ERCs. Hepatic histopathological analysis, serum transaminase concentrations, and the proportion of CD4+ T cell subsets in the liver and spleen were performed to assess the progression degree of hepatitis. RESULTS Expression of CD73 on ERCs could effectively metabolize AMP to ADO, thereby inhibiting the activation and function of conventional CD4+ T cells was identified in vitro. In addition, ERCs could markedly reduce levels of serum and liver transaminase and attenuate liver damage, while the deletion of CD73 on ERCs dampens these effects. Furthermore, ERC-based treatment achieved less infiltration of CD4+ T and Th1 cells in the liver and reduced the population of systemic Th1 and Th17 cells and the levels of pro-inflammatory cytokines such as IFN-γ and TNF-α, while promoting the generation of Tregs in the liver and spleen, while deletion of CD73 on ERCs significantly impaired their immunomodulatory effects locally and systemically. CONCLUSION Taken together, it is concluded that CD73 is critical for the therapeutic efficiency of ERCs in the treatment of Con A-induced hepatitis.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yini Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
13
|
Matsuo S, Nabekura T, Matsuda K, Shibuya K, Shibuya A. DNAM-1 Immunoreceptor Protects Mice from Concanavalin A-Induced Acute Liver Injury by Reducing Neutrophil Infiltration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:954-963. [PMID: 37522739 DOI: 10.4049/jimmunol.2200705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
DNAX accessory molecule-1 (DNAM-1; CD226) is an activating immunoreceptor on T cells and NK cells. The interaction of DNAM-1 with its ligand CD155 expressed on hematopoietic and nonhematopoietic cells plays an important role in innate and adaptive immune responses. In this study, we investigated the role of the DNAM-1-CD155 axis in the pathogenesis of T cell-mediated Con A-induced acute liver injury. Unexpectedly, DNAM-1-deficient (Cd226-/-) mice exhibited more severe acute liver injury and higher concentrations of IL-6 and TNF-α than did wild-type (WT) mice after Con A injection. We found that a larger number of neutrophils infiltrated into the liver of Cd226-/- mice compared with WT mice after Con A injection. Depletion of neutrophils ameliorated liver injury and decreased IL-6 and TNF-α in Cd226-/- mice after Con A injection, suggesting that neutrophils exacerbate the liver injury in Cd226-/- mice. Hepatocytes produced more significant amounts of CXCL1, a chemoattractant for neutrophils, in Cd226-/- mice than in WT mice after Con A injection. In the coculture of hepatocytes with liver lymphocytes, either DNAM-1 deficiency in liver lymphocytes or CD155 deficiency in hepatocytes promoted CXCL1 production by hepatocytes. These results suggest that the interaction of DNAM-1 with CD155 inhibits CXCL1 production by hepatocytes, leading to ameliorating acute liver injury.
Collapse
Affiliation(s)
- Soichi Matsuo
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenshiro Matsuda
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Shashar M, Schwartz D, Zubkov A, Hoffman S, Jankelson L, Shapira S, Merimsky B, Berman J, Chernichovski T, Amitai O, Raz MA, Hershkovitz R, Grupper A, Weinstein T, Arber N, Schwartz IF. Renal Tubular CD24 Upregulation Aggravates Folic Acid Induced Acute Kidney Injury: A Possible Role for T Regulatory Cells Inhibition in Mice. J Pers Med 2023; 13:1134. [PMID: 37511747 PMCID: PMC10381775 DOI: 10.3390/jpm13071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by cell death and inflammation. CD24 is a protein induced during tissue damage and is not expressed in mature renal tissue. We explored the role of CD24 in the pathogenesis of folic acid-induced AKI (FA-AKI) in mice. A single Intraperitoneal (IP) injection of folic acid induced AKI in WT and CD24-/- mice. Renal function tests, histological analysis, immunohistochemistry, Western blot analysis, and ELISA were performed to assess the severity of renal damage and the intensity of the inflammatory response. FA-AKI induced CD24 in the distal tubular epithelial cells. Compared to WT mice, FA-AKI CD24-/- mice exhibited an attenuated reduction in renal function and histological injury, lower serum IL-10 and interferon γ, and decreased expression of renal TNFα. In contrast, renal and systemic IL-33 upregulation were augmented. CD24-/- FA-AKI animals exhibited increased splenic margination and renal infiltration of regulatory T cells (Tregs). At day 7, FA-AKI CD24-/- mice exhibited increased expression of tubular pro-apoptotic and decreased anti-apoptotic proteins compared to WT animals. Anti-CD24 antibody administration to FA-AKI mice attenuated the decrease in renal function as well as the histological injury. Renal biopsies from patients with ATN stained strongly for CD24 in the distal tubules. In conclusion, during AKI, upregulation of CD24 promotes renal inflammation through inhibition of Treg infiltration and diversion of cell death towards necrosis rather than apoptosis. Neutralization of CD24 may prove a target for future therapies in AKI.
Collapse
Affiliation(s)
- Moshe Shashar
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
- Laniado Hospital, Netanya 4244916, Israel
| | - Doron Schwartz
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Asia Zubkov
- Pathology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Sarit Hoffman
- Pathology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Lior Jankelson
- Internal Medicine "T", Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Shiran Shapira
- The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Barak Merimsky
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Julia Berman
- Internal Medicine "T", Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Tamara Chernichovski
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Oeren Amitai
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Michal Ariela Raz
- Internal Medicine "T", Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Rami Hershkovitz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel
- Internal Medicine "T", Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Ayelet Grupper
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Talia Weinstein
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Nadir Arber
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
- The Integrated Cancer Prevention Center, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
| | - Idit F Schwartz
- Departments of Nephrology, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423906, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel
| |
Collapse
|
15
|
Zhuang W, Liu X, Liu G, Lv J, Qin H, Wang C, Xie L, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Du C. Purinergic receptor P2Y12 boosts autoimmune hepatitis through hexokinase 2-dependent glycolysis in T cells. Int J Biol Sci 2023; 19:3576-3594. [PMID: 37497007 PMCID: PMC10367548 DOI: 10.7150/ijbs.85133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Increasing evidence suggests that immunometabolism has started to unveil the role of metabolism in shaping immune function and autoimmune diseases. In this study, our data show that purinergic receptor P2Y12 (P2RY12) is highly expressed in concanavalin A (ConA)-induced immune hepatitis mouse model and serves as a potential metabolic regulator in promoting metabolic reprogramming from oxidative phosphorylation to glycolysis in T cells. P2RY12 deficiency or inhibition of P2RY12 with P2RY12 inhibitors (clopidogrel and ticagrelor) are proved to reduce the expression of inflammatory mediators, cause CD4+ and CD8+ effector T cells hypofunction and protect the ConA-induced immune hepatitis. A combined proteomics and metabolomics analysis revealed that P2RY12 deficiency causes redox imbalance and leads to reduced aerobic glycolysis by downregulating the expression of hexokinase 2 (HK2), a rate-limiting enzyme of the glycolytic pathway, indicating that HK2 might be a promising candidate for the treatment of diseases associated with T cell activation. Further analysis showed that P2RY12 prevents HK2 degradation by activating the PI3K/Akt pathway and inhibiting lysosomal degradation. Our findings highlight the importance of the function of P2RY12 for HK2 stability and metabolism in the regulation of T cell activation and suggest that P2RY12 might be a pivotal regulator of T cell metabolism in ConA-induced immune hepatitis.
Collapse
Affiliation(s)
- Wei Zhuang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Guangyu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jie Lv
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hao Qin
- Department of Thoracic Surgery, Huadong Hospital Affiliated to FuDan University, Shanghai, 200040, China
| | - Chun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaidireya Saimaier
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sanxing Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changjie Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiuhong Hua
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Ren M, Zhang J, Dai S, Wang C, Chen Z, Zhang S, Xu J, Qin X, Liu F. CX3CR1 deficiency exacerbates immune-mediated hepatitis by increasing NF-κB-mediated cytokine production in macrophage and T cell. Exp Biol Med (Maywood) 2023; 248:117-129. [PMID: 36426712 PMCID: PMC10041049 DOI: 10.1177/15353702221128573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Immune-mediated hepatitis is marked by liver inflammation characterized by immune cell infiltration, chemokine/cytokine production, and hepatocyte injury. C-X3C motif receptor 1 (CX3CR1), as the receptor of chemokine C-X3C motif ligand 1 (CX3CL1)/fractalkine, is mainly expressed on immune cells including monocytes and T cells. Previous studies have shown that CX3CR1 protects against liver fibrosis, but the exact role of CX3CL1/CX3CR1 in acute immune-mediated hepatitis remains unknown. Here, we investigate the role of the CX3CL1/CX3CR1 axis in immune-mediated hepatitis using concanavalin A (ConA)-induced liver injury model in CX3CR1-deficient (Cx3cr1-/-) mice. We observed that Cx3cr1-/- mice had severe liver injury and increased pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], interleukin-1 beta [IL-1β], and IL-6) in serum and liver compared to wild-type (Cx3cr1+/+) mice after ConA injection. The deficiency of CX3CR1 did not affect ConA-induced immune cell infiltration in liver but led to elevated production of TNF-α in macrophages as well as IFN-γ in T cells after ConA treatment. On the contrary, exogenous CX3CL1 attenuated ConA-induced cytokine production in wild type, but not CX3CR1-deficient macrophages and T cells. Furthermore, in vitro results showed that CX3CR1 deficiency promoted the pro-inflammatory cytokine expression by increasing the phosphorylation of nuclear factor kappa B (NF-κB) p65 (p-NF-κB p65). Finally, pre-treatment of p-NF-κB p65 inhibitor, resveratrol, attenuated ConA-induced liver injury and inflammatory responses, especially in Cx3cr1-/- mice. In conclusion, our data show that the deficiency of CX3CR1 promotes pro-inflammatory cytokine production in macrophages and T cells by enhancing the phosphorylation of NF-κB p65, which exacerbates liver injury in ConA-induced hepatitis.
Collapse
Affiliation(s)
- Mi Ren
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jinyan Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Shen Dai
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250000, People's Republic of China
| | - Chenxiao Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Zheng Chen
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Siqi Zhang
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Junming Xu
- Department of Hepatobiliary Surgery and Liver Transplantation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, People's Republic of China
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fengming Liu
- Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250000, People's Republic of China
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
17
|
Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, Bokov DO, Mustafa YF, Al-Gazally ME, Hammid AT, Kadhim MM, Ahmadi SH. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal 2022; 20:167. [PMID: 36289525 PMCID: PMC9597983 DOI: 10.1186/s12964-022-00972-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract
Collapse
Affiliation(s)
- Huldani Huldani
- grid.443126.60000 0001 2193 0299Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan Indonesia
| | - Ahmed Ibraheem Rashid
- grid.427646.50000 0004 0417 7786Department of Pharmacology, Collage of Medicine, University of Babylon, Hilla, Iraq
| | - Khikmatulla Negmatovich Turaev
- grid.444694.f0000 0004 0403 0119Department of Clinical Pharmacology, Samarkand State Medical Institute, Samarkand, Uzbekistan ,grid.513581.b0000 0004 6356 9173Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan 100047
| | | | - Walid Kamal Abdelbasset
- grid.449553.a0000 0004 0441 5588Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia ,grid.7776.10000 0004 0639 9286Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240 Russian Federation
| | - Yasser Fakri Mustafa
- grid.411848.00000 0000 8794 8152Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq ,grid.444971.b0000 0004 6023 831XCollege of Technical Engineering, The Islamic University, Najaf, Iraq ,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Seyed Hossein Ahmadi
- grid.411705.60000 0001 0166 0922Research Center for Cell and Molecular Sciences, School of Medicine, Tehran University of Medical Sciences, PO Box 1417613151, Tehran, Iran
| |
Collapse
|
18
|
Yu T, He Y, Chen H, Lu X, Ni H, Ma Y, Chen Y, Li C, Cao R, Ma L, Li Z, Lei Y, Luo X, Zheng C. Polysaccharide from Echinacea purpurea plant ameliorates oxidative stress-induced liver injury by promoting Parkin-dependent autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154311. [PMID: 35843188 DOI: 10.1016/j.phymed.2022.154311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acetaminophen (APAP) overdose represents one of the most common drug-induced liver injuries (DILI) worldwide. Oxidative damage to the hepatocytes and their resultant autophagy are the key components in the APAP-induced DILI. Echinacea purpurea polysaccharide (EPPS), the component extracted from the root of Echinacea purpurea (L.) Moench, shows various biological functions including immunoregulation and antioxidant activity. PURPOSE This study aimed to elucidate the protective effect of EPPS against APAP-induced DILI and the underlying mechanisms. RESULTS EPPS attenuates APAP overdose induced DILI in mice and ameliorates inflammation and oxidative stress in mice with APAP overdose-induced DILI. Furthermore, EPPS protected the hepatocytes against APAP-induced liver injury by suppressing apoptosis. EPPS ameliorates APAP-induced DILI via an autophagy-dependent mechanism in vivo and increases autophagy with a reduction in oxidative stress and inflammation in vitro. Parkin knockdown prevents the autophagic-dependent manner of EPPS effects in APAP-treated hepatocytes. CONCLUSIONS EPPS exhibited a strong hepatoprotective effect against APAP-induced DILI and was correlated with reduction of autophagy-dependent oxidant response, inflammation, and apoptosis. Moreover, the findings indicated that EPPS exerts its hepatoprotective effect against APAP mainly via Parkin-dependent autophagy, and the use of EPPS can serve as a promising novel therapeutic strategy for APAP-induced DILI.
Collapse
Affiliation(s)
- Tingdong Yu
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China; Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Yanan He
- Department of Ultrasound, The Third People's Hospital of Kunming, Kunming 650041, PR China
| | - Haitao Chen
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Xiaokai Lu
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Huijing Ni
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Yimin Ma
- Inner Mongolia Medical University, Huhhot, Inner Mongolia 010000, PR China
| | - Yumei Chen
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China
| | - Chen Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Run Cao
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Liju Ma
- Department of Medical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, PR China
| | - Zhiyao Li
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China.
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, 650118, Yunnan, PR China
| | - Xiaomao Luo
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China.
| | - Chenhong Zheng
- Department of Ultrasound, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650118, Yunnan, PR China.
| |
Collapse
|
19
|
Xia S, Ding J, Zhang Z, Li X, Gan J, He X. Cluster of Differentiation 24 Polymorphism Has No Significant Association with Chronic Hepatitis B Virus Infection in the Chinese Han Population: A Family-Based Association Study. Infect Drug Resist 2022; 15:4837-4843. [PMID: 36043159 PMCID: PMC9420416 DOI: 10.2147/idr.s368392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Studies have shown that cluster of differentiation (CD) 24 gene polymorphism is associated with several diseases. Among these, chronic hepatitis B (CHB) infection has not been investigated. This study aimed to assess the function of CD24 in CHB. METHODS The study included 478 cases of CHB and 318 cases without CHB from 230 families that underwent genotyping. Polymerase chain reaction-restriction fragment length polymorphism was performed to assess the single nucleotide polymorphism (SNP) P170 of the CD24 gene. The detected genotypes were TT, CT, and CC. Then, family based-association analysis was carried out to investigate the association between CD24 gene polymorphism and susceptibility to CHB. RESULTS In the 478 patients with CHB, the frequencies of CD24 P170 T and C alleles were 35.5% and 64.5%, respectively, and the frequencies of CD24 P170 CC, CT, and TT genotypes were 39.3%, 50.4% and 10.3%, respectively. In a CD24 single-locus analysis by a family-based association test of P170 polymorphisms, T and C were not significantly associated with CHB in the additive (Z = 0.169, P = 0.866; Z = -0.169, P = 0.866, respectively), dominant (Z = 0.522, P = 0.602; Z = 0.428, P = 0.669, respectively), or recessive (Z = -0.428, P = 0.669; Z = -0.522, P = 0.602, respectively) models. Transmission-disequilibrium (TD) and sib-transmission disequilibrium (STD) tests revealed no excess of T or C alleles from heterozygous parents to their children with the disease or higher frequencies of these alleles in patients compared with their normal siblings (χ 2 = 0.06, P = 0.897). CONCLUSION The study findings suggest that the SNP P170 of CD24 has no significant association with susceptibility to the HB virus and related phenotypes in Chinese patients.
Collapse
Affiliation(s)
- Shulin Xia
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
- Department of Infectious Disease, Affiliated Taixing People’s Hospital of Yangzhou University, Taixing, People’s Republic of China
| | - Jiachen Ding
- Department of Infectious Disease, Affiliated Taixing People’s Hospital of Yangzhou University, Taixing, People’s Republic of China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, People’s Republic of China
| | - Xu Li
- Department of Infectious Diseases, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230000, People’s Republic of China
| | - Jianhe Gan
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People’s Republic of China
| | - Xiaomin He
- Department of Infectious Disease, Affiliated Taixing People’s Hospital of Yangzhou University, Taixing, People’s Republic of China
| |
Collapse
|
20
|
Zhang Y, Xu Y, Jing X, Lu W, Zhang F, Qin C. Moscatilin suppresses the inflammation from macrophages and T cells. Open Med (Wars) 2022; 17:756-767. [PMID: 35509689 PMCID: PMC9008319 DOI: 10.1515/med-2022-0456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, we aim to investigate moscatilin in alleviating symptoms of autoimmune liver disease (ALD) in a concanavalin A (ConA)-induced liver injury mouse model and elucidate the underlying mechanisms. ALD mouse models were constructed by intravenous injection of ConA (20 mg/kg) and the serum level of alanine aminotransferase (ALT) was measured using an enzyme-linked immunosorbent assay. Moscatilin in various doses was administered for two days starting from a day before the ConA injection. We showed that moscatilin dose-dependently decreased ALT levels in liver tissue of ALD mouse models. Ifng and Tnfa also showed significant downregulation in liver tissues. Macrophages only showed significant Tnfa downregulation and CD4+ T cells only showed significant Ifng downregulation at high moscatilin doses. In vivo administration of moscatilin induced interleukin-37 upregulation in hepatic tissues. In vitro, moscatilin also induced IL-37 upregulation in hepatic stellate cell line JS-1 rather than immune cells represented by RAW264.7 and CTLL-2 cell lines, suggesting that the hepatic stellate cell is majorly responsive to moscatilin treatment in terms of interleukin (IL)-37 upregulation. Our data indicate that moscatilin could alleviate liver injury in ConA-induced ALD mouse models through anti-inflammatory activities, warranting further development of moscatilin as a new drug in treating ALD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatobiliary Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Yugang Xu
- Department of General Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Xiujie Jing
- Department of Pediatrics, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Wenkui Lu
- Department of General Surgery, Dongping People's Hospital, Dongping 271500, China
| | - Fusen Zhang
- Department of Critical Care Unit, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, No. 324 Jingwuwei Road No.7, Jinan 250021, Shandong, China
| |
Collapse
|
21
|
Mullan KA, Anderson A, Shi YW, Ding JH, Ng CC, Chen Z, Baum L, Cherny S, Petrovski S, Sham PC, Lim KS, Liao WP, Kwan P. Potential role of regulatory DNA variants in modifying the risk of severe cutaneous reactions induced by aromatic anti-seizure medications. Epilepsia 2022; 63:936-949. [PMID: 35170024 PMCID: PMC9541367 DOI: 10.1111/epi.17182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Objective Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse drug reactions. Antiseizure medications (ASMs) with aromatic ring structure, including carbamazepine, are among the most common culprits. Screening for human leukocyte antigen (HLA) allele HLA‐B*15:02 is recommended prior to initiating treatment with carbamazepine in Asians, but this allele has low positive predictive value. Methods We performed whole genome sequencing and analyzed 6 199 696 common variants among 113 aromatic ASM‐induced SJS/TEN cases and 84 tolerant controls of Han Chinese ethnicity. Results In the primary analysis, nine variants reached genome‐wide significance (p < 5e‐08), one in the carbamazepine subanalysis (85 cases vs. 77 controls) and a further eight identified in HLA‐B*15:02‐negative subanalysis (35 cases and 53 controls). Interaction analysis between each novel variant from the primary analysis found that five increased risk irrespective of HLA‐B*15:02 status or zygosity. HLA‐B*15:02‐positive individuals were found to have reduced risk if they also carried a chromosome 12 variant, chr12.9426934 (heterozygotes: relative risk = .71, p = .001; homozygotes: relative risk = .23, p < .001). All significant variants lie within intronic or intergenic regions with poorly understood functional consequence. In silico functional analysis of suggestive variants (p < 5e‐6) identified through the primary and subanalyses (stratified by HLA‐B*15:02 status and drug exposure) suggests that genetic variation within regulatory DNA may contribute to risk indirectly by disrupting the regulation of pathology‐related genes. The genes implicated were specific either to the primary analysis (CD9), HLA‐B*15:02 carriers (DOCK10), noncarriers (ABCA1), carbamazepine exposure (HLA‐E), or phenytoin exposure (CD24). Significance We identified variants that could explain why some carriers of HLA‐B*15:02 tolerate treatment, and why some noncarriers develop ASM‐induced SJS/TEN. Additionally, this analysis suggests that the mixing of HLA‐B*15:02 carrier status in previous studies might have masked variants contributing to susceptibility, and that inheritance of risk for ASM‐induced SJS/TEN is complex, likely involving multiple risk variants.
Collapse
Affiliation(s)
- Kerry A Mullan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jia-Hong Ding
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ching-Ching Ng
- Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia.,Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Larry Baum
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Stacey Cherny
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Slave Petrovski
- Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Kheng-Seang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia.,Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Interferon-γ Preferentially Promotes Necroptosis of Lung Epithelial Cells by Upregulating MLKL. Cells 2022; 11:cells11030563. [PMID: 35159372 PMCID: PMC8833897 DOI: 10.3390/cells11030563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Necroptosis, a form of programmed lytic cell death, has emerged as a driving factor in the pathogenesis of acute lung injury (ALI). As ALI is often associated with a cytokine storm, we determined whether pro-inflammatory cytokines modulate the susceptibility of lung cells to necroptosis and which mediators dominate to control necroptosis. In this study, we pretreated/primed mouse primary lung epithelial and endothelial cells with various inflammatory mediators and assessed cell type-dependent responses to different necroptosis inducers and their underlying mechanisms. We found that interferon-γ (IFNγ) as low as 1 ng/mL preferentially promoted necroptosis and accelerated the release of damage-associated molecular patterns from primary alveolar and airway epithelial cells but not lung microvascular endothelial cells. Type-I IFNα was about fifty-fold less effective than IFNγ. Conversely, TNFα or agonists of Toll-like receptor-3 (TLR3), TLR4, TLR7 and TLR9 had a minor effect. The enhanced necroptosis in IFNγ-activated lung epithelial cells was dependent on IFNγ signaling and receptor-interacting protein kinase-3. We further showed that necroptosis effector mixed lineage kinase domain-like protein (MLKL) was predominantly induced by IFNγ, contributing to the enhanced necroptosis in lung epithelial cells. Collectively, our findings indicate that IFNγ is a potent enhancer of lung epithelial cell susceptibility to necroptosis.
Collapse
|
23
|
Identification of potential immunotherapy biomarkers for breast cancer by bioinformatics analysis. Biosci Rep 2022; 42:230663. [PMID: 35037689 PMCID: PMC8819662 DOI: 10.1042/bsr20212035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is a serious malignancy with a high incidence worldwide and a tendency to relapse. We used integrated bioinformatics analysis to identify potential biomarkers in breast carcinoma in the present study. Microarray data, 127breast tumor samples and 23 non-tumor samples, received from the Gene Expression Omnibus (GEO) dataset; 121 differentially expressed genes (DEGs) were selected. Functional analysis using DAVID revealed that these DEGs were highly gathered in endodermal cell differentiation and proteinaceous extracellular matrix. Five bioactive compounds (prostaglandin J2, tanespimycin, semustine, 5182598, and flunarizine) were identified using Connectivity Map. We used Cytoscape software and STRING dataset to structure a protein–protein interaction (PPI) network. The expression of CD24, MMP1, SDC1, and SPP1 was much higher in breast carcinoma tissue than in Para cancerous tissues analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) and ONCOMINE. Overexpression ofCD24, MMP1, SDC1, and SPP1 indicated the poor prognosis in breast carcinoma patients analyzed by Kaplan–Meier (KM) Plotter. Immunohistochemistry microarray was used to further confirm that protein expression of CD24, MMP1, SDC1, and SPP1 was much higher in tumor sections than in Para cancerous tissues. Hub genes expression at the protein level was correlated tothe breast cancer subtype and grade. Furthermore, immunity analysis showed that CD24, MMP1, SDC1, and SPP1 were potentially associated with five immune cell types infiltration (CD8+ T cells, CD4+ T cells, neutrophils, macrophages,and dendritic cells) by TIMER. Thus, this study indicates potential biomarkers that could have applications in the development of immune therapy for breast cancer. However, further studies are required for verifying these results in vivo and vitro.
Collapse
|
24
|
Sun C, Fujisawa M, Ohara T, Liu Q, Cao C, Yang X, Yoshimura T, Kunkel SL, Matsukawa A. Spred2 controls the severity of Concanavalin A-induced liver damage by limiting interferon-gamma production by CD4 + and CD8 + T cells. J Adv Res 2022; 35:71-86. [PMID: 35003795 PMCID: PMC8721245 DOI: 10.1016/j.jare.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 11/15/2022] Open
Abstract
Spred2-/- mice developed exacerbated Con A-induced liver damage with increased IFNγ production. MEK/ERK inhibitor U0126 markedly inhibited the damage and reduced IFNγ production. Neutralization of IFNγ abolished the damage with down-regulated hepatic STAT1 activation. Depletion of CD4+/CD8+ T cells improved the damage with decreased IFNγ production. Transplantation of CD4+/CD8+ T cells into RAG1-/- mice reproduced severe liver damage. Liver damage and IFNγ production were significantly lower in Spred2 transgenic mice.
Introduction Mitogen-activated protein kinases (MAPKs) are involved in T cell-mediated liver damage. However, the inhibitory mechanism(s) that controls T cell-mediated liver damage remains unknown. Objectives We investigated whether Spred2 (Sprouty-related, EVH1 domain-containing protein 2) that negatively regulates ERK-MAPK pathway has a biological impact on T cell-mediated liver damage by using a murine model. Methods We induced hepatotoxicity in genetically engineered mice by intravenously injecting Concanavalin A (Con A) and analyzed the mechanisms using serum chemistry, histology, ELISA, qRT-PCR, Western blotting and flow cytometry. Results Spred2-deficient mice (Spred2-/-) developed more sever liver damage than wild-type (WT) mice with increased interferon-γ (IFNγ) production. Hepatic ERK phosphorylation was enhanced in Spred2-/- mice, and pretreatment of Spred2-/- mice with the MAPK/ERK inhibitor U0126 markedly inhibited the liver damage and reduced IFNγ production. Neutralization of IFNγ abolished the damage with decreased hepatic Stat1 activation in Spred2-/- mice. IFNγ was mainly produced from CD4+ and CD8+ T cells, and their depletion decreased liver damage and IFNγ production. Transplantation of CD4+ and/or CD8+ T cells from Spred2-/- mice into RAG1-/- mice deficient in both T and B cells caused more severe liver damage than those from WT mice. Hepatic expression of T cell attractants, CXCL9 and CXCL10, was augmented in Spred2-/- mice as compared to WT mice. Conversely, liver damage, IFNγ production and the recruitment of CD4+ and CD8+ T cells in livers after Con A challenge were lower in Spred2 transgenic mice, and Spred2-overexpressing CD4+ and CD8+ T cells produced lower levels of IFNγ than WT cells upon stimulation with Con A in vitro. Conclusion We demonstrated, for the first time, that Spred2 functions as an endogenous regulator of T cell IFNγ production and Spred2-mediated inhibition of ERK-MAPK pathway may be an effective remedy for T cell-dependent liver damage.
Collapse
Affiliation(s)
- Cuiming Sun
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Infectious Disease, The First Hospital of China Medical University, Liaoning, China
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Qiuying Liu
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chen Cao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xu Yang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
25
|
Muscate F, Woestemeier A, Gagliani N. Functional heterogeneity of CD4 + T cells in liver inflammation. Semin Immunopathol 2021; 43:549-561. [PMID: 34463867 PMCID: PMC8443520 DOI: 10.1007/s00281-021-00881-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
CD4+ T cells play an essential role in orchestrating adequate immunity, but their overactivity has been associated with the development of immune-mediated inflammatory diseases, including liver inflammatory diseases. These cells can be subclassified according to their maturation stage, cytokine profile, and pro or anti-inflammatory functions, i.e., functional heterogeneity. In this review, we summarize what has been discovered so far regarding the role of the different CD4+ T cell polarization states in the progression of two prominent and still different liver inflammatory diseases: non-alcoholic steatohepatitis (NASH) and autoimmune hepatitis (AIH). Finally, the potential of CD4+ T cells as a therapeutic target in both NASH and AIH is discussed.
Collapse
Affiliation(s)
- Franziska Muscate
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
26
|
Santos P, Almeida F. Exosome-Based Vaccines: History, Current State, and Clinical Trials. Front Immunol 2021; 12:711565. [PMID: 34335627 PMCID: PMC8317489 DOI: 10.3389/fimmu.2021.711565] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are released by most cell types as part of an intracellular communication system in crucial processes such as inflammation, cell proliferation, and immune response. However, EVs have also been implicated in the pathogenesis of several diseases, such as cancer and numerous infectious diseases. An important feature of EVs is their ability to deliver a wide range of molecules to nearby targets or over long distances, which allows the mediation of different biological functions. This delivery mechanism can be utilized for the development of therapeutic strategies, such as vaccination. Here, we have highlighted several studies from a historical perspective, with respect to current investigations on EV-based vaccines. For example, vaccines based on exosomes derived from dendritic cells proved to be simpler in terms of management and cost-effectiveness than dendritic cell vaccines. Recent evidence suggests that EVs derived from cancer cells can be leveraged for therapeutics to induce strong anti-tumor immune responses. Moreover, EV-based vaccines have shown exciting and promising results against different types of infectious diseases. We have also summarized the results obtained from completed clinical trials conducted on the usage of exosome-based vaccines in the treatment of cancer, and more recently, coronavirus disease.
Collapse
Affiliation(s)
- Patrick Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Liu Q, Chen X, Liu C, Pan L, Kang X, Li Y, Du C, Dong S, Xiang AP, Xu Y, Zhang Q. Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis 2021; 12:240. [PMID: 33664231 PMCID: PMC7933182 DOI: 10.1038/s41419-021-03524-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Liver diseases with different pathogenesis share common pathways of immune-mediated injury. Chitinase-3-like protein 1 (CHI3L1) was induced in both acute and chronic liver injuries, and recent studies reported that it possesses an immunosuppressive ability. CHI3L1 was also expressed in mesenchymal stem cells (MSCs), thus we investigates the role of CHI3L1 in MSC-based therapy for immune-mediated liver injury here. We found that CHI3L1 was highly expressed in human umbilical cord MSCs (hUC-MSCs). Downregulating CHI3L1 mitigated the ability of hUC-MSCs to inhibit T cell activation, proliferation and inflammatory cytokine secretion in vitro. Using Concanavalin A (Con A)-induced liver injury mouse model, we found that silencing CHI3L1 significantly abrogated the hUC-MSCs-mediated alleviation of liver injury, accompanying by weakened suppressive effects on infiltration and activation of hepatic T cells, and secretion of pro-inflammatory cytokines. In addition, recombinant CHI3L1 (rCHI3L1) administration inhibited the proliferation and function of activated T cells, and alleviated the Con A-induced liver injury in mice. Mechanistically, gene set enrichment analysis showed that JAK/STAT signalling pathway was one of the most significantly enriched gene pathways in T cells co-cultured with hUC-MSCs with CHI3L1 knockdown, and further study revealed that CHI3L1 secreted by hUC-MSCs inhibited the STAT1/3 signalling in T cells by upregulating peroxisome proliferator-activated receptor δ (PPARδ). Collectively, our data showed that CHI3L1 was a novel MSC-secreted immunosuppressive factor and provided new insights into therapeutic treatment of immune-mediated liver injury.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China (2017YFA0106100, 2018YFA0107203, 2017YFA010550), National Natural Science Foundation of China (81971526, 81670601, 81760112, 31601184, 81870449, 81970537, 81970109), Guangdong Basic and Applied Basic Research Foundation (2020A1515010272, 2020A1515011385), Key project fund of Guangdong Natural Science Foundation (2017A030311034), Special fund for frontier and key technology innovation of Guangdong (2015B020226004) and National Keypoint Research and Invention program of the thirteenth (2018ZX10723203), the Key Scientific and Technological Projects of Guangdong Province (2019B020236004, 2019B020234001, 2019B020235002, 2017B020230004), Key Scientific and Technological Program of Guangzhou City (201803040011, 201802020023), Pearl River S&T Nova Program of Guangzhou (201906010095), Fundamental Research Funds for the Central Universities (20ykpy149).
Collapse
Affiliation(s)
- Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaoyong Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Lijie Pan
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xinmei Kang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yanli Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Cong Du
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Andy Peng Xiang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
28
|
Wang EM, Hu TH, Huang CC, Chang YC, Yang SM, Huang ST, Wu JC, Ma YL, Chan HH, Liu LF, Lu WB, Kung ML, Wen ZH, Wang JC, Ko CY, Tsai WL, Chu TH, Tai MH. Hepatoma-derived growth factor participates in concanavalin A-induced hepatitis. FASEB J 2020; 34:16163-16178. [PMID: 33063394 DOI: 10.1096/fj.202000511rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis is an important health problem worldwide. Novel molecular targets are in demand for detection and management of hepatitis. Hepatoma-derived growth factor (HDGF) has been delineated to participate in hepatic fibrosis and liver carcinogenesis. However, the relationship between hepatitis and HDGF remains unclear. This study aimed to elucidate the role of HDGF during hepatitis using concanavalin A (ConA)-induced hepatitis model. In cultured hepatocytes, ConA treatment-elicited HDGF upregulation at transcriptional level and promoted HDGF secretion while reducing intracellular HDGF protein level and cellular viability. Similarly, mice receiving ConA administration exhibited reduced hepatic HDGF expression and elevated circulating HDGF level, which was positively correlated with serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. By using HDGF knockout (KO) mice, it was found the ConA-evoked cell death was prominently alleviated in KO compared with control. Besides, it was delineated HDGF ablation conferred protection by suppressing the ConA-induced neutrophils recruitment in livers. Above all, the ConA-mediated activation of tumor necrosis factor-α (TNF-α)/interleukin-1β (IL-1β)/interleukin-6 (IL-6)/cyclooxygenase-2 (COX-2) inflammatory signaling was significantly abrogated in KO mice. Treatment with recombinant HDGF (rHDGF) dose-dependently stimulated the expression of TNF-α/IL-1β/IL-6/COX-2 in hepatocytes, further supporting the pro-inflammatory function of HDGF. Finally, application of HDGF antibody not only attenuated the ConA-mediated inflammatory cascade in hepatocytes, but also ameliorated the ConA-induced hepatic necrosis and AST elevation in mice. In summary, HDGF participates in ConA-induced hepatitis via neutrophils recruitment and may constitute a therapeutic target for acute hepatitis.
Collapse
Affiliation(s)
- E-Ming Wang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chen Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan.,LabTurbo Biotech Corporation, Taipei, Taiwan
| | - Jian-Ching Wu
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Ma
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hoi-Hung Chan
- Division of Gastroenterology, Department of Medicine, Conde S. Januário Hospital, Macau, China
| | - Li-Feng Liu
- Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Bin Lu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jui-Chu Wang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chou-Yuan Ko
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wei-Lun Tsai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scand J Immunol 2020; 93:e12967. [PMID: 32875598 DOI: 10.1111/sji.12967] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
The lymphopenia as a major immunological abnormality occurs in the majority of severe COVID-19 patients, which is strongly associated with mortality rate. A low proportion of lymphocytes may express the main receptor for SARS-CoV-2, called angiotensin-converting enzyme 2 (ACE2). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also use ACE2-independent pathways to enter lymphocytes. Both SARS-CoV-2- and immune-mediated mechanisms may contribute to the occurrence of lymphopenia through influencing the lymphocyte production, survival or tissue re-distribution. The metabolic and biochemical changes can also affect the production and survival of lymphocytes in COVID-19 patients. Lymphopenia can cause general immunosuppression and promote cytokine storm, both of them play an important role in the viral persistence, viral replication, multi-organ failure and eventually death. Here, a comprehensive view concerning the possible mechanisms that may lead to the lymphocyte reduction in COVID-19 patients is provided, while highlighting the potential intervention approaches to prevent lymphopenia.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parvin Nozari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pejman Mokhtari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Glycyrrhizic acid ammonium salt alleviates Concanavalin A-induced immunological liver injury in mice through the regulation of the balance of immune cells and the inhibition of hepatocyte apoptosis. Biomed Pharmacother 2019; 120:109481. [PMID: 31586906 DOI: 10.1016/j.biopha.2019.109481] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
|
32
|
Shi W, Shao T, Li JY, Fan DD, Lin AF, Xiang LX, Shao JZ. BTLA-HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2019; 203:2425-2442. [PMID: 31562209 DOI: 10.4049/jimmunol.1900458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
33
|
Qin Y, Fang K, Lu N, Hu Y, Tian Z, Zhang C. Interferon gamma inhibits the differentiation of mouse adult liver and bone marrow hematopoietic stem cells by inhibiting the activation of notch signaling. Stem Cell Res Ther 2019; 10:210. [PMID: 31311586 PMCID: PMC6636148 DOI: 10.1186/s13287-019-1311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The paradigm of hematopoietic stem and progenitor cells (HSPCs) has become accepted ever since the discovery of adult mouse liver hematopoietic stem cells and their multipotent characteristics that give rise to all blood cells. However, differences between bone marrow (BM) and liver hematopoietic stem cells and the hematopoietic microenvironment remain poorly understood. In addition, the regulation of the liver hematopoietic system remains unknown. METHODS Clone formation assays were used to confirm that the proliferation of adult mouse liver and bone marrow HSPCs. Model mice with different interferon gamma (IFN-γ) levels and a co-culture system were used to detect the differentiation of liver HSPCs. The γ-secretase inhibitor (GSI) and the JAK/STAT inhibitor ruxolitinib and cell culture assays were used to explore the molecular mechanism by which IFN-γ impairs HSPC proliferation and differentiation. RESULTS The colony-forming activity of liver and bone marrow HSPCs was inhibited by IFN-γ. Model mice with different IFN-γ levels showed that the differentiation of liver HSPCs was impaired by IFN-γ. Using a co-culture system comprising liver HSPCs, we found that IFN-γ inhibited the development of liver hematopoietic stem cells into γδT cells. We then demonstrated that IFN-γ might impair liver HSPC differentiation by inhibiting the activation of the notch signaling via the JAK/STAT signaling pathway. CONCLUSIONS IFN-γ inhibited the proliferation of liver-derived HSPCs. IFN-γ also impaired the differentiation of long-term hematopoietic stem cells (LT-HSCs) into short-term hematopoietic stem cells (ST-HSCs) and multipotent progenitors (MPPs) and the process from LSK (Lineage-Sca-1+c-Kit+) cells to γδT cells. Importantly, we proposed that IFN-γ might inhibit the activation of notch signaling through the JAK/STAT signaling pathway and thus impair the differentiation process of mouse adult liver and BM hematopoietic stem cells.
Collapse
Affiliation(s)
- Yuhong Qin
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Keke Fang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Yuan Hu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
34
|
Meng D, Qin Y, Lu N, Fang K, Hu Y, Tian Z, Zhang C. Kupffer Cells Promote the Differentiation of Adult Liver Hematopoietic Stem and Progenitor Cells into Lymphocytes via ICAM-1 and LFA-1 Interaction. Stem Cells Int 2019; 2019:4848279. [PMID: 31354839 PMCID: PMC6636495 DOI: 10.1155/2019/4848279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
It has been reported that the adult liver contains hematopoietic stem and progenitor cells (HSPCs), which are associated with long-term hematopoietic reconstitution activity. Hepatic hematopoiesis plays an important role in the generation of cells involved in liver diseases. However, how the progenitors differentiate into functional myeloid cells and lymphocytes in the liver microenvironment remains unknown. In the present study, HSPC transplantation experiments were used to confirm that adult murine liver HSPCs differentiate into both myeloid cells and lymphocytes (preferentially T cells) compared with bone marrow HSPCs. Using a coculture system comprised of kupffer cells and HSPCs, we found that kupffer cells promote adult liver HSPCs to primarily generate T cells and B cells. We then demonstrated that kupffer cells can also promote HSPC expansion. A blockade of intercellular cell adhesion molecule-1 (ICAM-1) in a liver HSPC and kupffer cell coculture system impaired the adhesion, expansion, and differentiation of HSPCs. These results suggest a critical role of kupffer cells in the maintenance and promotion of adult mouse liver hematopoiesis. These findings provide important insight into understanding liver extramedullary hematopoiesis and its significance, particularly under the state of some liver diseases, such as hepatitis, nonalcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Deping Meng
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Yuhong Qin
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, 250012 Shandong, China
| | - Keke Fang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Yuan Hu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027 Anhui, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China
| |
Collapse
|
35
|
Li N, Zheng P, Liu Y. The CD24-Siglec G axis protects mice against cuprizone-induced oligodendrocyte loss: targeting danger signal for neuroprotection. Cell Mol Immunol 2018; 15:79-81. [PMID: 28757612 PMCID: PMC5827176 DOI: 10.1038/cmi.2017.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ning Li
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Yang Liu
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Health System, Washington, DC 20010, USA
| |
Collapse
|
36
|
Bartneck M, Schlößer CT, Barz M, Zentel R, Trautwein C, Lammers T, Tacke F. Immunomodulatory Therapy of Inflammatory Liver Disease Using Selectin-Binding Glycopolymers. ACS NANO 2017; 11:9689-9700. [PMID: 28829572 DOI: 10.1021/acsnano.7b04630] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Immunotherapies have the potential to significantly advance treatment of inflammatory disease and cancer, which are in large part driven by immune cells. Selectins control the first step in immune cell adhesion and extravasation, thereby guiding leukocyte trafficking to tissue lesions. We analyzed four different highly specific selectin-binding glycopolymers, based on linear poly(2-hydroxypropyl)-methacrylamide (PHPMA) polymers. These glycopolymers contain either the tetrasaccharide sialyl-LewisX (SLeX) or the individual carbohydrates fucose, galactose, and sialic acids mimicking the complex SLeX binding motive. The glycopolymers strongly bind to primary human macrophages, without activating them, and also to primary human blood leukocytes, but poorly to fibroblasts and endothelial cells in vitro. After intravenous injection in mice, all glycopolymers accumulated in the liver without causing hepatotoxicity. The glycosylated binder most potently targeted resident hepatic macrophages (Kupffer cells) and protected mice from acute toxic liver injury in the two different experimental models, carbon tetrachloride (CCl4) or Concanavalin A (ConA)-based hepatitis. Its sulfated counterpart, on the other hand, induced a decrease in infiltrating and resident macrophages, increased T helper cells, and aggravated immune-mediated liver injury. We demonstrate that, in the context of selectin-binding glycopolymers, minor modifications strongly impact leukocyte influx and macrophage activation, thereby ameliorating or aggravating liver inflammation depending on the underlying immunopathology. The nonsulfated random glycopolymer is a promising candidate for the treatment of inflammatory disease. The modulation of hepatic immune cells by selectin-binding glycopolymers might breach the immunosuppressive hepatic microenvironment and could improve efficacy of immunotherapies for inflammatory disease and cancer.
Collapse
Affiliation(s)
| | | | - Matthias Barz
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz , 55122 Mainz, Germany
| | - Rudolf Zentel
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz , 55122 Mainz, Germany
| | | | | | | |
Collapse
|