1
|
Radbakhsh S, Abrego-Guandique DM, Bacchetti T, Aghaee-Bakhtiari SH, Mahmoudi A, Manteghi AA, Bazyari MJ, Cione E, Ferretti G, Sahebkar A. Direct hybridization and bioinformatics analysis of circulating microRNAs in patients with Alzheimer's disease under intravenous trehalose treatment. Brain Res 2025; 1857:149607. [PMID: 40187517 DOI: 10.1016/j.brainres.2025.149607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Trehalose has been proposed as a possible therapeutic option for attenuating the neuropathological changes associated with neurodegeneration, including Alzheimer's disease (AD). The administration of trehalose in human and murine models was linked to restoring antioxidant status, decreasing lipoperoxidation, and alleviating neuroinflammation. This latter biochemical mechanism was associated with the upregulation of specific brain-enriched microRNAs (miRNA). Herein, using a direct hybridization approach, we evaluate trehalose intravenous treatment in AD patients, conducting a phase two clinical trial (IRCT20130829014521N15) examining the alteration of microRNA profiles before and after the treatment. Twenty patients were recruited and randomly assigned to two groups: the intervention group received 15 g/week of intravenous trehalose. The control group received placebo in the form of normal saline. The period chosen was 12 weeks. Blood samples were obtained at the beginning and end of the study. Circulating microRNAs expression data between the placebo and treatment groups were assessed using microarray analysis. Subsequently, differentially expressed (DE) miRNAs specific to the trehalose-treated group were identified, and their gene targets were determined by bioinformatics-based approaches. The analysis of DE miRNAs pointed out modulation in unique miRNAs between treatment and placebo groups. Specifically, hsa-miR-1268a, -3605-3p, -555, and -6511a-3p were significantly downregulated, while hsa-miR-324-3p and -539-5p showed significant upregulation. Of the 147 overlapped validated genes identified in the bioinformatics analysis, several are related to autophagy, protein aggregation, oxidative stress, and inflammation. KEGG enrichment pathways reveal regulation of actin cytoskeleton, axon guidance, and neurotrophin signaling pathways. The results identify significant modulation in unique miRNAs in AD patients under trehalose. These findings suggest the potential utility of these microRNAs as biomarkers for trehalose pharmacological monitoring in AD.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akhonpour Manteghi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Javad Bazyari
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Erika Cione
- Department of Pharmacy, Health, and Nutritional Sciences. Via Savinio, University of Calabria 87036 Rende, (CS), Italy
| | - Gianna Ferretti
- Department of Clinical Science and Odontostomatology, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Patyal P, Azhar G, Zhang X, Verma A, Wei JY. Cardiac-specific overexpression of serum response factor regulates age-associated decline in mitochondrial function. GeroScience 2025:10.1007/s11357-025-01629-2. [PMID: 40164849 DOI: 10.1007/s11357-025-01629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Cardiac aging is an intrinsic process that leads to impaired heart function, along with cellular and molecular changes. Recent research highlights the important role of mitochondria in cardiac function, due to the heart's high energy demands. Serum response factor (SRF), a transcription factor involved in regulating actin and smooth muscle gene expression, is well known as a regulator of various aspects of cardiac function. However, its role in mitochondrial regulation and cardiac aging is poorly understood. Our laboratory generated a transgenic mouse model with cardiac-specific overexpression of SRF, which exhibits characteristics of diastolic dysfunction and accelerated cardiac aging in young adult transgenic mice. In this study, we tested how cardiac-specific overexpression of SRF affects age associated mitochondrial dysfunction in the heart. Our results showed that cardiac specific SRF overexpression reduced the lifespan of mice and induced cardiomyopathy. Histological analysis revealed cardiac hypertrophy and fibrosis in transgenic mice hearts. SRF overexpression led to significant alterations in mitochondrial structure and function, including reduced mitochondrial biogenesis and dysregulation of oxidative phosphorylation. These changes were accompanied by increased oxidative stress, a decline in antioxidant enzyme activity, and disrupted calcium handling. Moreover, cardiac-specific SRF overexpression activated the MAPK signaling pathway. Our findings were further corroborated by similar mitochondrial dysfunction observed in a human cardiomyocyte cells transfected with SRF plasmid. Taken together, these findings suggest that SRF plays a novel role in cardiac aging, thus establishing SRF as a potential therapeutic target for mitigating age-associated decline in mitochondrial function and preserving cardiac health in older adults.
Collapse
Affiliation(s)
- Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Ahn H, Yu J, Ryu K, Ryu J, Kim S, Park J, Kim JK, Jung I, An H, Hong S, Kim E, Park K, Ahn M, Min S, Jung I, Lee D, Lee T, Byun Y, Song JJ, Kim J, Cho WK, Lee G, Kim S. Single-molecule analysis reveals that IPMK enhances the DNA-binding activity of the transcription factor SRF. Nucleic Acids Res 2025; 53:gkae1281. [PMID: 39777465 PMCID: PMC11704961 DOI: 10.1093/nar/gkae1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor. Moreover, real-time tracking of SRF loci in live cell nuclei demonstrated that the chromatin residence time of SRF was reduced by IPMK depletion in fibroblasts. Conversely, elevated IPMK levels extended the SRF-chromatin association. We identified that IPMK binds to the intrinsically disordered region of SRF, which is required for the IPMK-induced stable interaction of SRF with DNA. IPMK-mediated conformational changes in SRF were observed by single-molecule fluorescence resonance energy transfer assays. Therefore, our findings demonstrate that IPMK is a critical factor for promoting high-affinity SRF-chromatin association and provide insights into the mechanisms of SRF-dependent transcription control via chaperone-like activity.
Collapse
Affiliation(s)
- Hyoungjoon Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongmin Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaeseung Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sera Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae Yeong Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji Kwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Inhong Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Haejin An
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myunghwan Ahn
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Sunwoo Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, 3415 Colorado Avenue, Boulder 80303, USA
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gwangrog Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Stem Cell Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
McCaig CD. Electrical Forces Improve Memory in Old Age. Rev Physiol Biochem Pharmacol 2025; 187:453-520. [PMID: 39838022 DOI: 10.1007/978-3-031-68827-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This penultimate chapter is based on a single paper published in Nature in 2022. I have used it specifically as an exemplar, in this case to show that memory improvement in old age may be regulated by a multiplicity of electrical forces. However, I include it because I believe that one could pick almost any other substantial single paper and show that a completely disparate set of biological mechanisms similarly depend crucially on multiple electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
5
|
Wong D, Qiu H. New insights into the pharmacological inhibition of SRF activity: Key inhibitory targets and mechanisms. Vascul Pharmacol 2024; 157:107443. [PMID: 39586415 PMCID: PMC11648470 DOI: 10.1016/j.vph.2024.107443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Serum Response Factor (SRF) is a critical regulatory transcription factor widely expressed across cell types and is essential for animal survival. Excessive SRF activity has been linked to various pathological conditions and diseases, including cardiovascular diseases, cancers and neurodegenerative disorders, making the inhibition of SRF hyperactivity a promising therapeutic strategy. This review summarizes recent advancements in the discovery and development of SRF inhibitors, their regulatory mechanisms, and their respective molecular foundations. These insights deepen our understanding of current therapeutic potentials, paving the way for novel approaches to treat diseases associated with SRF hyperactivity.
Collapse
Affiliation(s)
- Daniel Wong
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 8572, USA.
| |
Collapse
|
6
|
Tsaytler P, Blaess G, Scholze-Wittler M, Meierhofer D, Wittler L, Koch F, Herrmann BG. SRF promotes long-range chromatin loop formation and stem cell pluripotency. Cell Rep 2024; 43:114846. [PMID: 39392751 DOI: 10.1016/j.celrep.2024.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024] Open
Abstract
Serum response factor (SRF) is a transcription factor essential for cell proliferation, differentiation, and migration and is required for primitive streak and mesoderm formation in the embryo. The canonical roles of SRF are mediated by a diverse set of context-dependent cofactors. Here, we show that SRF physically interacts with CTCF and cohesin subunits at topologically associating domain (TAD) boundaries and loop anchors. SRF promotes long-range chromatin loop formation and contributes to TAD insulation. In embryonic stem cells (ESCs), SRF associates with SOX2 and NANOG and contributes to the formation of three-dimensional (3D) pluripotency hubs. Our findings reveal additional roles of SRF in higher-order chromatin organization.
Collapse
Affiliation(s)
- Pavel Tsaytler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Gaby Blaess
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Lab, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Lars Wittler
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Frederic Koch
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Bernhard G Herrmann
- Department Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Visconti A, Qiu H. Recent advances in serum response factor posttranslational modifications and their therapeutic potential in cardiovascular and neurological diseases. Vascul Pharmacol 2024; 156:107421. [PMID: 39209126 PMCID: PMC11626983 DOI: 10.1016/j.vph.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Serum Response Factor (SRF) is a key regulatory transcription factor present in various cell types throughout the body, playing essential roles in cellular functions under physiological conditions. Mutations and abnormal expression of SRF have been linked to the development of various diseases and disorders. Recent evidence highlights that post-translational modifications (PTMs) are critical for regulating SRF function in different cell types and contribute to disease pathogenesis. Targeting SRF-related PTMs is emerging as a promising therapeutic approach for treating SRF-associated diseases. In this review, we summarize recent advances in understanding SRF PTMs and their underlying regulatory mechanisms. We also explore the implications of SRF-PTM in related cardiovascular and neurological diseases and their potential for therapeutic intervention. This information underscores the significance of SRF PTMs in both physiological and pathological contexts, enhancing our understanding of disease mechanisms and paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Visconti
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
8
|
Sun R, Pan X, Ward E, Intrevado R, Morozan A, Lauzon AM, Martin JG. Serum Response Factor Expression in Excess Permits a Dual Contractile-Proliferative Phenotype of Airway Smooth Muscle. Am J Respir Cell Mol Biol 2024; 71:182-194. [PMID: 38775474 DOI: 10.1165/rcmb.2024-0081oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024] Open
Abstract
The transcription factors (TFs) MyoCD (myocardin) and Elk-1 (ETS Like-1 protein) competitively bind to SRF (serum response factor) and control myogenic- and mitogenic-related gene expression in smooth muscle, respectively. Their functions are therefore mutually inhibitory, which results in a contractile-versus-proliferative phenotype dichotomy. Airway smooth muscle cell (ASMC) phenotype alterations occur in various inflammatory airway diseases, promoting pathological remodeling and contributing to airflow obstruction. We characterized MyoCD and Elk-1 interactions and their roles in phenotype determination in human ASMCs. MyoCD overexpression in ASMCs increased smooth muscle gene expression, force generation, and partially restored the loss of smooth muscle protein associated with prolonged culturing while inhibiting Elk-1 transcriptional activities and proliferation induced by EGF (epidermal growth factor). However, MyoCD overexpression failed to suppress these responses induced by FBS, as FBS also upregulated SRF expression to a degree that allowed unopposed function of both TFs. Inhibition of the RhoA pathway reversed said SRF changes, allowing inhibition of Elk-1 by MyoCD overexpression and suppressing FBS-mediated contractile protein gene upregulation. Our study confirmed that MyoCD in increased abundance can competitively inhibit Elk-1 function. However, SRF upregulation permits a dual contractile-proliferative ASMC phenotype that is anticipated to exacerbate pathological alterations, whereas therapies targeting SRF may inhibit pathological ASMC proliferation and contractile protein gene expression.
Collapse
Affiliation(s)
- Rui Sun
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Xingning Pan
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Erin Ward
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Rafael Intrevado
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Arina Morozan
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
9
|
Chiu HW, Chou CL, Lee KT, Shih CC, Huang TH, Sung LC. Nattokinase attenuates endothelial inflammation through the activation of SRF and THBS1. Int J Biol Macromol 2024; 268:131779. [PMID: 38679250 DOI: 10.1016/j.ijbiomac.2024.131779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation. The transcriptional profiles of NK in endothelial cells (ECs) by RNA sequencing (RNA-seq) revealed that NK affected THBS1, SRF and SREBF1 mRNA expression. In Q-PCR analysis, SRF and THBS1 were upregulated but SREBF1 was unaffected in ECs treated with NK. NK treatment induced autophagy and inhibited NLRP3 inflammasome and necroptosis in ECs. Furthermore, the inhibition of SRF or THBS1 by siRNA suppressed autophagy and enhanced the NLRP3 inflammasome and necroptosis. In a mouse model, NK reduced vascular inflammation by activating autophagy and inhibiting NLRP3 inflammasome and necroptosis. Our findings provide the first evidence that NK upregulates SRF and THBS1 genes, subsequently increasing autophagy and decreasing necroptosis and NLRP3 inflammasome formation to reduce vascular inflammation. Therefore, NK could serve as nutraceuticals or adjuvant therapies to reduce vascular inflammation and possible atherosclerosis progression.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chu-Lin Chou
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chun-Che Shih
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsuan Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Chin Sung
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of General Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
10
|
Majeres LE, Dilger AC, Shike DW, McCann JC, Beever JE. Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle. Genes (Basel) 2024; 15:576. [PMID: 38790206 PMCID: PMC11121065 DOI: 10.3390/genes15050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous studies have shown genetic variation at the LCORL-NCAPG locus is strongly associated with growth traits in beef cattle. However, a causative molecular variant has yet to be identified. To define all possible candidate variants, 34 Charolais-sired calves were whole-genome sequenced, including 17 homozygous for a long-range haplotype associated with increased growth (QQ) and 17 homozygous for potential ancestral haplotypes for this region (qq). The Q haplotype was refined to an 814 kb region between chr6:37,199,897-38,014,080 and contained 218 variants not found in qq individuals. These variants include an insertion in an intron of NCAPG, a previously documented mutation in NCAPG (rs109570900), two coding sequence mutations in LCORL (rs109696064 and rs384548488), and 15 variants located within ATAC peaks that were predicted to affect transcription factor binding. Notably, rs384548488 is a frameshift variant likely resulting in loss of function for long isoforms of LCORL. To test the association of the coding sequence variants of LCORL with phenotype, 405 cattle from five populations were genotyped. The two variants were in complete linkage disequilibrium. Statistical analysis of the three populations that contained QQ animals revealed significant (p < 0.05) associations with genotype and birth weight, live weight, carcass weight, hip height, and average daily gain. These findings affirm the link between this locus and growth in beef cattle and describe DNA variants that define the haplotype. However, further studies will be required to define the true causative mutation.
Collapse
Affiliation(s)
- Leif E. Majeres
- UTIA Genomics Center for the Advancement of Agriculture, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA;
| | - Anna C. Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Daniel W. Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Joshua C. McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Jonathan E. Beever
- UTIA Genomics Center for the Advancement of Agriculture, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
11
|
Shen J, Ju D, Wu S, Zhao J, Pham L, Ponce A, Yang M, Li HJ, Zhang K, Yang Z, Xie Y, Li L. SM22α deficiency: promoting vascular fibrosis via SRF-SMAD3-mediated activation of Col1a2 transcription following arterial injury. RESEARCH SQUARE 2024:rs.3.rs-3941602. [PMID: 38464061 PMCID: PMC10925461 DOI: 10.21203/rs.3.rs-3941602/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Vascular fibrosis, characterized by increased Type I collagen expression, significantly contributes to vascular remodeling. Our previous studies show that disrupting the expression of SM22α (aka SM22, Tagln) induces extensive vascular remodeling following arterial injury, involving oxidative stress, inflammation, and chondrogenesis within the vessel wall. This study aims to investigate the molecular mechanisms underlying the transcription of Col1a2 , a key fibrotic extracellular matrix marker. We observed upregulation of COL1A2 in the arterial wall of Sm22 -/- mice following carotid injury. Bioinformatics and molecular analyses reveal that Col1a2 transcription depends on a CArG box in the promoter, activated synergistically by SRF and SMAD3. Notably, we detected enhanced nuclear translocation of both SRF and SMAD3 in the smooth muscle cells of the injured carotid artery in Sm22 -/- mice. These findings demonstrate that SM22 deficiency regulates vascular fibrosis through the interaction of SRF and the SMAD3-mediated canonical TGF-β1 signal pathway, suggesting SM22α as a potential therapeutic target for preventing vascular fibrosis.
Collapse
|
12
|
Gao L, Zhang C, Zhu Y, Zhang N, Zhang C, Zhou S, Feng G, Huang F, Zhang L. Serum response factor promoting axonal regeneration by activating the Ras-Raf-Cofilin signaling pathway after the spinal cord injury. CNS Neurosci Ther 2024; 30:e14585. [PMID: 38421133 PMCID: PMC10851317 DOI: 10.1111/cns.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Serum response factor (SRF) is important in muscle development, tissue repair, and neuronal regulation. OBJECTIVES This research aims to thoroughly examine the effects of SRF on spinal cord injury (SCI) and its ability to significantly impact the recovery and regeneration of neuronal axons. METHODS The researchers created rat models of SCI and scratch injury to primary spinal cord neurons to observe the expression of relevant factors after neuronal injury. RESULTS We found that the SRF, Ras, Raf, and cofilin levels increased after injury and gradually returned to normal levels. Afterward, researchers gave rats with SCI an SRF inhibitor (CCG1423) and studied the effects with nuclear magnetic resonance and transmission electron microscopy. The SRF inhibitor rodents had worse spinal cord recovery and axon regrowth than the control group. And the apoptosis of primary neurons after scratch injury was significantly higher in the SRF inhibitor group. Additionally, the researchers utilized lentiviral transfection to modify the SRF expression in neurons. SRF overexpression increased neuron migration while silencing SRF decreased it. Finally, Western blotting and RT-PCR were conducted to examine the expression changes of related factors upon altering SRF expression. The results revealed SRF overexpression increased Ras, Raf, and cofilin expression. Silencing SRF decreased Ras, Raf, and Cofilin expression. CONCLUSION Based on our research, the SRF promotes axonal regeneration by activating the "Ras-Raf-Cofilin" signaling pathway.
Collapse
Affiliation(s)
- Limin Gao
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
- Department of NeurobiologySchool of Basic Medical Sciences, Capital Medical UniversityBeijingChina
| | - Chen Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
- Experimental Neurosurgery, Department of NeurosurgeryNeuroscience Center, Frankfurt University HospitalFrankfurt am MainGermany
| | - Yonglin Zhu
- Department of Bone and JointYantai Affiliated Hospital of Binzhou Medical UniversityYantaiShandongChina
| | - Naili Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Chunlei Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Guoying Feng
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
- University of Health and Rehabilitation SciencesQingdaoShandong ProvinceChina
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| |
Collapse
|
13
|
Zhong X, Wei X, Xu Y, Zhu X, Huo B, Guo X, Feng G, Zhang Z, Feng X, Fang Z, Luo Y, Yi X, Jiang DS. The lysine methyltransferase SMYD2 facilitates neointimal hyperplasia by regulating the HDAC3-SRF axis. Acta Pharm Sin B 2024; 14:712-728. [PMID: 38322347 PMCID: PMC10840433 DOI: 10.1016/j.apsb.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.
Collapse
Affiliation(s)
- Xiaoxuan Zhong
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yan Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xuehai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Bo Huo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Guo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gaoke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zihao Zhang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zemin Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxuan Luo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| |
Collapse
|
14
|
Frith MC, Ni S. DNA Conserved in Diverse Animals Since the Precambrian Controls Genes for Embryonic Development. Mol Biol Evol 2023; 40:msad275. [PMID: 38085182 PMCID: PMC10735318 DOI: 10.1093/molbev/msad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
DNA that controls gene expression (e.g. enhancers, promoters) has seemed almost never to be conserved between distantly related animals, like vertebrates and arthropods. This is mysterious, because development of such animals is partly organized by homologous genes with similar complex expression patterns, termed "deep homology." Here, we report 25 regulatory DNA segments conserved across bilaterian animals, of which 7 are also conserved in cnidaria (coral and sea anemone). They control developmental genes (e.g. Nr2f, Ptch, Rfx1/3, Sall, Smad6, Sp5, Tbx2/3), including six homeobox genes: Gsx, Hmx, Meis, Msx, Six1/2, and Zfhx3/4. The segments contain perfectly or near-perfectly conserved CCAAT boxes, E-boxes, and other sequences recognized by regulatory proteins. More such DNA conservation will surely be found soon, as more genomes are published and sequence comparison is optimized. This reveals a control system for animal development conserved since the Precambrian.
Collapse
Affiliation(s)
- Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Computational Bio Big Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Shengliang Ni
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| |
Collapse
|
15
|
Lyu QR, Fu K. Tissue-specific Cre driver mice to study vascular diseases. Vascul Pharmacol 2023; 153:107241. [PMID: 37923099 DOI: 10.1016/j.vph.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Vascular diseases, including atherosclerosis and abdominal aneurysms, are the primary cause of mortality and morbidity among the elderly worldwide. The life quality of patients is significantly compromised due to inadequate therapeutic approaches and limited drug targets. To expand our comprehension of vascular diseases, gene knockout (KO) mice, especially conditional knockout (cKO) mice, are widely used for investigating gene function and mechanisms of action. The Cre-loxP system is the most common method for generating cKO mice. Numerous Cre driver mice have been established to study the main cell types that compose blood vessels, including endothelial cells, smooth muscle cells, and fibroblasts. Here, we first discuss the characteristics of each layer of the arterial wall. Next, we provide an overview of the representative Cre driver mice utilized for each of the major cell types in the vessel wall and their most recent applications in vascular biology. We then go over Cre toxicity and discuss the practical methods for minimizing Cre interference in experimental outcomes. Finally, we look into the future of tissue-specific Cre drivers by introducing the revolutionary single-cell RNA sequencing and dual recombinase system.
Collapse
Affiliation(s)
- Qing Rex Lyu
- Medical Research Center, Chongqing General Hospital, Chongqing 401147, China; Chongqing Academy of Medical Sciences, Chongqing 401147, China.
| | - Kailong Fu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
16
|
Wang M, Deng C, Yang C, Yan M, Lu H, Zhang Y, Liu H, Tong Z, Ma J, Wang J, Zhang Y, Wang J, Xuan Y, Cheng H, Zhao K, Zhang J, Chai C, Li M, Yu Z. Unraveling temporal and spatial biomarkers of epithelial-mesenchymal transition in colorectal cancer: insights into the crucial role of immunosuppressive cells. J Transl Med 2023; 21:794. [PMID: 37940972 PMCID: PMC10633927 DOI: 10.1186/s12967-023-04600-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
The occurrence and progression of tumors can be established through a complex interplay among tumor cells undergoing epithelial-mesenchymal transition (EMT), invasive factors and immune cells. In this study, we employed single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (ST) to evaluate the pseudotime trajectory and spatial interactive relationship between EMT-invasive malignant tumors and immune cells in primary colorectal cancer (CRC) tissues at different stages (stage I/II and stage III with tumor deposit). Our research characterized the spatiotemporal relationship among different invasive tumor programs by constructing pseudotime endpoint-EMT-invasion tumor programs (EMTPs) located at the edge of ST, utilizing evolution trajectory analysis integrated with EMT-invasion genes. Strikingly, the invasive and expansive process of tumors undergoes remarkable spatial reprogramming of regulatory and immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), regulatory T cells (Treg), and exhausted T cells (Tex). These EMTP-adjacent cell are linked to EMT-related invasion genes, especially the C-X-C motif ligand 1 (CXCL1) and CXCL8 genes that are important for CRC prognosis. Interestingly, the EMTPs in stage I mainly produce an inflammatory margin invasive niche, while the EMTPs in stage III tissues likely produce a hypoxic pre-invasive niche. Our data demonstrate the crucial role of regulatory and immunosuppressive cells in tumor formation and progression of CRC. This study provides a framework to delineate the spatiotemporal invasive niche in CRC samples.
Collapse
Affiliation(s)
- Muhong Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chunyu Deng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Cheng Yang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Mingze Yan
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Haibo Lu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Honghao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhekuan Tong
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Jiaao Ma
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Jiaming Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yan Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Jiahao Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yuhong Xuan
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Haiyue Cheng
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Kai Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Jiaqi Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Cuicui Chai
- Digestive Disease Center, The Seventh Affiliated Hospital Sun Yat-Sen University, Shenzhen, 518107, China
| | - Mingzhe Li
- Digestive Disease Center, The Seventh Affiliated Hospital Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Zhiwei Yu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
17
|
Imran K, Iqbal MJ, Abid R, Ahmad MM, Calina D, Sharifi-Rad J, Cho WC. Cellular signaling modulated by miRNA-3652 in ovarian cancer: unveiling mechanistic pathways for future therapeutic strategies. Cell Commun Signal 2023; 21:289. [PMID: 37845675 PMCID: PMC10577948 DOI: 10.1186/s12964-023-01330-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play pivotal roles in regulating gene expression and have been implicated in the pathogenesis of numerous cancers. miRNA-3652, though relatively less explored, has recently emerged as a potential key player in ovarian cancer's molecular landscape. This review aims to delineate the functional significance and tumor progression role of miRNA-3652 in ovarian cancer, shedding light on its potential as both a diagnostic biomarker and therapeutic target. A comprehensive literature search was carried out using established databases, the focus was on articles that reported the role of miRNA-3652 in ovarian cancer, encompassing mechanistic insights, functional studies, and its association with clinical outcomes. This updated review highlighted that miRNA-3652 is intricately involved in ovarian cancer cell proliferation, migration, and invasion, its dysregulation was linked to altered expression of critical genes involved in tumor growth and metastasis; furthermore, miRNA-3652 expression levels were found to correlate with clinical stages, prognosis, and response to therapy in ovarian cancer patients. miRNA-3652 holds significant promise as a vital molecular player in ovarian cancer's pathophysiology. Its functional role and impact on tumor progression make it a potential candidate for diagnostic and therapeutic applications in ovarian cancer. Given the pivotal role of miRNA-3652 in ovarian cancer, future studies should emphasize in-depth mechanistic explorations, utilizing advanced genomic and proteomic tools. Collaboration between basic scientists and clinicians will be vital to translating these findings into innovative diagnostic and therapeutic strategies, ultimately benefiting ovarian cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Komal Imran
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Rameesha Abid
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Mushtaq Ahmad
- Department of Allied Health Sciences, International Institute of Science, Art and Technology, Gujranwala, Pakistan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Slick RA, Tinklenberg JA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Granzier H, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Aberrations in Energetic Metabolism and Stress-Related Pathways Contribute to Pathophysiology in the Neb Conditional Knockout Mouse Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1528-1547. [PMID: 37422147 PMCID: PMC10548278 DOI: 10.1016/j.ajpath.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.
Collapse
Affiliation(s)
- Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom the NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Henk Granzier
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
19
|
Zeng Y, Cao S, Li N, Tang J, Lin G. Identification of key lipid metabolism-related genes in Alzheimer's disease. Lipids Health Dis 2023; 22:155. [PMID: 37736681 PMCID: PMC10515010 DOI: 10.1186/s12944-023-01918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) represents profound degenerative conditions of the brain that cause significant deterioration in memory and cognitive function. Despite extensive research on the significant contribution of lipid metabolism to AD progression, the precise mechanisms remain incompletely understood. Hence, this study aimed to identify key differentially expressed lipid metabolism-related genes (DELMRGs) in AD progression. METHODS Comprehensive analyses were performed to determine key DELMRGs in AD compared to controls in GSE122063 dataset from Gene Expression Omnibus. Additionally, the ssGSEA algorithm was utilized for estimating immune cell levels. Subsequently, correlations between key DELMRGs and each immune cell were calculated specifically in AD samples. The key DELMRGs expression levels were validated via two external datasets. Furthermore, gene set enrichment analysis (GSEA) was utilized for deriving associated pathways of key DELMRGs. Additionally, miRNA-TF regulatory networks of the key DELMRGs were constructed using the miRDB, NetworkAnalyst 3.0, and Cytoscape software. Finally, based on key DELMRGs, AD samples were further segmented into two subclusters via consensus clustering, and immune cell patterns and pathway differences between the two subclusters were examined. RESULTS Seventy up-regulated and 100 down-regulated DELMRGs were identified. Subsequently, three key DELMRGs (DLD, PLPP2, and PLAAT4) were determined utilizing three algorithms [(i) LASSO, (ii) SVM-RFE, and (iii) random forest]. Specifically, PLPP2 and PLAAT4 were up-regulated, while DLD exhibited downregulation in AD cerebral cortex tissue. This was validated in two separate external datasets (GSE132903 and GSE33000). The AD group exhibited significantly altered immune cell composition compared to controls. In addition, GSEA identified various pathways commonly associated with three key DELMRGs. Moreover, the regulatory network of miRNA-TF for key DELMRGs was established. Finally, significant differences in immune cell levels and several pathways were identified between the two subclusters. CONCLUSION This study identified DLD, PLPP2, and PLAAT4 as key DELMRGs in AD progression, providing novel insights for AD prevention/treatment.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Nannan Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Juan Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
20
|
Zhao XK, Zhu MM, Wang SN, Zhang TT, Wei XN, Wang CY, Zheng J, Zhu WY, Jiang MX, Xu SW, Yang XX, Duan YJ, Zhang BC, Han JH, Miao QR, Hu H, Chen YL. Transcription factor 21 accelerates vascular calcification in mice by activating the IL-6/STAT3 signaling pathway and the interplay between VSMCs and ECs. Acta Pharmacol Sin 2023; 44:1625-1636. [PMID: 36997664 PMCID: PMC10374894 DOI: 10.1038/s41401-023-01077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1β and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiao-Kang Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Meng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng-Nan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ting-Ting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiao-Ning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cheng-Yi Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wen-Ya Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Mei-Xiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, 330031, China
| | - Suo-Wen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Xiao-Xiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ya-Jun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Bu-Chun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, USA
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Yuan-Li Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
21
|
Papatheodoridi A, Papatheodoridis G. Hepatocellular carcinoma: The virus or the liver? Liver Int 2023; 43 Suppl 1:22-30. [PMID: 35319167 DOI: 10.1111/liv.15253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) represents a major public health problem being one of the most common causes of cancer-related deaths worldwide. Hepatitis B (HBV) and C viruses have been classified as oncoviruses and are responsible for the majority of HCC cases, while the role of hepatitis D virus (HDV) in liver carcinogenesis has not been elucidated. HDV/HBV coinfection is related to more severe liver damage than HBV mono-infection and recent studies suggest that HDV/HBV patients are at increased risk of developing HCC compared to HBV mono-infected patients. HBV is known to promote hepatocarcinogenesis via DNA integration into host DNA, disruption of molecular pathways by regulatory HBV x (HBx) protein and excessive oxidative stress. Recently, several molecular mechanisms have been proposed to clarify the pathogenesis of HDV-related HCC including activation of signalling pathways by specific HDV antigens, epigenetic dysregulation and altered gene expression. Alongside, ongoing chronic inflammation and impaired immune responses have also been suggested to facilitate carcinogenesis. Finally, cellular senescence seems to play an important role in chronic viral infection and inflammation leading to hepatocarcinogenesis. In this review, we summarize the current literature on the impact of HDV in HCC development and discuss the potential interplay between HBV, HDV and neighbouring liver tissue in liver carcinogenesis.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, "Alexandra" General Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens School of Health Sciences, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
22
|
Myers PJ, Lee SH, Lazzara MJ. An integrated mechanistic and data-driven computational model predicts cell responses to high- and low-affinity EGFR ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.543329. [PMID: 37425852 PMCID: PMC10327094 DOI: 10.1101/2023.06.25.543329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The biophysical properties of ligand binding heavily influence the ability of receptors to specify cell fates. Understanding the rules by which ligand binding kinetics impact cell phenotype is challenging, however, because of the coupled information transfers that occur from receptors to downstream signaling effectors and from effectors to phenotypes. Here, we address that issue by developing an integrated mechanistic and data-driven computational modeling platform to predict cell responses to different ligands for the epidermal growth factor receptor (EGFR). Experimental data for model training and validation were generated using MCF7 human breast cancer cells treated with the high- and low-affinity ligands epidermal growth factor (EGF) and epiregulin (EREG), respectively. The integrated model captures the unintuitive, concentration-dependent abilities of EGF and EREG to drive signals and phenotypes differently, even at similar levels of receptor occupancy. For example, the model correctly predicts the dominance of EREG over EGF in driving a cell differentiation phenotype through AKT signaling at intermediate and saturating ligand concentrations and the ability of EGF and EREG to drive a broadly concentration-sensitive migration phenotype through cooperative ERK and AKT signaling. Parameter sensitivity analysis identifies EGFR endocytosis, which is differentially regulated by EGF and EREG, as one of the most important determinants of the alternative phenotypes driven by different ligands. The integrated model provides a new platform to predict how phenotypes are controlled by the earliest biophysical rate processes in signal transduction and may eventually be leveraged to understand receptor signaling system performance depends on cell context. One-sentence summary Integrated kinetic and data-driven EGFR signaling model identifies the specific signaling mechanisms that dictate cell responses to EGFR activation by different ligands.
Collapse
|
23
|
Guo Y, Zhou A, Zhang Y, Chen Y, Chen Y, Gao Y, Miao X. Serum response factor activates peroxidasin transcription to block senescence of hepatic stellate cells. Life Sci 2023:121824. [PMID: 37270170 DOI: 10.1016/j.lfs.2023.121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/27/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
AIMS Aberrant liver fibrosis is a hallmark event in end-stage liver diseases. Hepatic stellate cells (HSCs) are considered the major source of myofibroblasts in the liver that produce extracellular matrix proteins to promote liver fibrosis. HSCs undergo senescence in response to various stimuli, a process that can be exploited to dampen liver fibrosis. We investigated the role of serum response factor (SRF) in this process. METHODS AND MATERIALS Senescence was induced HSCs by serum withdrawal or progressive passage. DNA-protein interaction was evaluated by chromatin immunoprecipitation (ChIP). RESULTS SRF expression was down-regulated in HSCs entering into senescence. Coincidently, SRF depletion by RNAi accelerated HSC senescence. Of note, treatment of an anti-oxidant (N-acetylcysteine or NAC) blocked HSC senescence by SRF deficiency suggesting that SRF may antagonize HSC senescence by eliminating excessive reactive oxygen species (ROS). PCR-array based screening identified peroxidasin (PXDN) as a potential target for SRF in HSCs. PXDN expression was inversely correlated with HSC senescence whereas PXDN knockdown accelerated HSC senescence. Further analysis reveals that SRF directly bound to the PXDN promoter and activated PXDN transcription. Consistently, PXDN over-expression protected whereas PXDN depletion amplified HSC senescence. Finally, PXDN knockout mice displayed diminished liver fibrosis compared to wild type mice when subjected to bile duct ligation (BDL). SIGNIFICANCE Our data suggest that SRF, via its downstream target PXDN, plays a key role in regulating HSC senescence.
Collapse
Affiliation(s)
- Yan Guo
- Institute of Biomedical Research and College of Life Sciences, Liaocheng Unviersity, Liaocheng, China
| | - Anqi Zhou
- Institute of Biomedical Research and College of Life Sciences, Liaocheng Unviersity, Liaocheng, China
| | - Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ying Chen
- Institute of Biomedical Research and College of Life Sciences, Liaocheng Unviersity, Liaocheng, China
| | - Yifei Chen
- Institute of Biomedical Research and College of Life Sciences, Liaocheng Unviersity, Liaocheng, China
| | - Yuan Gao
- Department of Hepato-Biliary-Pancreatic Surgery, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical Unviersity, Changzhou, China; Institute of Hepatobiliary and Pancreatic Diseases, Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Xiulian Miao
- Institute of Biomedical Research and College of Life Sciences, Liaocheng Unviersity, Liaocheng, China.
| |
Collapse
|
24
|
Elliott K, Singh VK, Boström M, Larsson E. Base-resolution UV footprinting by sequencing reveals distinctive damage signatures for DNA-binding proteins. Nat Commun 2023; 14:2701. [PMID: 37169761 PMCID: PMC10175305 DOI: 10.1038/s41467-023-38266-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Decades ago, it was shown that proteins binding to DNA can quantitatively alter the formation of DNA damage by UV light. This established the principle of UV footprinting for non-intrusive study of protein-DNA contacts in living cells, albeit at limited scale and precision. Here, we perform deep base-resolution quantification of the principal UV damage lesion, the cyclobutane pyrimidine dimer (CPD), at select human promoter regions using targeted CPD sequencing. Several transcription factors exhibited distinctive and repeatable damage signatures indicative of site occupancy, involving strong (up to 17-fold) position-specific elevations and reductions in CPD formation frequency relative to naked DNA. Positive damage modulation at some ETS transcription factor binding sites coincided at base level with melanoma somatic mutation hotspots. Our work provides proof of concept for the study of protein-DNA interactions at individual loci using light and sequencing, and reveals widespread and potent modulation of UV damage in regulatory regions.
Collapse
Affiliation(s)
- Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Vinod Kumar Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Martin Boström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
25
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
27
|
Wang J, Tian X, Yan C, Wu H, Bu Y, Li J, Liu D, Han Y. TCF7L1 Accelerates Smooth Muscle Cell Phenotypic Switching and Aggravates Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2023; 8:155-170. [PMID: 36908661 PMCID: PMC9998605 DOI: 10.1016/j.jacbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022]
Abstract
Phenotypic switching of vascular smooth muscle cells is a central process in abdominal aortic aneurysm (AAA) pathology. We found that knockdown TCF7L1 (transcription factor 7-like 1), a member of the TCF/LEF (T cell factor/lymphoid enhancer factor) family of transcription factors, inhibits vascular smooth muscle cell differentiation. This study hints at potential interventions to maintain a normal, differentiated smooth muscle cell state, thereby eliminating the pathogenesis of AAA. In addition, our study provides insights into the potential use of TCF7L1 as a biomarker for AAA.
Collapse
Key Words
- AAA, abdominal aortic aneurysm
- AAV, adeno-associated virus
- Ang II, angiotensin II
- CVF, collagen volume fraction
- MMP, matrix metalloproteinase
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SM22α, smooth muscle protein 22-α
- SMA, smooth muscle actin
- SRF, serum response factor
- TCF7L1
- TCF7L1, transcription factor 7-like 1
- VSMC, vascular smooth muscle cell
- abdominal aortic aneurysms
- cDNA, complementary DNA
- mRNA, messenger RNA
- phenotypic switching
- siRNA, small interfering RNA
- smooth muscle cell
Collapse
Affiliation(s)
- Jing Wang
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hanlin Wu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuxin Bu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
28
|
Rojo‐García AV, Vanmunster M, Pacolet A, Suhr F. Physical inactivity by tail suspension alters markers of metabolism, structure, and autophagy of the mouse heart. Physiol Rep 2023; 11:e15574. [PMID: 36695670 PMCID: PMC9875748 DOI: 10.14814/phy2.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023] Open
Abstract
Sedentary behavior has become ingrained in our society and has been linked to cardiovascular diseases. Physical inactivity is the main characteristic of sedentary behavior. However, its impact on cardiovascular disease is not clear. Therefore, we investigated the effect of physical inactivity in an established mouse model on gene clusters associated with cardiac fibrosis, electrophysiology, cell regeneration, and tissue degradation/turnover. We investigated a sedentary group (CTR, n = 10) versus a tail suspension group (TS, n = 11) that caused hindlimb unloading and consequently physical inactivity. Through histological, protein content, and transcript analysis approaches, we found that cardiac fibrosis-related genes partly change, with significant TS-associated increases in Tgfb1, but without changes in Col1a1 and Fn1. These changes are not translated into fibrosis at tissue level. We further detected TS-mediated increases in protein degradation- (Trim63, p < 0.001; Fbxo32, p = 0.0947 as well as in biosynthesis-related [P70s6kb1, p < 0.01]). Corroborating these results, we found increased expression of autophagy markers such as Atg7 (p < 0.01) and ULK1 (p < 0.05). Two cardiomyocyte regeneration- and sarcomerogenesis-related genes, Yap (p = 0.0535) and Srf (p < 0.001), increased upon TS compared to CTR conditions. Finally, we found significant upregulation of Gja1 (p < 0.05) and a significant downregulation of Aqp1 (p < 0.05). Our data demonstrate that merely 2 weeks of reduced physical activity induce changes in genes associated with cardiac structure and electrophysiology. Hence, these data should find the basis for novel research directed to evaluate the interplay of cardiac functioning and physical inactivity.
Collapse
Affiliation(s)
| | - Mathias Vanmunster
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| | - Alexander Pacolet
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| | - Frank Suhr
- Department of Movement SciencesExercise Physiology Research Group, KU LeuvenLeuvenBelgium
| |
Collapse
|
29
|
Wang S, Chu F, Xia R, Guan J, Zhou L, Fang X, Dai T, Xie F, Zhang L, Zhou F. LPA maintains innate antiviral immunity in a pro-active state via STK38L-mediated IRF3 Ser303 phosphorylation. Cell Rep 2022; 41:111661. [PMID: 36417850 DOI: 10.1016/j.celrep.2022.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Innate immunity is critical for the early detection and elimination of viral invasion. Extracellular signals are crucial for host resistance; however, how extracellular factors prepare the innate immunity for rapid antiviral response remains elusive. Here, we find that serum deprivation largely restricts the innate antiviral responses to RNA and DNA viruses. When serum is supplied, serine/threonine-protein kinase 38-like (STK38L), induced by serum response factor (SRF), phosphorylates IRF3 at Ser303, which prevents IRF3 from proteasome-mediated degradation in the rest state (non-infected), and ensures that enough IRF3 is called in the primed state (infected). STK38L-deficient mice exhibit compromised innate antiviral responses and elevated viral proliferation and mortality. Moreover, lysophosphatidic acid (LPA) or sphingosine 1-phosphate (S1P), the crucial activators of SRF, rescue immunosuppression caused by serum deprivation. These findings identify the SRF-STK38L-IRF3 axis as a novel mechanism that maintains the host in a pro-active state when not infected, which ensures the rapid immune response against virus.
Collapse
Affiliation(s)
- Shuai Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Feng Chu
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Ran Xia
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Jizhong Guan
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Lili Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Xiuwu Fang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
30
|
Tang G, Yu C, Xiang K, Gao M, Liu Z, Yang B, Yang M, Zhao S. Inhibition of ANXA2 regulated by SRF attenuates the development of severe acute pancreatitis by inhibiting the NF-κB signaling pathway. Inflamm Res 2022; 71:1067-1078. [PMID: 35900381 DOI: 10.1007/s00011-022-01609-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory process of the pancreas resulting from biliary obstruction or alcohol consumption. Approximately, 10-20% of AP can evolve into severe AP (SAP). In this study, we sought to explore the physiological roles of the transcription factor serum response factor (SRF), annexin A2 (ANXA2), and nuclear factor-kappaB (NF-κB) in SAP. METHODS C57BL/6 mice and rat pancreatic acinar cells (AR42J) were used to establish an AP model in vivo and in vitro by cerulein with or without lipopolysaccharide (LPS). Production of pro-inflammatory cytokines (IL-1β and TNF-α) were examined by ELISA and immunoblotting analysis. Hematoxylin and eosin (HE) staining and TUNEL staining were performed to evaluate pathological changes in the course of AP. Apoptosis was examined by flow cytometric and immunoblotting analysis. Molecular interactions were tested by dual luciferase reporter, ChIP, and Co-IP assays. RESULTS ANXA2 was overexpressed in AP and correlated to the severity of AP. ANXA2 knockdown rescued pancreatic acinar cells against inflammation and apoptosis induced by cerulein with or without LPS. Mechanistic investigations revealed that SRF bound with the ANXA2 promoter region and repressed its expression. ANXA2 could activate the NF-κB signaling pathway by inducing the nuclear translocation of p50. SRF-mediated transcriptional repression of ANXA2-protected pancreatic acinar cells against AP-like injury through repressing the NF-κB signaling pathway. CONCLUSION Our study highlighted a regulatory network consisting of SRF, ANXA2, and NF-κB that was involved in AP progression, possibly providing some novel targets for treating SAP.
Collapse
Affiliation(s)
- Guanxiu Tang
- The Department of Gerontology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Can Yu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Kaimin Xiang
- The Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Min Gao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zuoliang Liu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Bingchang Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Mingshi Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Shangping Zhao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
31
|
Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 2022; 9:931475. [PMID: 35958418 PMCID: PMC9360326 DOI: 10.3389/fcvm.2022.931475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac hypertrophy is a key process in cardiac remodeling development, leading to ventricle enlargement and heart failure. Recently, studies show the complicated relation between cardiac hypertrophy and epigenetic modification. Post-translational modification of histone is an essential part of epigenetic modification, which is relevant to multiple cardiac diseases, especially in cardiac hypertrophy. There is a group of enzymes related in the balance of histone acetylation/deacetylation, which is defined as histone acetyltransferase (HAT) and histone deacetylase (HDAC). In this review, we introduce an important enzyme family HDAC, a key regulator in histone deacetylation. In cardiac hypertrophy HDAC I downregulates the anti-hypertrophy gene expression, including Kruppel-like factor 4 (Klf4) and inositol-5 phosphatase f (Inpp5f), and promote the development of cardiac hypertrophy. On the contrary, HDAC II binds to myocyte-specific enhancer factor 2 (MEF2), inhibit the assemble ability to HAT and protect against cardiac hypertrophy. Under adverse stimuli such as pressure overload and calcineurin stimulation, the HDAC II transfer to cytoplasm, and MEF2 can bind to nuclear factor of activated T cells (NFAT) or GATA binding protein 4 (GATA4), mediating inappropriate gene expression. HDAC III, also known as SIRTs, can interact not only to transcription factors, but also exist interaction mechanisms to other HDACs, such as HDAC IIa. We also present the latest progress of HDAC inhibitors (HDACi), as a potential treatment target in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Dao Wen Wang,
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Li Ni,
| |
Collapse
|
32
|
Tabuchi A, Ihara D. SRF in Neurochemistry: Overview of Recent Advances in Research on the Nervous System. Neurochem Res 2022; 47:2545-2557. [PMID: 35668335 DOI: 10.1007/s11064-022-03632-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
Serum response factor (SRF) is a representative transcription factor that plays crucial roles in various biological phenomena by regulating immediate early genes (IEGs) and genes related to cell morphology and motility, among others. Over the years, the signal transduction pathways activating SRF have been clarified and SRF-target genes have been identified. In this overview, we initially briefly summarize the basic biology of SRF and its cofactors, ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF). Progress in the generation of nervous system-specific knockout (KO) or genetically modified mice as well as genetic analyses over the last few decades has not only identified novel SRF-target genes but also highlighted the neurochemical importance of SRF and its cofactors. Therefore, here we next present the phenotypes of mice with nervous system-specific KO of SRF or its cofactors by depicting recent findings associated with brain development, plasticity, epilepsy, stress response, and drug addiction, all of which result from function or dysfunction of the SRF axis. Last, we develop a hypothesis regarding the possible involvement of SRF and its cofactors in human neurological disorders including neurodegenerative, psychiatric, and neurodevelopmental diseases. This overview should deepen our understanding, highlight promising future directions for developing novel therapeutic strategies, and lead to illumination of the mechanisms underlying higher brain functions based on neuronal structure and function.
Collapse
Affiliation(s)
- Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
33
|
Kiss T, Nyúl-Tóth Á, Gulej R, Tarantini S, Csipo T, Mukli P, Ungvari A, Balasubramanian P, Yabluchanskiy A, Benyo Z, Conley SM, Wren JD, Garman L, Huffman DM, Csiszar A, Ungvari Z. Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. GeroScience 2022; 44:953-981. [PMID: 35124764 PMCID: PMC9135944 DOI: 10.1007/s11357-022-00519-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular aging has a central role in the pathogenesis of cardiovascular diseases contributing to increased mortality of older adults. There is increasing evidence that, in addition to the documented role of cell-autonomous mechanisms of aging, cell-nonautonomous mechanisms also play a critical role in the regulation of vascular aging processes. Our recent transcriptomic studies (Kiss T. et al. Geroscience. 2020;42(2):727-748) demonstrated that circulating anti-geronic factors from young blood promote vascular rejuvenation in aged mice. The present study was designed to expand upon the results of this study by testing the hypothesis that circulating pro-geronic factors also contribute to the genesis of vascular aging phenotypes. To test this hypothesis, through heterochronic parabiosis, we determined the extent to which shifts in the vascular transcriptome (RNA-seq) are modulated by the old systemic environment. We reanalyzed existing RNA-seq data, comparing the transcriptome in the aorta arch samples isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] and young isochronic parabiont (6-month-old) mice [Y-(Y)] and also assessing transcriptomic changes in the aortic arch in young (6-month-old) parabiont mice [Y-(A); heterochronic parabiosis for 8 weeks] induced by the presence of old blood derived from aged (20-month-old) parabionts. We identified 528 concordant genes whose expression levels differed in the aged phenotype and were shifted towards the aged phenotype by the presence of old blood in young Y-(A) animals. Among them, the expression of 221 concordant genes was unaffected by the presence of young blood in A-(Y) mice. GO enrichment analysis suggests that old blood-regulated genes may contribute to pathologic vascular remodeling. IPA Upstream Regulator analysis (performed to identify upstream transcriptional regulators that may contribute to the observed transcriptomic changes) suggests that the mechanism of action of pro-geronic factors present in old blood may include inhibition of pathways mediated by SRF (serum response factor), insulin-like growth factor-1 (IGF-1) and VEGF-A. In conclusion, relatively short-term exposure to old blood can accelerate vascular aging processes. Our findings provide additional evidence supporting the significant plasticity of vascular aging and the existence of circulating pro-geronic factors mediating pathological remodeling of the vascular smooth muscle cells and the extracellular matrix.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Zoltan Benyo
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
34
|
Abhishek K, Kumar A, Sardar AH, Vijayakumar S, Dikhit MR, Kumar A, Kumar V, Das S, Das P. Differential translational regulation of host exosomal proteins play key role in immunomodulation in antimony resistance in Visceral Leishmaniasis: A proteomic profiling study. Acta Trop 2022; 226:106268. [PMID: 34890541 DOI: 10.1016/j.actatropica.2021.106268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/25/2021] [Accepted: 12/05/2021] [Indexed: 11/01/2022]
Abstract
In host-pathogen interactions, exosomal secretions are crucial for cell to cell communication and have an established role in immunomodulation. Protozoans, including Leishmania, modulates their host vesicular secretions for better survival; although the role of exosomal secretions in unresponsive against sodium antimony gluconate (SAG) has never been documented. In this study, the exosomal proteome of RAW macrophages infected with either SAG responsive (SAGS) or SAG unresponsive (SAGR) L. donovani parasites has been compared with uninfected RAW macrophages. Proteins isolated from exosomes were labelled with iTRAQ reagents; followed by subsequent LC-TOF/-MS analysis. In total, 394 proteins (p < 0.05) were identified which were shared common among all sets. Highly differentially expressed proteins were sorted by log2 value -1 and +1 as down regulated and up regulated respectively which yielded 58 proteins in SAGR and 41 proteins during SAGS infection. Out of the 58 proteins identified during SAGR infection, 17 proteins were of immune modulatory function. Network visualization model and pathway analysis revealed the interactions among these proteins via different immunological pathways with reported involvement of some proteins in SAG resistance and host immune modulation. Hence, the differential abundance of immune pathway related proteins in exosomes of infected host during SAGR infection supports the immune modulatory strategy adopted by SAG resistant parasites for enhanced survival .
Collapse
|
35
|
SH3-Binding Glutamic Acid Rich-Deficiency Augments Apoptosis in Neonatal Rat Cardiomyocytes. Int J Mol Sci 2021; 22:ijms222011042. [PMID: 34681711 PMCID: PMC8541172 DOI: 10.3390/ijms222011042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects in humans, present in around 40% of newborns with Down’s syndrome (DS). The SH3 domain-binding glutamic acid-rich (SH3BGR) gene, which maps to the DS region, belongs to a gene family encoding a cluster of small thioredoxin-like proteins sharing SH3 domains. Although its expression is confined to the cardiac and skeletal muscle, the physiological role of SH3BGR in the heart is poorly understood. Interestingly, we observed a significant upregulation of SH3BGR in failing hearts of mice and human patients with hypertrophic cardiomyopathy. Along these lines, the overexpression of SH3BGR exhibited a significant increase in the expression of hypertrophic markers (Nppa and Nppb) and increased cell surface area in neonatal rat ventricular cardiomyocytes (NRVCMs), whereas its knockdown attenuated cellular hypertrophy. Mechanistically, using serum response factor (SRF) response element-driven luciferase assays in the presence or the absence of RhoA or its inhibitor, we found that the pro-hypertrophic effects of SH3BGR are mediated via the RhoA–SRF axis. Furthermore, SH3BGR knockdown resulted in the induction of apoptosis and reduced cell viability in NRVCMs via apoptotic Hippo–YAP signaling. Taking these results together, we here show that SH3BGR is vital for maintaining cytoskeletal integrity and cellular viability in NRVCMs through its modulation of the SRF/YAP signaling pathways.
Collapse
|
36
|
Yang Y, Wang H, Zhao H, Miao X, Guo Y, Zhuo L, Xu Y. A GSK3-SRF Axis Mediates Angiotensin II Induced Endothelin Transcription in Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:698254. [PMID: 34381779 PMCID: PMC8350349 DOI: 10.3389/fcell.2021.698254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelin, encoded by ET1, is a vasoactive substance primarily synthesized in vascular endothelial cells (VECs). Elevation of endothelin levels, due to transcriptional hyperactivation, has been observed in a host of cardiovascular diseases. We have previously shown that serum response factor (SRF) is a regulator of ET1 transcription in VECs. Here we report that angiotensin II (Ang II) induced ET1 transcription paralleled activation of glycogen synthase kinase 3 (GSK3) in cultured VECs. GSK3 knockdown or pharmaceutical inhibition attenuated Ang II induced endothelin expression. Of interest, the effect of GSK3 on endothelin transcription relied on the conserved SRF motif within the ET1 promoter. Further analysis revealed that GSK3 interacted with and phosphorylated SRF at serine 224. Phosphorylation of SRF by GSK3 did not influence its recruitment to the ET1 promoter. Instead, GSK3-mediated SRF phosphorylation potentiated its interaction with MRTF-A, a key co-factor for SRF, which helped recruit the chromatin remodeling protein BRG1 to the ET1 promoter resulting in augmented histone H3 acetylation/H3K4 trimethylation. Consistently, over-expression of a constitutively active GSK enhanced Ang II-induced ET1 transcription and knockdown of either MRTF-A or BRG1 abrogated the enhancement of ET1 transcription. In conclusion, our data highlight a previously unrecognized mechanism that contributes to the transcriptional regulation of endothelin. Targeting this GSK3-SRF axis may yield novel approaches in the intervention of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
A myocardin-adjacent lncRNA balances SRF-dependent gene transcription in the heart. Genes Dev 2021; 35:835-840. [PMID: 33985971 PMCID: PMC8168554 DOI: 10.1101/gad.348304.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 01/23/2023]
Abstract
In this study, Anderson et al. identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, that antagonizes SRF-dependent mitogenic gene transcription in the heart. They also show that CARDINAL forms a nuclear complex with SRF and inhibits TCF-mediated transactivation of the promitogenic gene c-fos, suggesting CARDINAL functions as an essential RNA cofactor for SRF in the heart. Myocardin, a potent coactivator of serum response factor (SRF), competes with ternary complex factor (TCF) proteins for SRF binding to balance opposing mitogenic and myogenic gene programs in cardiac and smooth muscle. Here we identify a cardiac lncRNA transcribed adjacent to myocardin, named CARDINAL, which antagonizes SRF-dependent mitogenic gene transcription in the heart. CARDINAL-deficient mice show ectopic TCF/SRF-dependent mitogenic gene expression and decreased cardiac contractility in response to age and ischemic stress. CARDINAL forms a nuclear complex with SRF and inhibits TCF-mediated transactivation of the promitogenic gene c-fos, suggesting CARDINAL functions as an RNA cofactor for SRF in the heart.
Collapse
|
38
|
Zhao B, Grosse R. Optogenetic Control of Myocardin-Related Transcription Factor A Subcellular Localization and Transcriptional Activity Steers Membrane Blebbing and Invasive Cancer Cell Motility. Adv Biol (Weinh) 2021; 5:e2000208. [PMID: 34028209 DOI: 10.1002/adbi.202000208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/08/2021] [Indexed: 11/12/2022]
Abstract
The myocardin-related transcription factor A (MRTF-A) controls the transcriptional activity of the serum response factor (SRF) in a tightly controlled actin-dependent manner. In turn, MRTF-A is crucial for many actin-dependent processes including adhesion, migration, and contractility and has emerged as a novel target for anti-tumor strategies. MRTF-A rapidly shuttles between cytoplasmic and nuclear compartment via dynamic actin interactions within its N-terminal RPEL domain. Here, optogenetics is used to spatiotemporally control MRTF-A nuclear localization by blue light using the light-oxygen-voltage-sensing domain 2-domain based system LEXY (light-inducible nuclear export system). It is found that light-regulated nuclear export of MRTF-A occurs within 10-20 min. Importantly, MRTF-A-LEXY shuttling is independent of perturbations of actin dynamics. Furthermore, light-regulation of MRTF-A-LEXY is reversible and repeatable for several cycles of illumination and its subcellular localization correlates with SRF transcriptional activity. As a consequence, optogenetic control of MRTF-A subcellular localization determines subsequent cytoskeletal dynamics such as non-apoptotic plasma membrane blebbing as well as invasive tumor-cell migration through 3D collagen matrix. This data demonstrates robust optogenetic regulation of MRTF as a powerful tool to control SRF-dependent transcription as well as cell motile behavior.
Collapse
Affiliation(s)
- Bing Zhao
- Institute of Experimental and Clinical Pharmacology and Toxicology I, University of Freiburg, Freiburg, 79104, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), Freiburg, 79104, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology I, University of Freiburg, Freiburg, 79104, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), Freiburg, 79104, Germany
| |
Collapse
|
39
|
Ke W, Wang B, Hua W, Song Y, Lu S, Luo R, Li G, Wang K, Liao Z, Xiang Q, Li S, Wu X, Zhang Y, Yang C. The distinct roles of myosin IIA and IIB under compression stress in nucleus pulposus cells. Cell Prolif 2021; 54:e12987. [PMID: 33415745 PMCID: PMC7848961 DOI: 10.1111/cpr.12987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Inappropriate or excessive compression applied to intervertebral disc (IVD) contributes substantially to IVD degeneration. The actomyosin system plays a leading role in responding to mechanical stimuli. In the present study, we investigated the roles of myosin II isoforms in the compression stress‐induced senescence of nucleus pulposus (NP) cells. Material and methods Nucleus pulposus cells were exposed to 1.0 MPa compression for 0, 12, 24 or 36 hours. Immunofluorescence and co‐immunoprecipitation analysis were used to measure the interaction of myosin IIA and IIB with actin. Western blot analysis and immunofluorescence staining were used to detect nuclear expression and nuclear localization of MRTF‐A. In addition, the expression levels of p‐RhoA/RhoA, ROCK1/2 and p‐MLC/MLC were measured in human NP cells under compression stress and in degenerative IVD tissues. Results Compression stress increased the interaction of myosin IIA and actin, while the interaction of myosin IIB and actin was reduced. The actomyosin cytoskeleton remodelling was involved in the compression stress‐induced fibrotic phenotype mediated by MRTF‐A nuclear translocation and inhibition of proliferation in NP cells. Furthermore, RhoA/ROCK1 pathway activation mediated compression stress‐induced human NP cells senescence by regulating the interaction of myosin IIA and IIB with actin. Conclusions We for the first time investigated the regulation of actomyosin cytoskeleton in human NP cells under compression stress. It provided new insights into the development of therapy for effectively inhibiting IVD degeneration.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saideng Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xiang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Zhao L, Li C, Guan C, Song N, Luan H, Luo C, Jiang W, Bu Q, Wang Y, Che L, Xu Y. Serum response factor, a novel early diagnostic biomarker of acute kidney injury. Aging (Albany NY) 2021; 13:2885-2894. [PMID: 33406503 PMCID: PMC7880358 DOI: 10.18632/aging.202381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022]
Abstract
Objective: Studies have shown that serum response factor (SRF) is increased in chronic kidney injury, such as diabetic nephropathy, hyperuricemic nephropathy and renal cell carcinoma. The objective is to explore the early diagnostic value of SRF in acute kidney injury (AKI). Methods: AKI-related microarray data were analyzed, and the expression and location of SRF were investigated in the early phase of AKI. Results: Bioinformatics results demonstrated that SRF was dramatically elevated 2-4 h after ischemia/reperfusion (I/R) in mouse renal tissue. In I/R rats, SRF was mostly expressed and located in renal tubular epithelial cells (TECs). SRF started to increase at 1 h, peaked at 3-9 h and started to decrease at 12 h after I/R. The areas under the ROC curve of renal SRF mRNA, renal SRF protein, urinary SRF, serum SRF and serum creatinine (Scr) were 87.9%, 83.0%, 81.3%, 78.8%, 68.8%, respectively. Conclusion: SRF is remarkably upregulated in early (before 24 h) AKI and can replace Scr as a potential new early diagnostic biomarker of AKI.
Collapse
Affiliation(s)
- Long Zhao
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chenyu Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chen Guan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Ning Song
- Department of Obstetrics, Weifang People's Hospital, Weifang 261041, China
| | - Hong Luan
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Congjuan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Quandong Bu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanfei Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lin Che
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
41
|
Yingling CV, Pruyne D. FHOD formin and SRF promote post-embryonic striated muscle growth through separate pathways in C. elegans. Exp Cell Res 2021; 398:112388. [PMID: 33221314 PMCID: PMC7750259 DOI: 10.1016/j.yexcr.2020.112388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
Previous work with cultured cells has shown transcription of muscle genes by serum response factor (SRF) can be stimulated by actin polymerization driven by proteins of the formin family. However, it is not clear if endogenous formins similarly promote SRF-dependent transcription during muscle development in vivo. We tested whether formin activity promotes SRF-dependent transcription in striated muscle in the simple animal model, Caenorhabditis elegans. Our lab has shown FHOD-1 is the only formin that directly promotes sarcomere formation in the worm's striated muscle. We show here FHOD-1 and SRF homolog UNC-120 both support muscle growth and also muscle myosin II heavy chain A expression. However, while a hypomorphic unc-120 allele blunts expression of a set of striated muscle genes, these genes are largely upregulated or unchanged by absence of FHOD-1. Instead, pharmacological inhibition of the proteasome restores myosin protein levels in worms lacking FHOD-1, suggesting elevated proteolysis accounts for their myosin deficit. Interestingly, proteasome inhibition does not restore normal muscle growth to fhod-1(Δ) mutants, suggesting formin contributes to muscle growth by some alternative mechanism. Overall, we find SRF does not depend on formin to promote muscle gene transcription in a simple in vivo system.
Collapse
Affiliation(s)
- Curtis V Yingling
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| | - David Pruyne
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| |
Collapse
|
42
|
Varshney A, Chahal G, Santos L, Stolper J, Hallab JC, Nim HT, Nikolov M, Yip A, Ramialison M. Human Cardiac Transcription Factor Networks. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Zheng JP, He X, Liu F, Yin S, Wu S, Yang M, Zhao J, Dai X, Jiang H, Yu L, Yin Q, Ju D, Li C, Lipovich L, Xie Y, Zhang K, Li HJ, Zhou J, Li L. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation. Sci Rep 2020; 10:21781. [PMID: 33311559 PMCID: PMC7732823 DOI: 10.1038/s41598-020-78544-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Jian-Pu Zheng
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Xiangqin He
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- The Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Fang Liu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shuping Yin
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Shichao Wu
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Maozhou Yang
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jiawei Zhao
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Xiaohua Dai
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Hong Jiang
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Luyi Yu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Qin Yin
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Donghong Ju
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Claire Li
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Youming Xie
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Hui J Li
- Department of Medicine, University of Massachusetts, Worcester, MA, 01655, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li Li
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
| |
Collapse
|
44
|
Li J, Tan Y, Passariello CL, Martinez EC, Kritzer MD, Li X, Li X, Li Y, Yu Q, Ohgi K, Thakur H, MacArthur JW, Ivey JR, Woo YJ, Emter CA, Dodge-Kafka K, Rosenfeld MG, Kapiloff MS. Signalosome-Regulated Serum Response Factor Phosphorylation Determining Myocyte Growth in Width Versus Length as a Therapeutic Target for Heart Failure. Circulation 2020; 142:2138-2154. [PMID: 32933333 PMCID: PMC7704863 DOI: 10.1161/circulationaha.119.044805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/04/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Concentric and eccentric cardiac hypertrophy are associated with pressure and volume overload, respectively, in cardiovascular disease both conferring an increased risk of heart failure. These contrasting forms of hypertrophy are characterized by asymmetrical growth of the cardiac myocyte in mainly width or length, respectively. The molecular mechanisms determining myocyte preferential growth in width versus length remain poorly understood. Identification of the mechanisms governing asymmetrical myocyte growth could provide new therapeutic targets for the prevention or treatment of heart failure. METHODS Primary adult rat ventricular myocytes, adeno-associated virus (AAV)-mediated gene delivery in mice, and human tissue samples were used to define a regulatory pathway controlling pathological myocyte hypertrophy. Chromatin immunoprecipitation assays with sequencing and precision nuclear run-on sequencing were used to define a transcriptional mechanism. RESULTS We report that asymmetrical cardiac myocyte hypertrophy is modulated by SRF (serum response factor) phosphorylation, constituting an epigenomic switch balancing the growth in width versus length of adult ventricular myocytes in vitro and in vivo. SRF Ser103 phosphorylation is bidirectionally regulated by RSK3 (p90 ribosomal S6 kinase type 3) and PP2A (protein phosphatase 2A) at signalosomes organized by the scaffold protein mAKAPβ (muscle A-kinase anchoring protein β), such that increased SRF phosphorylation activates AP-1 (activator protein-1)-dependent enhancers that direct myocyte growth in width. AAV are used to express in vivo mAKAPβ-derived RSK3 and PP2A anchoring disruptor peptides that block the association of the enzymes with the mAKAPβ scaffold. Inhibition of RSK3 signaling prevents concentric cardiac remodeling induced by pressure overload, while inhibition of PP2A signaling prevents eccentric cardiac remodeling induced by myocardial infarction, in each case improving cardiac function. SRF Ser103 phosphorylation is significantly decreased in dilated human hearts, supporting the notion that modulation of the mAKAPβ-SRF signalosome could be a new therapeutic approach for human heart failure. CONCLUSIONS We have identified a new molecular switch, namely mAKAPβ signalosome-regulated SRF phosphorylation, that controls a transcriptional program responsible for modulating changes in cardiac myocyte morphology that occur secondary to pathological stressors. Complementary AAV-based gene therapies constitute rationally-designed strategies for a new translational modality for heart failure.
Collapse
Affiliation(s)
- Jinliang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Catherine L. Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101
| | - Eliana C. Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101
| | - Michael D. Kritzer
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101
| | - Xueyi Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304
| | - Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304
| | - Kenneth Ohgi
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Hrishikesh Thakur
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101
| | - John W. MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305
| | - Jan R. Ivey
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305
| | - Craig A. Emter
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211
| | - Kimberly Dodge-Kafka
- Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, CT 06030
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Michael S. Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA 94304
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33101
| |
Collapse
|
45
|
Chun P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch Pharm Res 2020; 43:1276-1296. [PMID: 33245518 DOI: 10.1007/s12272-020-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
A wide range of histone deacetylase (HDAC) inhibitors have been studied for their therapeutic potential because the excessive activity and expression of HDACs have been implicated in the pathogenesis of cardiac diseases. An increasing number of preclinical studies have demonstrated the cardioprotective effects of numerous HDAC inhibitors, suggesting a wide variety of mechanisms by which the inhibitors protect against cardiac stress, such as the suppression of cardiac fibrosis and fetal gene expression, enhancement of angiogenesis and mitochondrial biogenesis, prevention of electrical remodeling, and regulation of apoptosis, autophagy, and cell cycle arrest. For the development of isoform-selective HDAC inhibitors with high efficacy and low toxicity, it is important to identify and understand the mechanisms responsible for the effects of the inhibitors. This review highlights the preclinical effects of HDAC inhibitors that act against Zn2+-dependent HDACs and the underlying mechanisms of their protective effects against cardiac hypertrophy, hypertension, myocardial infarction, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
46
|
Nihous H, Macagno N, Baud-Massière J, Haffner A, Jouve JL, Gentet JC, Touzery C, Le Loarer F, Bouvier C. Genetic variant of SRF-rearranged myofibroma with a misleading nuclear expression of STAT6 and STAT6 involvement as 3' fusion partner. Virchows Arch 2020; 478:597-603. [PMID: 32529351 DOI: 10.1007/s00428-020-02859-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022]
Abstract
Pediatric neoplasms with a myofibroblastic differentiation are frequent in children, in particular myofibroma. Recently, a novel deep soft tissue myofibroblastic neoplasm has been described with high cellularity, a smooth muscle phenotype and SRF-RELA fusion. We report the case of a 15-year-old boy who presented with a tumor of the deep soft tissue of the arm, with overlapping histological features with the recently described SRF-RELA group of myofibromas but differing by the presence of calcifications, a novel SRF-STAT6 fusion transcript and nuclear expression of STAT6. No local recurrence nor distant metastasis was detected at the current follow-up of 29 months. The clinical relevance of this novel fusion requires further investigations.
Collapse
Affiliation(s)
- Hugo Nihous
- Department of Pathology, INSERM, MMG, APHM, CHU Timone, Aix Marseille University, Marseille, France
| | - Nicolas Macagno
- Department of Pathology, INSERM, MMG, APHM, CHU Timone, Aix Marseille University, Marseille, France
| | | | - Aurélie Haffner
- Department of Pathology, INSERM, MMG, APHM, CHU Timone, Aix Marseille University, Marseille, France
| | - Jean-Luc Jouve
- Department of Pediatric orthopedic, APHM, La Timone Children's Hospital, Marseille, France
| | - Jean-Claude Gentet
- Department of Pediatric Hematology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
| | - Camille Touzery
- Department of Radiology, APHM, Hopital Nord, Marseille, France
| | | | - Corinne Bouvier
- Department of Pathology, INSERM, MMG, APHM, CHU Timone, Aix Marseille University, Marseille, France. .,Service d'Anatomie & Cytologie Pathologiques, Neuropathologie, CHU Timone, Rue Saint-Pierre, 13005, Marseille, France.
| |
Collapse
|
47
|
Changes in snail and SRF expression in the kidneys of diabetic rats during ageing. Acta Histochem 2020; 122:151460. [PMID: 31668740 DOI: 10.1016/j.acthis.2019.151460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Diabetic nephropathy is a progressive condition which develops for many years. We analyzed expression of Snail and serum response factor (SRF), epithelial-mesenchymal transition (EMT) regulatory transcription factors with a key role in renal fibrosis, in different renal areas of diabetic rats during ageing. METHODS Male Sprague-Dawley rats were treated with 55 mg/kg streptozotocin (model of type 1 diabetes mellitus; DM group) or citrate buffer (control). DM group received insulin weekly to prevent ketoacidosis. After 2 weeks, 2, 6 and 12 months kidney samples were collected and analysed in different renal areas. RESULTS Snail expression was located within cortex in proximal convoluted tubules, in control and DM groups, in the cytoplasm. Percentage of Snail-positive cells in control groups was high and decreased with time, whereas in DM groups the highest percentage was after 2 weeks. In all time points, smaller percentage of Snail expression was seen in DM groups compared to controls. SRF expression was mostly located in the proximal convoluted tubules, always in the cytoplasm. In control groups SRF was expressed in all time periods in proximal convoluted tubules, with decrement after 12 months. Percentage of SRF-positive cells was higher in control groups compared to DM in all time points, with the exception of 12 months. To a smaller degree, SRF expression was seen in the glomeruli and distal convoluted tubules, with more SRF positive cells in DM compared to their control groups. CONCLUSIONS While Snail expression remained lower in diabetic tissues, compared to controls, expression of SRF increased in diabetic tissues in the second part of the year. These changes may need long time to develop, and, in line with earlier reports, it is possible that insulin treatment of DM rats once a week reduces possibility of EMT and development of renal fibrosis even in the long term.
Collapse
|
48
|
Khachigian LM. Transcription Factors Targeted by miRNAs Regulating Smooth Muscle Cell Growth and Intimal Thickening after Vascular Injury. Int J Mol Sci 2019; 20:ijms20215445. [PMID: 31683712 PMCID: PMC6861964 DOI: 10.3390/ijms20215445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Neointima formation after percutaneous coronary intervention (PCI) is a manifestation of “phenotype switching” by vascular smooth muscle cells (SMC), a process that involves de-differentiation from a contractile quiescent phenotype to one that is richly synthetic. In response to injury, SMCs migrate, proliferate, down-regulate SMC-specific differentiation genes, and later, can revert to the contractile phenotype. The vascular response to injury is regulated by microRNAs (or miRNAs), small non-coding RNAs that control gene expression. Interactions between miRNAs and transcription factors impact gene regulatory networks. This article briefly reviews the roles of a range of miRNAs in molecular and cellular processes that control intimal thickening, focusing mainly on transcription factors, some of which are encoded by immediate-early genes. Examples include Egr-1, junB, KLF4, KLF5, Elk-1, Ets-1, HMGB1, Smad1, Smad3, FoxO4, SRF, Rb, Sp1 and c-Myb. Such mechanistic information could inform the development of strategies that block SMC growth, neointima formation, and potentially overcome limitations of lasting efficacy following PCI.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
49
|
Sakaguchi T, Takefuji M, Wettschureck N, Hamaguchi T, Amano M, Kato K, Tsuda T, Eguchi S, Ishihama S, Mori Y, Yura Y, Yoshida T, Unno K, Okumura T, Ishii H, Shimizu Y, Bando YK, Ohashi K, Ouchi N, Enomoto A, Offermanns S, Kaibuchi K, Murohara T. Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction With Actin. Circulation 2019; 140:1737-1752. [PMID: 31564129 DOI: 10.1161/circulationaha.119.041019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. The RHOA-associated protein kinase (ROCK/Rho-kinase), an effector regulated by the small GTPase RHOA, causes pathological phosphorylation of proteins, resulting in cardiovascular diseases. RHOA also activates protein kinase N (PKN); however, the role of PKN in cardiovascular diseases remains unclear. METHODS To explore the role of PKNs in heart failure, we generated tamoxifen-inducible, cardiomyocyte-specific PKN1- and PKN2-knockout mice by intercrossing the αMHC-CreERT2 line with Pkn1flox/flox and Pkn2flox/flox mice and applied a mouse model of transverse aortic constriction- and angiotensin II-induced heart failure. To identify a novel substrate of PKNs, we incubated GST-tagged myocardin-related transcription factor A (MRTFA) with recombinant GST-PKN-catalytic domain or GST-ROCK-catalytic domain in the presence of radiolabeled ATP and detected radioactive GST-MRTFA as phosphorylated MRTFA. RESULTS We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 (cmc-PKN1/2 DKO) did not affect basal heart function but protected mice from pressure overload- and angiotensin II-induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. We confirmed that endogenous MRTFA phosphorylation in the heart was induced by pressure overload- and angiotensin II-induced cardiac dysfunction in wild-type mice, whereas cmc-PKN1/2 DKO mice suppressed transverse aortic constriction- and angiotensin II-induced phosphorylation of MRTFA. Although RHOA-mediated actin polymerization accelerated MRTFA-induced gene transcription, PKN1 and PKN2 inhibited the interaction of MRTFA with globular actin by phosphorylating MRTFA, causing increased serum response factor-mediated expression of cardiac hypertrophy- and fibrosis-associated genes. CONCLUSIONS Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.
Collapse
Affiliation(s)
- Teruhiro Sakaguchi
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Mikito Takefuji
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (N.W., S.O.)
| | - Tomonari Hamaguchi
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Mutsuki Amano
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Katsuhiro Kato
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Takuma Tsuda
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Shunsuke Eguchi
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Sohta Ishihama
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yu Mori
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yoshimitsu Yura
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan.,Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Tatsuya Yoshida
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Kazumasa Unno
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Takahiro Okumura
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Hideki Ishii
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yuuki Shimizu
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Yasuko K Bando
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| | - Koji Ohashi
- Molecular Medicine and Cardiology (K.O., N.O.), Nagoya University School of Medicine, Japan
| | - Noriyuki Ouchi
- Molecular Medicine and Cardiology (K.O., N.O.), Nagoya University School of Medicine, Japan
| | - Atsushi Enomoto
- Pathology (A.E.), Nagoya University School of Medicine, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (N.W., S.O.)
| | - Kozo Kaibuchi
- Cell Pharmacology (T.H., M.A., Y.Y., K. Kaibuchi), Nagoya University School of Medicine, Japan
| | - Toyoaki Murohara
- Departments of Cardiology (T.S., M.T., K. Kato, T.T., S.E., S.I., Y.M., Y.Y., T.Y., K.U., T.O, H.I., Y.S., Y.K.B., T.M.), Nagoya University School of Medicine, Japan
| |
Collapse
|
50
|
MRTFA augments megakaryocyte maturation by enhancing the SRF regulatory axis. Blood Adv 2019; 2:2691-2703. [PMID: 30337297 DOI: 10.1182/bloodadvances.2018019448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/14/2018] [Indexed: 02/02/2023] Open
Abstract
Serum response factor (SRF) is a ubiquitously expressed transcription factor that binds DNA at CArG (CC[A/T]6GG) domains in association with myocardin-family proteins (eg, myocardin-related transcription factor A [MRTFA]) or the ternary complex factor family of E26 transformation-specific (ETS) proteins. In primary hematopoietic cells, knockout of either SRF or MRTFA decreases megakaryocyte (Mk) maturation causing thrombocytopenia. The human erythroleukemia (HEL) cell line mimics the effects of MRTFA on Mk maturation, and MRTFA overexpression (MRTFAOE) in HEL cells enhances megakaryopoiesis. To identify the mechanisms underlying these effects, we performed integrated analyses of anti-SRF chromatin immunoprecipitation (ChIP) and RNA-sequencing data from noninduced and phorbol ester (12-O-tetradecanoylphorbol-13-acetate [TPA])-induced HEL cells, with and without MRTFAOE We found that 11% of genes were upregulated with TPA induction, which was enhanced by MRTFAOE, resulting in an upregulation of 25% of genes. MRTFAOE increased binding of SRF to genomic sites and enhanced TPA-induced expression of SRF target genes. The TPA-induced genes are predicted to be regulated by SRF and ETS factors, whereas those upregulated by TPA plus MRTFAOE lack ETS binding motifs, and MRTFAOE skews SRF binding to genomic regions with CArG sites in regions relatively lacking in ETS binding motifs. Finally, ChIP-polymerase chain reaction using HEL cells and primary human CD34+ cell-derived subpopulations confirms that both SRF and MRTFA have increased binding during megakaryopoiesis at upregulated target genes (eg, CORO1A). We show for the first time that MRTFA increases both the genomic association and activity of SRF and upregulates genes that enhance primary human megakaryopoiesis.
Collapse
|