1
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
2
|
Gleeson PJ, Camara NOS, Launay P, Lehuen A, Monteiro RC. Immunoglobulin A Antibodies: From Protection to Harmful Roles. Immunol Rev 2024; 328:171-191. [PMID: 39578936 PMCID: PMC11659943 DOI: 10.1111/imr.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody in humans. IgA is a unique class of immunoglobulin due to its multiple molecular forms, and a defining difference between the two subclasses: IgA1 has a long hinge-region that is heavily O-glycosylated, whereas the IgA2 hinge-region is shorter but resistant to bacterial proteases prevalent at mucosal sites. IgA is essential for immune homeostasis and education. Mucosal IgA plays a crucial role in maintaining the integrity of the mucosal barrier by immune exclusion of pathobionts while facilitating colonization with certain commensals; a large part of the gut microbiota is coated with IgA. In the circulation, monomeric IgA that has not been engaged by antigen plays a discrete role in dampening inflammatory responses. Protective and harmful roles of IgA have been studied over several decades, but a new understanding of the complex role of this immunoglobulin in health and disease has been provided by recent studies. Here, we discuss the physiological and pathological roles of IgA with a special focus on the gut, kidneys, and autoimmunity. We also discuss new IgA-based therapeutic approaches.
Collapse
Affiliation(s)
- Patrick J. Gleeson
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
- Nephrology DepartmentBichat HospitalParisFrance
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Pierre Launay
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| | - Agnès Lehuen
- Inflamex Laboratory of ExcellenceParisFrance
- Cochin Institute, INSERM, CNRSParis Cité UniversityParisFrance
| | - Renato C. Monteiro
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| |
Collapse
|
3
|
Du L, Oksenych V, Wan H, Ye X, Dong J, Ye AY, Abolhassani H, Vlachiotis S, Zhang X, de la Rosa K, Hammarström L, van der Burg M, Alt FW, Pan-Hammarström Q. Orientation Regulation of Class-switch Recombination in Human B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1093-1104. [PMID: 39248600 PMCID: PMC11457721 DOI: 10.4049/jimmunol.2300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombination or inversion for each Ig class/subclass. Our data showed that more than 90% of CSR junctions detected in peripheral blood in healthy control subjects were due to deletional recombination. We further identified two major CSR junction signatures/patterns in human B cells. Signature 1 consists of recombination junctions resulting from both IgG and IgA switching, with a dominance of Sµ-Sγ junctions (72%) and deletional recombination (87%). Signature 2 is contributed mainly by Sµ-Sα junctions (96%), and these junctions were almost all due to deletional recombination (99%) and were characterized by longer microhomologies. CSR junctions identified in healthy individuals can be assigned to both signatures but with a dominance of signature 1, whereas almost all CSR junctions found in patients with defects in DNA-PKcs or Artemis, two classical nonhomologous end joining (c-NHEJ) factors, align with signature 2. Thus, signature 1 may represent c-NHEJ activity during CSR, whereas signature 2 is associated with microhomology-mediated alternative end joining in the absence of the studied c-NHEJ factors. Our findings suggest that in human B cells, the efficiency of the c-NHEJ machinery and the features of switch regions are crucial for the regulation of CSR orientation. Finally, our high-throughput method can also be applied to study the mechanism of rare types of recombination, such as switching to IgD and locus suicide switching.
Collapse
Affiliation(s)
- Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valentyn Oksenych
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stelios Vlachiotis
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuefei Zhang
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederick W. Alt
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Huang D, Jiao X, Huang S, Liu J, Si H, Qi D, Pei X, Lu D, Wang Y, Li Z. Analysis of the heterogeneity and complexity of murine extraorbital lacrimal gland via single-cell RNA sequencing. Ocul Surf 2024; 34:60-95. [PMID: 38945476 DOI: 10.1016/j.jtos.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE The lacrimal gland is essential for maintaining ocular surface health and avoiding external damage by secreting an aqueous layer of the tear film. However, a healthy lacrimal gland's inventory of cell types and heterogeneity remains understudied. METHODS Here, 10X Genome-based single-cell RNA sequencing was used to generate an unbiased classification of cellular diversity in the extraorbital lacrimal gland (ELG) of C57BL/6J mice. From 43,850 high-quality cells, we produced an atlas of cell heterogeneity and defined cell types using classic marker genes. The possible functions of these cells were analyzed through bioinformatics analysis. Additionally, the CellChat was employed for a preliminary analysis of the cell-cell communication network in the ELG. RESULTS Over 37 subclasses of cells were identified, including seven types of glandular epithelial cells, three types of fibroblasts, ten types of myeloid-derived immune cells, at least eleven types of lymphoid-derived immune cells, and five types of vascular-associated cell subsets. The cell-cell communication network analysis revealed that fibroblasts and immune cells play a pivotal role in the dense intercellular communication network within the mouse ELG. CONCLUSIONS This study provides a comprehensive transcriptome atlas and related database of the mouse ELG.
Collapse
Affiliation(s)
- Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Yimian Wang
- Division of Medicine, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Zhijie Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
5
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Novak J, Reily C, Steers NJ, Schumann T, Rizk DV, Julian BA, Kiryluk K, Gharavi AG, Green TJ. Emerging Biochemical and Immunologic Mechanisms in the Pathogenesis of IgA Nephropathy. Semin Nephrol 2024; 44:151565. [PMID: 40087124 PMCID: PMC11972156 DOI: 10.1016/j.semnephrol.2025.151565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
IgA nephropathy is a mesangioproliferative glomerular disease with significant morbidity and mortality. Most patients with IgA nephropathy develop kidney failure in their lifetime, reducing their life expectancy by a decade. Since its first description in 1968, it has been established that kidneys of IgA nephropathy patients are injured as "innocent bystanders" by nephritogenic IgA1-containing immune complexes. Results from clinical, biochemical, immunologic, and genetic studies suggest a multistep pathogenetic mechanism. In genetically predisposed individuals, this process results in formation of circulating immune complexes due to the binding of IgG/IgA autoantibodies to the polymeric IgA1 molecules with incomplete O-glycosylation. This event is followed by the addition of other proteins, such as complement C3, resulting in the formation of nephritogenic immune complexes. These complexes are not effectively removed from the circulation, and some of them pass through the fenestration of glomerular endothelial cells to enter the mesangial space and activate mesangial cells. It is thought that the process is initiated by soluble immune complexes and that their accumulation results in the formation of immunodeposits that further amplify glomerular injury. Here we summarize current understanding of the pathogenesis of IgA nephropathy and discuss experimental model systems that can inform development of new therapeutic strategies and targets.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL.
| | - Colin Reily
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL; Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | | | - Dana V Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
Gleeson PJ, Monteiro RC. The Role of Mucosal Immunity: What Can We Learn From Animal and Human Studies? Semin Nephrol 2024; 44:151566. [PMID: 40082160 DOI: 10.1016/j.semnephrol.2025.151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Immunoglobulin A (IgA) is a key actor in the mucosal immune system, which moderates interactions between the host and environmental factors such as food antigens and commensal microorganisms. The pathogenesis of IgA nephropathy (IgAN) involves a multistep process starting with deglycosylation of mucosally derived, polymeric IgA1 (dg-IgA1) that reaches the circulation. Modified O-glycans on dg-IgA1 are targeted by IgG-autoantibodies, leading to the formation of circulating immune complexes that deposit in the glomerular mesangium. Infections of mucosal surfaces trigger flares of primary IgAN, while inflammatory bowel disease and liver cirrhosis are important causes of secondary IgAN, supporting a mucosal source of nephritogenic IgA1. In the presence of microbial pathogens or food antigens, activated dendritic cells in the gut mucosa induce T-cell-dependent or T-cell-independent B-cell differentiation into IgA-secreting plasma cells. Herein we review the literature concerning mucosal immune function and how it is altered in this disease. We discuss recent evidence supporting a causal role of gut microbiota dysbiosis in IgAN pathogenesis.
Collapse
Affiliation(s)
- Patrick J Gleeson
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Nephrology Department.
| | - Renato C Monteiro
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Immunology laboratory of Bichat hospital, Paris, France
| |
Collapse
|
8
|
Chen S, Zhang Z, Wang Q, Yang Q, Yin L, Ning L, Chen Z, Tang J, Deng W, He P, Li H, Shi L, Deng Y, Liu Z, Bu H, Zhu Y, Liu W, Qu L, Feng L, Xiong X, Sun B, Zhong N, Li F, Li P, Chen X, Chen L. Intranasal adenovirus-vectored Omicron vaccine induced nasal immunoglobulin A has superior neutralizing potency than serum antibodies. Signal Transduct Target Ther 2024; 9:190. [PMID: 39039046 PMCID: PMC11263566 DOI: 10.1038/s41392-024-01906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
The upper respiratory tract is the initial site of SARS-CoV-2 infection. Nasal spike-specific secretory immunoglobulin A (sIgA) correlates with protection against Omicron breakthrough infection. We report that intranasal vaccination using human adenovirus serotype 5 (Ad5) vectored Omicron spike in people who previously vaccinated with ancestral vaccine could induce robust neutralizing sIgA in the nasal passage. Nasal sIgA was predominantly present in dimeric and multimeric forms and accounted for nearly 40% of total proteins in nasal mucosal lining fluids (NMLFs). A low-level IgG could also be detected in NMLFs but not IgM, IgD, and IgE. After a complete nasal wash, sIgA in the nasal passage could be replenished rapidly within a few hours. A comparison of purified paired serum IgA, serum IgG, and nasal sIgA from the same individuals showed that sIgA was up to 3-logs more potent than serum antibodies in binding to spikes and in neutralizing Omicron subvariants. Serum IgG and IgA failed to neutralize XBB and BA.2.86, while nasal sIgA retained potent neutralization against these newly emerged variants. Further analysis showed that sIgA was more effective than IgG or IgA in blocking spike-mediated cell-to-cell transmission and protecting hACE2 mice from XBB challenge. Using a sIgA monoclonal antibody as a reference, we estimated that the total nasal sIgA contains about 2.6-3.9% spike-specific sIgA in NMLFs collected approximately one month after intranasal vaccination. Our study provided insights for developing intranasal vaccines that can induce sIgA to build an effective and mutation-resistant first-line immune barrier against constantly emerging variants.
Collapse
Affiliation(s)
- Si Chen
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhengyuan Zhang
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, China
| | - Li Yin
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lishan Ning
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhilong Chen
- Xiamen United Institute of Respiratory Health, Xiamen, China
| | - Jielin Tang
- Guangzhou National Laboratory, Guangzhou, China
| | - Weiqi Deng
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping He
- Guangzhou National Laboratory, Guangzhou, China
| | - Hengchun Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Linjing Shi
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijun Deng
- Guangzhou National Laboratory, Guangzhou, China
| | - Zijian Liu
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hemeng Bu
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaohui Zhu
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenming Liu
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoqing Sun
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Li
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Ling Chen
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, Center for Cell Lineage Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Marcotte H, Cao Y, Zuo F, Simonelli L, Sammartino JC, Pedotti M, Sun R, Cassaniti I, Hagbom M, Piralla A, Yang J, Du L, Percivalle E, Bertoglio F, Schubert M, Abolhassani H, Sherina N, Guerra C, Borte S, Rezaei N, Kumagai-Braesch M, Xue Y, Su C, Yan Q, He P, Grönwall C, Klareskog L, Calzolai L, Cavalli A, Wang Q, Robbiani DF, Hust M, Shi Z, Feng L, Svensson L, Chen L, Bao L, Baldanti F, Xiao J, Qin C, Hammarström L, Yang X, Varani L, Xie XS, Pan-Hammarström Q. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc Natl Acad Sci U S A 2024; 121:e2315354120. [PMID: 38194459 PMCID: PMC10801922 DOI: 10.1073/pnas.2315354120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Yunlong Cao
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Jinxuan Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Maren Schubert
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Natalia Sherina
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig04129, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig04129, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran14194, Iran
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm14186, Sweden
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
- Rheumatology Unit, Karolinska University Hospital, Stockholm17176, Sweden
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra21027, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 200032 Shanghai200032, People’s Republic of China
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Michael Hust
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Zhengli Shi
- State Key laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei430071, People’s Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm17177, Sweden
| | - Ling Chen
- Guangzhou Laboratory, Guangzhou510005, People’s Republic of China
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia27100, Italy
| | - Junyu Xiao
- Changping Laboratory, Beijing102206, People’s Republic of China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Xiaoliang Sunney Xie
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| |
Collapse
|
10
|
Conca W, Saleh SM, Al-Rabiah R, Parhar RS, Abd-Elnaeim M, Al-Hindas H, Tinson A, Kroell KB, Liedl KR, Collison K, Kishore U, Al-Mohanna F. The immunoglobulin A isotype of the Arabian camel ( Camelus dromedarius) preserves the dualistic structure of unconventional single-domain and canonical heavy chains. Front Immunol 2023; 14:1289769. [PMID: 38162642 PMCID: PMC10756906 DOI: 10.3389/fimmu.2023.1289769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.
Collapse
Affiliation(s)
- Walter Conca
- Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rana Al-Rabiah
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ranjit Singh Parhar
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mahmoud Abd-Elnaeim
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hussein Al-Hindas
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Alexander Tinson
- Management of Scientific Centers and Presidential Camels, Department of President’s Affairs, Hilli ET and Cloning Centre, Al Ain, United Arab Emirates
| | | | - Klaus Roman Liedl
- Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Bamias G, Kitsou K, Rivera-Nieves J. The Underappreciated Role of Secretory IgA in IBD. Inflamm Bowel Dis 2023; 29:1327-1341. [PMID: 36943800 PMCID: PMC10393212 DOI: 10.1093/ibd/izad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 03/23/2023]
Abstract
Eighty percent of antibody secreting cells (ASCs) are found in the intestine, where they produce grams of immunoglobulin (Ig) A daily. immunoglobulin A is actively transcytosed into the lumen, where it plays a critical role in modulating the gut microbiota. Although loss of immune tolerance to bacterial antigens is the likely trigger of the dysregulated immune response that characterizes inflammatory bowel disease (IBD), little effort has been placed on understanding the interface between B cells, IgA, and the microbiota during initiation or progression of disease. This may be in part due to the misleading fact that IgA-deficient humans are mostly asymptomatic, likely due to redundant role of secretory (S) IgM. Intestinal B cell recruitment is critically dependent on integrin α4β7-MAdCAM-1 interactions, yet antibodies that target α4β7 (ie, vedolizumab), MAdCAM-1 (ie, ontamalimab), or both β7 integrins (α4β7 and αE [CD103] β7; etrolizumab) are in clinical use or development as IBD therapeutics. The effect of such interventions on the biology of IgA is largely unknown, yet a single dose of vedolizumab lowers SIgA levels in stool and weakens the oral immunization response to cholera vaccine in healthy volunteers. Thus, it is critical to further understand the role of these integrins for the migration of ASC and other cellular subsets during homeostasis and IBD-associated inflammation and the mode of action of drugs that interfere with this traffic. We have recently identified a subset of mature ASC that employs integrin αEβ7 to dock with intestinal epithelial cells, predominantly in the pericryptal region of the terminal ileum. This role for the integrin had not been appreciated previously, nor the αEβ7-dependent mechanism of IgA transcytosis that it supports. Furthermore, we find that B cells more than T cells are critically dependent on α4β7-MAdCAM-1 interactions; thus MAdCAM-1 blockade and integrin-β7 deficiency counterintuitively hasten colitis in interleukin-10-deficient mice. In both cases, de novo recruitment of IgA ASC to the intestinal lamina propria is compromised, leading to bacterial overgrowth, dysbiosis, and lethal colitis. Thus, despite the safe and effective use of anti-integrin antibodies in patients with IBD, much remains to be learned about their various cell targets.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Konstantina Kitsou
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Jesús Rivera-Nieves
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Sun M, Ju J, Xu H, Wang Y. Intestinal fungi and antifungal secretory immunoglobulin A in Crohn's disease. Front Immunol 2023; 14:1177504. [PMID: 37359518 PMCID: PMC10285161 DOI: 10.3389/fimmu.2023.1177504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The human gastrointestinal tract harbors trillions of commensal microorganisms. Emerging evidence points to a possible link between intestinal fungal dysbiosis and antifungal mucosal immunity in inflammatory bowel disease, especially in Crohn's disease (CD). As a protective factor for the gut mucosa, secretory immunoglobulin A (SIgA) prevents bacteria from invading the intestinal epithelium and maintains a healthy microbiota community. In recent years, the roles of antifungal SIgA antibodies in mucosal immunity, including the regulation of intestinal immunity binding to hyphae-associated virulence factors, are becoming increasingly recognized. Here we review the current knowledge on intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals and in patients with CD, discuss the factors governing antifungal SIgA responses in the intestinal mucosa in the latter group, and highlight potential antifungal vaccines targeting SIgA to prevent CD.
Collapse
|
14
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Bertrand Y, Sánchez-Montalvo A, Hox V, Froidure A, Pilette C. IgA-producing B cells in lung homeostasis and disease. Front Immunol 2023; 14:1117749. [PMID: 36936934 PMCID: PMC10014553 DOI: 10.3389/fimmu.2023.1117749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant Ig in mucosae where it plays key roles in host defense against pathogens and in mucosal immunoregulation. Whereas intense research has established the different roles of secretory IgA in the gut, its function has been much less studied in the lung. This review will first summarize the state-of-the-art knowledge on the distribution and phenotype of IgA+ B cells in the human lung in both homeostasis and disease. Second, it will analyze the studies looking at cellular and molecular mechanisms of homing and priming of IgA+ B cells in the lung, notably following immunization. Lastly, published data on observations related to IgA and IgA+ B cells in lung and airway disease such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, or chronic rhinosinusitis, will be discussed. Collectively it provides the state-of-the-art of our current understanding of the biology of IgA-producing cells in the airways and identifies gaps that future research should address in order to improve mucosal protection against lung infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Youri Bertrand
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
| | - Alba Sánchez-Montalvo
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke universiteit (KU) Leuven, Leuven, Belgium
| | - Valérie Hox
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Antoine Froidure
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Charles Pilette,
| |
Collapse
|
16
|
Romero-Ramírez S, Sosa-Hernández VA, Cervantes-Díaz R, Carrillo-Vázquez DA, Meza-Sánchez DE, Núñez-Álvarez C, Torres-Ruiz J, Gómez-Martín D, Maravillas-Montero JL. Salivary IgA subtypes as novel disease biomarkers in systemic lupus erythematosus. Front Immunol 2023; 14:1080154. [PMID: 36911711 PMCID: PMC9992540 DOI: 10.3389/fimmu.2023.1080154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Immunoglobulin A (IgA) is the main antibody isotype in body fluids such as tears, intestinal mucous, colostrum, and saliva. There are two subtypes of IgA in humans: IgA1, mainly present in blood and mucosal sites, and IgA2, preferentially expressed in mucosal sites like the colon. In clinical practice, immunoglobulins are typically measured in venous or capillary blood; however, alternative samples, including saliva, are now being considered, given their non-invasive and easy collection nature. Several autoimmune diseases have been related to diverse abnormalities in oral mucosal immunity, such as rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus (SLE). Methods We decided to evaluate the levels of both IgA subtypes in the saliva of SLE patients. A light chain capture-based ELISA measured specific IgA1 and IgA2 levels in a cohort of SLE patients compared with age and gender-matched healthy volunteers. Results Surprisingly, our results indicated that in the saliva of SLE patients, total IgA and IgA1 subtype were significantly elevated; we also found that salivary IgA levels, particularly IgA2, positively correlate with anti-dsDNA IgG antibody titers. Strikingly, we also detected the presence of salivary anti-nucleosome IgA antibodies in SLE patients, a feature not previously reported elsewhere. Conclusions According to our results and upon necessary validation, IgA characterization in saliva could represent a potentially helpful tool in the clinical care of SLE patients with the advantage of being a more straightforward, faster, and safer method than manipulating blood samples.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel A Carrillo-Vázquez
- Departamento de Medicina Interna, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos Núñez-Álvarez
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
17
|
Wu J, Shao X, Shen J, Lin Q, Zhu X, Li S, Li J, Zhou W, Qi C, Ni Z. Downregulation of PPARα mediates FABP1 expression, contributing to IgA nephropathy by stimulating ferroptosis in human mesangial cells. Int J Biol Sci 2022; 18:5438-5458. [PMID: 36147466 PMCID: PMC9461665 DOI: 10.7150/ijbs.74675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the commonest primary glomerulonephritis, and a major cause of end-stage renal disease; however, its pathogenesis requires elucidation. Here, a hub gene, FABP1, and signaling pathway, PPARα, were selected as key in IgAN pathogenesis by combined weighted gene correlation network analysis of clinical traits and identification of differentially expressed genes from three datasets. FABP1 and PPARα levels were lower in IgAN than control kidney, and linearly positively correlated with one another, while FABP1 levels were negatively correlated with urinary albumin-to-creatinine ratio, and GPX4 levels were significantly decreased in IgAN. In human mesangial cells (HMCs), PPARα and FABP1 levels were significantly decreased after Gd-IgA1 stimulation and mitochondria appeared structurally damaged, while reactive oxygen species (ROS) and malondialdehyde (MDA) were significantly increased, and glutathione and GPX4 decreased, relative to controls. GPX4 levels were decreased, and those of ACSL4 increased on siPPARα and siFABP1 siRNA treatment. In PPARα lentivirus-transfected HMCs stimulated by Gd-IgA1, ROS, MDA, and ACSL4 were decreased; glutathione and GPX4, and immunofluorescence colocalization of PPARα and GPX4, increased; and damaged mitochondria reduced. Hence, PPARα pathway downregulation can reduce FABP1 expression, affecting GPX4 and ACSL4 levels, causing HMC ferroptosis, and contributing to IgAN pathogenesis.
Collapse
Affiliation(s)
- Jingkui Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Lin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuying Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaojun Qi
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7:71. [PMID: 35764661 PMCID: PMC9239993 DOI: 10.1038/s41541-022-00485-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
The mRNA vaccine platform has offered the greatest potential in fighting the COVID-19 pandemic owing to rapid development, effectiveness, and scalability to meet the global demand. There are many other mRNA vaccines currently being developed against different emerging viral diseases. As with the current COVID-19 vaccines, these mRNA-based vaccine candidates are being developed for parenteral administration via injections. However, most of the emerging viruses colonize the mucosal surfaces prior to systemic infection making it very crucial to target mucosal immunity. Although parenterally administered vaccines would induce a robust systemic immunity, they often provoke a weak mucosal immunity which may not be effective in preventing mucosal infection. In contrast, mucosal administration potentially offers the dual benefit of inducing potent mucosal and systemic immunity which would be more effective in offering protection against mucosal viral infection. There are however many challenges posed by the mucosal environment which impede successful mucosal vaccination. The development of an effective delivery system remains a major challenge to the successful exploitation of mucosal mRNA vaccination. Nonetheless, a number of delivery vehicles have been experimentally harnessed with different degrees of success in the mucosal delivery of mRNA vaccines. In this review, we provide a comprehensive overview of mRNA vaccines and summarise their application in the fight against emerging viral diseases with particular emphasis on COVID-19 mRNA platforms. Furthermore, we discuss the prospects and challenges of mucosal administration of mRNA-based vaccines, and we explore the existing experimental studies on mucosal mRNA vaccine delivery.
Collapse
Affiliation(s)
- Sodiq A. Hameed
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Stephane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, F42023 Saint-Etienne, France
| | - Giann Kerwin Y. Dellosa
- grid.7849.20000 0001 2150 7757Univ Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Dolores Jaraquemada
- grid.7080.f0000 0001 2296 0625Universidad Autónoma de Barcelona, 08193 Cerdanyola, Spain
| | - Muhammad Bashir Bello
- grid.412771.60000 0001 2150 5428Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University PMB, 2346 Sokoto, Nigeria
| |
Collapse
|
19
|
Kawasaki Y. Treatment strategy with multidrug therapy and tonsillectomy pulse therapy for childhood-onset severe IgA nephropathy. Clin Exp Nephrol 2022; 26:501-511. [PMID: 35119558 DOI: 10.1007/s10157-022-02187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND IgA nephropathy is a typical chronic glomerulonephritis that tends to occur in childhood. METHOD We reviewed the report on pathogenesis, treatment strategy with multidrug therapy and tonsillectomy pulse therapy for childhood-onset severe IgA nephropathy to clarify the pathophysiology and treatment of IgA nephropathy in childhood. RESULTS In recent years, it has been found that the pathogenesis at onset is associated with aberrant glycosylation at the IgA1 hinge. Given this genetic background, the aberrantly glycosylated IgA1immune complex produced by antigen-stimulated T cells and B cells is deposited in the glomeruli. Inflammation is induced via activation of the complement, macrophages and mesangial cells, and glomerular damage progresses thereafter. Treatment is selected according to the severity of IgA nephropathy. In order to prevent the development of renal damage, it is important to control the associated immune responses. For severe IgA nephropathy, in particular, multidrug therapy with prednisolone, immunosuppressants, and angiotensin enzyme synthesis inhibitors and tonsillectomy methylprednisolone pulse therapy are now performed- and, as a result, the number of renal deaths has decreased and the long-term prognosis has improved. CONCLUSION The prognosis of IgA nephropathy is improving. In the future, it will be important to develop a treatment method that takes into consideration the fact that children are in their growth and development stage and, therefore, seeks to minimizes side effects.
Collapse
Affiliation(s)
- Yukihiko Kawasaki
- Department of Pediatrics, Fukushima General Rehabilitation Center, Uenodai 4-1, Tomita Cho, Koriyama City, Fukushima Prefecture, 963-8041, Japan.
| |
Collapse
|
20
|
Fleming A, Castro‐Dopico T, Clatworthy MR. B cell class switching in intestinal immunity in health and disease. Scand J Immunol 2022; 95:e13139. [PMID: 34978077 PMCID: PMC9285483 DOI: 10.1111/sji.13139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract is colonized by trillions of commensal microorganisms that collectively form the microbiome and make essential contributions to organism homeostasis. The intestinal immune system must tolerate these beneficial commensals, whilst preventing pathogenic organisms from systemic spread. Humoral immunity plays a key role in this process, with large quantities of immunoglobulin (Ig)A secreted into the lumen on a daily basis, regulating the microbiome and preventing bacteria from encroaching on the epithelium. However, there is an increasing appreciation of the role of IgG antibodies in intestinal immunity, including beneficial effects in neonatal immune development, pathogen and tumour resistance, but also of pathological effects in driving chronic inflammation in inflammatory bowel disease (IBD). These antibody isotypes differ in effector function, with IgG exhibiting more proinflammatory capabilities compared with IgA. Therefore, the process that leads to the generation of different antibody isotypes, class-switch recombination (CSR), requires careful regulation and is orchestrated by the immunological cues generated by the prevalent local challenge. In general, an initiating signal such as CD40 ligation on B cells leads to the induction of activation-induced cytidine deaminase (AID), but a second cytokine-mediated signal determines which Ig heavy chain is expressed. Whilst the cytokines driving intestinal IgA responses are well-studied, there is less clarity on how IgG responses are generated in the intestine, and how these cues might become dysfunctional in IBD. Here, we review the key mechanisms regulating class switching to IgA vs IgG in the intestine, processes that could be therapeutically manipulated in infection and IBD.
Collapse
Affiliation(s)
- Aaron Fleming
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
| | - Tomas Castro‐Dopico
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- The Francis Crick InstituteLondonUK
| | - Menna R. Clatworthy
- Molecular Immunity UnitDepartment of MedicineCambridge Institute of Therapeutic Immunology and Infectious DiseasesUniversity of CambridgeCambridgeUK
- Cellular GeneticsWellcome Trust Sanger InstituteHinxtonUK
- NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
21
|
Li Y, Xiong Y, Huang T, Liu X, Xu G. Clinical efficacy and safety of full-dose versus half-dose corticosteroids plus leflunomide for IgA nephropathy. BMC Nephrol 2021; 22:364. [PMID: 34736419 PMCID: PMC8567572 DOI: 10.1186/s12882-021-02555-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The results of leflunomide (LEF) in patients with IgA nephropathy (IgAN) were inconsistent. METHODS A total of 149 kidney biopsy-confirmed IgAN patients with an estimated glomerular filtration rate (eGFR) ≥ 50 ml/min/1.73 m2 and protein excretion levels ≥0.75 g/d were enrolled, with 65 subjects receiving half-dose CS plus LEF (LEF group), and the 84 counterpart patients accepting full-dose corticosteroid (Full CS group). The primary outcomes included the complete remission (CR) rates and incidence of adverse events (AEs). The secondary outcomes were the overall remission (OR) rates and a combined event (eGFR reduced ≥30%, end-stage renal disease [ESRD], hemodialysis, peritoneal dialysis or kidney transplantation). RESULTS During the 18 months of follow-up, the CR rates were 72 and 64% in the LEF and Full CS groups (P = 0.299), respectively. The proportion of patients with OR rates in the LEF group and Full CS group was 89% versus 75%, respectively (P = 0.027). Serious AEs were observed only in the Full CS group (P = 0.017). The incidences of total AEs (P = 0.036) and infections (P = 0.024) were lower in the LEF group than in the Full CS group. CONCLUSIONS LEF combined with half-dose CS is superior to full-dose CS in the treatment of IgAN.
Collapse
Affiliation(s)
- Yebei Li
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, P.R. China
| | - Yi Xiong
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, P.R. China
| | - Tianlun Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, P.R. China
| | - Xin Liu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, P.R. China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, P.R. China.
| |
Collapse
|
22
|
Ageratina adenophora Disrupts the Intestinal Structure and Immune Barrier Integrity in Rats. Toxins (Basel) 2021; 13:toxins13090651. [PMID: 34564656 PMCID: PMC8473231 DOI: 10.3390/toxins13090651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the effects of Ageratina adenophora on the intestines morphology and integrity in rat. Rats were randomly divided into two groups and were fed with 10 g/100 g body weight (BW) basal diet and 10 g/100 g BW experimental diet, which was a mixture of A. adenophora powder and basal diet in a 3:7 ratio. The feeding experiment lasted for 60 days. At days 28 and 60 of the experiment, eight rats/group/timepoint were randomly selected, weighed, and sacrificed, then blood and intestinal tissues were collected and stored for further analysis. The results showed that Ageratina adenophora caused pathological changes and injury in the intestine, elevated serum diamine oxidase (DAO), D-lactate (D-LA), and secretory immunoglobulin A (sIgA) levels, reduced occludin levels in intestinal tissues, as well as increased the count of intraepithelial leukocytes (IELs) and lamina propria leukocytes (LPLs) in the intestine (p < 0.05 or p < 0.01). In addition, the mRNA and protein (ELISA) expressions of pro-inflammation cytokines (IL-1β, IL-2, TNF-α, and IFN-ϒ) were elevated in the Ageratina adenophora treatment groups, whereas anti-inflammatory cytokines such as IL-4 and IL-10 were reduced (p < 0.01 or p < 0.05). Therefore, the results obtained in this study indicated that Ageratina adenophora impaired intestinal function in rats by damaging the intestine structure and integrity, and also triggered an inflammation immune response that led to intestinal immune barrier dysfunction.
Collapse
|
23
|
Immunoprofiles associated with controlled human malaria infection and naturally acquired immunity identify a shared IgA pre-erythrocytic immunoproteome. NPJ Vaccines 2021; 6:115. [PMID: 34518543 PMCID: PMC8438027 DOI: 10.1038/s41541-021-00363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge of the Plasmodium falciparum antigens that comprise the human liver stage immunoproteome is important for pre-erythrocytic vaccine development, but, compared with the erythrocytic stage immunoproteome, more challenging to classify. Previous studies of P. falciparum antibody responses report IgG and rarely IgA responses. We assessed IgG and IgA antibody responses in adult sera collected during two controlled human malaria infection (CHMI) studies in malaria-naïve volunteers and in 1- to 6-year-old malaria-exposed Malian children on a 251 P. falciparum antigen protein microarray. IgG profiles in the two CHMI groups were equivalent and differed from Malian children. IgA profiles were robust in the CHMI groups and a subset of Malian children. We describe immunoproteome differences in naïve vs. exposed individuals and report pre-erythrocytic proteins recognized by the immune system. IgA responses detected in this study expand the list of pre-erythrocytic antigens for further characterization as potential vaccine candidates.
Collapse
|
24
|
Wisnewski AV, Campillo Luna J, Redlich CA. Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS One 2021; 16:e0249499. [PMID: 34133415 PMCID: PMC8208542 DOI: 10.1371/journal.pone.0249499] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/30/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 spike antigen-specific IgG and IgA elicited by infection mediate viral neutralization and are likely an important component of natural immunity, however, limited information exists on vaccine induced responses. We measured COVID-19 mRNA vaccine induced IgG and IgA in serum serially, up to 145 days post vaccination in 4 subjects. Spike antigen-specific IgG levels rose exponentially and plateaued 21 days after the initial vaccine dose. After the second vaccine dose IgG levels increased further, reaching a maximum approximately 7-10 days later, and remained elevated (average of 58% peak levels) during the additional >100 day follow up period. COVID-19 mRNA vaccination elicited spike antigen-specific IgA with similar kinetics of induction and time to peak levels, but more rapid decline in serum levels following both the 1st and 2nd vaccine doses (<18% peak levels within 100 days of the 2nd shot). The data demonstrate COVID-19 mRNA vaccines effectively induce spike antigen specific IgG and IgA and highlight marked differences in their persistence in serum.
Collapse
Affiliation(s)
- Adam V. Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Julian Campillo Luna
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Carrie A. Redlich
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
25
|
Immunoglobulin isotype compositions of ABO specific antibodies are dependent on the individual patient blood group and blood group specificity: Results from a healthy donor cohort. J Immunol Methods 2021; 494:113053. [PMID: 33933472 DOI: 10.1016/j.jim.2021.113053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/28/2022]
Abstract
Antibodies specific for the blood group ABO system antigens are of clinical significance and immunological interest. Routine clinical methods typically employ direct or indirect haemagglutination methods to measure IgM and IgG, respectively. We have developed a simple, single tube method to quantify IgM, IgG, and IgA specific for A and B antigens in order to improve accuracy and reproducibility, and to investigate the relationships between ABO group antibody type, and antibody level. Plasma samples from 300 healthy blood donors were studied. Levels of IgM and IgG binding to reagent group A and B red cells were measure by agglutination (HA) and multi-colour flow cytometry (MC-FC). IgA was also measured by MC-FC. Our FC method was found to be significantly more reproducible than HA for the measurement of blood group A and B specific antibodies. We found statistically significant correlations between antibodies measured by GC-HA and MC-FC, but sufficient differences to indicate that these methods are not equivalent. By MC-FC, IgM, IgG and IgA levels and isotope profiles were found to be dependent on both the donor ABO type and the specificity of the antibody. This study demonstrated heterogeneity in the immunoglobulin class profiles of ABO-blood group specific antibodies within the healthy population. Differences in isotype profiles of ABO-blood group specific antibodies may indicate fundamental differences in the immune mechanisms that generate these antibodies. This is likely to be relevant to the clinical situations where management or diagnosis depend on ABO-specific antibody detection and measurement.
Collapse
|
26
|
Kariyawasam HH, James LK. B cells and upper airway disease: allergic rhinitis and chronic rhinosinusitis with nasal polyps evaluated. Expert Rev Clin Immunol 2021; 17:445-459. [PMID: 33729073 DOI: 10.1080/1744666x.2021.1905527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: The first mucosal site to encounter inhaled allergen, antigen, and microbes is the upper airway. It must perforce have a rapid system of environmental threat recognition and self-defense. B cells play a critical role in such airway host-defense, tissue surveillance, and immune modulation. Several common upper airway diseases can be defined in the expression of either exaggerated or dysregulated B-cell function within T2-high mucosal inflammatory states.Areas covered: In this review, the authors discuss the immunology of allergic rhinitis (AR) and chronic rhinosinusitis with nasal polyps (CRSwNP) in the context of highlighting key aspects of B-cell biology and function. The review is based on the findings of a literature search using the terms B cells, rhinitis, nasal polyps, and rhinosinusitis.Expert opinion: Despite the emerging role of B-cell overdrive and dysfunction in upper airway disease, studies are lacking specifics to B cells, particularly in association with sinonasal infection and mucosal inflammation. There is a pressing need to focus on how respiratory inflammation, alongside impaired or exaggerated B-cell function, amplifies and further dysregulates immune signaling pathways in the disease setting of AR and CRSwNP.
Collapse
Affiliation(s)
- Harsha H Kariyawasam
- Specialist Allergy and Clinical Immunology, Royal National ENT and Eastman Hospital, London, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Rhinology, Royal National ENT and Eastman Hospital, London, University College London Hospitals NHS Foundation Trust, London, UK.,University College London, London, UK
| | - Louisa K James
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, Rogier M, Moritz J, IJspeert H, Stoepker C, van Ostaijen-Ten Dam MM, Heyer V, Luijsterburg MS, de Groot A, Jak R, Grootaers G, Wang J, Rao P, Vertegaal ACO, van Tol MJD, Pan-Hammarström Q, Reina-San-Martin B, Shah GM, van der Burg M, van der Maarel SM, van Attikum H. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med 2021; 217:152060. [PMID: 32865561 PMCID: PMC7526497 DOI: 10.1084/jem.20191688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome.
Collapse
Affiliation(s)
- Angela Helfricht
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter E Thijssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashmi G Shah
- CHU de Québec Research Centre (site CHUL) and Laboratory for Skin Cancer Research and Axe Neuroscience, Université Laval, Québec, Canada
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Sanami Takada
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mélanie Rogier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jacques Moritz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chantal Stoepker
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Anton de Groot
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rianca Jak
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gwendolynn Grootaers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jun Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten J D van Tol
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Girish M Shah
- CHU de Québec Research Centre (site CHUL) and Laboratory for Skin Cancer Research and Axe Neuroscience, Université Laval, Québec, Canada
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, Quentric P, Fadlallah J, Devilliers H, Ghillani P, Gunn C, Hockett R, Mudumba S, Guihot A, Luyt CE, Mayaux J, Beurton A, Fourati S, Bruel T, Schwartz O, Lacorte JM, Yssel H, Parizot C, Dorgham K, Charneau P, Amoura Z, Gorochov G. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med 2021; 13:eabd2223. [PMID: 33288662 PMCID: PMC7857408 DOI: 10.1126/scitranslmed.abd2223] [Citation(s) in RCA: 749] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/26/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Humoral immune responses are typically characterized by primary IgM antibody responses followed by secondary antibody responses associated with immune memory and composed of IgG, IgA, and IgE. Here, we measured acute humoral responses to SARS-CoV-2, including the frequency of antibody-secreting cells and the presence of SARS-CoV-2-specific neutralizing antibodies in the serum, saliva, and bronchoalveolar fluid of 159 patients with COVID-19. Early SARS-CoV-2-specific humoral responses were dominated by IgA antibodies. Peripheral expansion of IgA plasmablasts with mucosal homing potential was detected shortly after the onset of symptoms and peaked during the third week of the disease. The virus-specific antibody responses included IgG, IgM, and IgA, but IgA contributed to virus neutralization to a greater extent compared with IgG. Specific IgA serum concentrations decreased notably 1 month after the onset of symptoms, but neutralizing IgA remained detectable in saliva for a longer time (days 49 to 73 post-symptoms). These results represent a critical observation given the emerging information as to the types of antibodies associated with optimal protection against reinfection and whether vaccine regimens should consider targeting a potent but potentially short-lived IgA response.
Collapse
Affiliation(s)
- Delphine Sterlin
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
- Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222, Inserm, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Alexis Mathian
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
- Service de Médecine Interne 2, Institut E3M, AP-HP, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
- Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Audrey Mohr
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
| | - François Anna
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- Theravectys, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Laetitia Claër
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Paul Quentric
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Jehane Fadlallah
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
- Service de Médecine Interne 2, Institut E3M, AP-HP, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Hervé Devilliers
- Centre Hospitalier Universitaire de Dijon, Hôpital François Mitterrand, service de médecine interne et maladies systémiques (médecine interne 2) et Centre d'Investigation Clinique, Inserm CIC-EC 1432, 3 rue du FBG Raines, 21000 Dijon, France
| | - Pascale Ghillani
- Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Cary Gunn
- Genalyte Inc., 10520 Wateridge Circle, San Diego, CA 92121, USA
| | - Rick Hockett
- Genalyte Inc., 10520 Wateridge Circle, San Diego, CA 92121, USA
| | - Sasi Mudumba
- Genalyte Inc., 10520 Wateridge Circle, San Diego, CA 92121, USA
| | - Amélie Guihot
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
- Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Charles-Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, APHP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
- Sorbonne Université, INSERM, UMRS 1166-ICAN Institute of Cardiometabolism and Nutrition, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Julien Mayaux
- Service de Médecine Intensive-Réanimation et Pneumologie, APHP, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Alexandra Beurton
- Service de Médecine Intensive-Réanimation et Pneumologie, APHP, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
- Sorbonne Université, Inserm UMRS Neurophysiologie respiratoire expérimentale et clinique, AP-HP, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Salma Fourati
- Service de Biochimie Endocrinienne et Oncologique, AP-HP, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
- Inserm UMR1149, Centre de Recherche sur l'Inflammation Paris Montmartre (CRI), 16 rue Henri Huchard, 75890 Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- CNRS-UMR3569, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- Vaccine Research Institute, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- CNRS-UMR3569, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- Vaccine Research Institute, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Jean-Marc Lacorte
- Sorbonne Université, INSERM, UMRS 1166-ICAN Institute of Cardiometabolism and Nutrition, 91 boulevard de l'Hôpital, 75013 Paris, France
- Service de Biochimie Endocrinienne et Oncologique, AP-HP, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Hans Yssel
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Christophe Parizot
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
- Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Karim Dorgham
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Pierre Charneau
- Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- Theravectys, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Zahir Amoura
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France
- Service de Médecine Interne 2, Institut E3M, AP-HP, Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 boulevard de l'Hôpital, 75013 Paris, France.
- Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
29
|
Rochereau N, Roblin X, Michaud E, Gayet R, Chanut B, Jospin F, Corthésy B, Paul S. NOD2 deficiency increases retrograde transport of secretory IgA complexes in Crohn's disease. Nat Commun 2021; 12:261. [PMID: 33431850 PMCID: PMC7801705 DOI: 10.1038/s41467-020-20348-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal microfold cells are the primary pathway for translocation of secretory IgA (SIgA)-pathogen complexes to gut-associated lymphoid tissue. Uptake of SIgA/commensals complexes is important for priming adaptive immunity in the mucosa. This study aims to explore the effect of SIgA retrograde transport of immune complexes in Crohn's disease (CD). Here we report a significant increase of SIgA transport in CD patients with NOD2-mutation compared to CD patients without NOD2 mutation and/or healthy individuals. NOD2 has an effect in the IgA transport through human and mouse M cells by downregulating Dectin-1 and Siglec-5 expression, two receptors involved in retrograde transport. These findings define a mechanism of NOD2-mediated regulation of mucosal responses to intestinal microbiota, which is involved in CD intestinal inflammation and dysbiosis.
Collapse
Affiliation(s)
- Nicolas Rochereau
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France.
| | - Xavier Roblin
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Eva Michaud
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Rémi Gayet
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Blandine Chanut
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Fabienne Jospin
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, 1066, Epalinges, Switzerland
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, F42023, Saint-Etienne, France
| |
Collapse
|
30
|
Wu J, Lin Q, Li S, Shao X, Zhu X, Zhang M, Zhou W, Ni Z. Periostin Contributes to Immunoglobulin a Nephropathy by Promoting the Proliferation of Mesangial Cells: A Weighted Gene Correlation Network Analysis. Front Genet 2021; 11:595757. [PMID: 33488671 PMCID: PMC7817997 DOI: 10.3389/fgene.2020.595757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a known cause of end-stage kidney disease, but the pathogenesis and factors affecting prognosis are not fully understood. In the present study, we carried out weighted gene correlation network analysis (WGCNA) to identify hub genes related to the occurrence of IgAN and validated candidate genes in experiments using mouse mesangial cells (MMCs) and clinical specimens (kidney tissue from IgAN patients and healthy controls). We screened the GSE37460 and GSE104948 differentially expressed genes common to both datasets and identified periostin (POSTN) as one of the five key genes using the cytoHubba plugin of Cytoscape software and by receiver-operating characteristic curve analysis. The top 25% of genes in the GSE93798 dataset showing variable expression between IgAN and healthy tissue were assessed by WGCNA. The royalblue module in WGCNA was closely related to creatinine and estimated glomerular filtration rate (eGFR) in IgAN patients. POSTN had very high module membership and gene significance values for creatinine (0.82 and 0.66, respectively) and eGFR (0.82 and -0.67, respectively), indicating that it is a co-hub gene. In MMCs, POSTN was upregulated by transforming growth factor β1, and stimulation of MMCs with recombinant POSTN protein resulted in an increase in the level of proliferating cell nuclear antigen (PCNA) and a decrease in that of B cell lymphoma-associated X protein, which were accompanied by enhanced MMC proliferation. POSTN gene knockdown had the opposite effects. Immunohistochemical analysis of kidney tissue specimens showed that POSTN and PCNA levels were elevated, whereas the rate of apoptosis was reduced in IgAN patients relative to healthy controls. POSTN level in the kidney tissue of IgAN patients was positively correlated with creatinine level and negatively correlated with eGFR. Thus, POSTN promotes the proliferation of MCs to promote renal dysfunction in IgAN.
Collapse
Affiliation(s)
- Jingkui Wu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Lin
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Li
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuying Zhu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Zhang
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Bai Y, Huang F, Zhang R, Ma Q, Dong L, Su D, Chi J, Zhang M. Longan pulp polysaccharide protects against cyclophosphamide-induced immunosuppression in mice by promoting intestinal secretory IgA synthesis. Food Funct 2021; 11:2738-2748. [PMID: 32175536 DOI: 10.1039/c9fo02780g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to explore the effect of longan pulp polysaccharide (LP) on the systemic immunity and intestinal mucosal immunity of immunosuppressive mice. The synthesis process and secretion of intestinal secretory IgA (SIgA) were investigated. Results showed that LP increased the thymus index, spleen index, and serum IgA level in cyclophosphamide (CTX)-treated mice. SIgA secretion in the intestinal lumen was increased by LP as well. The underlying mechanism comes down to the facts as follow: LP increased intestinal cytokines expression and TGFβRII that is associated with pathways of IgA class switch recombination (CSR). By improving protein expression of mucosal addressin cell-adhesion molecule-1 (MAdCAM-1) and integrin α4β7, LP was beneficial to gut homing of IgA+ plasma cells. LP increased IgA, polymeric immunoglobulin receptor (pIgR), and secretory component (SC) to fortify the SIgA secretion. This study suggested that moderate consumption of LP is helpful for improving systemic immunity and intestinal mucosal immunity via promotion of intestinal SIgA to strengthen the mucosal barrier.
Collapse
Affiliation(s)
- Yajuan Bai
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Qin Ma
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jianwei Chi
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
32
|
Bruellman R, Llorente C. A Perspective Of Intestinal Immune-Microbiome Interactions In Alcohol-Associated Liver Disease. Int J Biol Sci 2021; 17:307-327. [PMID: 33390852 PMCID: PMC7757023 DOI: 10.7150/ijbs.53589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Uncovering the intricacies of the gut microbiome and how it interacts with the host immune system has opened up pathways in the search for the treatment of disease conditions. Alcohol-associated liver disease is a major cause of death worldwide. Research has shed light on the breakdown of the protective gut barriers, translocation of gut microbes to the liver and inflammatory immune response to microbes all contributing to alcohol-associated liver disease. This knowledge has opened up avenues for alternative therapies to alleviate alcohol-associated liver disease based on the interaction of the commensal gut microbiome as a key player in the regulation of the immune response. This review describes the relevance of the intestinal immune system, the gut microbiota, and specialized and non-specialized intestinal cells in the regulation of intestinal homeostasis. It also reflects how these components are altered during alcohol-associated liver disease and discusses new approaches for potential future therapies in alcohol-associated liver disease.
Collapse
Affiliation(s)
- Ryan Bruellman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Yonkof JR, Gupta A, Rueda CM, Mangray S, Prince BT, Rangarajan HG, Alshahrani M, Varga E, Cripe TP, Abraham RS. A Novel Pathogenic Variant in CARMIL2 ( RLTPR) Causing CARMIL2 Deficiency and EBV-Associated Smooth Muscle Tumors. Front Immunol 2020; 11:884. [PMID: 32625199 PMCID: PMC7314954 DOI: 10.3389/fimmu.2020.00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
CARMIL2 deficiency is a rare combined immunodeficiency (CID) characterized by defective CD28-mediated T cell co-stimulation, altered cytoskeletal dynamics, and susceptibility to Epstein Barr Virus smooth muscle tumors (EBV-SMTs). Case reports associated with EBV-SMTs are limited. We describe herein a novel homozygous CARMIL2 variant (c.1364_1393del) in two Saudi Arabian male siblings born to consanguineous parents who developed EBV-SMTs. CARMIL2 protein expression was significantly reduced in CD4+ T cells and CD8+ T cells. T cell proliferation on stimulation with soluble (s) anti-CD3 or (s) anti-CD3 plus anti-CD28 antibodies was close to absent in the proband, confirming altered CD28-mediated co-signaling. CD28 expression was substantially reduced in the proband's T cells, and was diminished to a lesser degree in the T cells of the younger sibling, who has a milder clinical phenotype. Defects in both T and B cell compartments were observed, including absent central memory CD8+ T cells, and decreased frequencies of total and class-switched memory B cells. FOXP3+ regulatory T cells (Treg) were also quantitatively decreased, and furthermore CD25 expression within the Treg subset was substantially reduced. These data confirm the pathogenicity of this novel loss-of-function (LOF) variant in CARMIL2 and expand the genotypic and phenotypic spectrum of CIDs associated with EBV-SMTs.
Collapse
Affiliation(s)
- Jennifer R Yonkof
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ajay Gupta
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Cesar M Rueda
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Shamlal Mangray
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Hemalatha G Rangarajan
- Division of Hematology and Oncology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mohammad Alshahrani
- Department of Pediatric Hematology-Oncology, Riyadh Military Hospital, Riyadh, Saudi Arabia
| | - Elizabeth Varga
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Timothy P Cripe
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
34
|
Aazami H, Seif F, Ghalehbaghi B, Babaheidarian P, Mohebbi A, Ahmadi A, Khoshmirsafa M, Ghalehbaghi S, Behnam B, Entezami KZ, Madjd Z, Falak R. Local eosinophils are associated with increased IgA subclass levels in the sinonasal mucosa of chronic rhinosinusitis with polyp patients. Allergy Asthma Clin Immunol 2020; 16:30. [PMID: 32351585 PMCID: PMC7183627 DOI: 10.1186/s13223-020-00428-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/15/2020] [Indexed: 01/21/2023] Open
Abstract
Background Chronic rhinosinusitis (CRS) describes an inflammatory condition affecting the sinonasal mucosa. As the immune system players such as immunoglobulins play prominent roles in the development of CRS, we aimed to investigate the expression of IgA subclasses and factors involved in IgA class switching in the sinonasal mucosa of CRS patients. Methods Specimens were collected from the sinonasal mucosa of the healthy controls and CRS patients. Histological assessments were performed by H&E and immunohistochemistry. Real-time PCR and ELISA methods were applied to measure gene expression and protein levels extracted from tissue samples, respectively. Results We observed that total IgA and subclass-positive cells were higher in the patient groups than controls. There was a significant correlation between the number of eosinophils and total IgA and subclasses-positive cells (Pv < 0.0001). The expression of CXCL13, BAFF, AID, and germline transcripts were increased in CRSwNP patients. In contrast to IgA2 levels, IgA1 levels were significantly increased in the sinonasal tissue of CRSwNP patients (Pv < 0.01). TGF-β was significantly elevated in the sinonasal tissue of patients with CRSsNP. Conclusions Increased protein levels of IgA subclasses and related antibody-producing cells were associated with elevated eosinophils in CRSwNP patients which may result in eosinophil pathological functions. Several therapeutic approaches might be developed to modulate the IgA production to ameliorate the inflammatory mechanisms in CRSwNP patients.![]()
Collapse
Affiliation(s)
- Hossein Aazami
- 1Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Seif
- 2Department of Immunology and Allergy, Academic Center for Education, Culture and Research, Tehran, Iran.,3Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Ghalehbaghi
- 4ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- 5Department of Pathology, Rasoul Akram Medical Complex, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mohebbi
- 4ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Aslan Ahmadi
- 4ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- 1Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,6Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Sahand Ghalehbaghi
- 4ENT and Head and Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Behnam
- 7Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Zinat Entezami
- 1Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- 8Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- 1Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,6Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Jia M, Liberatore RA, Guo Y, Chan KW, Pan R, Lu H, Waltari E, Mittler E, Chandran K, Finzi A, Kaufmann DE, Seaman MS, Ho DD, Shapiro L, Sheng Z, Kong XP, Bieniasz PD, Wu X. VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA. Cell Host Microbe 2020; 27:963-975.e5. [PMID: 32315598 PMCID: PMC7294236 DOI: 10.1016/j.chom.2020.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
The HIV-1 envelope (Env) undergoes conformational changes during infection. Broadly neutralizing antibodies (bNAbs) are typically isolated by using soluble Env trimers, which do not capture all Env states. To address these limitations, we devised a vesicular stomatitis virus (VSV)-based probe to display membrane-embedded Env trimers and isolated five bNAbs from two chronically infected donors, M4008 and M1214. Donor B cell receptor (BCR) repertoires identified two bNAb lineages, M4008_N1 and M1214_N1, that class-switched to immunoglobulin G (IgG) and IgA. Variants of these bNAbs reconstituted as IgA demonstrated broadly neutralizing activity, and the IgA fraction of M1214 plasma conferred neutralization. M4008_N1 epitope mapping revealed a glycan-independent V3 epitope conferring tier 2 virus neutralization. A 4.86-Å-resolution cryogenic electron microscopy (cryo-EM) structure of M1214_N1 complexed with CH505 SOSIP revealed another elongated epitope, the V2V5 corridor, extending from V2 to V5. Overall, the VSVENV probe identified bNAb lineages with neutralizing IgG and IgA members targeting distinct sites of HIV-1 Env vulnerability. VSV-displayed HIV-1 envelope trimers identified five HIV-1 bNAbs BCR repertoires identified two bNAb lineages class-switched to both IgG and IgA The V3 crown-targeting bNAb M4008_N1 conferred tier 2 virus neutralization Cryo-EM structure of bNAb M1214_N1 with CH505 SOSIP defined a V2V5 corridor epitope
Collapse
Affiliation(s)
- Manxue Jia
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Rachel A Liberatore
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Eric Waltari
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM and Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM and Université de Montréal, Montreal, QC H2X 0A9, Canada; Center for HIV-1/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
36
|
Fenton TM, Jørgensen PB, Niss K, Rubin SJS, Mörbe UM, Riis LB, Da Silva C, Plumb A, Vandamme J, Jakobsen HL, Brunak S, Habtezion A, Nielsen OH, Johansson-Lindbom B, Agace WW. Immune Profiling of Human Gut-Associated Lymphoid Tissue Identifies a Role for Isolated Lymphoid Follicles in Priming of Region-Specific Immunity. Immunity 2020; 52:557-570.e6. [PMID: 32160523 PMCID: PMC7155934 DOI: 10.1016/j.immuni.2020.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
The intestine contains some of the most diverse and complex immune compartments in the body. Here we describe a method for isolating human gut-associated lymphoid tissues (GALTs) that allows unprecedented profiling of the adaptive immune system in submucosal and mucosal isolated lymphoid follicles (SM-ILFs and M-ILFs, respectively) as well as in GALT-free intestinal lamina propria (LP). SM-ILF and M-ILF showed distinct patterns of distribution along the length of the intestine, were linked to the systemic circulation through MAdCAM-1+ high endothelial venules and efferent lymphatics, and had immune profiles consistent with immune-inductive sites. IgA sequencing analysis indicated that human ILFs are sites where intestinal adaptive immune responses are initiated in an anatomically restricted manner. Our findings position ILFs as key inductive hubs for regional immunity in the human intestine, and the methods presented will allow future assessment of these compartments in health and disease.
Collapse
Affiliation(s)
- Thomas M Fenton
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| | - Peter B Jørgensen
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kristoffer Niss
- Translational Disease Systems Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Samuel J S Rubin
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Urs M Mörbe
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Lene B Riis
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Clément Da Silva
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Adam Plumb
- Immunological Memory Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Julien Vandamme
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Henrik L Jakobsen
- Department of Gastroenterology, Surgical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Søren Brunak
- Translational Disease Systems Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Aida Habtezion
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ole H Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden; Immunological Memory Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - William W Agace
- Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden.
| |
Collapse
|
37
|
Sterlin D, Fadlallah J, Slack E, Gorochov G. The antibody/microbiota interface in health and disease. Mucosal Immunol 2020; 13:3-11. [PMID: 31413347 DOI: 10.1038/s41385-019-0192-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
Abstract
The human intestine is densely colonized with commensal microbes that stimulate the immune system. While secretory Immunoglobulin (Ig) A is known to play a crucial role in gut microbiota compartmentalization, secretory IgM, and systemic IgG have recently been highlighted in host-microbiota interactions as well. In this review, we discuss important aspects of secretory IgA biology, but rather than focusing on mechanistic aspects of IgA impact on microbiota, we stress the current knowledge of systemic antibody responses to whole gut microbiota, in particular their generation, specificities, and function. We also provide a comprehensive picture of secretory IgM biology. Finally, therapeutic and diagnostic implications of these novel findings for the treatment of various diseases are outlined.
Collapse
Affiliation(s)
- Delphine Sterlin
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, 75013, Paris, France.,Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Inserm, F-75015, Paris, France
| | - Jehane Fadlallah
- Université Paris Diderot Paris 7, Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), EA3518, 75010, Paris, France
| | - Emma Slack
- Institute of Food Sciences, Nutrition and Health, ETH Zurich, 8093, Zürich, Switzerland.
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, 75013, Paris, France.
| |
Collapse
|
38
|
Wang L, Ren D, Huang T, Liu X, Xu G. The effectiveness and safety of full-dose versus half-dose corticosteroid plus renin-angiotensin system blockers for IgA nephropathy. Ther Adv Chronic Dis 2019; 10:2040622319887875. [PMID: 31762966 PMCID: PMC6854762 DOI: 10.1177/2040622319887875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Observational studies suggest that patients with immunoglobulin A nephropathy (IgAN) showed good responses to corticosteroids (CS) but experienced severe adverse effects. The authors conducted a cohort study to evaluate the effectiveness and safety of half-dose CS plus renin-angiotensin system blockers (RASB) (CS + RASB) versus full-dose CS in IgAN patients. Methods: A total of 162 kidney biopsy-confirmed IgAN patients with protein excretion levels ⩾0.75 g/d and an estimated glomerular filtration rate (eGFR) >30 ml/min/1.73 m2 were included. A total of 89 patients received half-dose CS + RASB (half CS + RASB), and 73 patients received full-dose CS (full CS). The primary outcomes were the complete remission rates and incidence of adverse events (AEs). The secondary outcomes included 24 h urinary protein (UP) levels and a combined event. Results: Over the 18 months follow-up, the complete remission rates were 59% (53/89 patients) and 57% (42/73 patients) in the half CS + RASB and full CS groups (p = 0.88), respectively. A total of five patients suffered from serious AEs (SAEs) in the full CS group during the observation period, and no SAEs were observed in the half CS + RASB group (p = 0.012). The incidences of total AEs (p = 0.003) and infections (p = 0.01) were lower in the half CS + RASB group than in the full CS group. Conclusions: Although half CS + RASB versus full CS did not differ in terms of reducing proteinuria, therapy with half CS + RASB resulted in fewer AEs in the IgAN patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang, P.R. China
| | - Daijin Ren
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang, P.R. China
| | - Tianlun Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang, P.R. China
| | - Xin Liu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Donghu District, Nanchang, P.R. China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, P.R. China
| |
Collapse
|
39
|
Grosserichter-Wagener C, Radjabzadeh D, van der Weide H, Smit KN, Kraaij R, Hays JP, van Zelm MC. Differences in Systemic IgA Reactivity and Circulating Th Subsets in Healthy Volunteers With Specific Microbiota Enterotypes. Front Immunol 2019; 10:341. [PMID: 30899257 PMCID: PMC6417458 DOI: 10.3389/fimmu.2019.00341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Changes in the intestinal microbiota have been associated with the development of immune-mediated diseases in humans. Additionally, the introduction of defined bacterial species into the mouse intestinal microbiota has been shown to impact on the adaptive immune response. However, how much impact the intestinal microbiota composition actually has on regulating adaptive immunity remains poorly understood. Therefore, we studied aspects of the adaptive immunity in healthy adults possessing distinct intestinal microbiota profiles. The intestinal microbiota composition was determined via Illumina sequencing of bacterial 16S rRNA genes extracted from the feces of 35 individuals. Blood B-cell and T-cell subsets from the same individuals were studied using flow cytometry. Finally, the binding of fecal and plasma Immunoglobulin A (IgA) to intestinal bacteria (associated with health and disease) Bacteroides fragilis, Prevotella copri, Bifidobacterium longum, Clostridium difficile, and Escherichia coli was analyzed using ELISA. Unsupervised clustering of microbiota composition revealed the presence of three clusters within the cohort. Cluster 1 and 2 were similar to previously-described enterotypes with a predominance of Bacteroides in Cluster 1 and Prevotella in Cluster 2. The bacterial diversity (Shannon index) and bacterial richness of Cluster 3 was significantly higher than observed in Clusters 1 and 2, with the Ruminococacceae tending to predominate. Within circulating B- and T-cell subsets, only Th subsets were significantly different between groups of distinct intestinal microbiota. Individuals of Cluster 3 have significantly fewer Th17 and Th22 circulating cells, while Th17.1 cell numbers were increased in individuals of Cluster 1. IgA reactivity to intestinal bacteria was higher in plasma than feces, and individuals of Cluster 1 had significant higher plasma IgA reactivity against B. longum than individuals of Cluster 2. In conclusion, we identified three distinct fecal microbiota clusters, of which two clusters resembled previously-described "enterotypes". Global T-cell and B-cell immunity seemed unaffected, however, circulating Th subsets and plasma IgA reactivity were significantly different between Clusters. Hence, the impact of intestinal bacteria composition on human B cells, T cells and IgA reactivity appears limited in genetically-diverse and environmentally-exposed humans, but can skew antibody reactivity and Th cell subsets.
Collapse
Affiliation(s)
| | - Djawad Radjabzadeh
- Department Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Hessel van der Weide
- Department Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kyra N Smit
- Department Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Robert Kraaij
- Department Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - John P Hays
- Department Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Menno C van Zelm
- Department Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Minić R, Papić Z, Đorđević B, Michaličkova D, Ilić V, Mathiesen G, Živković I, Pantic V, Dimitrijević L. Profiling of microorganism-binding serum antibody specificities in professional athletes. PLoS One 2018; 13:e0203665. [PMID: 30252853 PMCID: PMC6155446 DOI: 10.1371/journal.pone.0203665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
The goal of this work was to elucidate similarities between microorganisms from the perspective of the humoral immune system reactivity in professional athletes. The reactivity of serum IgG of 14 young, individuals was analyzed to 23 selected microorganisms as antigens by use of the in house ELISA. Serum IgM and IgA reactivity was also analyzed and a control group of sex and age matched individuals was used for comparison. The obtained absorbance levels were used as a string of values to correlate the reactivity to different microorganisms. IgM was found to be the most cross reactive antibody class, Pearson's r = 0.7-0.92, for very distant bacterial species such as Lactobacillus and E. coli.High correlation in IgG levels was found for Gammaproteobacteria and LPS (from E. coli) (r = 0.77 for LPS vs. P. aeruginosa to r = 0.98 for LPS vs. E.coli), whereas this correlation was lower in the control group (r = 0.49 for LPS vs. P. aeruginosa to r = 0.66 for LPS vs. E.coli). The correlation was also analyzed between total IgG and IgG subclasses specific for the same microorganism, and IgG2 was identified as the main subclass recognising different microorganisms, as well as recognising LPS. Upon correlation of IgG with IgA for the same microorganism absence of or negative correlation was found between bacteria-specific IgA and IgG in case of Lactobacillus and Staphylococcusgeni, whereas correlation was absent or positive for Candida albicans, Enterococcusfaecalis,Streptococcus species tested in professional athletes. Opposite results were obtained for the control group. Outlined here is a simple experimental procedure and data analysis which yields functional significance and which can be used for determining the similarities between microorganisms from the aspect of the humoral immune system, for determining the main IgG subclass involved in an immune response as well as for the analysis of different target populations.
Collapse
Affiliation(s)
- Rajna Minić
- Department of Scientific Research, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
- * E-mail:
| | - Zlatko Papić
- University of Leeds, School of Physics and Astronomy, University of Leeds, E C Stoner Building, Leeds, United Kingdom
| | - Brižita Đorđević
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Danica Michaličkova
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Irena Živković
- Department of Scientific Research, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | - Visnja Pantic
- Department of Scientific Research, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| | - Ljiljana Dimitrijević
- Department of Scientific Research, Institute of Virology, Vaccines and Sera, Torlak, Belgrade, Serbia
| |
Collapse
|
41
|
Liang S, Jin J, Shen X, Jiang X, Li Y, He Q. Triptolide protects podocytes via autophagy in immunoglobulin A nephropathy. Exp Ther Med 2018; 16:2275-2280. [PMID: 30186468 PMCID: PMC6122401 DOI: 10.3892/etm.2018.6480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Triptolide is often used to treat patients with immunoglobulin A nephropathy (IgAN), especially in Asia. However, its detailed mechanism remains unclear. In vitro experiments were conducted with podocytes exposed to aggregated IgA (aIgA)-MSC1097-conditioned media. A total of four groups were compared in this study: A control group (CON); a healthy supernatant group (HEAs); an IgAN supernatant group (IgANs); and a triptolide group (TRI). First, aggregated IgA1 (aIgA1) was generated by heating monomeric IgA1 (mIgA1) from IgAN patients or healthy subjects. Next, the conditioned supernatant of MSC-1097 cells cultured with aIgA1 (100 mg/l) from IgAN patients (IgANs) or healthy subjects (HEAs) or without aIgA1 (CON) were harvested and used to incubate MPC5 cells. MPC5 cells in the TRI group were cultured with triptolide (10 ng/ml) and conditioned media from MSC-1097 cells cultured with aIgA1 from IgAN patients. After 24 h of treatment, MPC5 cells were collected to measure autophagy-related protein levels, including microtubule-associated protein light chain 3 (LC3), p62, cluster of differentiation (CD)63, phosphorylated-protein kinase B (Akt), Akt, p-mammalian target of rapamycin (mTOR), and mTOR, via western blotting, immunofluorescence or both, and to determine apoptosis by flow cytometry. All the results showed no difference between the CON and the HEAs. Compared to the CON and the HEAs, MPC5 cells in the IgANs group showed reduced autophagy, which was presented as decreased levels of LC3-II and CD63, as well as accumulation of p62, and an increased podocyte apoptosis rate. This was partly rescued by the addition of triptolide. Moreover, the p-mTOR/mTOR ratio increased in the IgANs group and decreased in the TRI group. Therefore, these results suggest that triptolide protects podocyte autophagy in IgAN patients.
Collapse
Affiliation(s)
- Shikai Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaogang Shen
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xinxin Jiang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
42
|
Microbiota Composition and the Integration of Exogenous and Endogenous Signals in Reactive Nasal Inflammation. J Immunol Res 2018; 2018:2724951. [PMID: 29967798 PMCID: PMC6008798 DOI: 10.1155/2018/2724951] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of reactive nasal inflammatory conditions, for example, allergic rhinitis and chronic rhinosinusitis, is steadily increasing in parallel with significant environmental changes worldwide. Allergens and as yet undefined environmental agents may trigger these conditions via the involvement of host intrinsic factors, including the innate and adaptive immune system, the nasal epithelium, and the nasal nervous system. The critical role of the nasal microbiota in coordinating these components has emerged in recent studies documenting a significant association between microbial composition and the onset and progression of allergic or nonallergic inflammation. It is now clear that the local microbiota is a major player in the development of the mucosa-associated lymphoid tissue and in the regulation of such adaptive responses as IgA production and the function of effector and regulatory T cells. Microbial components also play a major role in the regulation of epithelial barrier functions, including mucus production and the control of paracellular transport across tight junctions. Bacterial components, including lipopolysaccharide, have also been shown to induce or amplify neuroinflammatory responses by engaging specific nociceptors. Finally, bacterial products may promote tissue remodeling processes, including nasal polyp formation, by interacting with formyl peptide receptors and inducing the expression of angiogenic factors and matrix-degrading enzymes.
Collapse
|
43
|
Yang P, Zou H, Xiao B, Xu G. Comparative Efficacy and Safety of Therapies in IgA Nephropathy: A Network Meta-analysis of Randomized Controlled Trials. Kidney Int Rep 2018; 3:794-803. [PMID: 29989013 PMCID: PMC6035132 DOI: 10.1016/j.ekir.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 11/16/2022] Open
Abstract
The present study aims to compare the relative efficacy and safety of different interventions for IgA nephropathy (IgAN) with proteinuria more than 1 g/d by using network meta-analysis. We searched PubMed, Embase, and the Cochrane Library for studies compared the rate of clinical remission and/or end-stage renal disease (ESRD) and/or serious adverse events in IgAN patients with proteinuria (>1 g/d). The surface under the cumulative ranking area (SUCRA) was calculated to rank the interventions. A total of 21 randomized controlled trials with 1822 participants were included for the comparisons of 7 interventions. The rank of the most effective treatments to induce clinical remission was renin−angiotensin system inhibitors (RASi) plus urokinase, steroid plus tonsillectomy, and RASi plus steroid with a SUCRA of 0.912, 0.710, and 0.583, respectively. As for the prevention of ESRD or doubling of serum creatinine, RASi plus steroid (SUCRA 0.012) was the most effective, followed by RASi (SUCRA 0.282) and steroid (SUCRA 0.494), leaving mycophenolate mofetil as the least effective (SUCRA 0.644). There was no statistical difference among all interventions in the occurrence of serious adverse events. The current network meta-analysis demonstrated for the first time that RASi plus steroid is probably the best therapeutic choice, not only for reducing proteinuria but also for maintaining long-term renal protection.
Collapse
Affiliation(s)
- Pingping Yang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honghong Zou
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bufan Xiao
- Grade 2014, the First Clinical Medical College of Nanchang University, Nanchang, China
| | - Gaosi Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Hansen IS, Krabbendam L, Bernink JH, Loayza-Puch F, Hoepel W, van Burgsteden JA, Kuijper EC, Buskens CJ, Bemelman WA, Zaat SAJ, Agami R, Vidarsson G, van den Brink GR, de Jong EC, Wildenberg ME, Baeten DLP, Everts B, den Dunnen J. FcαRI co-stimulation converts human intestinal CD103 + dendritic cells into pro-inflammatory cells through glycolytic reprogramming. Nat Commun 2018; 9:863. [PMID: 29491406 PMCID: PMC5830413 DOI: 10.1038/s41467-018-03318-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
CD103+ dendritic cells (DC) are crucial for regulation of intestinal tolerance in humans. However, upon infection of the lamina propria this tolerogenic response is converted to an inflammatory response. Here we show that immunoglobulin A (IgA) immune complexes (IgA-IC), which are present after bacterial infection of the lamina propria, are important for the induction of inflammation by the human CD103+SIRPα+ DC subset. IgA-IC, by recognition through FcαRI, selectively amplify the production of proinflammatory cytokines TNF, IL-1β and IL-23 by human CD103+ DCs. These cells then enhance inflammation by promoting Th17 responses and activating human intestinal innate lymphoid cells 3. Moreover, FcαRI-induced cytokine production is orchestrated via upregulation of cytokine translation and caspase-1 activation, which is dependent on glycolytic reprogramming mediated by kinases Syk, PI3K and TBK1-IKKε. Our data suggest that the formation of IgA-IC in the human intestine provides an environmental cue for the conversion of a tolerogenic to an inflammatory response.
Collapse
Affiliation(s)
- Ivo S Hansen
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lisette Krabbendam
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jochem H Bernink
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Fabricio Loayza-Puch
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johan A van Burgsteden
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Elsa C Kuijper
- Department of Parasitology, Leiden University Medical Centre, University of Leiden, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Christianne J Buskens
- Department of Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Willem A Bemelman
- Department of Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastiaan A J Zaat
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Centre, University of Leiden, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Ferrara JL, Smith CM, Sheets J, Reddy P, Serody JS. Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis. J Clin Invest 2017; 127:2441-2451. [PMID: 28581444 DOI: 10.1172/jci90592] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lower gastrointestinal (GI) tract graft-versus-host disease (GVHD) is the predominant cause of morbidity and mortality from GVHD after allogeneic stem cell transplantation. Recent data indicate that lower GI tract GVHD is a complicated process mediated by donor/host antigenic disparities. This process is exacerbated by significant changes to the microbiome, and innate and adaptive immune responses that are critical to the induction of disease, persistence of inflammation, and a lack of response to therapy. Here, we discuss new insights into the biology of lower GI tract GVHD and focus on intrinsic pathways and regulatory mechanisms crucial to normal intestinal function. We then describe multiple instances in which these homeostatic mechanisms are altered by donor T cells or conditioning therapy, resulting in exacerbation of GVHD. We also discuss data suggesting that some of these mechanisms produce biomarkers that could be informative as to the severity of GVHD and its response to therapy. Finally, novel therapies that might restore homeostasis in the GI tract during GVHD are highlighted.
Collapse
Affiliation(s)
- James Lm Ferrara
- Departments of Medicine, Pediatrics, and Academic Informatics and Technology, Icahn School of Medicine at Mount Sinai and Tisch Cancer Institute, New York, New York, USA
| | - Christopher M Smith
- Departments of Medicine, Pediatrics, and Academic Informatics and Technology, Icahn School of Medicine at Mount Sinai and Tisch Cancer Institute, New York, New York, USA
| | - Julia Sheets
- University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Pavan Reddy
- Department of Medicine and University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan S Serody
- Department of Medicine and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Agace WW, McCoy KD. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity 2017; 46:532-548. [PMID: 28423335 DOI: 10.1016/j.immuni.2017.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
The intestinal immune system has the daunting task of protecting us from pathogenic insults while limiting inflammatory responses against the resident commensal microbiota and providing tolerance to food antigens. This role is particularly impressive when one considers the vast mucosal surface and changing landscape that the intestinal immune system must monitor. In this review, we highlight regional differences in the development and composition of the adaptive immune landscape of the intestine and the impact of local intrinsic and environmental factors that shape this process. To conclude, we review the evidence for a critical window of opportunity for early-life exposures that affect immune development and alter disease susceptibility later in life.
Collapse
Affiliation(s)
- William W Agace
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark; Immunology Section, Department of Experimental Medical Science, Lund University, BMC D14, Sölvegatan 19, 221 84 Lund, Sweden.
| | - Kathy D McCoy
- Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
47
|
Seppo AE, Savilahti EM, Berin MC, Sampson HA, Järvinen KM. Breast milk IgA to foods has different epitope specificity than serum IgA-Evidence for entero-mammary link for food-specific IgA? Clin Exp Allergy 2017; 47:1275-1284. [PMID: 28449395 DOI: 10.1111/cea.12945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND We have previously shown that maternal cow's milk (CM) elimination results in downregulation of CM-specific IgA antibody levels in BM, but not in serum, suggesting that an entero-mammary link may exist for food-specific antibody-secreting cells. OBJECTIVE We sought to investigate whether food-specific IgA epitope profiles differ intra-individually between mother's serum and BM. We also examined how infants' food epitope-specific IgA develops in early infancy and the relationship of IgA epitope recognition with development of cow's milk allergy (CMA). METHODS We measured specific IgA to a series of overlapping peptides in major CM allergens (αs1 -, αs2 -, β- and κ-caseins and β-lactoglobulin) in paired maternal and infant serum as well as BM samples in 31 mother-infant dyads within the first 15 post-partum months utilizing peptide microarray. RESULTS There was significant discordance in epitope specificity between BM and maternal sera ranging from only 13% of sample pairs sharing at least one epitope in αs1 -casein to 73% in κ-casein. Epitope-specific IgA was detectable in infants' sera starting at less than 3 months of age. Sera of mothers with a CMA infant had increased binding of epitope-specific IgA to CM proteins compared to those with a non-CMA infant. CONCLUSION & CLINICAL RELEVANCE These findings support the concept that mother's milk has a distinct antifood antibody repertoire when compared to the antibody repertoire of the peripheral blood. Increased binding of serum epitope-specific IgA to CM in mothers of infants with CMA may reflect inherited systemic immunogenicity of CM proteins in these families, although specific IgA in breast milk was not proportionally up-regulated.
Collapse
Affiliation(s)
- A E Seppo
- Division of Pediatric Allergy and Immunology & Center for Food Allergy, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - E M Savilahti
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M C Berin
- Division of Pediatric Allergy & Immunology and Jaffe Institute for Food Allergy, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H A Sampson
- Division of Pediatric Allergy & Immunology and Jaffe Institute for Food Allergy, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K M Järvinen
- Division of Pediatric Allergy and Immunology & Center for Food Allergy, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Division of Pediatric Allergy & Immunology and Jaffe Institute for Food Allergy, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
Jaworski JP, Bryk P, Brower Z, Zheng B, Hessell AJ, Rosenberg AF, Wu TT, Sanz I, Keefer MC, Haigwood NL, Kobie JJ. Pre-existing neutralizing antibody mitigates B cell dysregulation and enhances the Env-specific antibody response in SHIV-infected rhesus macaques. PLoS One 2017; 12:e0172524. [PMID: 28222180 PMCID: PMC5319772 DOI: 10.1371/journal.pone.0172524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/06/2017] [Indexed: 01/03/2023] Open
Abstract
Our central hypothesis is that protection against HIV infection will be powerfully influenced by the magnitude and quality of the B cell response. Although sterilizing immunity, mediated by pre-formed abundant and potent antibodies is the ultimate goal for B cell-targeted HIV vaccine strategies, scenarios that fall short of this may still confer beneficial defenses against viremia and disease progression. We evaluated the impact of sub-sterilizing pre-existing neutralizing antibody on the B cell response to SHIV infection. Adult male rhesus macaques received passive transfer of a sub-sterilizing amount of polyclonal neutralizing immunoglobulin (Ig) purified from previously infected animals (SHIVIG) or control Ig prior to intra-rectal challenge with SHIVSF162P4 and extensive longitudinal sampling was performed. SHIVIG treated animals exhibited significantly reduced viral load and increased de novo Env-specific plasma antibody. Dysregulation of the B cell profile was grossly apparent soon after infection in untreated animals; exemplified by a ≈50% decrease in total B cells in the blood evident 2-3 weeks post-infection which was not apparent in SHIVIG treated animals. IgD+CD5+CD21+ B cells phenotypically similar to marginal zone-like B cells were highly sensitive to SHIV infection, becoming significantly decreased as early as 3 days post-infection in control animals, while being maintained in SHIVIG treated animals, and were highly correlated with the induction of Env-specific plasma antibody. These results suggest that B cell dysregulation during the early stages of infection likely contributes to suboptimal Env-specific B cell and antibody responses, and strategies that limit this dysregulation may enhance the host's ability to eliminate HIV.
Collapse
Affiliation(s)
- Juan Pablo Jaworski
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Peter Bryk
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Zachary Brower
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Bo Zheng
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Alexander F. Rosenberg
- Divsion of Allergy, Immunology & Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ignacio Sanz
- Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Michael C. Keefer
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - James J. Kobie
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Zhou Y, Yuan HR, Cui L, Ansari AR, Xiao K, Luo Y, Wu XT, Guo L, Khan FA, Yang Z, Song H. Effects of visfatin on the apoptosis of intestinal mucosal cells in immunological stressed rats. Acta Histochem 2017; 119:26-31. [PMID: 27884396 DOI: 10.1016/j.acthis.2016.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/02/2023]
Abstract
This study was undertaken to determine if visfatin is involved in the inflammation or apoptosis introduced by LPS in rats. Forty 8-week old Wistar rats were divided into four groups (n=10 in each group) and injected with saline, visfatin, LPS and visfatin+LPS co-stimulated via caudal vein. The duodenum, jejunum and ileum were harvested from all the rats. Compared to the saline treated group, visfatin significantly increased the number of TUNEL-positive apoptotic cells and the expression of caspase-3 protein in intestinal mucosa. Similarly, ELISA and western blot analysis also showed the up-regulation of pro-caspase-3 and cleaved caspase-3 expression in the visfatin group compared to the control group. In contrast to LPS, visfatin down-regulated the expression of cleaved-caspase-3 in the visfatin+LPS co-stimulated group, resulting in a significant decrease in apoptosis in intestinal mucosal cells. We observed more pro-caspase-3 positive cells in the visfatin+LPS co-stimulated group. The results indicate that, in the presence of LPS, visfatin plays an important role in the regulation of cell apoptosis and inflammation.
Collapse
Affiliation(s)
- Ying Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Huai-Rui Yuan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Lu Cui
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Abdur Rahman Ansari
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Ke Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - You Luo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Xin-Tong Wu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Liang Guo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Faheem Ahmed Khan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Zhi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China
| | - Hui Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070,China.
| |
Collapse
|
50
|
Butler JE, Santiago-Mateo K, Wertz N, Sun X, Sinkora M, Francis DL. Antibody repertoire development in fetal and neonatal piglets. XXIV. Hypothesis: The ileal Peyer patches (IPP) are the major source of primary, undiversified IgA antibodies in newborn piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:340-351. [PMID: 27497872 DOI: 10.1016/j.dci.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
The ileal Peyers patches (IPP) of newborn germfree (GF) piglets were isolated into blind loops and the piglets colonized with a defined probiotic microflora. After 5 weeks, IgA levels in the intestinal lavage (IL) of loop piglets remained at GF levels and IgM comprised ∼70% while in controls, IgA levels were elevated 5-fold and comprised ∼70% of total Igs. Loop piglets also had reduced serum IgA levels suggesting the source of serum IgA had been interrupted. The isotype profile for loop contents was intermediate between that in the IL of GF and probiotic controls. Surprisingly, colonization alone did not result in repertoire diversification in the IPP. Rather, colonization promoted pronounced proliferation of fully switched IgA(+)IgM(-) B cells in the IPP that supply early, non-diversified "natural" SIgA antibodies to the gut lumen and a primary IgA response in serum.
Collapse
Affiliation(s)
- John E Butler
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | | | - Nancy Wertz
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - David L Francis
- Department of Veterinary Sciences, South Dakota State University, Brooking, SD, USA
| |
Collapse
|