1
|
Asmamaw MD, He A, Zhang LR, Liu HM, Gao Y. Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer 2024; 1879:189150. [PMID: 38971208 DOI: 10.1016/j.bbcan.2024.189150] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ang He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
2
|
Shi H, Wang Y, Chen L, Li Y, Qin Y, Lv J. CircRNAs expression profile and potential roles of circRERE-PMN in pre-metastatic lungs. Front Immunol 2024; 15:1455603. [PMID: 39253079 PMCID: PMC11381296 DOI: 10.3389/fimmu.2024.1455603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
The successful pulmonary metastasis of malignant cancer cells depends on the survival of circulating tumor cells in a distant and hostile microenvironment. The formation of a pre-metastatic niche (PMN) creates a supportive environment for subsequent metastasis. Circular RNAs (circRNAs) are increasingly acknowledged as crucial elements in the mechanisms of metastasis due to their stable structures and functions, making them promising early metastasis detection markers. However, the specific expression patterns and roles of circRNAs in the lungs before metastasis remain largely unexplored. Our research aims to chart the circRNA expression profile and assess their impact on the lung PMN. We developed a lung PMN model and employed comprehensive RNA sequencing to analyze the differences in circRNA expression between normal and pre-metastatic lungs. We identified 38 significantly different circRNAs, primarily involved in metabolism, apoptosis, and inflammation pathways. We then focused on one specific circRNA, circ:chr4:150406196 - 150406664 (circRERE-PMN), which exhibited a significant change in expression and was prevalent in myeloid-derived suppressor cells (MDSCs), alveolar epithelial cells, and macrophages within the pre-metastatic lung environment. CircRERE-PMN was found to potentially regulate apoptosis and the expression of cytokines and chemokines through its interaction with the downstream target HUR in alveolar epithelial cells. Overall, our study highlights the crucial role of circRNAs in the formation of lung PMNs, supporting their potential as diagnostic or therapeutic targets for lung metastasis.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Wang
- CT Scan Room, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yuanyuan Li
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
3
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
4
|
Wang S, Fairall L, Pham TK, Ragan TJ, Vashi D, Collins M, Dominguez C, Schwabe JR. A potential histone-chaperone activity for the MIER1 histone deacetylase complex. Nucleic Acids Res 2023; 51:6006-6019. [PMID: 37099381 PMCID: PMC10325919 DOI: 10.1093/nar/gkad294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.
Collapse
Affiliation(s)
- Siyu Wang
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Louise Fairall
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Trong Khoa Pham
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Timothy J Ragan
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Dipti Vashi
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Cyril Dominguez
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John W R Schwabe
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
5
|
George A, Lee J, Liu J, Kim S, Brooks BP. Zebrafish model of RERE syndrome recapitulates key ophthalmic defects that are rescued by small molecule inhibitor of shh signaling. Dev Dyn 2023; 252:495-509. [PMID: 36576487 PMCID: PMC11528340 DOI: 10.1002/dvdy.561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND RERE is a highly conserved transcriptional co-regulator that is associated with a human neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH, OMIM: 616975). RESULTS We show that the zebrafish rerea mutant (babyface) robustly recapitulates optic fissure closure defects resulting from loss of RERE function, as observed in humans. These defects result from expansion of proximal retinal optic stalk (OS) and reduced expression of some of the ventral retinal fate genes due to deregulated protein signaling. Using zebrafish and cell-based assays, we determined that NEDBEH-associated human RERE variants function as hypomorphs in their ability to repress shh signaling and some exhibit abnormal nuclear localization. Inhibiting shh signaling by the protein inhibitor HPI-1 rescues coloboma, confirming our observation that coloboma in rerea mutants is indeed due to deregulation of shh signaling. CONCLUSIONS Zebrafish rerea mutants exhibit OS and optic fissure closure defects. The optic fissure closure defect was rescued by an shh signaling inhibitor, suggesting that this defect could arise due to deregulated shh signaling.
Collapse
Affiliation(s)
- Aman George
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jerry Lee
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James Liu
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suzie Kim
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P Brooks
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Mouri K, Dewey HB, Castro R, Berenzy D, Kales S, Tewhey R. Whole-genome functional characterization of RE1 silencers using a modified massively parallel reporter assay. CELL GENOMICS 2023; 3:100234. [PMID: 36777181 PMCID: PMC9903721 DOI: 10.1016/j.xgen.2022.100234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Both upregulation and downregulation by cis-regulatory elements help modulate precise gene expression. However, our understanding of repressive elements is far more limited than activating elements. To address this gap, we characterized RE1, a group of transcriptional silencers bound by REST, at genome-wide scale using a modified massively parallel reporter assay (MPRAduo). MPRAduo empirically defined a minimal binding strength of REST (REST motif-intrinsic value [m-value]), above which cofactors colocalize and silence transcription. We identified 1,500 human variants that alter RE1 silencing and found that their effect sizes are predictable when they overlap with REST-binding sites above the m-value. Additionally, we demonstrate that non-canonical REST-binding motifs exhibit silencer function only if they precisely align half sites with specific spacer lengths. Our results show mechanistic insights into RE1, which allow us to predict its activity and effect of variants on RE1, providing a paradigm for performing genome-wide functional characterization of transcription-factor-binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Kales
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Ryan Tewhey
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Lee K, Whedon SD, Wang ZA, Cole PA. Distinct biochemical properties of the class I histone deacetylase complexes. Curr Opin Chem Biol 2022; 70:102179. [PMID: 35803024 PMCID: PMC10786639 DOI: 10.1016/j.cbpa.2022.102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/22/2022]
Abstract
Classical histone deacetylases (HDACs) are enzymes that can hydrolytically cleave acetyl-Lys in histones and other proteins and serve as established drug targets in some forms of cancer. Class I HDACs 1-3 typically exist in a range of multiprotein complexes inside cells and show distinct biological functions in modulating gene expression. In recent years, it has become possible to purify and analyze the structure and enzymatic properties of several of these HDAC complexes, including CoREST, MiDAC, NuRD, Sin3, SMRT, MIER, and RERE. Here, we summarize what is experimentally established and/or computationally predicted about the structure of these complexes to describe their particular catalytic activities and site-specificities with modified nucleosome substrates.
Collapse
Affiliation(s)
- Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Rinaldetti S, Zhou Q, Abbott JM, de Jong FC, Esquer H, Costello JC, Theodorescu D, LaBarbera DV. High-Content Drug Discovery Targeting Molecular Bladder Cancer Subtypes. Int J Mol Sci 2022; 23:10605. [PMID: 36142576 PMCID: PMC9506379 DOI: 10.3390/ijms231810605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Molecular subtypes of muscle-invasive bladder cancer (MIBC) display differential survival and drug sensitivities in clinical trials. To date, they have not been used as a paradigm for phenotypic drug discovery. This study aimed to discover novel subtype-stratified therapy approaches based on high-content screening (HCS) drug discovery. Transcriptome expression data of CCLE and BLA-40 cell lines were used for molecular subtype assignment in basal, luminal, and mesenchymal-like cell lines. Two independent HCSs, using focused compound libraries, were conducted to identify subtype-specific drug leads. We correlated lead drug sensitivity data with functional genomics, regulon analysis, and in-vitro drug response-based enrichment analysis. The basal MIBC subtype displayed sensitivity to HDAC and CHK inhibitors, while the luminal subtype was sensitive to MDM2 inhibitors. The mesenchymal-like cell lines were exclusively sensitive to the ITGAV inhibitor SB273005. The role of integrins within this mesenchymal-like MIBC subtype was confirmed via its regulon activity and gene essentiality based on CRISPR-Cas9 knock-out data. Patients with high ITGAV expression showed a significant decrease in the median overall survival. Phenotypic high-content drug screens based on bladder cancer cell lines provide rationales for novel stratified therapeutic approaches as a framework for further prospective validation in clinical trials.
Collapse
Affiliation(s)
- Sébastien Rinaldetti
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Department of Hematology-Oncology, Centre Hospitalier de Luxembourg, 1210 Luxembourg, Luxembourg
| | - Qiong Zhou
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua M. Abbott
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Florus C. de Jong
- The Department of Urology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Hector Esquer
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Daniel V. LaBarbera
- The Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Center for Drug Discovery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Ma J, Li C, Qian H, Zhang Y. MTA1: A Vital Modulator in Prostate Cancer. Curr Protein Pept Sci 2022; 23:456-464. [PMID: 35792131 DOI: 10.2174/1389203723666220705152713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the most frequent cancer of the male genitourinary system and the second most common cancer in men worldwide. PCa has become one of the leading diseases endangering men's health in Asia in recent years, with a large increase in morbidity and mortality. MTA1 (metastasis-associated antigen-1), a transcriptional coregulator involved in histone deacetylation and nucleosome remodeling, is a member of the MTA family. MTA1 is involved in cell signaling, chromosomal remodeling, and transcriptional activities, all of which are important for epithelial cell progression, invasion, and growth. MTA1 has been demonstrated to play a significant role in the formation, progression, and metastasis of PCa, and MTA1 expression is specifically linked to PCa bone metastases. Therefore, MTA1 may be a potential target for PCa prevention and treatment. Here, we reviewed the structure, function, and expression of MTA1 in PCa as well as drugs that target MTA1 to highlight a potential new treatment for PCa.
Collapse
Affiliation(s)
- Jialu Ma
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Urology Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Coleman LG, Crews FT, Vetreno RP. The persistent impact of adolescent binge alcohol on adult brain structural, cellular, and behavioral pathology: A role for the neuroimmune system and epigenetics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:1-44. [PMID: 34696871 DOI: 10.1016/bs.irn.2021.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adolescence is a critical neurodevelopmental window for maturation of brain structure, neurocircuitry, and glia. This development is sculpted by an individual's unique experiences and genetic background to establish adult level cognitive function and behavioral makeup. Alcohol abuse during adolescence is associated with an increased lifetime risk for developing an alcohol use disorder (AUD). Adolescents participate in heavy, episodic binge drinking that causes persistent changes in neurocircuitry and behavior. These changes may underlie the increased risk for AUD and might also promote cognitive deficits later in life. In this chapter, we have examined research on the persistent effects of adolescent binge-drinking both in humans and in rodent models. These studies implicate roles for neuroimmune signaling as well as epigenetic reprogramming of neurons and glia, which create a vulnerable neuroenvironment. Some of these changes are reversible, giving hope for future treatments to prevent many of the long-term consequences of adolescent alcohol abuse.
Collapse
Affiliation(s)
- Leon G Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Fulton T Crews
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Kim BJ, Zaveri HP, Kundert PN, Jordan VK, Scott TM, Carmichael J, Scott DA. RERE deficiency contributes to the development of orofacial clefts in humans and mice. Hum Mol Genet 2021; 30:595-602. [PMID: 33772547 DOI: 10.1093/hmg/ddab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
Deletions of chromosome 1p36 are the most common telomeric deletions in humans and are associated with an increased risk of orofacial clefting. Deletion/phenotype mapping, combined with data from human and mouse studies, suggests the existence of multiple 1p36 genes associated with orofacial clefting including SKI, PRDM16, PAX7 and GRHL3. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in the proximal critical region for 1p36 deletion syndrome and encodes a nuclear receptor co-regulator. Pathogenic RERE variants have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye or heart (NEDBEH). Cleft lip has previously been described in one individual with NEDBEH. Here we report the first individual with NEDBEH to have a cleft palate. We confirm that RERE is broadly expressed in the palate during mouse embryonic development, and we demonstrate that the majority of RERE-deficient mouse embryos on C57BL/6 background have cleft palate. We go on to show that ablation of Rere in cranial neural crest (CNC) cells, mediated by a Wnt1-Cre, leads to delayed elevation of the palatal shelves and cleft palate and that proliferation of mesenchymal cells in the palatal shelves is significantly reduced in Rereflox/flox; Wnt1-Cre embryos. We conclude that loss of RERE function contributes to the development of orofacial clefts in individuals with proximal 1p36 deletions and NEDBEH and that RERE expression in CNC cells and their derivatives is required for normal palatal development.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter N Kundert
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiana M Scott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jenny Carmichael
- LNR Genomic Medicine Service, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, UK
| | - Daryl A Scott
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Kim BJ, Scott DA. RERE deficiency causes retinal and optic nerve atrophy through degeneration of retinal cells. Dev Dyn 2021; 250:1398-1409. [PMID: 33742727 DOI: 10.1002/dvdy.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/15/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The arginine-glutamic acid dipeptide repeats gene (RERE) encodes a nuclear receptor coregulator that modulates gene expression through its interaction with transcriptional machinery. In humans, RERE deficiency causes neurodevelopmental disorder with or without structural defects of the brain, eye, heart, and kidney (NEDBEH). Ophthalmological defects are seen in approximately one third of individuals with NEDBEH and in RERE-deficient mice which can serve as a useful animal model. RESULTS In mice, RERE is expressed in a subset of retinal ganglion cells (RGC), the lens epithelium, and the ciliary body during the embryonic period. RERE expression expands into the outer nuclear layer and the inner nuclear layer during the postnatal period. RERE-deficient mice have retinal and optic nerve atrophy. We show that RERE deficiency causes progressive loss of retinal cells and apoptosis of retinal cells in the ganglion cell layer as early as E17.5. The number of RGCs is also reduced in RERE-deficient embryos and mice. CONCLUSIONS We conclude that RERE is required to control the apoptosis of retinal cells in the developing retina, and that RERE deficiency results in the retina atrophy through degeneration of the retinal cells and optic nerve atrophy through the loss of RGCs.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Bhattacharya A, Mukherjee S, Khan P, Banerjee S, Dutta A, Banerjee N, Sengupta D, Basak U, Chakraborty S, Dutta A, Chattopadhyay S, Jana K, Sarkar DK, Chatterjee S, Das T. SMAR1 repression by pluripotency factors and consequent chemoresistance in breast cancer stem-like cells is reversed by aspirin. Sci Signal 2020; 13:13/654/eaay6077. [PMID: 33082288 DOI: 10.1126/scisignal.aay6077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The high abundance of drug efflux pumps in cancer stem cells (CSCs) contributes to chemotherapy resistance. The transcriptional regulator SMAR1 suppresses CSC expansion in colorectal cancer, and increased abundance of SMAR1 is associated with better prognosis. Here, we found in breast tumors that the expression of SMAR1 was decreased in CSCs through the cooperative interaction of the pluripotency factors Oct4 and Sox2 with the histone deacetylase HDAC1. Overexpressing SMAR1 sensitized CSCs to chemotherapy through SMAR1-dependent recruitment of HDAC2 to the promoter of the gene encoding the drug efflux pump ABCG2. Treating cultured CSCs or 4T1 tumor-bearing mice with the nonsteroidal anti-inflammatory drug aspirin restored SMAR1 expression and ABCG2 repression and enhanced tumor sensitivity to doxorubicin. Our findings reveal transcriptional mechanisms regulating SMAR1 that also regulate cancer stemness and chemoresistance and suggest that, by restoring SMAR1 expression, aspirin might enhance chemotherapeutic efficacy in patients with stem-like tumors.
Collapse
Affiliation(s)
- Apoorva Bhattacharya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Shravanti Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Poulami Khan
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Debomita Sengupta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Abhishek Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, NH 17B, Zuarinagar, Goa-403 726, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Diptendra K Sarkar
- Department of Surgery, IPGMER and SSKM Hospital, Kolkata- 700 020, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India.
| |
Collapse
|
14
|
Chopra A, Cho WC, Willmore WG, Biggar KK. Hypoxia-Inducible Lysine Methyltransferases: G9a and GLP Hypoxic Regulation, Non-histone Substrate Modification, and Pathological Relevance. Front Genet 2020; 11:579636. [PMID: 33088284 PMCID: PMC7495024 DOI: 10.3389/fgene.2020.579636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Oxygen sensing is inherent among most animal lifeforms and is critical for organism survival. Oxygen sensing mechanisms collectively trigger cellular and physiological responses that enable adaption to a reduction in ideal oxygen levels. The major mechanism by which oxygen-responsive changes in the transcriptome occur are mediated through the hypoxia-inducible factor (HIF) pathway. Upon reduced oxygen conditions, HIF activates hypoxia-responsive gene expression programs. However, under normal oxygen conditions, the activity of HIF is regularly suppressed by cellular oxygen sensors; prolyl-4 and asparaginyl hydroxylases. Recently, these oxygen sensors have also been found to suppress the function of two lysine methyltransferases, G9a and G9a-like protein (GLP). In this manner, the methyltransferase activity of G9a and GLP are hypoxia-inducible and thus present a new avenue of low-oxygen signaling. Furthermore, G9a and GLP elicit lysine methylation on a wide variety of non-histone proteins, many of which are known to be regulated by hypoxia. In this article we aim to review the effects of oxygen on G9a and GLP function, non-histone methylation events inflicted by these methyltransferases, and the clinical relevance of these enzymes in cancer.
Collapse
Affiliation(s)
- Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - William G. Willmore
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Kyle K. Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- Department of Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
15
|
van Bergen MGJM, van der Reijden BA. Targeting the GFI1/1B-CoREST Complex in Acute Myeloid Leukemia. Front Oncol 2019; 9:1027. [PMID: 31649884 PMCID: PMC6794713 DOI: 10.3389/fonc.2019.01027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation. Recent studies have shown that small molecules targeting Lysine Specific Demethylase 1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a core component of the chromatin binding CoREST complex. Together with histone deacetylases CoREST regulates gene expression by histone 3 demethylation and deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence) are major interaction partners of KDM1A and recruit the CoREST complex to chromatin in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt the GFI1/1B-CoREST interaction and that this is key to inducing terminal differentiation of leukemia cells.
Collapse
Affiliation(s)
| | - Bert A. van der Reijden
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Mlynarczyk C, Fontán L, Melnick A. Germinal center-derived lymphomas: The darkest side of humoral immunity. Immunol Rev 2019; 288:214-239. [PMID: 30874354 PMCID: PMC6518944 DOI: 10.1111/imr.12755] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
One of the unusual features of germinal center (GC) B cells is that they manifest many hallmarks of cancer cells. Accordingly, most B-cell neoplasms originate from the GC reaction, and characteristically display abundant point mutations, structural genomic lesions, and clonal diversity from the genetic and epigenetic standpoints. The dominant biological theme of GC-derived lymphomas is mutation of genes involved in epigenetic regulation and immune receptor signaling, which come into play at critical transitional stages of the GC reaction. Hence, mechanistic studies of these mutations reveal fundamental insight into the biology of the normal and malignant GC B cell. The BCL6 transcription factor plays a central role in establishing the GC phenotype in B cells, and most lymphomas are dependent on BCL6 to maintain survival, proliferation, and perhaps immune evasion. Many lymphoma mutations have the commonality of enhancing the oncogenic functions of BCL6, or overcoming some of its tumor suppressive effects. Herein, we discuss how unique features of the GC reaction create vulnerabilities that select for particular lymphoma mutations. We examine the interplay between epigenetic programming, metabolism, signaling, and immune regulatory mechanisms in lymphoma, and discuss how these are leading to novel precision therapy strategies to treat lymphoma patients.
Collapse
Affiliation(s)
- Coraline Mlynarczyk
- Department of MedicineDivision of Hematology & Medical OncologyWeill Cornell MedicineNew York CityNew York
| | - Lorena Fontán
- Department of MedicineDivision of Hematology & Medical OncologyWeill Cornell MedicineNew York CityNew York
| | - Ari Melnick
- Department of MedicineDivision of Hematology & Medical OncologyWeill Cornell MedicineNew York CityNew York
| |
Collapse
|
17
|
Pierron F, Daffe G, Lambert P, Couture P, Baudrimont M. Retrotransposon methylation and activity in wild fish (A. anguilla): A matter of size. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:494-503. [PMID: 30458379 DOI: 10.1016/j.envpol.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Understanding how organisms cope with global change is a major question in many fields of biology. Mainly, understanding the molecular mechanisms supporting rapid phenotypic changes of organisms in response to stress and linking stress-induced molecular events to adaptive or adverse outcomes at the individual or population levels remain a major challenge in evolutionary biology, ecology or ecotoxicology. In this view, the present study aimed to test (i) whether environmental factors, especially pollutants, can trigger changes in the activity of retrotransposons (RTs) in wild fish and (ii) if changes in RT DNA methylation or transcription levels can be linked to modifications at the individual level. RTs are genetic elements that have the ability to replicate and integrate elsewhere in the genome. Although RTs are mainly quiescent during normal development, they can be experimentally activated under life-threatening conditions, affecting the fitness of their host. Wild eels were collected in four sampling sites presenting differing levels of contamination. The methylation level and the transcriptional activity of two RTs and two genes involved in development and cell differentiation were analyzed in fish liver in addition to the determination of fish contaminants levels and diverse growth and morphometric indices. An up-regulation of RTs associated to lower methylation levels and lower growth indices were observed in highly contaminated fish. Our results suggest that RT activation in fish experiencing stress conditions could have both detrimental and beneficial implications, affecting fish growth but promoting resistance to environmental stressors such as pollutants.
Collapse
Affiliation(s)
| | - Guillemine Daffe
- CNRS, Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, UMS 2567 POREA, Allée Geoffroy Saint Hilaire, F-33615, Pessac, France
| | - Patrick Lambert
- Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture (IRSTEA), équipe Poissons Migrateurs Amphihalins (PMA), Cestas, France
| | - Patrice Couture
- Institut national de La Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 rue de La Couronne, Québec, QC G1K 9A9, Canada
| | | |
Collapse
|
18
|
Kim BJ, Zaveri HP, Jordan VK, Hernandez-Garcia A, Jacob DJ, Zamora DL, Yu W, Schwartz RJ, Scott DA. RERE deficiency leads to decreased expression of GATA4 and the development of ventricular septal defects. Dis Model Mech 2018; 11:dmm.031534. [PMID: 30061196 PMCID: PMC6176990 DOI: 10.1242/dmm.031534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Deletions of chromosome 1p36 are associated with a high incidence of congenital heart defects (CHDs). The arginine-glutamic acid dipeptide repeats gene (RERE) is located in a critical region for CHD on chromosome 1p36 and encodes a cardiac-expressed nuclear receptor co-regulator. Mutations affecting RERE cause atrial and ventricular septal defects (VSDs) in humans, and RERE-deficient mice also develop VSDs. During cardiac development, mesenchymal cells destined to form part of the atrioventricular (AV) septum are generated when endocardial cells in the AV canal undergo epithelial-to-mesenchymal transition (EMT) and migrate into the space between the endocardium and the myocardium. These newly generated mesenchymal cells then proliferate to fill the developing AV endocardial cushions. Here, we demonstrate that RERE-deficient mouse embryos have reduced numbers of mesenchymal cells in their AV endocardial cushions owing to decreased levels of EMT and mesenchymal cell proliferation. In the endocardium, RERE colocalizes with GATA4, a transcription factor required for normal levels of EMT and mesenchymal cell proliferation. Using a combination of in vivo and in vitro studies, we show that Rere and Gata4 interact genetically in the development of CHDs, RERE positively regulates transcription from the Gata4 promoter and GATA4 levels are reduced in the AV canals of RERE-deficient embryos. Tissue-specific ablation of Rere in the endocardium leads to hypocellularity of the AV endocardial cushions, defective EMT and VSDs, but does not result in decreased GATA4 expression. We conclude that RERE functions in the AV canal to positively regulate the expression of GATA4, and that deficiency of RERE leads to the development of VSDs through its effects on EMT and mesenchymal cell proliferation. However, the cell-autonomous role of RERE in promoting EMT in the endocardium must be mediated by its effects on the expression of proteins other than GATA4. This article has an associated First Person interview with the first author of the paper. Summary: In the developing atrioventricular canal, RERE promotes endothelial-to-mesenchymal transition and mesenchymal cell proliferation by positively regulating Gata4. Tissue-specific ablation of Rere in the endocardium causes ventricular septal defects.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daron J Jacob
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana L Zamora
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Yu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Jordan VK, Fregeau B, Ge X, Giordano J, Wapner RJ, Balci TB, Carter MT, Bernat JA, Moccia AN, Srivastava A, Martin DM, Bielas SL, Pappas J, Svoboda MD, Rio M, Boddaert N, Cantagrel V, Lewis AM, Scaglia F, Undiagnosed Diseases Network, Kohler JN, Bernstein JA, Dries AM, Rosenfeld JA, DeFilippo C, Thorson W, Yang Y, Sherr EH, Bi W, Scott DA. Genotype-phenotype correlations in individuals with pathogenic RERE variants. Hum Mutat 2018; 39:666-675. [PMID: 29330883 PMCID: PMC5903952 DOI: 10.1002/humu.23400] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype-phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.
Collapse
Affiliation(s)
- Valerie K. Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Xiaoyan Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Jessica Giordano
- Institute of Genomic Medicine and Department of OB/GYN, Columbia University Medical Center, New York, New York
| | - Ronald J. Wapner
- Institute of Genomic Medicine and Department of OB/GYN, Columbia University Medical Center, New York, New York
| | - Tugce B. Balci
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Melissa T. Carter
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - John A. Bernat
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
| | - Amanda N. Moccia
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Donna M. Martin
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephanie L. Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - John Pappas
- New York University School of Medicine, New York, New York
| | - Melissa D. Svoboda
- Department of Pediatrics, Children’s Hospital of San Antonio/Baylor College of Medicine, San Antonio, Texas
| | - Marlène Rio
- Laboratory of Developmental Brain Disorders, INSERM UMR 1163, Paris, France
- Service de Génétique, Necker Enfants Malades University Hospital, APHP, Paris, France
| | - Nathalie Boddaert
- Laboratory of Developmental Brain Disorders, INSERM UMR 1163, Paris, France
- Pediatric Radiology, Necker Enfants Malades University Hospital, APHP, Paris, France
| | - Vincent Cantagrel
- Laboratory of Developmental Brain Disorders, INSERM UMR 1163, Paris, France
- Paris Descartes - Sorbonne Paris Cité UniversityImagine Institute, Paris, France
| | - Andrea M. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | | | | | | | - Annika M. Dries
- Stanford University School of Medicine, Stanford, California
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Colette DeFilippo
- Stanford Children’s Health/Lucile Packard Children’s Hospital Stanford, Palo Alto, California
| | - Willa Thorson
- University of MiamiMiller School of Medicine, Miami, Florida
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Daryl A. Scott
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
20
|
Wang Z, Lyu J, Wang F, Miao C, Nan Z, Zhang J, Xi Y, Zhou Q, Yang X, Ge W. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development. Biol Open 2018; 7:bio.029637. [PMID: 29437043 PMCID: PMC5861358 DOI: 10.1242/bio.029637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro) is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.
Collapse
Affiliation(s)
- Zehua Wang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jialan Lyu
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fang Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen Miao
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zi Nan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiayu Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qi Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
21
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
22
|
Kacsoh BZ, Greene CS, Bosco G. Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning. G3 (BETHESDA, MD.) 2017; 7:3705-3718. [PMID: 28889104 PMCID: PMC5677163 DOI: 10.1534/g3.117.300172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin (Gug/Atro), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction.
Collapse
Affiliation(s)
- Balint Z Kacsoh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| |
Collapse
|
23
|
Vilhais-Neto GC, Fournier M, Plassat JL, Sardiu ME, Saraf A, Garnier JM, Maruhashi M, Florens L, Washburn MP, Pourquié O. The WHHERE coactivator complex is required for retinoic acid-dependent regulation of embryonic symmetry. Nat Commun 2017; 8:728. [PMID: 28959017 PMCID: PMC5620087 DOI: 10.1038/s41467-017-00593-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Bilateral symmetry is a striking feature of the vertebrate body plan organization. Vertebral precursors, called somites, provide one of the best illustrations of embryonic symmetry. Maintenance of somitogenesis symmetry requires retinoic acid (RA) and its coactivator Rere/Atrophin2. Here, using a proteomic approach we identify a protein complex, containing Wdr5, Hdac1, Hdac2 and Rere (named WHHERE), which regulates RA signaling and controls embryonic symmetry. We demonstrate that Wdr5, Hdac1, and Hdac2 are required for RA signaling in vitro and in vivo. Mouse mutants for Wdr5 and Hdac1 exhibit asymmetrical somite formation characteristic of RA-deficiency. We also identify the Rere-binding histone methyltransferase Ehmt2/G9a, as a RA coactivator controlling somite symmetry. Upon RA treatment, WHHERE and Ehmt2 become enriched at RA target genes to promote RNA polymerase II recruitment. Our work identifies a protein complex linking key epigenetic regulators acting in the molecular control of embryonic bilateral symmetry.Retinoic acid (RA) regulates the maintenance of somitogenesis symmetry. Here, the authors use a proteomic approach to identify a protein complex of Wdr5, Hdac1, Hdac2 that act together with RA and coactivator Rere/Atrophin2 and a histone methyltransferase Ehmt2 to regulate embryonic symmetry.
Collapse
Affiliation(s)
- Gonçalo C Vilhais-Neto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch, F-67400, France.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marjorie Fournier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch, F-67400, France
| | - Jean-Luc Plassat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch, F-67400, France
| | - Mihaela E Sardiu
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch, F-67400, France
| | - Mitsuji Maruhashi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch, F-67400, France.,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch, F-67400, France. .,Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Howard Hughes Medical Institute, Kansas City, MO, 64110, USA. .,Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Deimling SJ, Olsen JB, Tropepe V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. NEUROGENESIS 2017; 4:e1316888. [PMID: 28596979 DOI: 10.1080/23262133.2017.1316888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.
Collapse
Affiliation(s)
- Steven J Deimling
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Yeung K, Boija A, Karlsson E, Holmqvist PH, Tsatskis Y, Nisoli I, Yap D, Lorzadeh A, Moksa M, Hirst M, Aparicio S, Fanto M, Stenberg P, Mannervik M, McNeill H. Atrophin controls developmental signaling pathways via interactions with Trithorax-like. eLife 2017; 6:e23084. [PMID: 28327288 PMCID: PMC5409829 DOI: 10.7554/elife.23084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in human Atrophin1, a transcriptional corepressor, cause dentatorubral-pallidoluysian atrophy, a neurodegenerative disease. Drosophila Atrophin (Atro) mutants display many phenotypes, including neurodegeneration, segmentation, patterning and planar polarity defects. Despite Atro's critical role in development and disease, relatively little is known about Atro's binding partners and downstream targets. We present the first genomic analysis of Atro using ChIP-seq against endogenous Atro. ChIP-seq identified 1300 potential direct targets of Atro including engrailed, and components of the Dpp and Notch signaling pathways. We show that Atro regulates Dpp and Notch signaling in larval imaginal discs, at least partially via regulation of thickveins and fringe. In addition, bioinformatics analyses, sequential ChIP and coimmunoprecipitation experiments reveal that Atro interacts with the Drosophila GAGA Factor, Trithorax-like (Trl), and they bind to the same loci simultaneously. Phenotypic analyses of Trl and Atro clones suggest that Atro is required to modulate the transcription activation by Trl in larval imaginal discs. Taken together, these data indicate that Atro is a major Trl cofactor that functions to moderate developmental gene transcription.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ann Boija
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Edvin Karlsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden
| | - Per-Henrik Holmqvist
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Yonit Tsatskis
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ilaria Nisoli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Damian Yap
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, Vancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umeå, Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
26
|
Wang H, Gui H, Rallo MS, Xu Z, Matise MP. Atrophin protein RERE positively regulates Notch targets in the developing vertebrate spinal cord. J Neurochem 2017; 141:347-357. [PMID: 28144959 DOI: 10.1111/jnc.13969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The Notch signaling pathway controls cell fate decision, proliferation, and other biological functions in both vertebrates and invertebrates. Precise regulation of the canonical Notch pathway ensures robustness of the signal throughout development and adult tissue homeostasis. Aberrant Notch signaling results in profound developmental defects and is linked to many human diseases. In this study, we identified the Atrophin family protein RERE (also called Atro2) as a positive regulator of Notch target Hes genes in the developing vertebrate spinal cord. Prior studies have shown that during early embryogenesis in mouse and zebrafish, deficit of RERE causes various patterning defects in multiple organs including the neural tube. Here, we detected the expression of RERE in the developing chick spinal cord, and found that normal RERE activity is needed for proper neural progenitor proliferation and neuronal differentiation possibly by affecting Notch-mediated Hes expression. In mammalian cells, RERE co-immunoprecipitates with CBF1 and Notch intracellular domain (NICD), and is recruited to nuclear foci formed by over-expressed NICD1. RERE is also necessary for NICD to activate the expression of Notch target genes. Our findings suggest that RERE stimulates Notch target gene expression by preventing degradation of NICD protein, thereby facilitating the assembly of a transcriptional activating complex containing NICD, CBF1/RBPjκ in vertebrate, Su(H) in Drosophila melanogaster, Lag1 in C. elegans, and other coactivators.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Hongxing Gui
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Michael S Rallo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Zhiyan Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Michael P Matise
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
27
|
Anderson DB, Zanella CA, Henley JM, Cimarosti H. Sumoylation: Implications for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:261-281. [PMID: 28197918 DOI: 10.1007/978-3-319-50044-7_16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.
Collapse
Affiliation(s)
- Dina B Anderson
- Ipsen Bioinnovation Ltd, Units 4-10 The Quadrant, Barton Lane, Abingdon, OX14 3YS, UK
| | - Camila A Zanella
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.
| |
Collapse
|
28
|
Davis SM, Thomas AL, Nomie KJ, Huang L, Dierick HA. Tailless and Atrophin control Drosophila aggression by regulating neuropeptide signalling in the pars intercerebralis. Nat Commun 2016; 5:3177. [PMID: 24495972 DOI: 10.1038/ncomms4177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/23/2013] [Indexed: 01/21/2023] Open
Abstract
Aggressive behaviour is widespread throughout the animal kingdom. However, its mechanisms are poorly understood, and the degree of molecular conservation between distantly related species is unknown. Here we show that knockdown of tailless (tll) increases aggression in Drosophila, similar to the effect of its mouse orthologue Nr2e1. Tll localizes to the adult pars intercerebralis (PI), which shows similarity to the mammalian hypothalamus. Knockdown of tll in the PI is sufficient to increase aggression and is rescued by co-expressing human NR2E1. Knockdown of Atrophin, a Tll co-repressor, also increases aggression, and both proteins physically interact in the PI. tll knockdown-induced aggression is fully suppressed by blocking neuropeptide processing or release from the PI. In addition, genetically activating PI neurons increases aggression, mimicking the aggression-inducing effect of hypothalamic stimulation. Together, our results suggest that a transcriptional control module regulates neuropeptide signalling from the neurosecretory cells of the brain to control aggressive behaviour.
Collapse
Affiliation(s)
- Shaun M Davis
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Amanda L Thomas
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Krystle J Nomie
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Herman A Dierick
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA [4] Program in Developmental Biology, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Lakisic G, Lebreton A, Pourpre R, Wendling O, Libertini E, Radford EJ, Le Guillou M, Champy MF, Wattenhofer-Donzé M, Soubigou G, Ait-Si-Ali S, Feunteun J, Sorg T, Coppée JY, Ferguson-Smith AC, Cossart P, Bierne H. Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism. PLoS Genet 2016; 12:e1005898. [PMID: 26938916 PMCID: PMC4777444 DOI: 10.1371/journal.pgen.1005898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/04/2016] [Indexed: 11/18/2022] Open
Abstract
BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases.
Collapse
Affiliation(s)
- Goran Lakisic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Alice Lebreton
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Renaud Pourpre
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| | - Olivia Wendling
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Emanuele Libertini
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Elizabeth J. Radford
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
| | - Morwenna Le Guillou
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Marie-France Champy
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Marie Wattenhofer-Donzé
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Guillaume Soubigou
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Jean Feunteun
- CNRS UMR8200 Stabilité génétique et oncogenèse, Université Paris-Saclay, Villejuif, France
| | - Tania Sorg
- Institut Clinique de la Souris-ICS-MCI, PHENOMIN, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigénome, Département Génomes et Génétique, Institut Pasteur, Paris, France
| | | | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- INSERM U604, Paris, France
- INRA USC2020, Paris, France
| | - Hélène Bierne
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Équipe Microbiologie Cellulaire et Epigénétique, Jouy-en-Josas, France
| |
Collapse
|
30
|
Structure, expression and functions of MTA genes. Gene 2016; 582:112-21. [PMID: 26869315 DOI: 10.1016/j.gene.2016.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
Abstract
Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.
Collapse
|
31
|
Kirby TJ, Patel RM, McClintock TS, Dupont-Versteegden EE, Peterson CA, McCarthy JJ. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy. Mol Biol Cell 2016; 27:788-98. [PMID: 26764089 PMCID: PMC4803305 DOI: 10.1091/mbc.e15-08-0585] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/05/2016] [Indexed: 01/19/2023] Open
Abstract
Muscle hypertrophy is used as a physiological model to study how global transcription is affected by changes in cell size and DNA content. Myonuclear transcription is sensitive to both mechanical load and DNA content, with smaller myofibers unexpectedly having the highest level of transcription during hypertrophy. Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm2) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy.
Collapse
Affiliation(s)
- Tyler J Kirby
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536 Center for Muscle Biology, University of Kentucky, Lexington, KT 40536
| | - Rooshil M Patel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536
| | - Timothy S McClintock
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, KT 40536 Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KT 40536
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KT 40536 Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KT 40536
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KT 40536 Center for Muscle Biology, University of Kentucky, Lexington, KT 40536
| |
Collapse
|
32
|
Xu Z, Tito AJ, Rui YN, Zhang S. Studying polyglutamine diseases in Drosophila. Exp Neurol 2015; 274:25-41. [PMID: 26257024 DOI: 10.1016/j.expneurol.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Polyglutamine (polyQ) diseases are a family of dominantly transmitted neurodegenerative disorders caused by an abnormal expansion of CAG trinucleotide repeats in the protein-coding regions of the respective disease-causing genes. Despite their simple genetic basis, the etiology of these diseases is far from clear. Over the past two decades, Drosophila has proven to be successful in modeling this family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. Additionally, it has been valuable in probing the pathogenic mechanisms, in identifying and evaluating disease modifiers, and in helping elucidate the normal functions of disease-causing genes. Knowledge learned from this simple invertebrate organism has had a large impact on our understanding of these devastating brain diseases.
Collapse
Affiliation(s)
- Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Antonio Joel Tito
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Yan-Ning Rui
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Department of Neurobiology and Anatomy, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States.
| |
Collapse
|
33
|
Abstract
Since the initial recognition of the metastasis-associated protein 1 (MTA1) as a metastasis-relevant gene approximately 20 years ago, our appreciation for the complex role of the MTA family of coregulatory proteins in human cancer has profoundly grown. MTA proteins consist of six family members with similar structural units and act as central signaling nodes for integrating upstream signals into regulatory chromatin-remodeling networks, leading to regulation of gene expression in cancer cells. Substantial experimental and clinical evidence demonstrates that MTA proteins, particularly MTA1, are frequently deregulated in a wide range of human cancers. The MTA family governs cell survival, the invasive and metastatic phenotypes of cancer cells, and the aggressiveness of cancer and the prognosis of patients with MTA1 overexpressing cancers. Our discussion here highlights our current understanding of the regulatory mechanisms and functional roles of MTA proteins in cancer progression and expands upon the potential implications of MTA proteins in cancer biology and cancer therapeutics.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Cellular Oncology, University of Texas M.D., Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
34
|
Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, Paulsen BDS, Belmonte-de-Abreu P, Vieira H, Krepischi AC, Carraro DM, Palha JA, Rehen S, Brentani H. Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genomics 2015; 8:23. [PMID: 25981335 PMCID: PMC4493810 DOI: 10.1186/s12920-015-0098-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. Conclusion This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0098-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Maschietto
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil.
| | - Ana C Tahira
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil.
| | - Renato Puga
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Leandro Lima
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | - Daniel Mariani
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | | | | | - Henrique Vieira
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | - Ana Cv Krepischi
- Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Dirce M Carraro
- International Research Center-AC Camargo Cancer Center, São Paulo, Brazil.
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Stevens Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| | - Helena Brentani
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil. .,Department of Psychiatry, University of Sao Paulo, Medical School (FMUSP), Rua Dr Ovídio Pires de Campos,785-CEP 05403-010, São Paulo, SP, Caixa Postal n 3671, Brazil. .,National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, SP, Brazil.
| |
Collapse
|
35
|
Zhi X, Zhou XE, He Y, Searose-Xu K, Zhang CL, Tsai CC, Melcher K, Xu HE. Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Genes Dev 2015; 29:440-50. [PMID: 25691470 PMCID: PMC4335298 DOI: 10.1101/gad.254904.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Zhi et al. report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX. In addition, mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA; Autophagy Research Center,
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Yuanzheng He
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Kelvin Searose-Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Texas 75390, USA
| | - Chih-Cheng Tsai
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, California 92521, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA; Van Andel Research Institute-Shanghai Institute of Materia Medica (VARI/SIMM) Center, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
36
|
Differential properties of transcriptional complexes formed by the CoREST family. Mol Cell Biol 2014; 34:2760-70. [PMID: 24820421 DOI: 10.1128/mcb.00083-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1), and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases 1 and 2 (HDAC1/2) and the finding that all three CoRESTs are expressed in the adult rat brain. CoRESTs interact equally strongly with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2, which is barely present in LSD1/KDM1A-CoREST2 complexes. A nonconserved leucine in the first SANT domain of CoREST2 severely weakens its association with HDAC1/2. Furthermore, CoREST2 mutants with increased HDAC1/2 interaction and those without HDAC1/2 interaction exhibit equivalent transcriptional repression capacities, indicating that CoREST2 represses in an HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental in the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine-tuning gene expression regulation.
Collapse
|
37
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
38
|
Li DQ, Yang Y, Kumar R. MTA family of proteins in DNA damage response: mechanistic insights and potential applications. Cancer Metastasis Rev 2014; 33:993-1000. [PMID: 25332144 PMCID: PMC4302735 DOI: 10.1007/s10555-014-9524-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The DNA damage, most notably DNA double-strand breaks, poses a serious threat to the stability of mammalian genome. Maintenance of genomic integrity is largely dependent on an efficient, accurate, and timely DNA damage response in the context of chromatin. Consequently, dysregulation of the DNA damage response machinery is fundamentally linked to the genomic instability and a likely predisposition to cancer. In turn, aberrant activation of DNA damage response pathways in human cancers enables tumor cells to survive DNA damages, thus, leading to the development of resistance of tumor cells to DNA damaging radio- and chemotherapies. A substantial body of experimental evidence has established that ATP-dependent chromatin remodeling and histone modifications play a central role in the DNA damage response. As a component of the nucleosome remodeling and histone deacetylase (NuRD) complex that couples both ATP-dependent chromatin remodeling and histone deacetylase activities, the metastasis-associated protein (MTA) family proteins have been recently shown to participate in the DNA damage response beyond its well-established roles in gene transcription. In this thematic review, we will focus on our current understandings of the role of the MTA family proteins in the DNA damage response and their potential implications in DNA damaging anticancer therapy.
Collapse
Affiliation(s)
- Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China,
| | | | | |
Collapse
|
39
|
Zheng B, He H, Zheng Y, Wu W, McCormick S. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS Genet 2014; 10:e1004421. [PMID: 25057814 PMCID: PMC4109846 DOI: 10.1371/journal.pgen.1004421] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/20/2014] [Indexed: 12/17/2022] Open
Abstract
In plants, each male meiotic product undergoes mitosis, and then one of the resulting cells divides again, yielding a three-celled pollen grain comprised of a vegetative cell and two sperm cells. Several genes have been found to act in this process, and DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in sperm cell formation by activating expression of several germline genes. But how DUO1 itself is activated and how sperm cell formation is initiated remain unknown. To expand our understanding of sperm cell formation, we characterized an ARID (AT-Rich Interacting Domain)-containing protein, ARID1, that is specifically required for sperm cell formation in Arabidopsis. ARID1 localizes within nuclear bodies that are transiently present in the generative cell from which sperm cells arise, coincident with the timing of DUO1 activation. An arid1 mutant and antisense arid1 plants had an increased incidence of pollen with only a single sperm-like cell and exhibited reduced fertility as well as reduced expression of DUO1. In vitro and in vivo evidence showed that ARID1 binds to the DUO1 promoter. Lastly, we found that ARID1 physically associates with histone deacetylase 8 and that histone acetylation, which in wild type is evident only in sperm, expanded to the vegetative cell nucleus in the arid1 mutant. This study identifies a novel component required for sperm cell formation in plants and uncovers a direct positive regulatory role of ARID1 on DUO1 through association with histone acetylation. For all eukaryotes, gamete formation is an essential aspect of sexual reproduction. Unlike in animals, where meiotic products directly become gametes, the germline in plants is established by two consecutive mitotic divisions after meiosis is completed. The first mitosis is asymmetric, forming a larger vegetative cell and a smaller generative cell. The smaller generative cell then divides to produce two sperm cells. Current knowledge indicates DUO1 (DUO POLLEN 1), a transcription factor, plays a key role in this process by controlling expression of other germline genes. But how DUO1 is activated in the generative cell is unknown. To better understand the mechanisms that govern sperm cell formation and activate DUO1 expression, we characterized, ARID1, encoding an ARID (AT-Rich Interacting Domain)-containing protein. We show that ARID1 is required for DUO1 activation and sperm cell formation in Arabidopsis. Furthermore, ARID1 physically associates with a histone deacetylase, facilitating the maintenance of histone acetylation between the vegetative nucleus and sperm nuclei. Thus, our study shows that a pollen-specific ARID protein plays an important role during sperm cell formation in a dual manner: as a transcription factor to activate DUO1 and as a potential component of the histone modification machinery to maintain epigenetic status in pollen.
Collapse
Affiliation(s)
- Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Plant Gene Expression Center, USDA/ARS and Dept. of Plant and Microbial Biology, UC-Berkeley, Albany, California, United States of America
| | - Hui He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanhua Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenye Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sheila McCormick
- Plant Gene Expression Center, USDA/ARS and Dept. of Plant and Microbial Biology, UC-Berkeley, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Zhang Z, Feng J, Pan C, Lv X, Wu W, Zhou Z, Liu F, Zhang L, Zhao Y. Atrophin-Rpd3 complex represses Hedgehog signaling by acting as a corepressor of CiR. ACTA ACUST UNITED AC 2014; 203:575-83. [PMID: 24385484 PMCID: PMC3840934 DOI: 10.1083/jcb.201306012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling pathway is transduced by the Cubitus interruptus (Ci)/Gli family of transcription factors that exist in two distinct repressor (Ci(R)/Gli(R)) and activator (Ci(A)/Gli(A)) forms. Aberrant activation of Hh signaling is associated with various human cancers, but the mechanism through which Ci(R)/Gli(R) properly represses target gene expression is poorly understood. Here, we used Drosophila melanogaster and zebrafish models to define a repressor function of Atrophin (Atro) in Hh signaling. Atro directly bound to Ci through its C terminus. The N terminus of Atro interacted with a histone deacetylase, Rpd3, to recruit it to a Ci-binding site at the decapentaplegic (dpp) locus and reduce dpp transcription through histone acetylation regulation. The repressor function of Atro in Hh signaling was dependent on Ci. Furthermore, Rerea, a homologue of Atro in zebrafish, repressed the expression of Hh-responsive genes. We propose that the Atro-Rpd3 complex plays a conserved role to function as a Ci(R) corepressor.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM. A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation. Dev Biol 2014; 385:417-32. [DOI: 10.1016/j.ydbio.2013.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/07/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
42
|
Li S, Paterno GD, Gillespie LL. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells. PLoS One 2013; 8:e84046. [PMID: 24376786 PMCID: PMC3869823 DOI: 10.1371/journal.pone.0084046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a ‘piggyback’ mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA). Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+) and VC5 (ERα-). Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5). These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gary D. Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Laura L. Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
43
|
Alkhori L, Öst A, Alenius M. The corepressor Atrophin specifies odorant receptor expression in Drosophila. FASEB J 2013; 28:1355-64. [PMID: 24334704 DOI: 10.1096/fj.13-240325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In both insects and vertebrates, each olfactory sensory neuron (OSN) expresses one odorant receptor (OR) from a large genomic repertoire. How a receptor is specified is a tantalizing question addressing fundamental aspects of cell differentiation. Here, we demonstrate that the corepressor Atrophin (Atro) segregates OR gene expression between OSN classes in Drosophila. We show that the knockdown of Atro result in either loss or gain of a broad set of ORs. Each OR phenotypic group correlated with one of two opposing Notch fates, Notch responding, Nba (N(on)), and nonresponding, Nab (N(off)) OSNs. Our data show that Atro segregates ORs expressed in the Nba OSN classes and helps establish the Nab fate during OSN development. Consistent with a role in recruiting histone deacetylates, immunohistochemistry revealed that Atro regulates global histone 3 acetylation (H3ac) in OSNs and requires Hdac3 to segregate OR gene expression. We further found that Nba OSN classes exhibit variable but higher H3ac levels than the Nab OSNs. Together, these data suggest that Atro determines the level of H3ac, which ensures correct OR gene expression within the Nba OSNs. We propose a mechanism by which a single corepressor can specify a large number of neuron classes.
Collapse
Affiliation(s)
- Liza Alkhori
- 1Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden.
| | | | | |
Collapse
|
44
|
Maiuri T, Woloshansky T, Xia J, Truant R. The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal. Hum Mol Genet 2013; 22:1383-94. [PMID: 23297360 PMCID: PMC3596850 DOI: 10.1093/hmg/dds554] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/14/2012] [Accepted: 12/27/2012] [Indexed: 11/12/2022] Open
Abstract
The first 17 amino acids of Huntington's disease (HD) protein, huntingtin, comprise an amphipathic alpha-helical domain that can target huntingtin to the endoplasmic reticulum (ER). N17 is phosphorylated at two serines, shown to be important for disease development in genetic mouse models, and shown to be modified by agents that reverse the disease phenotype in an HD mouse model. Here, we show that the hydrophobic face of N17 comprises a consensus CRM1/exportin-dependent nuclear export signal, and that this nuclear export activity can be affected by serine phospho-mimetic mutants. We define the precise residues that comprise this nuclear export sequence (NES) as well as the interaction of the NES, but not phospho-mimetic mutants, with the CRM1 nuclear export factor. We show that the nuclear localization of huntingtin depends upon the RanGTP/GDP gradient, and that N17 phosphorylation can also distinguish localization of endogenous huntingtin between the basal body and stalk of the primary cilium. We present a mechanism and multifunctional role for N17 in which phosphorylation of N17 not only releases huntingtin from the ER to allow nuclear entry, but also prevents nuclear export during a transient stress response event to increase the levels of nuclear huntingtin and to regulate huntingtin access to the primary cilium. Thus, N17 is a master localization signal of huntingtin that can mediate huntingtin localization between the cytoplasm, nucleus and primary cilium. This localization can be regulated by signaling, and is misregulated in HD.
Collapse
Affiliation(s)
| | | | | | - R. Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, CanadaL8N3Z5
| |
Collapse
|
45
|
Nair SS, Li DQ, Kumar R. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell 2013; 49:704-18. [PMID: 23352453 PMCID: PMC3582764 DOI: 10.1016/j.molcel.2012.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/16/2012] [Accepted: 12/20/2012] [Indexed: 01/18/2023]
Abstract
ATP-dependent NuRD repressor complexes involve combinatorial assembly of its subunits. However, the mechanism of gene transcription by MTA1/NuRD remains enigmatic. Here we report that MTA1 methylation by G9a methytransferase and demethylation by LSD1 determines the nucleosome remodeling and transcriptional outcome. Contrary to the current static repressor model of the NuRD complex, we discovered that MTA1 association with nucleosomes and corepressor/coactivator complexes is dynamic. While methylated MTA1 is required for the NuRD repressor complex, demethylated MTA1 recognizes the bivalent histone H3K4-AcK9 mark and recruits coactivator NURF-trithorax remodeling complex in a signaling-dependent manner. MTA1's lysine 532 methylation represents a molecular switch as methylated and demethylated MTA1 nucleate NuRD or NURF complexes with opposite functions in a cyclical manner. In addition, MTA1 possesses an inherent histone amplifier activity with an instructive role in impacting the epigenetic landscape, providing a new perspective to the molecular governance of dual coregulator functions of a master coregulator.
Collapse
Affiliation(s)
- Sujit S. Nair
- Department of Biochemistry and Molecular Biology, McCormick Genomic and Proteomic Center, School of Medicine and Health Sciences, George Washington University, Washington DC, 20037, USA
| | - Da-Qiang Li
- Department of Biochemistry and Molecular Biology, McCormick Genomic and Proteomic Center, School of Medicine and Health Sciences, George Washington University, Washington DC, 20037, USA
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, McCormick Genomic and Proteomic Center, School of Medicine and Health Sciences, George Washington University, Washington DC, 20037, USA
| |
Collapse
|
46
|
McCarthy PL, Paterno GD, Gillespie LL. Protein expression pattern of human MIER1 alpha, a novel estrogen receptor binding protein. J Mol Histol 2013; 44:469-79. [PMID: 23277184 DOI: 10.1007/s10735-012-9478-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
MIER1 is a transcriptional regulator that exists as several isoforms. Of particular interest is the MIER1α isoform, which contains in its unique C-terminus an LXXLL motif for interaction with nuclear hormone receptors. Indeed, MIER1α has been shown to interact with ERα and inhibit estrogen-stimulated growth of breast carcinoma cells. Moreover, the subcellular localization of MIER1α changes dramatically, from nuclear to cytoplasmic, during progression to invasive breast carcinoma. While human MIER1 RNA and protein expression pattern data have been posted on several websites, none of these studies use probes or antibodies that distinguish between the α and β isoforms. We report here the first immunohistochemical study of the MIER1α protein expression pattern in human tissues. Our analysis revealed intense staining of specific cell types within virtually every endocrine and reproductive tissue except for the thyroid gland. In particular, we detected intense staining of ovarian follicles and germinal epithelium, ductal epithelial cells of the breast, pancreatic islet cells, all areas of the anterior pituitary and all zones of the adrenal cortex; moderate staining of germ cells and Leydig cells within the testis, patches of chromaffin cells in the adrenal medulla and weak staining of the fibromuscular stroma within the prostate. Immunoreactivity was limited to the cytoplasm in all positive cells except for oocytes and germinal epithelial cells in which the nucleus was also stained and in ductal epithelial cells of the breast in which staining was exclusively nuclear. In general, non-endocrine tissues were negative, however a few exceptions were noted. These included hepatocytes, myocardial fibers and neurons in all regions of the brain examined, with the exception of the thalamus. Neuronal staining was restricted to the cell bodies and dendrites, as most axons were negative. These data suggest that human MIER1α functions specifically in endocrine tissues and in a limited number of non-endocrine organs.
Collapse
Affiliation(s)
- Patti L McCarthy
- Terry Fox Cancer Research Labs, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | | | | |
Collapse
|
47
|
Williams MJ, Almén MS, Fredriksson R, Schiöth HB. What model organisms and interactomics can reveal about the genetics of human obesity. Cell Mol Life Sci 2012; 69:3819-34. [PMID: 22618246 PMCID: PMC11114734 DOI: 10.1007/s00018-012-1022-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/22/2012] [Accepted: 05/02/2012] [Indexed: 01/05/2023]
Abstract
Genome-wide association studies have identified a number of genes associated with human body weight. While some of these genes are large fields within obesity research, such as MC4R, POMC, FTO and BDNF, the majority do not have a clearly defined functional role explaining why they may affect body weight. Here, we searched biological databases and discovered 33 additional genes associated with human obesity (CADM2, GIPR, GPCR5B, LRP1B, NEGR1, NRXN3, SH2B1, FANCL, GNPDA2, HMGCR, MAP2K5, NUDT3, PRKD1, QPCTL, TNNI3K, MTCH2, DNAJC27, SLC39A8, MTIF3, RPL27A, SEC16B, ETV5, HMGA1, TFAP2B, TUB, ZNF608, FAIM2, KCTD15, LINGO2, POC5, PTBP2, TMEM18, TMEM160). We find that the majority have orthologues in distant species, such as D. melanogaster and C. elegans, suggesting that they are important for the biology of most bilateral species. Intriguingly, signalling cascade genes and transcription factors are enriched among these obesity genes, and several of the genes show properties that could be useful for potential drug discovery. In this review, we demonstrate how information from several distant model species, interactomics and signalling pathway analysis represents an important way to better understand the functional diversity of the surprisingly high number of molecules that seem to be important for human obesity.
Collapse
Affiliation(s)
- Michael J. Williams
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Markus S. Almén
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Biomedical Center, Uppsala University, Box 593, 75 124 Uppsala, Sweden
| |
Collapse
|
48
|
Members of the NODE (Nanog and Oct4-associated deacetylase) complex and SOX-2 promote the initiation of a natural cellular reprogramming event in vivo. Proc Natl Acad Sci U S A 2012; 109:6596-601. [PMID: 22493276 DOI: 10.1073/pnas.1117031109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Differentiated cells can be forced to change identity, either to directly adopt another differentiated identity or to revert to a pluripotent state. Direct reprogramming events can also occur naturally. We recently characterized such an event in Caenorhabditis elegans, in which a rectal cell switches to a neuronal cell. Here we have used this single-cell paradigm to investigate the molecular requirements of direct cell-type conversion, with a focus on the early steps. Our genetic analyses revealed the requirement of sem-4/Sall, egl-27/Mta, and ceh-6/Oct, members of the NODE complex recently identified in embryonic stem (ES) cells, and of the OCT4 partner sox-2, for the initiation of this natural direct reprogramming event. These four factors have been shown to individually impact on ES cell pluripotency; however, whether they act together to control cellular potential during development remained an open question. We further found that, in addition to acting at the same time, these factors physically associate, suggesting that they could act together as a NODE-like complex during this in vivo process. Finally, we have elucidated the functional domains in EGL-27/MTA that mediate its reprogramming activity in this system and have found that modulation of the posterior HOX protein EGL-5 is a downstream event to allow the initiation of Y identity change. Our data reveal unique in vivo functions in a natural direct reprogramming event for these genes that impact on ES cells pluripotency and suggest that conserved nuclear events could be shared between different cell plasticity phenomena across phyla.
Collapse
|
49
|
Differential splicing alters subcellular localization of the alpha but not beta isoform of the MIER1 transcriptional regulator in breast cancer cells. PLoS One 2012; 7:e32499. [PMID: 22384264 PMCID: PMC3286477 DOI: 10.1371/journal.pone.0032499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 12/17/2022] Open
Abstract
MIER1 was originally identified in a screen for novel fibroblast growth factor activated early response genes. The mier1 gene gives rise to multiple transcripts encoding protein isoforms that differ in their amino (N-) and carboxy (C-) termini. Much of the work to date has focused on the two C-terminal variants, MIER1α and β, both of which have been shown to function as transcriptional repressors. Our previous work revealed a dramatic shift in MIER1α subcellular localization from nuclear in normal breast tissue to cytoplasmic in invasive breast carcinoma, suggesting that loss of nuclear MIER1α may play a role in breast cancer development. In the present study, we investigated whether alternative splicing to include a cassette exon and produce an N–terminal variant of MIER1α affects its subcellular localization in MCF7 breast carcinoma cells. We demonstrate that this cassette exon, exon 3A, encodes a consensus leucine-rich nuclear export signal (NES). Inclusion of this exon in MIER1α to produce the MIER1-3Aα isoform altered its subcellular distribution in MCF7 cells from 81% nuclear to 2% nuclear and this change in localization was abrogated by mutation of critical leucines within the NES. Treatment with leptomycin B (LMB), an inhibitor of the nuclear export receptor CRM1, resulted in a significant increase in the percentage of cells with nuclear MIER1-3Aα, from 4% to 53%, demonstrating that cytoplasmic localization of this isoform was due to CRM1-dependent nuclear export. Inclusion of exon 3A in MIER1β to produce the N-terminal variant MIER1-3Aβ however had little effect on the nuclear targeting of this isoform. Our results demonstrate that alternative splicing to include exon 3A specifically affects the localization pattern of the α isoform.
Collapse
|
50
|
Heck BW, Zhang B, Tong X, Pan Z, Deng WM, Tsai CC. The transcriptional corepressor SMRTER influences both Notch and ecdysone signaling during Drosophila development. Biol Open 2011; 1:182-96. [PMID: 23213409 PMCID: PMC3507286 DOI: 10.1242/bio.2012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SMRTER (SMRT-related and ecdysone receptor interacting factor) is the Drosophila homologue of the vertebrate proteins SMRT and N-CoR, and forms with them a well-conserved family of transcriptional corepressors. Molecular characterization of SMRT-family proteins in cultured cells has implicated them in a wide range of transcriptional regulatory pathways. However, little is currently known about how this conserved class of transcriptional corepressors regulates the development of particular tissues via specific pathways. In this study, through our characterization of multiple Smrter (Smr) mutant lines, mosaic analysis of a loss-of-function Smr allele, and studies of two independent Smr RNAi fly lines, we report that SMRTER is required for the development of both ovarian follicle cells and the wing. In these two tissues, SMRTER inhibits not only the ecdysone pathway, but also the Notch pathway. We differentiate SMRTER's influence on these two signaling pathways by showing that SMRTER inhibits the Notch pathway, but not the ecdysone pathway, in a spatiotemporally restricted manner. We further confirm the likely involvement of SMRTER in the Notch pathway by demonstrating a direct interaction between SMRTER and Suppressor of Hairless [Su(H)], a DNA-binding transcription factor pivotal in the Notch pathway, and the colocalization of both proteins at many chromosomal regions in salivary glands. Based on our results, we propose that SMRTER regulates the Notch pathway through its association with Su(H), and that overcoming a SMRTER-mediated transcriptional repression barrier may represent a key mechanism used by the Notch pathway to control the precise timing of events and the formation of sharp boundaries between cells in multiple tissues during development.
Collapse
Affiliation(s)
- Bryan W Heck
- UMDNJ-Robert Wood Johnson Medical School, Department of Physiology and Biophysics , 683 Hoes Lane, Piscataway, NJ 08854 , USA
| | | | | | | | | | | |
Collapse
|