1
|
Xue M, Deng Q, Deng L, Xun T, Huang T, Zhao J, Wei S, Zhao C, Chen X, Zhou Y, Liang Y, Yang X. Alterations of gut microbiota for the onset and treatment of psoriasis: A systematic review. Eur J Pharmacol 2025; 998:177521. [PMID: 40107339 DOI: 10.1016/j.ejphar.2025.177521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Psoriasis is a chronic, recurrent and systemic inflammatory skin disease which is mediated by immunoreaction. Its pathogenesis is multifactorial, and the exact driving factor remains unclear. Recent studies showed that gut microbiota, which maintain immune homeostasis of our bodies, is closely related with occurrence, development and prognosis of psoriasis. The intestinal microbial abundance and diversity in patients with psoriasis have changed significantly, including intestinal microbiota disorders and reduced production of short chain fatty acids (SCFAs), abnormalities in Firmicutes/Bacteroidetes (F/B), etc. Besides, the intestinal microbiota of psoriasis patients has also changed after treatment of systemic drugs, biologics and small molecule chemical drugs, suggesting that the intestinal microbiota may be a potential response-to-treatment biomarker for evaluating treatment effectiveness. Oral probiotics and prebiotics administration as well as fecal microbial transplantation were also reported to benefit well in psoriasis patients. Additionally, we also discussed the microbial changes from the skin and other organs, which regulated both the onset and treatment of psoriasis together with gut microbiota. Herein, we reviewed recent studies on the psoriasis-related microbiota in an attempt to confidently identify the "core" microbiota of psoriatic patients, understand how microbiota influence psoriasis through the gut-skin axis, and explore potential therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - QuanWen Deng
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li Deng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TianRong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TingTing Huang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - JingQian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sui Wei
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - ChenYu Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xi Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - YiWen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - YanHua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - XiXiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
2
|
Bonomo MG, D’Angelo S, Picerno V, Carriero A, Salzano G. Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients 2025; 17:1323. [PMID: 40284188 PMCID: PMC12030176 DOI: 10.3390/nu17081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by joint inflammation and skin lesions. Recent research has underscored the critical role of gut microbiota-comprising bacteria, fungi, viruses, and archaea-in the pathogenesis and progression of PsA. This narrative review synthesizes the latest findings on the influence of gut microbiota on PsA, focusing on mechanisms such as immune modulation, microbial dysbiosis, the gut-joint axis, and its impact on treatment. Advances in high-throughput sequencing and metagenomics have revealed distinct microbial profiles associated with PsA. Studies show that individuals with PsA have a unique gut microbiota composition, differing significantly from healthy controls. Alterations in the abundance of specific bacterial taxa, including a decrease in beneficial bacteria and an increase in potentially pathogenic microbes, contribute to systemic inflammation by affecting the intestinal barrier and promoting immune responses. This review explores the impact of various factors on gut microbiota composition, including age, hygiene, comorbidities, and medication use. Additionally, it highlights the role of diet, probiotics, and fecal microbiota transplantation as promising strategies to modulate gut microbiota and alleviate PsA symptoms. The gut-skin-joint axis concept illustrates how gut microbiota influences not only gastrointestinal health but also skin and joint inflammation. Understanding the complex interplay between gut microbiota and PsA could lead to novel, microbiome-based therapeutic approaches. These insights offer hope for improved patient outcomes through targeted manipulation of the gut microbiota, enhancing both diagnosis and treatment strategies for PsA.
Collapse
Affiliation(s)
- Maria Grazia Bonomo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| | - Salvatore D’Angelo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Valentina Picerno
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Antonio Carriero
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Giovanni Salzano
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| |
Collapse
|
3
|
Zhang W, Xie J, Wang Z, Zhong Y, Liu L, Liu J, Zhang W, Pi Y, Tang F, Liu Z, Shao Y, Liu T, Zheng C, Luo J. Androgen deficiency-induced loss of Lactobacillus salivarius extracellular vesicles is associated with the pathogenesis of osteoporosis. Microbiol Res 2025; 293:128047. [PMID: 39813752 DOI: 10.1016/j.micres.2025.128047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Male osteoporosis is primarily caused by a decrease in testicular testosterone production. Male osteoporosis remains a disease with insufficient diagnosis and treatment, and its consequences are severe, especially in older patients. The gut microbiota plays a crucial role in its occurrence and development. Our study found that the relative abundance of Lactobacillus salivarius in the fecal microbiota of male patients with osteoporosis was significantly lower than that in healthy volunteers. Animal experiments have shown that orchiectomy (ORX) can induce osteoporosis and disrupt the intestinal mucosal barrier, and intestinal microbiota. In addition, we discovered a potential etiological connection between the decreased abundance of the intestinal bacterium L. salivarius and the occurrence of ORX-induced osteoporosis. Cohousing or direct colonization of the intestinal microbiota from healthy rats or direct oral administration of the bacteria alleviated ORX-induced osteoporosis and repaired the intestinal mucosal barrier. Finally, we demonstrated that the extracellular vesicles (EVs) of L. salivarius could be transported to the bones and mitigate ORX-induced osteoporosis in rats. Our results indicate that the gut microbiota participates in protecting bones by secreting and delivering bacterial EVs, and that the reduction of L. salivarius and its EVs is closely related to the development of androgen deficiency-related osteoporosis.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Orthopedics, Longyan First Hospital, Longyan, Fujian 364000, PR China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuchun Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Jun Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wenming Zhang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yimin Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Furui Tang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zehong Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yinjin Shao
- Department of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China
| | - Tian Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
4
|
Lee JH, Shin T, Park JM, Seol JH. Linking Kawasaki Disease to Mental Health: A Nationwide Study on Long-Term Neurological Risks. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:604. [PMID: 40282895 PMCID: PMC12028643 DOI: 10.3390/medicina61040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Kawasaki disease (KD) is a childhood systematic vasculitis. Emerging evidence suggests a link between KD and long-term neurological implications. This study examines the association between KD and subsequent neuropsychiatric and neurodevelopmental disorders using national health data from South Korea. Materials and Methods: Using the National Health Information Database, we identified KD patients diagnosed between 2002 and 2021 and selected those born between 2008 and 2015. Propensity score matching with a 1:4 ratio was applied to create a control group. The incidence of neuropsychiatric and neurodevelopmental disorders from 2017 to 2021 was analyzed using Cox proportional hazard models, adjusting for age, sex, and urbanicity. Results: This study included 41,806 KD subjects and 163,829 matched controls. KD was associated with an increased risk of certain neuropsychiatric disorders: anxiety disorder (HR: 1.124, 1.047-1.207), sleep-related disorder (HR: 1.257, 1.094-1.444), movement disorder (HR: 1.227, 1.030-1.461), and any neuropsychiatric disorder (HR: 1.102, 1.053-1.153). For neurodevelopmental disorders, KD patients showed a lower incidence of intellectual disability (HR: 0.747, 0.641-0.871) but an increased risk of tic disorder (HR: 1.148, 1.020-1.292). Male gender and urban residency were associated with higher incidence rates for certain conditions. Conclusions: This study demonstrates that KD patients show increased risks for anxiety, sleep-related disorder, movement disorder, and tic disorder, a reduced incidence of intellectual disability, and a higher risk of tic disorder. These findings highlight the need for long-term neurological monitoring in KD patients and provide insights into its potential neurodevelopmental impact.
Collapse
Affiliation(s)
- Ji-Ho Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Taewoo Shin
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Jung-Min Park
- Department of Pediatrics, National Health Insurance Service Ilsan Hospital, Goyang 10444, Republic of Korea
| | - Jae-Hee Seol
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Li Y, Zhang Z(J, Saarela O, Sharma D, Xu W. Mediation CNN (Med-CNN) Model for High-Dimensional Mediation Data. Int J Mol Sci 2025; 26:1819. [PMID: 40076446 PMCID: PMC11899585 DOI: 10.3390/ijms26051819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
Complex biological features such as the human microbiome and gene expressions play a crucial role in human health by mediating various biomedical processes that influence disease progression, such as immune responses and metabolic processes. Understanding these mediation roles is essential for gaining insights into disease pathogenesis and improving treatment outcomes. However, analyzing such high-dimensional mediation features presents challenges due to their inherent structural and correlations, such as the hierarchical taxonomic structures in microbial operational taxonomic units (OTUs), gene-pathway relationships, and the high dimensionality of the datasets, which complicates mediation analysis. We propose the Med-CNN model, an iterative approach using Convolutional Neural Networks (CNNs) to incorporate the complex biological network of the mediation features. The output values from network-specific CNN models are condensed into an integrative mediation metric (IMM), which captures essential biological information for estimating mediation effects. Our approach is designed to handle high-dimensional data and accommodate their unique structures and non-linear interactive mediation effects. Through comprehensive simulation studies, we evaluated the performance of our algorithm across different scenarios, including various mediation effects, effect sizes, and sample sizes, and we compared it to conventional methods. Our simulations demonstrated consistently lower biases in mediation effect estimates, with values ranging from 0.17 to 0.56, which were lower than other established methods ranging from 0.24 to 13.27. In a real data application, our method identified a mediation effect of 0.06 between ethnicity and vaginal pH levels.
Collapse
Affiliation(s)
- Yao Li
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada; (Y.L.); (Z.Z.); (O.S.); (D.S.)
| | - Zhongyuan (Jasper) Zhang
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada; (Y.L.); (Z.Z.); (O.S.); (D.S.)
| | - Olli Saarela
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada; (Y.L.); (Z.Z.); (O.S.); (D.S.)
| | - Divya Sharma
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada; (Y.L.); (Z.Z.); (O.S.); (D.S.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S 1A1, Canada; (Y.L.); (Z.Z.); (O.S.); (D.S.)
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
6
|
Taitz JJ, Tan J, Ni D, Potier-Villette C, Grau G, Nanan R, Macia L. Antibiotic-mediated dysbiosis leads to activation of inflammatory pathways. Front Immunol 2025; 15:1493991. [PMID: 39850904 PMCID: PMC11754057 DOI: 10.3389/fimmu.2024.1493991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics. Methods Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control). Caecal microbiota composition was assessed via 16S rRNA sequencing and caecal metabolites were quantified with NMR spectroscopy. Immune profiles of spleen and mesenteric lymph nodes (MLNs) were assessed by flow cytometry, and splenocytes assessed for ex vivo cytokine production. A generalised additive model approach was used to examine the relationship between global antibiotic consumption and IBD incidence. Results Antibiotics significantly altered gut microbiota composition, reducing alpha-diversity. Acetate and butyrate were significantly reduced in antibiotic groups, while propionate and succinate increased in Vancomycin and PmB-treated mice, respectively. The MLNs and spleen showed changes only to DC numbers. Splenocytes from antibiotic-treated mice stimulated ex vivo exhibited increased production of TNF. Epidemiological analysis revealed a positive correlation between global antibiotic consumption and IBD incidence. Discussion Our findings demonstrate that antibiotic-mediated dysbiosis results in significantly altered short-chain fatty acid levels but immune homeostasis in spleen and MLNs at steady state is mostly preserved. Non-specific activation of splenocytes ex vivo, however, revealed mice with perturbed microbiota had significantly elevated production of TNF. Thus, this highlights antibiotic-mediated disruption of the gut microbiota may program the host towards dysregulated immune responses, predisposing to the development of TNF-associated autoimmune or chronic inflammatory disease.
Collapse
Affiliation(s)
- Jemma J. Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Ali MS, Ahmed S, Tanimoto Y, Wada T, Kage-Nakadai E. Lactococcus lactis subsp. lactis boosts stress resistance and host defense mechanisms in Caenorhabditis elegans. J Appl Microbiol 2025; 136:lxaf016. [PMID: 39825644 DOI: 10.1093/jambio/lxaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/17/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
AIMS To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors. METHODS AND RESULTS Caenorhabditis elegans fed a 1:1 mixture of Escherichia coli OP50 and LL100933 (OP50 + LL100933) or E. coli OP50 and LL12007 (OP50 + LL12007) had significantly higher survivability than the control diet (OP50). Moreover, when OP50 + LL100933 and OP50 + LL12007 were fed to C. elegans deficient in daf-16 and pmk-1, survival did not exceed that of control-fed worms under Salmonella infection. Therefore, these strains may enhance the survivability of C. elegans through the p38 MAPK and DAF-16-related pathways. Gene expressions responsible for these enhanced defense responses were estimated using RNA sequencing and gene ontology analysis. The test groups showed significant upregulation of glutathione S-transferase (gsto-1, gst-5, and gst-17), UDP-glucuronyl transferase (ugt-13, ugt-16, and ugt-21), heme-responsive (hrg-4), invertebrate-type lysozyme (ilys-2), and C-type lectin (clec-52) genes compared to those in the control group. CONCLUSION Lactococcus lactis subsp. lactis LL100933 and LL12007 strains demonstrated promising benefits as probiotics for enhancing host defense mechanisms in C. elegans.
Collapse
Affiliation(s)
- Mohammad Shaokat Ali
- Graduate School of Human Life Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Shamima Ahmed
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
| | - Yoshihiko Tanimoto
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-2-7-601, Asahimachi, Abeno-Ku, Osaka 545-0051, Japan
| | - Eriko Kage-Nakadai
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan
- Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Wu Z, Li L, Chen S, Gong Y, Liu Y, Jin T, Wang Y, Tang J, Dong Q, Yang B, Yang F, Dong W. Microbiota contribute to regulation of the gut-testis axis in seasonal spermatogenesis. THE ISME JOURNAL 2025; 19:wraf036. [PMID: 39999373 PMCID: PMC11964897 DOI: 10.1093/ismejo/wraf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Seasonal breeding is an important adaptive strategy for animals. Recent studies have highlighted the potential role of the gut microbiota in reproductive health. However, the relationship between the gut microbiota and reproduction in seasonal breeders remains unclear. In this study, we selected a unique single food source animal, the flying squirrel (Trogopterus xanthipes), as a model organism for studying seasonal breeding. By integrating transcriptomic, metabolomic, and microbiome data, we comprehensively investigated the regulation of the gut-metabolism-testis axis in seasonal breeding. Here, we demonstrated a significant spermatogenic phenotype and highly active spermatogenic transcriptional characteristics in the testes of flying squirrels during the breeding season, which were associated with increased polyamine metabolism, primarily involving spermine and γ-amino butyric acid. Moreover, an enrichment of Ruminococcus was observed in the large intestine during the breeding season and may contribute to enhanced methionine biosynthesis in the gut. Similar changes in Ruminococcus abundance were also observed in several other seasonal breeders. These findings innovatively revealed that reshaping the gut microbiota regulates spermatogenesis in seasonal breeders through polyamine metabolism, highlighting the great potential of the gut-testis axis in livestock animal breeding and human health management.
Collapse
Affiliation(s)
- Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Tang
- Shaanxi Institute of Zoology, Xi'an, Shaanxi 710032, China
| | - Qian Dong
- Department of Thyroid and Breast Surgery, Shenzhen Luohu Hospital Group Luohu People’s Hospital (Third Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518000, China
| | - Bangzhu Yang
- Luonan Science and Technology Bureau, Shangluo, Shaanxi 726000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Feng M, Cheng J, Su Y, Tong J, Wen X, Jin T, Ren M, Song D, Song J, Li X, Xie Q, Liu M. Lactobacillus agilis SNF7 Presents Excellent Antibacteria and Anti-Inflammation Properties in Mouse Diarrhea Induced by Escherichia coli. Int J Mol Sci 2024; 25:13660. [PMID: 39769422 PMCID: PMC11728428 DOI: 10.3390/ijms252413660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Escherichia coli (E. coli) is a common pathogen that causes diarrhea in newborns and animals. Antibiotics are typically used to treat bacterial diarrhea, a global intestinal health issue. Probiotics have gained interest as a potential substitute for antibiotics in the management of E. coli-induced diarrhea and present novel therapeutic options. In this study, the probiotic properties of Lactobacillus agilis SNF7 (L. agilis SNF7) isolated from feces were investigated, and whole genome sequencing was performed to evaluate the properties of the strain. Furthermore, we investigated the protective effects of L. agilis SNF7 in a mouse model of E. coli K99 infection. L. agilis SNF7 exhibits a high survival rate in artificial gastroenteric fluid and bile salt environments, along with an antagonistic effect against E. coli O111:K58 (B4), Staphylococcus aureus (S. aureus), and E. coli K99. Multiple genes with probiotic properties, including bacteriostasis, anti-inflammation, antioxidant, CAZyme, and the utilization of carbohydrate compounds, were identified in genome. L. agilis SNF7 prevented the gut barrier from being damaged by E. coli K99, reducing the clinical manifestations of the infection. Furthermore, L. agilis SNF7 reduced the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-α) by inhibiting the phosphorylation of proteins linked to the NF-κB and MAPK signaling pathways. L. agilis SNF7 improved the intestinal microbial barrier, controlled the balance of the intestinal microecology, and reduced the entry of harmful microbes into the intestine. By controlling gut flora and reducing the inflammatory response, L. agilis SNF7 may be able to prevent and treat E. coli K99 infections. The application of L. agilis SNF7 in the creation of probiotic formulations to stop intestinal illnesses brought on by E. coli infections is clarified by this work.
Collapse
Affiliation(s)
- Mingque Feng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jia Cheng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Yalan Su
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Jingdi Tong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Xiangfu Wen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Tianxiong Jin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Meiyi Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Deyuan Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Jinshang Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Xiaohan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Qinna Xie
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (M.F.); (J.C.); (Y.S.); (J.T.); (X.W.); (T.J.); (M.R.); (D.S.); (J.S.); (X.L.); (Q.X.)
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
10
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K. Assessment of Prognostic Factors, Clinical Features Including the Microbiome, and Treatment Outcomes in Patients with Cancer of Unknown Primary Site. Cancers (Basel) 2024; 16:3416. [PMID: 39410035 PMCID: PMC11475148 DOI: 10.3390/cancers16193416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTIONS cancer of unknown primary site (CUP) is a heterogeneous group of cancers in which metastases are found, and the primary tumor is not detected with available diagnostic methods. CUP is a disease that has not been fully researched, and its biology is unclear. The clinical characteristics of CUP are variable, but the prognosis of patients is usually unfavorable, and the possibilities of radical treatment are limited. The microbiome is the genes and gene products of microorganisms residing in a human body. In recent years, thanks to the use of next-generation sequencing, it is possible to assess the impact of the microbiome on human body functions. Head and neck cancers, due to the rich microbiome of this area, are influenced by it, and dysbiosis may be a risk factor for the development of cancer. Objective of this work: the aim of this study was to evaluate prognostic factors, clinical features including the microbiome, and treatment outcomes in patients with cancer of unknown primary site. RESULTS in the study group, increased numbers of bacteria of the phyla Bacteroides, Fusobacteria, Bacillota, Actinomycetota, Actinobacteria, and Candidatus were detected, while Firmicutes and Proteobacteria were detected in smaller numbers. Independent predictors of CUP occurrence were the following: leukocyte count of at most 6.49 × 103/mm, bacteria from the Proteobacteria phylum in the microbiome below 11.6%, Firmicutes below 22.1%, and Actinobacteria at least 11.0%. Increased numbers of Porphyromonas and Fusobacterium bacteria were associated with the risk of radiotherapy complications and shortened survival rate. CONCLUSIONS clinical diagnosis and treatment of patients with CUP is complicated and difficult due to the lack of consensus on this issue. Treatment and prognosis of patients with CUP is unsatisfactory. The clinical value of the influence of the microbiome on the development, course, and treatment of cancer is becoming increasingly important. The microbiome may become a marker of response to anticancer treatment and the risk of its complications. Immunity modulation with the microbiome provides opportunities for further research on improving the effectiveness of oncological treatment. Fusobacterium and Porphyromonas seem to be the bacteria most important for the development of cancer, also worsening the prognosis of patients by increasing the risk of complications of radiotherapy and shortening the survival rate of patients. Streptococcus and Lactobacillus seem to be bacteria that reduce the risk of cancer, reduce the risk of complications, and improve the prognosis of patients. Total protein deficiency and elevated inflammatory markers are also important predictors of cancer risk.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
van Lanen AS, Kok DE, Wesselink E, Derksen JWG, May AM, Smit KC, Koopman M, de Wilt J, Kampman E, van Duijnhoven FJB. Associations between low- and high-fat dairy intake and recurrence risk in people with stage I-III colorectal cancer differ by sex and primary tumour location. Int J Cancer 2024; 155:828-838. [PMID: 38700376 DOI: 10.1002/ijc.34959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 05/05/2024]
Abstract
We previously demonstrated that intake of low-fat dairy, but not high-fat dairy, was associated with a decreased colorectal cancer (CRC) recurrence risk. These risks, however, may differ by sex, primary tumour location, and disease stage. Combining data from two similar prospective cohort studies of people with stage I-III CRC enabled these subgroup analyses. Participants completed a food frequency questionnaire at diagnosis (n = 2283). We examined associations between low- and high-fat dairy intake and recurrence risk using multivariable Cox proportional hazard models, stratified by sex, and primary tumour location (colon and rectum), and disease stage (I/II and III). Upper quartiles were compared to lower quartiles of intake, and recurrence was defined as a locoregional recurrence and/or metastasis. During a median follow-up of 5.0 years, 331 recurrences were detected. A higher intake of low-fat dairy was associated with a reduced risk of recurrence (hazard ratio [HR]: 0.60, 95% confidence interval [CI]: 0.43-0.83), which seemed more pronounced in men (HR: 0.51, 95% CI: 0.34-0.77) than in women (HR: 0.84, 95% CI: 0.47-1.49). A higher intake of high-fat dairy was associated with an increased risk of recurrence in participants with colon cancer (HR: 1.60, 95% CI: 1.03-2.50), but not rectal cancer (HR: 0.88, 95% CI: 0.54-1.45). No differences in associations were observed between strata of disease stage. Concluding, our findings imply that dietary advice regarding low-fat dairy intake may be especially important for men with CRC, and that dietary advice regarding high-fat dairy intake may be specifically important in people with colon cancer.
Collapse
Affiliation(s)
- Anne-Sophie van Lanen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Evertine Wesselink
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen W G Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karel C Smit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes de Wilt
- Department of Surgery, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
12
|
Pastwińska J, Karwaciak I, Karaś K, Sałkowska A, Chałaśkiewicz K, Strapagiel D, Sobalska-Kwapis M, Dastych J, Ratajewski M. α-Hemolysin from Staphylococcus aureus Changes the Epigenetic Landscape of Th17 Cells. Immunohorizons 2024; 8:606-621. [PMID: 39240270 PMCID: PMC11447695 DOI: 10.4049/immunohorizons.2400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The human body harbors a substantial population of bacteria, which may outnumber host cells. Thus, there are multiple interactions between both cell types. Given the common presence of Staphylococcus aureus in the human body and the role of Th17 cells in controlling this pathogen on mucous membranes, we sought to investigate the effect of α-hemolysin, which is produced by this bacterium, on differentiating Th17 cells. RNA sequencing analysis revealed that α-hemolysin influences the expression of signature genes for Th17 cells as well as genes involved in epigenetic regulation. We observed alterations in various histone marks and genome methylation levels via whole-genome bisulfite sequencing. Our findings underscore how bacterial proteins can significantly influence the transcriptome, epigenome, and phenotype of human Th17 cells, highlighting the intricate and complex nature of the interaction between immune cells and the microbiota.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
13
|
Valdes AM, Louca P, Visconti A, Asnicar F, Bermingham K, Nogal A, Wong K, Michelotti GA, Wolf J, Segata N, Spector TD, Berry SE, Falchi M, Menni C. Vitamin A carotenoids, but not retinoids, mediate the impact of a healthy diet on gut microbial diversity. BMC Med 2024; 22:321. [PMID: 39113058 PMCID: PMC11304618 DOI: 10.1186/s12916-024-03543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/28/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Vitamin A is essential for physiological processes like vision and immunity. Vitamin A's effect on gut microbiome composition, which affects absorption and metabolism of other vitamins, is still unknown. Here we examined the relationship between gut metagenome composition and six vitamin A-related metabolites (two retinoid: -retinol, 4 oxoretinoic acid (oxoRA) and four carotenoid metabolites, including beta-cryptoxanthin and three carotene diols). METHODS We included 1053 individuals from the TwinsUK cohort with vitamin A-related metabolites measured in serum and faeces, diet history, and gut microbiome composition assessed by shotgun metagenome sequencing. Results were replicated in 327 women from the ZOE PREDICT-1 study. RESULTS Five vitamin A-related serum metabolites were positively correlated with microbiome alpha diversity (r = 0.15 to r = 0.20, p < 4 × 10-6). Carotenoid compounds were positively correlated with the short-chain fatty-acid-producing bacteria Faecalibacterium prausnitzii and Coprococcus eutactus. Retinol was not associated with any microbial species. We found that gut microbiome composition could predict circulating levels of carotenoids and oxoretinoic acid with AUCs ranging from 0.66 to 0.74 using random forest models, but not retinol (AUC = 0.52). The healthy eating index (HEI) was strongly associated with gut microbiome diversity and with all carotenoid compounds, but not retinoids. We investigated the mediating role of carotenoid compounds on the effect of a healthy diet (HEI) on gut microbiome diversity, finding that carotenoids significantly mediated between 18 and 25% of the effect of HEI on gut microbiome alpha diversity. CONCLUSIONS Our results show strong links between circulating carotene compounds and gut microbiome composition and potential links to a healthy diet pattern.
Collapse
Affiliation(s)
- Ana M Valdes
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK.
- Inflammation, Recovery and Injury Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK.
| | - Panayiotis Louca
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Human Nutrition and Exercise Research Centre, University of Newcastle, Newcastle Upon Tyne, NE2 4HH, UK
| | - Alessia Visconti
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Centre for Biostatistics, Epidemiology, and Public Health, Department of Clinical and Biological Sciences, University of Turin, 10124, Turin, Italy
| | - Francesco Asnicar
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Kate Bermingham
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- Zoe Limited, 164 Westminster Bridge Rd, London, SE1 7RW, UK
| | - Ana Nogal
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Kari Wong
- Metabolon Inc, Research Triangle Park, Morrisville, NC, 27560, USA
| | | | - Jonathan Wolf
- Zoe Limited, 164 Westminster Bridge Rd, London, SE1 7RW, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Zoe Limited, 164 Westminster Bridge Rd, London, SE1 7RW, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- Zoe Limited, 164 Westminster Bridge Rd, London, SE1 7RW, UK
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
14
|
Zou X, Zou X, Gao L, Zhao H. Gut microbiota and psoriasis: pathogenesis, targeted therapy, and future directions. Front Cell Infect Microbiol 2024; 14:1430586. [PMID: 39170985 PMCID: PMC11335719 DOI: 10.3389/fcimb.2024.1430586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Psoriasis is one of the most common autoimmune skin diseases. Increasing evidence shows that alterations in the diversity and function of microbiota can participate in the pathogenesis of psoriasis through various pathways and mechanisms. Objective To review the connection between microbial changes and psoriasis, how microbial-targeted therapy can be used to treat psoriasis, as well as the potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet, and Traditional Chinese Medicine as supplementary and adjunctive therapies. Methods Literature related to the relationship between psoriasis and gut microbiota was searched in PubMed and CNKI. Results Adjunct therapies such as dietary interventions, traditional Chinese medicine, and probiotics can enhance gut microbiota abundance and diversity in patients with psoriasis. These therapies stimulate immune mediators including IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-γ) along with the NF-kB pathway, thereby suppressing the release of pro-inflammatory cytokines and ameliorating systemic inflammatory conditions. Conclusion This article discusses the direction of future research and clinical treatment of psoriasis from the perspective of intestinal microbiota and the mechanism of traditional Chinese medicine, so as to provide clinicians with more comprehensive diagnosis and treatment options and bring greater hope to patients with psoriasis.
Collapse
Affiliation(s)
- Xinyan Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Xinfu Zou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Longxia Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Hanqing Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| |
Collapse
|
15
|
Zheng X, Chen M, Zhuang Y, Xu J, Zhao L, Qian Y, Shen W. Genetic associations between gut microbiota and allergic rhinitis: an LDSC and MR analysis. Front Microbiol 2024; 15:1395340. [PMID: 38855765 PMCID: PMC11157438 DOI: 10.3389/fmicb.2024.1395340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Background Several studies have suggested a potential link between allergic rhinitis (AR) and gut microbiota. In response, we conducted a meta-analysis of Linkage Disequilibrium Score Regression (LDSC) and Mendelian randomization (MR) to detect their genetic associations. Methods Summary statistics for 211 gut microbiota taxa were gathered from the MiBioGen study, while data for AR were sourced from the Pan-UKB, the FinnGen, and the Genetic Epidemiology Research on Aging (GERA). The genetic correlation between gut microbiota and AR was assessed using LDSC. The principal estimate of causality was determined using the Inverse-Variance Weighted (IVW) method. To assess the robustness of these findings, sensitivity analyses were conducted employing methods such as the weighted median, MR-Egger, and MR-PRESSO. The summary effect estimates of LDSC, forward MR and reverse MR were combined using meta-analysis for AR from different data resources. Results Our study indicated a significant genetic correlation between genus Sellimonas (Rg = -0.64, p = 3.64 × 10-5, Adjust_P = 3.64 × 10-5) and AR, and a suggestive genetic correlation between seven bacterial taxa and AR. Moreover, the forward MR analysis identified genus Gordonibacter, genus Coprococcus2, genus LachnospiraceaeUCG010, genus Methanobrevibacter, and family Victivallaceae as being suggestively associated with an increased risk of AR. The reverse MR analysis indicated that AR was suggestively linked to an increased risk for genus Coprococcus2 and genus RuminococcaceaeUCG011. Conclusion Our findings indicate a causal relationship between specific gut microbiomes and AR. This enhances our understanding of the gut microbiota's contribution to the pathophysiology of AR and lays the groundwork for innovative approaches and theoretical models for future prevention and treatment strategies in this patient population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - WenMing Shen
- Emergency Department, Wujin People’s Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
16
|
Lei Y, Yan Y, Zhong J, Zhao Y, Xu Y, Zhang T, Xiong H, Chen Y, Wang X, Zhang K. Enterococcus durans 98D alters gut microbial composition and function to improve DSS-induced colitis in mice. Heliyon 2024; 10:e28486. [PMID: 38560132 PMCID: PMC10981110 DOI: 10.1016/j.heliyon.2024.e28486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Enterococcus durans, is a potential functional strain with the capacity to regulate intestinal health and ameliorate colonic inflammation. However, the strain requires further investigation regarding its safety profile and potential mechanisms of colitis improvement. In this study, the safety of E. durans 98D (Ed) as a potential probiotic was studied using in vitro methods. Additionally, a dextran sulfate sodium (DSS)-induced murine colitis model was employed to investigate its impact on the intestinal microbiota and colitis. In vitro antimicrobial assays revealed Ed sensitivity to common antibiotics and its inhibitory effect on the growth of Escherichia coli O157, Streptococcus pneumoniae CCUG 37328, and Staphylococcus aureus ATCC 25923. To elucidate the functional properties of Ed, 24 weight-matched 6-week-old female C57BL/6J mice were randomly divided into three groups (n = 8): NC group, Con group (DSS), and Ed group (DSS + Ed). Ed administration demonstrated a protective effect on colitis mice, as evidenced by improvements in body weight, colonic length, reduced disease activity index, histological scores, diminished splenomegaly, and decreased goblet cell loss. Furthermore, Ed downregulated the expression of the pro-inflammatory cytokine genes (IL-6, IL-1β, and TNF-α) and upregulated the expression of the anti-inflammatory cytokine gene IL-10. The 16S rRNA gene sequencing revealed significant alterations in microbial α-diversity, with principal coordinate analysis indicating distinct differences in microbial composition among the three groups. At the phylum level, the relative abundance of Actinomycetota significantly increased in the Ed-treated group. At the genus level, Ed treatment markedly elevated the relative abundance of Paraprevotella, Rikenellaceae_RC9, and Odoribacter in DSS-induced colitis mice. In conclusion, Ed exhibits potential as a safe and effective therapeutic agent for DSS-induced colitis by reshaping the colonic microbiota.
Collapse
Affiliation(s)
| | | | - Junyu Zhong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yitong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
17
|
Cuaycal AE, Teixeira LD, Lorca GL, Gonzalez CF. Lactobacillus johnsonii N6.2 phospholipids induce immature-like dendritic cells with a migratory-regulatory-like transcriptional signature. Gut Microbes 2023; 15:2252447. [PMID: 37675983 PMCID: PMC10486300 DOI: 10.1080/19490976.2023.2252447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Shifts in the gut microbiota composition, called dysbiosis, have been directly associated with acute and chronic diseases. However, the underlying biological systems connecting gut dysbiosis to systemic inflammatory pathologies are not well understood. Phospholipids (PLs) act as precursors of both, bioactive inflammatory and resolving mediators. Their dysregulation is associated with chronic diseases including cancer. Gut microbial-derived lipids are structurally unique and capable of modulating host's immunity. Lactobacillus johnsonii N6.2 is a Gram-positive gut symbiont with probiotic characteristics. L. johnsonii N6.2 reduces the incidence of autoimmunity in animal models of Type 1 Diabetes and improves general wellness in healthy volunteers by promoting, in part, local and systemic anti-inflammatory responses. By utilizing bioassay-guided fractionation methods with bone marrow-derived dendritic cells (BMDCs), we report here that L. johnsonii N6.2 purified lipids induce a transcriptional signature that resembles that of migratory (mig) DCs. RNAseq-based analysis showed that BMDCs stimulated with L. johnsonii N6.2 total lipids upregulate maturation-mig related genes Cd86, Cd40, Ccr7, Icam1 along with immunoregulatory genes including Itgb8, Nfkbiz, Jag1, Adora2a, IL2ra, Arg1, and Cd274. Quantitative reverse transcription (qRT)-PCR analysis indicated that PLs are the bioactive lipids triggering the BMDCs response. Antibody-blocking of surface Toll-like receptor (TLR)2 resulted in boosted PL-mediated upregulation of pro-inflammatory Il6. Chemical inhibition of the IKKα kinase from the non-canonical NF-κB pathway specifically restricted upregulation of Il6 and Tnf. Phenotypically, PL-stimulated BMDCs displayed an immature like-phenotype with significantly increased surface ICAM-1. This study provides insight into the immunoregulatory capacity of Gram-positive, gut microbial-derived phospholipids on innate immune responses.
Collapse
Affiliation(s)
- Alexandra E. Cuaycal
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Leandro Dias Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Huang Y, Chen X, Ye J, Yi H, Zheng X. Causal effect of gut microbiota on DNA methylation phenotypic age acceleration: a two-sample Mendelian randomization study. Sci Rep 2023; 13:18830. [PMID: 37914897 PMCID: PMC10620208 DOI: 10.1038/s41598-023-46308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
The causal relationship between gut microbiota and DNA methylation phenotypic age acceleration remains unclear. This study aims to examine the causal effect of gut microbiota on the acceleration of DNA methylation phenotypic age using Mendelian randomization. A total of 212 gut microbiota were included in this study, and their 16S rRNA sequencing data were obtained from the Genome-wide Association Study (GWAS) database. The GWAS data corresponding to DNA methylation phenotypic age acceleration were selected as the outcome variable. Two-sample Mendelian randomization (TSMR) was conducted using R software. During the analysis process, careful consideration was given to address potential biases arising from linkage disequilibrium and weak instrumental variables. The results from inverse-variance weighting (IVW) analysis revealed significant associations (P < 0.05) between single nucleotide polymorphisms (SNPs) corresponding to 16 gut microbiota species and DNA methylation phenotypic age acceleration. Out of the total, 12 gut microbiota species exhibited consistent and robust causal effects. Among them, 7 displayed a significant positive correlation with the outcome while 5 species showed a significant negative correlation with the outcome. This study utilized Mendelian randomization to unravel the intricate causal effects of various gut microbiota species on DNA methylation phenotypic age acceleration.
Collapse
Affiliation(s)
- Yedong Huang
- College of Clinical Medicine for Obstetrics and Gynecology & Pediatrics, Fujian Medical University, Fuzhou, China
- National Key Gynecology Clinical Specialty Construction Institution of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoyun Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jingwen Ye
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yi
- College of Clinical Medicine for Obstetrics and Gynecology & Pediatrics, Fujian Medical University, Fuzhou, China.
- National Key Gynecology Clinical Specialty Construction Institution of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Xiangqin Zheng
- College of Clinical Medicine for Obstetrics and Gynecology & Pediatrics, Fujian Medical University, Fuzhou, China.
- National Key Gynecology Clinical Specialty Construction Institution of China, Fujian Provincial Key Gynecology Clinical Specialty, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
19
|
Stover MA, Tinoco-Bravo B, Shults CA, Marouk S, Deole R, Manjarrez JR. Probiotic effects of Lactococcus lactis and Leuconostoc mesenteroides on stress and longevity in Caenorhabditis elegans. Front Physiol 2023; 14:1207705. [PMID: 37772058 PMCID: PMC10522913 DOI: 10.3389/fphys.2023.1207705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The short lifespan of Caenorhabditis elegans enables the efficient investigation of probiotic interventions affecting stress and longevity involving the potential therapeutic value of Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil. The lactic acid bacteria were cultured from the produce collected from a local grocery store in Tulsa, Oklahoma, and then identified through 16S rDNA sequencing and biochemical tests. To dive deep into this analysis for potential probiotic therapy, we used fluorescent reporters that allow us to assess the differential induction of multiple stress pathways such as oxidative stress and the cytoplasmic, endoplasmic reticulum, and the mitochondrial unfolded protein response. This is combined with the classic health span measurements of survival, development, and fecundity, allowing a wide range of organismal observations of the different communities of microbes supported by probiotic supplementation with Lactococcus lactis and Leuconostoc mesenteroides. These strains were initially assessed in relation to the Escherichia coli feeding strain OP50 and the C. elegans microbiome. The supplementation showed a reduction in the median lifespan of the worms colonized within the microbiome. This was unsurprising, as negative results are common when probiotics are introduced into healthy microbiomes. To further assess the supplementation potential of these strains on an unhealthy (undifferentiated) microbiome, the typical axenic C. elegans diet, OP50, was used to simulate this single-species biome. The addition of lactic acid bacteria to OP50 led to a significant improvement in the median and overall survival in simulated biomes, indicating their potential in probiotic therapy. The study analyzed the supplemented cultures in terms of C. elegans' morphology, locomotor behavior, reproduction, and stress responses, revealing unique characteristics and stress response patterns for each group. As the microbiome's influence on the health span gains interest, the study aims to understand the microbiome relationships that result in differential stress resistance and lifespans by supplementing microbiomes with Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil in C. elegans.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacob R. Manjarrez
- Biochemistry and Microbiology Department, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| |
Collapse
|
20
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother 2023; 164:114985. [PMID: 37311282 DOI: 10.1016/j.biopha.2023.114985] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiota is indispensable for maintaining host health by enhancing the host's digestive capacity, safeguarding the intestinal epithelial barrier, and preventing pathogen invasion. Additionally, the gut microbiota exhibits a bidirectional interaction with the host immune system and promotes the immune system of the host to mature. Dysbiosis of the gut microbiota, primarily caused by factors such as host genetic susceptibility, age, BMI, diet, and drug abuse, is a significant contributor to inflammatory diseases. However, the mechanisms underlying inflammatory diseases resulting from gut microbiota dysbiosis lack systematic categorization. In this study, we summarize the normal physiological functions of symbiotic microbiota in a healthy state and demonstrate that when dysbiosis occurs due to various external factors, the normal physiological functions of the gut microbiota are lost, leading to pathological damage to the intestinal lining, metabolic disorders, and intestinal barrier damage. This, in turn, triggers immune system disorders and eventually causes inflammatory diseases in various systems. These discoveries provide fresh perspectives on how to diagnose and treat inflammatory diseases. However, the unrecognized variables that might affect the link between inflammatory illnesses and gut microbiota, need further studies and extensive basic and clinical research will still be required to investigate this relationship in the future.
Collapse
Affiliation(s)
- Min'an Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jiayi Chu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shiyao Feng
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Chuanhao Guo
- The Second School of Clinical Medicine of Jilin University, Changchun, Jilin 130041, China
| | - Baigong Xue
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
22
|
Cui J, Wang J, Wang Y. The role of short-chain fatty acids produced by gut microbiota in the regulation of pre-eclampsia onset. Front Cell Infect Microbiol 2023; 13:1177768. [PMID: 37600950 PMCID: PMC10432828 DOI: 10.3389/fcimb.2023.1177768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Preeclampsia (PE) is a common pregnancy-related disorder characterized by disrupted maternal-fetal immune tolerance, involving diffuse inflammatory responses and vascular endothelial damage. Alterations in the gut microbiota (GM) during pregnancy can affect intestinal barrier function and immune balance. Aims and purpose This comprehensive review aims to investigate the potential role of short-chain fatty acids (SCFAs), essential metabolites produced by the GM, in the development of PE. The purpose is to examine their impact on colonic peripheral regulatory T (Treg) cells, the pathogenic potential of antigen-specific helper T (Th) cells, and the inflammatory pathways associated with immune homeostasis. Key insights An increasing body of evidence suggests that dysbiosis in the GM can lead to alterations in SCFA levels, which may significantly contribute to the development of PE. SCFAs enhance the number and function of colonic Treg cells, mitigate the pathogenic potential of GM-specific Th cells, and inhibit inflammatory progression, thereby maintaining immune homeostasis. These insights highlight the potential significance of GM dysregulation and SCFAs produced by GM in the pathogenesis of PE. While the exact causes of PE remain elusive, and definitive clinical treatments are lacking, the GM and SCFAs present promising avenues for future clinical applications related to PE, offering a novel approach for prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Robben M, Nasr MS, Das A, Veerla JP, Huber M, Jaworski J, Weidanz J, Luber J. Comparison of the Strengths and Weaknesses of Machine Learning Algorithms and Feature Selection on KEGG Database Microbial Gene Pathway Annotation and Its Effects on Reconstructed Network Topology. J Comput Biol 2023; 30:766-782. [PMID: 37437088 DOI: 10.1089/cmb.2022.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
The development of tools for the annotation of genes from newly sequenced species has not evolved much from homologous alignment to prior annotated species. While the quality of gene annotations continues to decline as we sequence and assemble more evolutionary distant gut microbiome species, machine learning presents a high quality alternative to traditional techniques. In this study, we investigate the relative performance of common classical and nonclassical machine learning algorithms in the problem of gene annotation using human microbiome-associated species genes from the KEGG database. The majority of the ensemble, clustering, and deep learning algorithms that we investigated showed higher prediction accuracy than CD-Hit in predicting partial KEGG function. Motif-based, machine-learning methods of annotation in new species were faster and had higher precision-recall than methods of homologous alignment or orthologous gene clustering. Gradient boosted ensemble methods and neural networks also predicted higher connectivity in reconstructed KEGG pathways, finding twice as many new pathway interactions than blast alignment. The use of motif-based, machine-learning algorithms in annotation software will allow researchers to develop powerful tools to interact with bacterial microbiomes in ways previously unachievable through homologous sequence alignment alone.
Collapse
Affiliation(s)
- Michael Robben
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Avishek Das
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Jai Prakash Veerla
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Manfred Huber
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Justyn Jaworski
- Department of Bioengineering, and University of Texas at Arlington, Arlington, Texas, USA
| | - Jon Weidanz
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| | - Jacob Luber
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
24
|
Kisiel MA, Sedvall M, Malinovschi A, Franklin KA, Gislason T, Shlunssen V, Johansson A, Modig L, Jogi R, Holm M, Svanes C, Lindholdt L, Carlson M, Janson C. Inflammatory bowel disease and asthma. Results from the RHINE study. Respir Med 2023:107307. [PMID: 37271300 DOI: 10.1016/j.rmed.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Asthma and inflammatory bowel disease (IBD) are common inflammatory diseases. The aim of this study was to investigate the associations of IBD with asthma and respiratory symptoms. METHODS This study is based on 13,499 participants from seven northern European countries that filled in a postal questionnaire on asthma, respiratory symptoms, IBD including ulcerative colitis and Crohn's disease and various lifestyle variables. RESULTS There were 195 participants with IBD. The prevalence of asthma (14.5 vs 8.1%, p = 0.001), different respiratory symptoms (range 11.9-36.8% vs range 6.0-18.6%, p < 0.005), non-infectious rhinitis (52.1 vs. 41.6%, p = 0.004) and chronic rhinosinusitis (11.6 vs 6.0%, p = 0.001) were higher in subjects with IBD than in those without IBD. In multivariable regression analysis, the association between IBD and asthma was statistically significant (OR 1.95 (95% CI 1.28-2.96)) after adjusting for confounders such as sex, BMI, smoking history, educational level and physical activity. There was a significant association between asthma and ulcerative colitis (adjusted OR 2.02 (95% CI 1.27-2.19)), and asthma but not Crohn's disease (adjusted OR 1.66 (95% CI 0.69-3.95)). A significant gender interaction was found with a significant association between IBD and asthma in women but not in men ((OR 2.72 (95% CI 1.67-4.46) vs OR 0.87 (95% CI 0.35-2.19), p = 0.038). CONCLUSIONS Patients with IBD, particularly those with ulcerative colitis and female, have a higher prevalence of asthma and respiratory symptoms. Our findings indicate that it is important to consider respiratory symptoms and disorders when examining patients with manifest or suspected IBD.
Collapse
Affiliation(s)
- Marta A Kisiel
- Department of Medical Sciences: Environmental and Occupational Medicine, Uppsala University, Uppsala, Sweden.
| | - Martin Sedvall
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Karl A Franklin
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Thorarinn Gislason
- The Medical Faculty, University of Iceland, Reykjavik, Iceland; Department of Sleep, Landspitali University Hospital Reykjavik, Reykjavik, Iceland
| | - Vivi Shlunssen
- Dept of Public Health, Danish Ramazzini Centre, Aarhus University and the National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ane Johansson
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Lars Modig
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Rain Jogi
- The Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mathias Holm
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Svanes
- Dept of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
| | - Louise Lindholdt
- Dept of Public Health, Danish Ramazzini Centre, Aarhus University and the National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Marie Carlson
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Traore SI, Lo CI, Mossaab M, Durand G, Lagier JC, Raoult D, Fournier PE, Fenollar F. Maliibacterium massiliense gen. nov. sp. nov., Isolated from Human Feces and Proposal of Maliibacteriaceae fam. nov. Curr Microbiol 2023; 80:211. [PMID: 37191823 DOI: 10.1007/s00284-023-03301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/30/2021] [Indexed: 05/17/2023]
Abstract
Bacterial strain Marseille-P3954 was isolated from a stool sample of a 35-year-old male patient living in France. It was a gram-positive, rod-shaped anaerobic, non-motile, and non-spore-forming bacterium. C16:0 and C18:1n9 were the major fatty acid, while its genome measured 2,422,126 bp with 60.8 mol% of G+C content. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain Marseille-P3954 had 85.51% of similarity with Christensenella minuta, its closest related species with standing in nomenclature. As this value is very low compared to the recommended threshold, it suggested that the Marseille-P3954 strain belongs to a new bacterial genus, classified in a new family. On the basis of these genomic, phenotypic, and phylogenetic evidences, we propose that strain Marseille-P3954 should be classified as a new genus and species, Maliibacterium massiliense gen. nov., sp. nov. The type strain of M. massiliense sp. nov. is Marseille-P3954 (CSUR P3954 = CECT 9568).
Collapse
Affiliation(s)
- Sory Ibrahima Traore
- Aix Marseille University, IRD, AP-HM, MEPHII, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Cheikh Ibrahima Lo
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maaloum Mossaab
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sik, Hassan II University, Casablanca, Morocco
| | - Guillaume Durand
- Aix Marseille University, IRD, AP-HM, MEPHII, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean Christophe Lagier
- Aix Marseille University, IRD, AP-HM, MEPHII, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Didier Raoult
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Florence Fenollar
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
26
|
Chang SH, Choi Y. Gut dysbiosis in autoimmune diseases: Association with mortality. Front Cell Infect Microbiol 2023; 13:1157918. [PMID: 37065187 PMCID: PMC10102475 DOI: 10.3389/fcimb.2023.1157918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
To better understand the impact of gut dysbiosis on four autoimmune diseases [Sjögren’s syndrome (SS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS)], this review investigated the altered gut bacteria in each disease and the shared ones among the four diseases. The enriched gut bacteria shared by three of the four autoimmune diseases were Streptococcus, Prevotella, and Eggerthella, which are associated with autoantibody production or activation of Th17 cells in immune-related diseases. On the other hand, Faecalibacterium comprises depleted gut bacteria shared by patients with SLE, MS, and SS, which is associated with various anti-inflammatory activities. The indexes of gut dysbiosis, defined as the number of altered gut bacterial taxa divided by the number of studies in SLE, MS, RA, and SS, were 1.7, 1.8, 0.7, and 1.3, respectively. Interestingly, these values presented a positive correlation trend with the standardized mortality rates —2.66, 2.89, 1.54, and 1.41, respectively. In addition, shared altered gut bacteria among the autoimmune diseases may correlate with the prevalence of polyautoimmunity in patients with SLE, SS, RA, and MS, that is, 41 percent, 32.6 percent, 14 percent, and 1–16.6 percent, respectively. Overall, this review suggests that gut dysbiosis in autoimmune diseases may be closely related to the failure of the gut immune system to maintain homeostasis.
Collapse
|
27
|
Kim YM, Choi JO, Cho YJ, Hong BK, Shon HJ, Kim BJ, Park JH, Kim WU, Kim D. Mycobacterium potentiates protection from colorectal cancer by gut microbial alterations. Immunology 2023; 168:493-510. [PMID: 36183156 DOI: 10.1111/imm.13586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Not only are many Mycobacteria pathogens, but they can act as strong non-specific immunopotentiators, generating beneficial effects on the pathogenesis of some diseases. However, there has been no direct evidence of the effect of mycobacterial species on colorectal cancer (CRC). Herein, we showed that there may be a meaningful inverse correlation between the incidence of tuberculosis and CRC based on global statistics and that heat-killed Mycobacterial tuberculosis and live Mycobacterium bovis (Bacillus Calmette-Guérin strain) could ameliorate CRC development. In particular, using a faecal microbiota transplantation and a comparison between separate housing and cohousing, we demonstrated that the gut microbiota is involved in the protective effects. The microbial alterations can be elucidated by the modulation of antimicrobial activities including those of the Reg3 family genes. Furthermore, interleukin-22 production by T helper cells contributed to the anti-inflammatory activity of Mycobacteria. Our results revealed a novel role of Mycobacteria involving gut microbial alterations in dampening inflammation-associated CRC and an immunological mechanism underlying the interaction between microbes and host immunity.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ouk Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute for Basic Science, Seoul, Republic of Korea
| | - Bong-Ki Hong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hoh-Jeong Shon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
28
|
Effects of Microecological Regulators on Rheumatoid Arthritis: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials. Nutrients 2023; 15:nu15051102. [PMID: 36904103 PMCID: PMC10005357 DOI: 10.3390/nu15051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
In this study, the available data from published randomized, controlled trials (RCTs) of the use of intestinal microecological regulators as adjuvant therapies to relieve the disease activity of rheumatoid arthritis (RA) are systematically compared. An English literature search was performed using PubMed, Embase, Scopus, Web of Science and the Cochrane Central Registry of Controlled Trials and supplemented by hand searching reference lists. Three independent reviewers screened and assessed the quality of the studies. Among the 2355 citations identified, 12 RCTs were included. All data were pooled using a mean difference (MD) with a 95% CI. The disease activity score (DAS) showed a significant improvement following microecological regulators treatment (MD (95% CI) of -1.01 (-1.81, -0.2)). A borderline significant reduction in the health assessment questionnaire (HAQ) scores was observed (MD (95% CI) of -0.11 (-0.21, -0.02)). We also confirmed the known effects of probiotics on inflammatory parameters such as the C-reactive protein (CRP) (MD -1.78 (95% CI -2.90, -0.66)) and L-1β (MD -7.26 (95% CI -13.03, -1.50)). No significant impact on visual analogue scale (VAS) of pain and erythrocyte sedimentation rate (ESR) reduction was observed. Intestinal microecological regulators supplementation could decrease RA activity with a significant effect on DAS28, HAQ and inflammatory cytokines. Nevertheless, these findings need further confirmation in large clinical studies with greater consideration of the confounding variables of age, disease duration, and individual medication regimens.
Collapse
|
29
|
Chen J, Xiao Y, Li D, Zhang S, Wu Y, Zhang Q, Bai W. New insights into the mechanisms of high-fat diet mediated gut microbiota in chronic diseases. IMETA 2023; 2:e69. [PMID: 38868334 PMCID: PMC10989969 DOI: 10.1002/imt2.69] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2024]
Abstract
High-fat diet (HFD) has been recognized as a primary factor in the risk of chronic disease. Obesity, diabetes, gastrointestinal diseases, neurodegenerative diseases, and cardiovascular diseases have long been known as chronic diseases with high worldwide incidence. In this review, the influences of gut microbiota and their corresponding bacterial metabolites on the mechanisms of HFD-induced chronic diseases are systematically summarized. Gut microbiota imbalance is also known to increase susceptibility to diseases. Several studies have proven that HFD has a negative impact on gut microbiota, also exacerbating the course of many chronic diseases through increased populations of Erysipelotrichaceae, facultative anaerobic bacteria, and opportunistic pathogens. Since bile acids, lipopolysaccharide, short-chain fatty acids, and trimethylamine N-oxide have long been known as common features of bacterial metabolites, we will explore the possibility of synergistic mechanisms among those metabolites and gut microbiota in the context of HFD-induced chronic diseases. Recent literature concerning the mechanistic actions of HFD-mediated gut microbiota have been collected from PubMed, Google Scholar, and Scopus. The aim of this review is to provide new insights into those mechanisms and to point out the potential biomarkers of HFD-mediated gut microbiota.
Collapse
Affiliation(s)
- Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
- School of Chinese Medicine, Centre for Cancer and Inflammation ResearchHong Kong Baptist UniversityHong KongChina
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| | - Dongmei Li
- Department of Microbiology & ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Shiqing Zhang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yingzi Wu
- School of Chinese Medicine, Centre for Cancer and Inflammation ResearchHong Kong Baptist UniversityHong KongChina
| | - Qing Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid DetectionJinan UniversityGuangzhouChina
| |
Collapse
|
30
|
Niu Y, Zhang G, Sun X, He S, Dou G. Distinct Role of Lycium barbarum L. Polysaccharides in Oxidative Stress-Related Ocular Diseases. Pharmaceuticals (Basel) 2023; 16:215. [PMID: 37259363 PMCID: PMC9966716 DOI: 10.3390/ph16020215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is an imbalance between the increased production of reactive species and reduced antioxidant activity, which can cause a variety of disturbances including ocular diseases. Lycium barbarum polysaccharides (LBPs) are complex polysaccharides isolated from the fruit of L. barbarum, showing distinct roles in antioxidants. Moreover, it is relatively safe and non-toxic. In recent years, the antioxidant activities of LBPs have attracted remarkable attention. In order to illustrate its significance and underlying therapeutic value for vision, we comprehensively review the recent progress on the antioxidant mechanisms of LBP and its potential applications in ocular diseases, including diabetic retinopathy, hypertensive neuroretinopathy, age-related macular degeneration, retinitis pigmentosa, retinal ischemia/reperfusion injury, glaucoma, dry eye syndrome, and diabetic cataract.
Collapse
Affiliation(s)
- Yali Niu
- College of Life Sciences, Northwestern University, Xi’an 710069, China
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guoheng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaojia Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Shikun He
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
31
|
Responses of the colonic microbiota and metabolites during fermentation of alginate oligosaccharides in normal individuals: An in vitro and in vivo study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Shon HJ, Kim YM, Kim KS, Choi JO, Cho SH, An S, Park SH, Cho YJ, Park JH, Seo SU, Cho JY, Kim WU, Kim D. Protective role of colitis in inflammatory arthritis via propionate-producing Bacteroides in the gut. Front Immunol 2023; 14:1064900. [PMID: 36793721 PMCID: PMC9923108 DOI: 10.3389/fimmu.2023.1064900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Objectives To investigate whether and how inflammatory disease in the intestine influences the development of arthritis, considering that organ-to-organ communication is associated with many physiological and pathological events. Methods First, mice were given drinking water containing dextran sodium sulfate (DSS) and then subjected to inflammatory arthritis. We compared the phenotypic symptoms between the cohoused and separately-housed mice. Next, donor mice were divided into DSS-treated and untreated groups and then cohoused with recipient mice. Arthritis was then induced in the recipients. The fecal microbiome was analyzed by 16S rRNA amplicon sequencing. We obtained type strains of the candidate bacteria and generated propionate-deficient mutant bacteria. Short-chain fatty acids were measured in the bacterial culture supernatant, serum, feces, and cecum contents using gas chromatography-mass spectrometry. Mice fed with candidate and mutant bacteria were subjected to inflammatory arthritis. Results Contrary to expectations, the mice treated with DSS exhibited fewer symptoms of inflammatory arthritis. Intriguingly, the gut microbiota contributes, at least in part, to the improvement of colitis-mediated arthritis. Among the altered microorganisms, Bacteroides vulgatus and its higher taxonomic ranks were enriched in the DSS-treated mice. B. vulgatus, B. caccae, and B. thetaiotaomicron exerted anti-arthritic effects. Propionate production deficiency further prevented the protective effect of B. thetaiotaomicron on arthritis. Conclusions We suggest a novel relationship between the gut and joints and an important role of the gut microbiota as communicators. Moreover, the propionate-producing Bacteroides species examined in this study may be a potential candidate for developing effective treatments for inflammatory arthritis.
Collapse
Affiliation(s)
- Hoh-Jeong Shon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ouk Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sujin An
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Se-Hyeon Park
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute for Basic Science, Seoul, Republic of Korea.,Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
33
|
Interaction of microbiome and immunity in tumorigenesis and clinical treatment. Biomed Pharmacother 2022; 156:113894. [DOI: 10.1016/j.biopha.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
|
34
|
Swedik SM, Madola A, Cruz MA, Llorens-Bonilla BJ, Levine AD. Th17-Derived Cytokines Synergistically Enhance IL-17C Production by the Colonic Epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1768-1777. [PMID: 36130829 PMCID: PMC9588696 DOI: 10.4049/jimmunol.2200125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Tightly regulated communication between the gastrointestinal epithelium and immune cells in the underlying lamina propria is critical for immune homeostasis and inflammation. IL-17C, produced by epithelial cells after exposure to inflammatory stimuli, facilitates cell-to-cell communication by promoting inflammatory responses in Th17 cells. In this study, we demonstrate that Th17-derived cytokines TNF-α, IL-17A, and IL-22 synergistically enhance IL-17C expression in both human-transformed colonic epithelial cell lines and primary non-inflammatory bowel disease colonic epithelial spheroids. This synergistic expression requires activation of the transcription factor NF-κB downstream of the TNF-α stimulus, evidenced by the reduction of IL-17C expression in the presence of an IκBα inhibitor. IL-17A and IL-22 enhance IL-17C expression through the activation of the transcription factor AP-1 in a p38 MAPK-dependent manner. Colonic spheroids derived from uninvolved epithelial of ulcerative colitis patients stimulated with TNF-α, IL-17A, and IL-22 show muted responses compared with non-inflammatory bowel disease spheroids, and inflamed spheroids yielded more IL-17C expression in the presence of TNF-α, and no response to IL-22 stimulation. Altogether, a role for IL-17C in activating Th17 cells combined with our findings of Th17-derived cytokine-driven synergy in the expression of IL-17C identifies a novel inflammatory amplification loop in the gastrointestinal tract between epithelial cells and Th17 cells.
Collapse
Affiliation(s)
- Stephanie M Swedik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH
| | - Abson Madola
- Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Michelle A Cruz
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | | | - Alan D Levine
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH;
- Department of Pathology, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Medicine, Case Western Reserve University, Cleveland, OH; and
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
35
|
Zhang N, Peng Y, Zhao L, He P, Zhu J, Liu Y, Liu X, Liu X, Deng G, Zhang Z, Feng M. Integrated Analysis of Gut Microbiome and Lipid Metabolism in Mice Infected with Carbapenem-Resistant Enterobacteriaceae. Metabolites 2022; 12:metabo12100892. [PMID: 36295794 PMCID: PMC9609999 DOI: 10.3390/metabo12100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The disturbance in gut microbiota composition and metabolism has been implicated in the process of pathogenic bacteria infection. However, the characteristics of the microbiota and the metabolic interaction of commensals−host during pathogen invasion remain more than vague. In this study, the potential associations of gut microbes with disturbed lipid metabolism in mice upon carbapenem-resistant Escherichia coli (CRE) infection were explored by the biochemical and multi-omics approaches including metagenomics, metabolomics and lipidomics, and then the key metabolites−reaction−enzyme−gene interaction network was constructed. Results showed that intestinal Erysipelotrichaceae family was strongly associated with the hepatic total cholesterol and HDL-cholesterol, as well as a few sera and fecal metabolites involved in lipid metabolism such as 24, 25-dihydrolanosterol. A high-coverage lipidomic analysis further demonstrated that a total of 529 lipid molecules was significantly enriched and 520 were depleted in the liver of mice infected with CRE. Among them, 35 lipid species showed high correlations (|r| > 0.8 and p < 0.05) with the Erysipelotrichaceae family, including phosphatidylglycerol (42:2), phosphatidylglycerol (42:3), phosphatidylglycerol (38:5), phosphatidylcholine (42:4), ceramide (d17:1/16:0), ceramide (d18:1/16:0) and diacylglycerol (20:2), with correlation coefficients higher than 0.9. In conclusion, the systematic multi-omics study improved the understanding of the complicated connection between the microbiota and the host during pathogen invasion, which thereby is expected to lead to the future discovery and establishment of novel control strategies for CRE infection.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuanyuan Peng
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Linjing Zhao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence: ; Tel.: +86-21-6779-1214
| | - Peng He
- Minhang Hospital & School of Pharmacy, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Immunotherapeutic, Shanghai 201203, China
| | - Jiamin Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yumin Liu
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiaohui Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhong Zhang
- Nursing Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Meiqing Feng
- Minhang Hospital & School of Pharmacy, Fudan University, Shanghai 200433, China
- Shanghai Engineering Research Center of Immunotherapeutic, Shanghai 201203, China
| |
Collapse
|
36
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|
37
|
A Systematic Review and Meta-Analysis of Randomized Controlled Trials of Fecal Microbiota Transplantation for the Treatment of Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8266793. [PMID: 35795291 PMCID: PMC9251102 DOI: 10.1155/2022/8266793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 01/30/2023]
Abstract
Objectives Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the gastrointestinal tract, and its prevalence is increasing worldwide. Fecal microbiota transplantation (FMT) is an emerging therapy that modifies the patient's gut microbiota by transplanting feces from a healthy donor to achieve disease remission. However, its efficacy and safety need to be further investigated. Methods PubMed, the Cochrane Library, Web of Science, Embase, and Google Scholar databases (up to 8th November 2021) were searched and literature was screened by title and abstract as well as full text. The primary outcome was clinical remission, with the clinical response as a secondary outcome. Risk ratios (RR) with 95% confidence intervals (CI) were reported. Results A total of 14 trials were included in this study. In terms of clinical remission, FMT had a significant effect compared to placebo (RR = 1.44, 95 CI%: 1.03 to 2.02, I2 = 38%, P=0.03), with no significant risk of study heterogeneity. Moreover, FMT led to significant results in clinical response compared to placebo with moderate between-study heterogeneity (RR = 1.34, 95 CI%: 0.92 to 1.94, I2 = 51%, P=0.12). Subgroup analysis showed a higher clinical remission for fresh fecal FMT (40.9%) than that for frozen fecal FMT (32.2%); the efficacy of gastrointestinal (GI) pretreatment, the severity of disease, route of administration, and the donor selection remain unclear and require more extensive study. Safety analysis concluded that most adverse events were mild and self-resolving. The microbiological analysis found that the patient's gut microbiota varied in favor of the donor, with increased flora diversity and species richness. Conclusion FMT is a safe, effective, and well-tolerated therapy. Studies have found that fresh fecal microbiota transplant can increase clinical remission rates. However, more randomized controlled trials and long-term follow-ups are needed to assess its long-term effectiveness and safety.
Collapse
|
38
|
Triantos C, Aggeletopoulou I, Mantzaris GJ, Mouzaki Α. Molecular basis of vitamin D action in inflammatory bowel disease. Autoimmun Rev 2022; 21:103136. [DOI: 10.1016/j.autrev.2022.103136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
|
39
|
Arnauts K, Sudhakar P, Verstockt S, Lapierre C, Potche S, Caenepeel C, Verstockt B, Raes J, Vermeire S, Sabino J, Verfaillie C, Ferrante M. Microbiota, not host origin drives ex vivo intestinal epithelial responses. Gut Microbes 2022; 14:2089003. [PMID: 35758256 PMCID: PMC9235885 DOI: 10.1080/19490976.2022.2089003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbial dysbiosis is an established finding in patients with inflammatory bowel disease (IBD), but host-microbial interactions are poorly understood. We aimed to unravel the effect of microbiota exposure on intestinal epithelial cells. Confluent Transwell® organoid monolayers of eight UC patients and eight non-IBD controls were co-cultured for six hours with microbiota (3x108 cells) of UC patients or a healthy volunteer (HV), in the presence or absence of an inflammatory cytokine mix. Transepithelial electrical resistance (TEER), fluorescein isothiocyanate (FITC) dextran measurements, and RNA sequencing were performed on epithelial cells, and 16S rRNA sequencing on microbiota samples before and after co-culture. Transcriptomic response following microbiota exposure was not different between epithelial cells from UC patients or non-IBD controls. Following UC microbiota exposure, but not HV microbiota, a strong decrease in epithelial barrier integrity was observed in both UC and HV epithelial cells by TEER and FITC dextran measurements. Exposure of inflamed epithelium to UC microbiota induced transcriptomic stress pathways including activation of EGR1, MAPK and JAK/STAT signaling, as well as AP-1 family and FOSL transcripts. Stress responses after HV microbiota stimulation were milder. We conclude that not the epithelial cell origin (UC versus non-IBD) but the microbial donor drives transcriptomic responses, as exposure to UC microbiota was sufficient to induce stress responses in all epithelial cells. Further research on therapies to restore the microbial balance, to remove the constant trigger of dysbiosis, is required.
Collapse
Affiliation(s)
- Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium,Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), KU Leuven, Leuven, Belgium
| | - Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Cynthia Lapierre
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Selina Potche
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Clara Caenepeel
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium,CONTACT Marc Ferrante Department of Gastroenterology and Hepatology University Hospitals Leuven, Herestraat 49, Leuven3000, Belgium
| |
Collapse
|
40
|
O'Donnell MM, Hegarty JW, Healy B, Schulz S, Walsh CJ, Hill C, Ross RP, Rea MC, Farquhar R, Chesnel L. Identification of ADS024, a newly characterized strain of Bacillus velezensis with direct Clostridiodes difficile killing and toxin degradation bio-activities. Sci Rep 2022; 12:9283. [PMID: 35662257 PMCID: PMC9166764 DOI: 10.1038/s41598-022-13248-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant health threat worldwide. C. difficile is an opportunistic, toxigenic pathogen that takes advantage of a disrupted gut microbiome to grow and produce signs and symptoms ranging from diarrhea to pseudomembranous colitis. Antibiotics used to treat C. difficile infection are usually broad spectrum and can further disrupt the commensal gut microbiota, leaving patients susceptible to recurrent C. difficile infection. There is a growing need for therapeutic options that can continue to inhibit the outgrowth of C. difficile after antibiotic treatment is completed. Treatments that degrade C. difficile toxins while having minimal collateral impact on gut bacteria are also needed to prevent recurrence. Therapeutic bacteria capable of producing a range of antimicrobial compounds, proteases, and other bioactive metabolites represent a potentially powerful tool for preventing CDI recurrence following resolution of symptoms. Here, we describe the identification and initial characterization of ADS024 (formerly ART24), a novel therapeutic bacterium that can kill C. difficile in vitro with limited impact on other commensal bacteria. In addition to directly killing C. difficile, ADS024 also produces proteases capable of degrading C. difficile toxins, the drivers of symptoms associated with most cases of CDI. ADS024 is in clinical development for the prevention of CDI recurrence as a single-strain live biotherapeutic product, and this initial data set supports further studies aimed at evaluating ADS024 in future human clinical trials.
Collapse
Affiliation(s)
| | - James W Hegarty
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Brian Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Schulz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Calum J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | |
Collapse
|
41
|
Su L, Ma F, An Z, Ji X, Zhang P, Yue Q, Zhao C, Sun X, Li K, Li B, Liu X, Zhao L. The Metabolites of Lactobacillus fermentum F-B9-1 Relieved Dextran Sulfate Sodium-Induced Experimental Ulcerative Colitis in Mice. Front Microbiol 2022; 13:865925. [PMID: 35572623 PMCID: PMC9096258 DOI: 10.3389/fmicb.2022.865925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Because of the increased incidence and prevalence, ulcerative colitis (UC) has become a global health issue in the world. Current therapies for UC are not totally effective which result in persistent and recurrent symptom of many patients. Lactobacillus with anti-inflammatory effects might be beneficial to the prevention or treatment for UC. Here, we examined the ameliorative effects of the metabolites of Lactobacillus fermentum F-B9-1 (MLF) in Caco-2 cells and dextran sodium sulfate (DSS)-induced UC model mice. MLF displayed intestinal barrier-protective activities in Caco-2 cells by increasing the expression of Occludin and ZO-1. They also showed anti-inflammatory potential in interleukin (IL)-1β and IL-6. In order to further examine the in vivo anti-inflammatory effect of MLF, the MLF was gavaged in the DSS-induced UC model mice. The intragastric administration of MLF effectively alleviated colitis symptoms of weight loss, diarrhea, colon shortening, and histopathological scores, protected intestinal barrier function by increasing Occludin and ZO-1, and attenuated colonic and systemic inflammation by suppressing production of IL-1β and IL-6. Finally, the use of MLF remodeled the diversity of the gut microbiota and increased the number of beneficial microorganisms. Overall, the results demonstrated that MLF relieved DSS-induced UC in mice. And MLF might be an effective therapy method to UC in the clinic in the future.
Collapse
Affiliation(s)
- Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shengshengxiangrong (Shandong) Biotechnology Co., Ltd., Jinan, China
| | - Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xiuyu Ji
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ping Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, China
| | - Baojun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| |
Collapse
|
42
|
Tisch N, Mogler C, Stojanovic A, Luck R, Korhonen EA, Ellerkmann A, Adler H, Singhal M, Schermann G, Erkert L, Patankar JV, Karakatsani A, Scherr AL, Fuchs Y, Cerwenka A, Wirtz S, Köhler BC, Augustin HG, Becker C, Schmidt T, Ruiz de Almodóvar C. Caspase-8 in endothelial cells maintains gut homeostasis and prevents small bowel inflammation in mice. EMBO Mol Med 2022; 14:e14121. [PMID: 35491615 PMCID: PMC9174885 DOI: 10.15252/emmm.202114121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.
Collapse
Affiliation(s)
- Nathalie Tisch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Luck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Emilia A Korhonen
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Ellerkmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Heike Adler
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Géza Schermann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Andromachi Karakatsani
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna-Lena Scherr
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology & Regenerative Medicine, Department of Biology, Technion -Israel Institute of Technology, Haifa, Israel
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Bruno Christian Köhler
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany.,Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine with University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
43
|
Roles of Microbiota in Cancer: From Tumor Development to Treatment. JOURNAL OF ONCOLOGY 2022; 2022:3845104. [PMID: 35342407 PMCID: PMC8941494 DOI: 10.1155/2022/3845104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
Abstract
Cancer as a second leading cause of death arises from multifactorial pathology. The association of microbiota and their products with various pathologic conditions including cancer is receiving significant attention over the past few years. Mounting evidence showed that human microbiota is an emerging target in tumor onset, progression, prevention, and even diagnosis. Accordingly, modulating this composition might influence the response to tumor therapy and therapeutic resistance as well. Through this review, one could conceive of complex interaction between the microbiome and cancer in either positive or negative manner by which may hold potential for finding novel preventive and therapeutic strategies against cancer.
Collapse
|
44
|
Kim YK, Kwon EJ, Yu Y, Kim J, Woo SY, Choi HS, Kwon M, Jung K, Kim HS, Park HR, Lee D, Kim YH. Microbial and molecular differences according to the location of head and neck cancers. Cancer Cell Int 2022; 22:135. [PMID: 35346218 PMCID: PMC8962034 DOI: 10.1186/s12935-022-02554-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbiome has been shown to substantially contribute to some cancers. However, the diagnostic implications of microbiome in head and neck squamous cell carcinoma (HNSCC) remain unknown. METHODS To identify the molecular difference in the microbiome of oral and non-oral HNSCC, primary data was downloaded from the Kraken-TCGA dataset. The molecular differences in the microbiome of oral and non-oral HNSCC were identified using the linear discriminant analysis effect size method. RESULTS In the study, the common microbiomes in oral and non-oral cancers were Fusobacterium, Leptotrichia, Selenomonas and Treponema and Clostridium and Pseudoalteromonas, respectively. We found unique microbial signatures that positively correlated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in oral cancer and positively and negatively correlated KEGG pathways in non-oral cancer. In oral cancer, positively correlated genes were mostly found in prion diseases, Alzheimer disease, Parkinson disease, Salmonella infection, and Pathogenic Escherichia coli infection. In non-oral cancer, positively correlated genes showed Herpes simplex virus 1 infection and Spliceosome and negatively correlated genes showed results from PI3K-Akt signaling pathway, Focal adhesion, Regulation of actin cytoskeleton, ECM-receptor interaction and Dilated cardiomyopathy. CONCLUSIONS These results could help in understanding the underlying biological mechanisms of the microbiome of oral and non-oral HNSCC. Microbiome-based oncology diagnostic tool warrants further exploration.
Collapse
Affiliation(s)
- Yun Kyeong Kim
- Convergence Medical Sciences, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Kwon
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Yeuni Yu
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medicine, School of Medicine, Pusan National University, 49 Busandaehak-ro, Yangsan, 50612, Republic of Korea
| | - Soo-Yeon Woo
- Department of Convergence Medicine, School of Medicine, Pusan National University, 49 Busandaehak-ro, Yangsan, 50612, Republic of Korea
| | - Hee-Sun Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, 49 Busandaehak-ro, Yangsan, 50612, Republic of Korea
| | - Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, 49 Busandaehak-ro, Yangsan, 50612, Republic of Korea
| | - Keehoon Jung
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, 49 Busandaehak-ro, Yangsan, 50612, Republic of Korea.
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
- Department of Anatomy, School of Medicine, Pusan National University, 49 Busandaehak-ro, Yangsan, 50612, Republic of Korea.
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
45
|
Mohr AE, Crawford M, Jasbi P, Fessler S, Sweazea KL. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett 2022; 596:849-875. [PMID: 35262962 DOI: 10.1002/1873-3468.14328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Systemic inflammation is associated with chronic disease and is purported to be a main pathogenic mechanism underlying metabolic conditions. Microbes harbored in the host gastrointestinal tract release signaling byproducts from their cell wall, such as lipopolysaccharides (LPS), which can act locally and, after crossing the gut barrier and entering circulation, also systemically. Defined as metabolic endotoxemia, elevated concentrations of LPS in circulation are associated with metabolic conditions and chronic disease. As such, measurement of LPS is highly prevalent in animal and human research investigating these states. Indeed, LPS can be a potent stimulant of host immunity but this response depends on the microbial species' origin, a parameter often overlooked in both preclinical and clinical investigations. Indeed, the lipid A portion of LPS is mutable and comprises the main virulence and endotoxic component, thus contributing to the structural and functional diversity among LPSs from microbial species. In this review, we discuss how such structural differences in LPS can induce differential immunological responses in the host.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Meli'sa Crawford
- Biomedical Sciences, University of Riverside, California, Riverside, California, United States of America
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Samantha Fessler
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
46
|
Cass SH, Ajami NJ, White MG. The Microbiome: the Link to Colorectal Cancer and Research Opportunities. Curr Treat Options Oncol 2022; 23:631-644. [PMID: 35254596 DOI: 10.1007/s11864-022-00960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT In recent years, we have seen an increase in the study and interest of the role of the microbiome in the development of malignancies, their progression, and evasion of therapies. This has been particularly fruitful in the case of colorectal cancer; multiple investigators have described correlative observations as well as hypotheses strengthened in preclinical studies that have begun to elucidate the critical role the gut and tumoral microbiome plays in carcinogenesis. Furthermore, these landmark studies lay the groundwork in describing the microbiome's role in carcinogenesis and provide a rich field of future study. Here, we review contemporary understandings of these observations and proposed mechanisms behind them.
Collapse
Affiliation(s)
- Samuel H Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484 PO Box 301402, Houston, TX, 77230, USA
| | - Nadim J Ajami
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484 PO Box 301402, Houston, TX, 77230, USA. .,Department of Colon and Rectal Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
47
|
Li Z, Nie L, Li Y, Yang L, Jin L, Du B, Yang J, Zhang X, Cui H, Luobu O. Traditional Tibetan Medicine Twenty-Five Wei'er Tea Pills Ameliorate Rheumatoid Arthritis Based on Chemical Crosstalk Between Gut Microbiota and the Host. Front Pharmacol 2022; 13:828920. [PMID: 35222043 PMCID: PMC8867225 DOI: 10.3389/fphar.2022.828920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Twenty-Five Wei'er Tea Pills (TFP), a traditional Tibetan medicine, has shown to have a promising therapeutic effect in patients with Rheumatoid arthritis (RA), as well as being safe. Nonetheless, there have been limited pharmacological studies that have explored this therapeutic option. As gut microbiota has been proven to have a critical role in the pathogenesis of RA, this study aims to explore and reveal relevant ways by which TFP interacts with the chemical crosstalk between the gut microbiome and its host. 16S rRNA sequencing, combined with un-targeted metabolomics, were conducted on collagen-induced arthritis (CIA) rats. CIA model rats treated with TFP showed significant improvement in weight gain, pathological phenomena in joints, as well as decreased serum levels of TNF-α, IL-6 and increased level of IL-4 and IL-10. Significant dysfunction in the gut microbiome and alteration in serum metabolites were observed in CIA model rats, which were restored by TFP treatment. Coherence analysis indicated that TFP modulated the pathways of histidine metabolism, phenylalanine metabolism, alanine, aspartate, glutamate metabolism, amino sugar and nucleotide sugar metabolism owing to the abundances of Lactobacillus, Bacteroides, Prevotellaceae_UCG-001 and Christensenellaceae_R-7_group in the gut microflora. The corresponding metabolites involved L-histidine, histamine, phenylethylamine, asparagine, L-aspartic acid, D-fructose 1-phosphate, D-Mannose 6-phosphate, D-Glucose 6-phosphate, and Glucose 1-phosphate. In conclusion, this study reveals the ameliorative effects of TFP on RA through the chemical crosstalk that exists between the gut microbiota and its host, and also further enriches our understandings of the pathogenesis of RA.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Lijuan Nie
- Department of Pharmacy, Medical College of Tibet University, Lhasa, China
| | - Yong Li
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa, China
| | - Lu Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baozhong Du
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Juan Yang
- Department of Basic Medicine, Medical College of Tibet University, Lhasa, China
| | - Xulin Zhang
- Second Affiliated Hospital of University of South China, Hengyang, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ouzhu Luobu
- Medical College of Tibet University, Lhasa, China
- Affiliated Fukang Hospital of Tibet University, Lhasa, China
| |
Collapse
|
48
|
Pauli B, Oña L, Hermann M, Kost C. Obligate mutualistic cooperation limits evolvability. Nat Commun 2022; 13:337. [PMID: 35039522 PMCID: PMC8764027 DOI: 10.1038/s41467-021-27630-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
Cooperative mutualisms are widespread and play fundamental roles in many ecosystems. Given that these interactions are often obligate, the Darwinian fitness of the participating individuals is not only determined by the information encoded in their own genomes, but also the traits and capabilities of their corresponding interaction partners. Thus, a major outstanding question is how obligate cooperative mutualisms affect the ability of organisms to adapt evolutionarily to changing environmental conditions. Here we address this issue using a mutualistic cooperation between two auxotrophic genotypes of Escherichia coli that reciprocally exchanged costly amino acids. Amino acid-supplemented monocultures and unsupplemented cocultures were exposed to stepwise increasing concentrations of different antibiotics. This selection experiment reveals that metabolically interdependent bacteria are generally less able to adapt to environmental stress than autonomously growing strains. Moreover, obligate cooperative mutualists frequently regain metabolic autonomy, resulting in a collapse of the mutualistic interaction. Together, our results identify a limited evolvability as a significant evolutionary cost that individuals have to pay when entering into an obligate mutualistic cooperation.
Collapse
Affiliation(s)
- Benedikt Pauli
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany
| | - Leonardo Oña
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany
| | - Marita Hermann
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany
- Department of Plant Physiology, Osnabrück University, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany.
| |
Collapse
|
49
|
Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, Li XA, Wu J, Wendy Hsiao WL. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes 2022; 13:1847629. [PMID: 33228450 PMCID: PMC8381792 DOI: 10.1080/19490976.2020.1847629] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) ranks the third most common cancer type in both men and women. Besides the known genetic and epigenetic changes in the gut epithelial cells, we now know that disturbed gut microbes could also contribute to the onset and progression of CRC. Hence, keeping a balanced gut microbiota (GM) has become a novel pursue in the medical field, particularly in the area of gastrointestinal disorders. Gynostemma pentaphyllum (Gp) is a dietary herbal medicine. In our previous study, Gp saponins (GpS) displayed prebiotic and cancer-preventive properties through the modulation of GM in ApcMin/+ mice. However, the specific group(s) of GM links to the health effects of GpS remains unknown. To track down the missing link, we first investigated and found that inoculation with fecal materials from GpS-treated ApcMin/+ mice effectively reduces polyps in ApcMin/+ mice. From the same source of the fecal sample, we successfully isolated 16 bacterial species. Out of the 16 bacteria, Bifidobacterium animalis stands out as the responder to the GpS-growth stimulus. Biochemical and RNAseq analysis demonstrated that GpS enhanced expressions of a wide range of genes encoding biogenesis and metabolic pathways in B. animalis culture. Moreover, we found that colonization of B. animalis markedly reduces the polyp burden in ApcMin/+ mice. These findings reveal a mutualistic interaction between the prebiotic and a probiotic to achieve anticancer and cancer-preventive activities. Our result, for the first time, unveils the anticancer function of B. animalis and extend the probiotic horizon of B. animalis.
Collapse
Affiliation(s)
- Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Xiao Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| | - W. L. Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR,CONTACT W. L. Wendy Hsiao State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR
| |
Collapse
|
50
|
Abstract
OPINION STATEMENT Immunotherapy is revolutionizing tumor treatment by activating the immune response to tumors. Among them, immunotherapy represented by immune checkpoint inhibitors is considered to be a milestone in tumor treatment. It has revolutionized the management of advanced malignant tumors by activating T cells, promoting cytotoxic signaling pathways, and killing tumor cells, effectively improving the overall survival of patients. However, resistance to immunotherapy and immune-related adverse events remain challenges for immunotherapy. It has been demonstrated in previous studies that modulating intestinal microbiota can enhance immunotherapy response and reduce complications. Currently, the more mature method for microbiota regulation is fecal microbiota transplantation, which involves transfering a donor's microbiome to the recipient in the form of capsules or fecal microbiota suspension to restore the richness of the recipient's intestinal microbiota. In terms of cancer immunotherapy, fecal microbiota transplantation in patients who fail to respond to immune checkpoint inhibitors is expected to produce better prognosis for patients.
Collapse
|