1
|
Dang S, Zhang X, Zhang Y, Zhang H. New thoughts on the intestinal microbiome-B cell-IgA axis and therapies in IgA nephropathy. Autoimmun Rev 2025; 24:103835. [PMID: 40360014 DOI: 10.1016/j.autrev.2025.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
IgA nephropathy (IgAN), as the most common chronic glomerulonephritis worldwide, is often triggered by mucosal infections and follows a chronic progression, with the majority of patients ultimately progressing to end-stage renal disease (ESRD) during their lifetimes. Since the mystery of its complete pathogenesis has not been fully solved, the resulting lack of effective early diagnosis and treatment greatly affects the prognosis of patients. Given the well-defined pathological feature of IgA deposition in the mesangial region, the source and role of pathogenic IgA has been focused on. Starting from the microbiology and immunity of the gut, we systematically review both the physiological and the pathological process of microbiome-B cell-IgA axis, from microbial-induced IgA production to the role of IgA in the intestinal immune milieu, and ultimately end up with the various aspects of microbiome-B cell-IgA axis in the pathogenesis of IgAN as well as the corresponding therapeutic initiatives available. Our retrospective review helps researchers to systematically understand the complex role between intestinal flora dysbiosis and pathogenic IgA in IgAN. This understanding provides a foundation for in-depth explorations to uncover more detailed pathogenic mechanisms and to develop more precise and effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Shaoqing Dang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyu Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuemiao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Obeagu EI, Obeagu GU. Exploring the intricate relationship between peptic ulcers and immunohematological responses: A narrative review. Medicine (Baltimore) 2025; 104:e42187. [PMID: 40228282 PMCID: PMC11999392 DOI: 10.1097/md.0000000000042187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Peptic ulcers have long been a focus of medical research due to their significant impact on public health worldwide. Traditionally attributed to factors such as Helicobacter pylori infection and excessive gastric acid secretion, recent scientific endeavors have increasingly unveiled the pivotal role of immunohematological responses in the pathogenesis and clinical course of peptic ulcers. This review aims to synthesize and analyze the intricate relationship between peptic ulcers and immunohematological responses, shedding light on the complex interplay between the immune system and ulcer development, progression, and healing. Immunological factors, encompassing inflammatory mediators, immune cells, and the host response to H pylori, play a substantial role in the multifaceted landscape of peptic ulcers. Inflammation orchestrated by cytokines and chemokines derived from immune cells intricately contributes to mucosal damage and repair processes. Moreover, the chronic nature of H pylori infection triggers a cascade of immune responses, involving both innate and adaptive immunity, which significantly influences the course of ulceration. This paper consolidates current knowledge while highlighting the need for further research elucidating the intricate immunological pathways involved in peptic ulcer pathogenesis. The integration of immunology into the broader context of peptic ulcer disease presents opportunities for innovative therapeutic interventions aimed at modulating immune responses for improved clinical outcomes and enhanced patient care. Ultimately, unraveling the intricate relationship between peptic ulcers and immunohematological responses holds significant promise in advancing the understanding and management of this prevalent gastrointestinal disorder.
Collapse
|
3
|
Zhou Y, Hubscher CH. Biomarker expression level changes within rectal gut-associated lymphoid tissues in spinal cord-injured rats. Immunohorizons 2025; 9:vlaf002. [PMID: 40048710 PMCID: PMC11884801 DOI: 10.1093/immhor/vlaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Neurogenic bowel dysfunction (NBD) is common after spinal cord injury (SCI). Gut-associated lymphoid tissue (GALT), an organized structure within the mucosal immune system, is important for the maintenance of gut homeostasis and body health and serves as the first line barrier/defense against diet antigens, commensal microbiota, pathogens, and toxins in mucosal areas. The current study examined gene expression levels along six segments of anorectal tissue using real-time polymerase chain reaction (RT-PCR) in uninjured rats (28-day sham surgical controls) and at both 28- and 42-days post-T9 contusion injury. Consistent with our previous report of functional regional differences in the ano-rectum, we demonstrate the existence of GALTs located primarily within the segment at 3-4.5 cm from the rectal dentate line (termed rectal GALTs-rGALTs) in shams with upregulated gene expression levels of multiple biomarkers, including B cell and T cell-related genes, major histocompatibility complex (MHC) class II molecules, and germinal center (GC)-related genes, which was further confirmed by histologic examination. In the same rectal tissue segment following T9 SCI, inflammation-related genes were upregulated at 28 days post-injury (DPI) indicating that microbial infection and inflammation of rGALTs modified structure and function of rGALTs, while at 42 DPI rGALTs exhibited resolution of inflammation and impaired structure/function for extrafollicular B cell responses. Taken together, our data suggest that rGALTs exists in rat rectum for homeostasis of gut microbiota/barrier. SCI induces microbial infection and inflammation in rectal tissues containing rGALTs, which could contribute to development of SCI-related gut microbiome dysbiosis, NBD, and systemic diseases.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| |
Collapse
|
4
|
Artola-Borán M, Kirsche L, Fallegger A, Leary P, Tanriover M, Goodwin T, Geiger G, Hapfelmeier S, Yousefi S, Simon HU, Arnold IC, Müller A. IgA facilitates the persistence of the mucosal pathogen Helicobacter pylori. Mucosal Immunol 2025; 18:232-247. [PMID: 39581230 DOI: 10.1016/j.mucimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
IgA antibodies have an important role in clearing mucosal pathogens. In this study, we have examined the contribution of IgA to the immune control of the gastrointestinal bacterial pathogens Helicobacter pylori and Citrobacter rodentium. Both bacteria trigger a strong local IgA response that results in bacterial IgA coating in mice and in gastritis patients. Class switching to IgA depends on Peyer's patches, T-cells, eosinophils, and eosinophil-derived TGF-β in both models. In the case of H. pylori, IgA secretion and bacterial coating also depend on a functional bacterial type IV secretion system, which drives the generation of Th17 cells and the IL-17-dependent expression of the polymeric immunoglobulin receptor PIGR. IgA-/- mice are hypercolonized with C. rodentium in all examined tissues, suffer from more severe weight loss and develop more colitis. In contrast, H. pylori is controlled more efficiently in IgA-/- mice than their WT counterparts. The effects of IgA deficiency of the offspring can be compensated by maternal IgA delivered by WT foster mothers. We attribute the improved immune control observed in IgA-/- mice to IgA-mediated protection from complement killing, as H. pylori colonization is restored to wild type levels in a composite strain lacking both IgA and the central complement component C3. IgA antibodies can thus have protective or detrimental activities depending on the infectious agent.
Collapse
Affiliation(s)
- Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Lydia Kirsche
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Angela Fallegger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Peter Leary
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - Mine Tanriover
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Tanja Goodwin
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | - Gavin Geiger
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zürich, Switzerland; Comprehensive Cancer Center Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Wang LT, Juang SE, Chang HH, He AC, Chen WA, Huang YW, Van Dyke TE, Ma KSK, Chen YW. Single-cell analysis of peri-implant gingival tissue to assess implant biocompatibility and immune response. J Prosthodont Res 2025; 69:97-109. [PMID: 39231696 DOI: 10.2186/jpr.jpr_d_23_00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PURPOSE The innate immune response, particularly the reaction of polymorphonuclear neutrophils (PMNs), is crucial in shaping the outcomes of chronic inflammation, fibrosis, or osseointegration following biomaterial implantation. Peri-implantitis or peri-implant mucositis, inflammatory conditions linked to dental implants, pose a significant threat to implant success. We developed a single-cell analysis approach using a murine model to assess the immune response to implant materials, offering a practical screening tool for potential dental implants. METHODS We performed bioinformatics analysis and established a peri-implant inflammation model by inserting two titanium implants into the maxillary region, to examine the immune response. RESULTS Bioinformatics analysis revealed that titanium implants triggered a host immune response, primarily mediated by PMNs. In the in vivo experiments, we observed a rapid PMN-mediated response, with increased infiltration around the implants and on the implant surface by day 3. Remarkably, PMN attachment to the implants persisted for 7 days, resembling the immune profiles seen in human implant-mediated inflammation. CONCLUSIONS Our findings indicate that persistent attachment of the short-living PMNs to titanium implants can serve as an indicator or traits of peri-implant inflammation. Therefore, analyzing gingival tissue at the single-cell level could be a useful tool for evaluating the biocompatibility of candidate dental implants.
Collapse
Affiliation(s)
- Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sin-Ei Juang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Hao Chang
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ai-Chia He
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-An Chen
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Kevin Sheng-Kai Ma
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Department of Orthodontics and Dentofacial Orthopedics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 PMCID: PMC11662810 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Gao P, Morita N, Shinkura R. Role of mucosal IgA antibodies as novel therapies to enhance mucosal barriers. Semin Immunopathol 2024; 47:1. [PMID: 39567378 PMCID: PMC11579142 DOI: 10.1007/s00281-024-01027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
To prevent infection, the experience of the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) pandemic has led to recognition of the importance of not only vaccines but also the strengthening of mucosal barriers by secretory immunoglobulin A (IgA). Strong mucosal barrier provided by IgA is also possible to prevent allergies and chronic inflammatory conditions in the intestinal tract, since it can protect foreign enemies or antigens at the first line of defense before their invasion. Therefore, it is important to understand the role of IgA antibodies secreted by the mucosa of the body. In this section, we discuss the role of mucosal IgA antibodies in relation to three disease states: control of intestinal microbiota, protection against infection, and allergy. In addition, we provide the evidence in which the quality as well as the quantity of IgA is critical for disease prevention. Therefore, we discuss about novel strategies to enhance mucosal barriers by induction of high-quality IgA.
Collapse
Affiliation(s)
- Peng Gao
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Naoki Morita
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
9
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 PMCID: PMC11557871 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R. Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
11
|
Ichikawa T, Yamashima M, Yamamichi S, Koike M, Nakano Y, Yajima H, Miyazaki O, Ikeda T, Okamura T, Nagata K, Sawa K, Niiya K, Nakao K. Serum immunoglobulin A levels: Diagnostic utility in alcoholic liver disease and association with liver fibrosis in steatotic liver disease. Biomed Rep 2024; 21:142. [PMID: 39161940 PMCID: PMC11332156 DOI: 10.3892/br.2024.1830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
The relationship between immunoglobulin A (IgA) levels and chronic liver disease remains poorly understood. The present study evaluated the clinical significance of IgA in 478 new patients who visited the Outpatient Clinic of Nagasaki Harbor Medical Center (Nagasaki, Japan). Serum IgA levels in comparison to liver stiffness (LS), as measured using a FibroScan® device, were evaluated in 358 patients. Furthermore, in 270 patients, the associations between serum IgA levels and body composition were analyzed using computed tomography. The IgA levels of patients in the groups with Child-Pugh classification B and C (CPGBC), alcoholic liver disease (ALD), steatotic liver disease (SLD) or diabetes were higher than the IgA levels of patients in the groups with CPGA, non-ALD, non-SLD or no diabetes, respectively. Logistic regression analysis showed that CPGBC, ALD, high IgG (>1,700 mg/dl), high macrophage galactose-specific lectin-2 binding protein glycosylation isomer (M2BPGi) (>1 cut-off index) and diabetes were contributing factors for high serum IgA level (>410 mg/dl). The ratio of IgA level divided by IgG level was highest in patients with ALD, followed by those with metabolic dysfunction-associated SLD (MASLD) and non-SLD. In SLD, IgA level was associated more with LS than M2BPGi and fibrosis-4 (FIB-4) in multiple regression analysis. In the receiver operating characteristic analysis, IgA level, M2BPG, and FIB-4 had similar area under the curve values for discriminating high LS (>8 kPa) from low LS (≤8 kPa) in SLD. IgA levels were also associated with visceral fat, and this association was only found in women. In conclusion, elevated IgA is an indicator of liver fibrosis that also reflects the presence of diabetes and an increased visceral fat level. Therefore, IgA is considered a useful marker of liver disease severity in the current era of increased SLD.
Collapse
Affiliation(s)
- Tatsuki Ichikawa
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
- Department of Comprehensive Community Care Systems, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Mio Yamashima
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Shinobu Yamamichi
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Makiko Koike
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Yusuke Nakano
- Innovation and Translational Research Center, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Hiroyuki Yajima
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Osamu Miyazaki
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Tomonari Ikeda
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Takuma Okamura
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
- Department of Comprehensive Community Care Systems, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kazuyoshi Nagata
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Kenichi Sawa
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Kazutaka Niiya
- Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
12
|
Wang C, Zhang Y, Lu Y, Huang X, Jiang H, Chen G, Shao Y, Savelkoul HFJ, Jansen CA, Liu G. TGF-β1 impairs IgA class switch recombination and production in porcine Peyer's patches B cells. Eur J Immunol 2024; 54:e2350704. [PMID: 38973082 DOI: 10.1002/eji.202350704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor β1 (TGF-β1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-β1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-β1 to evaluate the effect of TGF-β1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-β1 ex vivo. Furthermore, TGF-β1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-β1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-β1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-β1-mediated inhibition of B-cell activation.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yue Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xin Huang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huazheng Jiang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guohui Chen
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongheng Shao
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
13
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Wang Z, Song B, Yao J, Li X, Zhang Y, Tang Z, Yi G. Whole-genome analysis reveals distinct adaptation signatures to diverse environments in Chinese domestic pigs. J Anim Sci Biotechnol 2024; 15:97. [PMID: 38982489 PMCID: PMC11234542 DOI: 10.1186/s40104-024-01053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Long-term natural and artificial selection has resulted in many genetic footprints within the genomes of pig breeds across distinct agroecological zones. Nevertheless, the mechanisms by which these signatures contribute to phenotypic diversity and facilitate environmental adaptation remain unclear. RESULTS Here, we leveraged whole-genome sequencing data from 82 individuals from 6 domestic pig breeds originating in tropical, high-altitude, and frigid regions. Population genetic analysis suggested that habitat isolation significantly shaped the genetic diversity and contributed to population stratification in local Chinese pig breeds. Analysis of selection signals revealed regions under selection for adaptation in tropical (55.5 Mb), high-altitude (43.6 Mb), and frigid (17.72 Mb) regions. The potential functions of the selective sweep regions were linked to certain complex traits that might play critical roles in different geographic environments, including fat coverage in frigid environments and blood indicators in tropical and high-altitude environments. Candidate genes under selection were significantly enriched in biological pathways involved in environmental adaptation. These pathways included blood circulation, protein degradation, and inflammation for adaptation to tropical environments; heart and lung development, hypoxia response, and DNA damage repair for high-altitude adaptation; and thermogenesis, cold-induced vasodilation (CIVD), and the cell cycle for adaptation to frigid environments. By examining the chromatin state of the selection signatures, we identified the lung and ileum as two candidate functional tissues for environmental adaptation. Finally, we identified a mutation (chr1: G246,175,129A) in the cis-regulatory region of ABCA1 as a plausible promising variant for adaptation to tropical environments. CONCLUSIONS In this study, we conducted a genome-wide exploration of the genetic mechanisms underlying the adaptability of local Chinese pig breeds to tropical, high-altitude, and frigid environments. Our findings shed light on the prominent role of cis-regulatory elements in environmental adaptation in pigs and may serve as a valuable biological model of human plateau-related disorders and cardiovascular diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
| | - Bangmin Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Jianyu Yao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China
| | - Yan Zhang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China.
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama, 547500, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan, 528226, China.
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama, 547500, China.
| |
Collapse
|
15
|
Pena JMS, Lannes-Costa PS, Nagao PE. Vaccines for Streptococcus agalactiae: current status and future perspectives. Front Immunol 2024; 15:1430901. [PMID: 38947337 PMCID: PMC11211565 DOI: 10.3389/fimmu.2024.1430901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
A maternal vaccine to protect newborns against invasive Streptococcus agalactiae infection is a developing medical need. The vaccine should be offered during the third trimester of pregnancy and induce strong immune responses and placental transfer of protective antibodies. Polysaccharide vaccines against S. agalactiae conjugated to protein carriers are in advanced stages of development. Additionally, protein-based vaccines are also in development, showing great promise as they can provide protection regardless of serotype. Furthermore, safety concerns regarding a new vaccine are the main barriers identified. Here, we present vaccines in development and identified safety, cost, and efficacy concerns, especially in high-need, low-income countries.
Collapse
Affiliation(s)
- João Matheus Sobral Pena
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Pamella Silva Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Wang J, He M, Yang M, Ai X. Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci 2024; 345:122612. [PMID: 38588949 DOI: 10.1016/j.lfs.2024.122612] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Gut microbiota is a complex microbial community with the ability of maintaining intestinal health. Intestinal homeostasis largely depends on the mucosal immune system to defense external pathogens and promote tissue repair. In recent years, growing evidence revealed the importance of gut microbiota in shaping intestinal mucosal immunity. Therefore, according to the existing findings, this review first provided an overview of intestinal mucosal immune system before summarizing the regulatory roles of gut microbiota in intestinal innate and adaptive immunity. Specifically, this review delved into the gut microbial interactions with the cells such as intestinal epithelial cells (IECs), macrophages, dendritic cells (DCs), neutrophils, and innate lymphoid cells (ILCs) in innate immunity, and T and B lymphocytes in adaptive immunity. Furthermore, this review discussed the main effects of gut microbiota dysbiosis in intestinal diseases and offered future research prospects. The review highlighted the key regulatory roles of gut microbiota in intestinal mucosal immunity via various host-microbe interactions, providing valuable references for the development of microbial therapy in intestinal diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaopeng Ai
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Department of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
17
|
Tuz AA, Ghosh S, Karsch L, Ttoouli D, Sata SP, Ulusoy Ö, Kraus A, Hoerenbaum N, Wolf JN, Lohmann S, Zwirnlein F, Kaygusuz V, Lakovic V, Tummes HL, Beer A, Gallert M, Thiebes S, Qefalia A, Cibir Z, Antler M, Korste S, Haj Yehia E, Michel L, Rassaf T, Kaltwasser B, Abdelrahman H, Mohamud Yusuf A, Wang C, Yin D, Haeusler L, Lueong S, Richter M, Engel DR, Stenzel M, Soehnlein O, Frank B, Solo-Nomenjanahary M, Ho-Tin-Noé B, Siveke JT, Totzeck M, Hoffmann D, Grüneboom A, Hagemann N, Hasenberg A, Desilles JP, Mazighi M, Sickmann A, Chen J, Hermann DM, Gunzer M, Singh V. Stroke and myocardial infarction induce neutrophil extracellular trap release disrupting lymphoid organ structure and immunoglobulin secretion. NATURE CARDIOVASCULAR RESEARCH 2024; 3:525-540. [PMID: 39195931 PMCID: PMC11358010 DOI: 10.1038/s44161-024-00462-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/12/2024] [Indexed: 08/29/2024]
Abstract
Post-injury dysfunction of humoral immunity accounts for infections and poor outcomes in cardiovascular diseases. Among immunoglobulins (Ig), IgA, the most abundant mucosal antibody, is produced by plasma B cells in intestinal Peyer's patches (PP) and lamina propria. Here we show that patients with stroke and myocardial ischemia (MI) had strongly reduced IgA blood levels. This was phenocopied in experimental mouse models where decreased plasma and fecal IgA were accompanied by rapid loss of IgA-producing plasma cells in PP and lamina propria. Reduced plasma IgG was detectable in patients and experimental mice 3-10 d after injury. Stroke/MI triggered the release of neutrophil extracellular traps (NETs). Depletion of neutrophils, NET degradation or blockade of NET release inhibited the loss of IgA+ cells and circulating IgA in experimental stroke and MI and in patients with stroke. Our results unveil how tissue-injury-triggered systemic NET release disrupts physiological Ig secretion and how this can be inhibited in patients.
Collapse
Affiliation(s)
- Ali A Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Laura Karsch
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dimitris Ttoouli
- Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sai P Sata
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Özgür Ulusoy
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nils Hoerenbaum
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jan-Niklas Wolf
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sabrina Lohmann
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Franziska Zwirnlein
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Viola Kaygusuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Vivian Lakovic
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hannah-Lea Tummes
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Markus Gallert
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Thiebes
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Altea Qefalia
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Medina Antler
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Korste
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elias Haj Yehia
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hossam Abdelrahman
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dongpei Yin
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lars Haeusler
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathis Richter
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Universität Münster, Münster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Universität Münster, Münster, Germany
| | - Benedikt Frank
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mialitiana Solo-Nomenjanahary
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Benoît Ho-Tin-Noé
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jean-Philippe Desilles
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| | - Mikael Mazighi
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jianxu Chen
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany.
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
18
|
Pecha B, Martinez S, Milburn LJ, Rojas OL, Koch MA. Identification of Intestinal Lamina Propria Plasma Cells by Surface Transmembrane Activator and CAML Interactor Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1022-1028. [PMID: 38294253 PMCID: PMC10932850 DOI: 10.4049/jimmunol.2300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Plasma cells secrete an abundance of Abs and are a crucial component of our immune system. The intestinal lamina propria harbors the largest population of plasma cells, most of which produce IgA. These Abs can bind to beneficial gut bacteria to reinforce intestinal homeostasis and provide protection against enteric pathogens. Plasma cells downregulate many cell-surface proteins commonly used to identify B cells. In mice, expression of the surface marker CD138 has been widely used to identify plasma cells in lymph nodes, bone marrow, and spleen. Intestinal plasma cells require liberation via extensive tissue processing involving treatment with collagenase. We report that detection of CD138 surface expression is reduced following collagenase treatment. Using a mouse in which yellow fluorescent protein expression is controlled by the plasma cell requisite transcription factor Blimp-1, we show that surface detection of transmembrane activator and CAML interactor captures a significant proportion of Ab-secreting plasma cells in the intestinal lamina propria and gut-draining mesenteric lymph nodes. Additionally, we describe a flow cytometry panel based on the detection of surface markers to identify murine B cell subsets in the intestinal lamina propria and, as a proof of concept, combine it with a cutting-edge fate-tracking system to characterize the fate of germinal center B cells activated in early life. By identifying plasma cells and other key intestinal B subsets in a manner compatible with several downstream applications, including sorting and culturing and in vitro manipulations, this efficient and powerful approach can enhance studies of mucosal immunity.
Collapse
Affiliation(s)
- Bingjie Pecha
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | | | - Luke J Milburn
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Olga L Rojas
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan A Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol 2024; 21:35-45. [PMID: 38097774 DOI: 10.1038/s41575-023-00864-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.
Collapse
Affiliation(s)
- Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Liza Konnikova
- Department of Paediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Petter Brodin
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
20
|
Conca W, Saleh SM, Al-Rabiah R, Parhar RS, Abd-Elnaeim M, Al-Hindas H, Tinson A, Kroell KB, Liedl KR, Collison K, Kishore U, Al-Mohanna F. The immunoglobulin A isotype of the Arabian camel ( Camelus dromedarius) preserves the dualistic structure of unconventional single-domain and canonical heavy chains. Front Immunol 2023; 14:1289769. [PMID: 38162642 PMCID: PMC10756906 DOI: 10.3389/fimmu.2023.1289769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.
Collapse
Affiliation(s)
- Walter Conca
- Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rana Al-Rabiah
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ranjit Singh Parhar
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mahmoud Abd-Elnaeim
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hussein Al-Hindas
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Alexander Tinson
- Management of Scientific Centers and Presidential Camels, Department of President’s Affairs, Hilli ET and Cloning Centre, Al Ain, United Arab Emirates
| | | | - Klaus Roman Liedl
- Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Elesela S, Arzola-Martínez L, Rasky A, Ptaschinski C, Hogan SP, Lukacs NW. Mucosal IgA immune complex induces immunomodulatory responses in allergic airway and intestinal T H2 disease. J Allergy Clin Immunol 2023; 152:1607-1618.e1. [PMID: 37604310 DOI: 10.1016/j.jaci.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND IgA is the most abundant immunoglobulin at the mucosal surface and although its role in regulating mucosal immunity is not fully understood, its presence is associated with protection from developing allergic disease. OBJECTIVE We sought to determine the role of IgA immune complexes for therapeutic application to mucosal allergic responses. METHODS Trinitrophenol (TNP)-specific IgA immune complexes were applied, using TNP-coupled ovalbumin (OVA), to airway and gut mucosal surfaces in systemically sensitized allergic animals to regulate allergen challenge responses. Animals were assessed for both pathologic and immune-mediated responses in the lung and gut, respectively, using established mouse models. RESULTS The mucosal application of IgA immune complexes in the lung and gut with TNP-OVA regulated TH2-driven allergic response in the lung and gut, reducing TH2 cytokines and mucus (lung) as well as diarrhea and temperature loss (gut), but increasing IL-10 and the number of regulatory T cells. The IgA-OVA immune complex did not alter peanut-induced anaphylaxis, indicating antigen specificity. Using OVA-specific DO.11-green fluorescent protein IL-4 reporter mouse-derived TH2-skewed cells in a transfer model demonstrated that mucosal IgA immune complex treatment reduced TH2-cell expansion and increased the number of regulatory T cells. To address a potential mechanism of action, TGF-β and IL-10 were induced in bone marrow-derived dendritic cells when they were exposed to IgA immune complex, suggesting a regulatory phenotype induced in dendritic cells that also led to an altered primary T-cell-mediated response in in vitro OVA-specific assays. CONCLUSIONS These studies highlight one possible mechanism of how allergen-specific IgA may provide a regulatory signal to reduce the development of allergic responses in the lung and gut.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Llilian Arzola-Martínez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Andrew Rasky
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Simon P Hogan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich.
| |
Collapse
|
22
|
Hewawaduge C, Kwon J, Sivasankar C, Park JY, Senevirathne A, Lee JH. Salmonella delivers H9N2 influenza virus antigens via a prokaryotic and eukaryotic dual-expression vector and elicits bivalent protection against avian influenza and fowl typhoid. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105058. [PMID: 37714394 DOI: 10.1016/j.dci.2023.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The H9N2 avian influenza virus significantly affects the health of poultry and humans. We identified a prokaryotic and eukaryotic dual-expression vector system, pJHL270, that can provide simultaneous MHC class I and II stimulation of the host immune system, and we designed vaccine antigens by selecting the consensus HA1 sequence and M2e antigens from H9N2 virus circulating in South Korea from 2000 to 2021. The genes were cloned into the pJHL270 vector, and the cloned plasmid was delivered by a live-attenuated Salmonella Gallinarum (SG) strain. The immunity and protective efficacy of the SG-based H9N2 vaccine construct, JOL2922, against avian influenza and fowl typhoid (FT) were evaluated. The Ptrc and CMV promoters conferred antigen expression in prokaryotic and eukaryotic cells to induce balanced Th-1/Th-2 immunity. Chickens immunized with JOL2922 yielded high antigen-specific humoral and mucosal immune responses. qRT-PCR revealed that the strain generated polyfunctional IFN-γ and IL-4 secretion in immunized chickens. Furthermore, a FACS analysis showed increased CD3CD4+ and CD3CD8+ T-cell subpopulations following immunization. Peripheral Blood Mononuclear Cells (PBMCs) harvested from the immunized chickens significantly increased MHC class I and II expression, 3.5-fold and 2.5-fold increases, respectively. Serum collected from the immunized groups had an evident hemagglutinin inhibition titer of ≥6 log2. Immunization reduced the lung viral titer by 3.8-fold within 5 days post-infection. The strain also generated SG-specific humoral and cellular immune responses. The immunized birds all survived a virulent SG wild-type challenge. In addition, the bacterial burden was reduced by 2.7-fold and 2.1-fold in spleen and liver tissue, respectively, collected from immunized chickens. Our data indicate that an attenuated SG strain successfully delivered the dual-expression vector system and co-stimulated MHC class I and II antigen presentation pathways via exogenous and endogenous antigen presentation, thereby triggering a balanced Th-1/Th-2-based immune response and conferring effective protection against avian influenza and FT.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
23
|
Li N, Zhu Q, Tian Y, Ahn KJ, Wang X, Cramer Z, Jou J, Folkert IW, Yu P, Adams-Tzivelekidis S, Sehgal P, Mahmoud NN, Aarons CB, Roses RE, Thomas-Tikhonenko A, Furth EE, Stanger BZ, Rustgi A, Haldar M, Katona BW, Tan K, Lengner CJ. Mapping and modeling human colorectal carcinoma interactions with the tumor microenvironment. Nat Commun 2023; 14:7915. [PMID: 38036590 PMCID: PMC10689473 DOI: 10.1038/s41467-023-43746-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
The initiation and progression of cancer are intricately linked to the tumor microenvironment (TME). Understanding the function of specific cancer-TME interactions poses a major challenge due in part to the complexity of the in vivo microenvironment. Here we predict cancer-TME interactions from single cell transcriptomic maps of both human colorectal cancers (CRCs) and mouse CRC models, ask how these interactions are altered in human tumor organoid (tumoroid) cultures, and functionally recapitulate human myeloid-carcinoma interactions in vitro. Tumoroid cultures suppress gene expression programs involved in inflammation and immune cell migration, providing a reductive platform for re-establishing carcinoma-immune cell interactions in vitro. Introduction of human monocyte-derived macrophages into tumoroid cultures instructs macrophages to acquire immunosuppressive and pro-tumorigenic gene expression programs similar to those observed in vivo. This includes hallmark induction of SPP1, encoding Osteopontin, an extracellular CD44 ligand with established oncogenic effects. Taken together, these findings offer a framework for understanding CRC-TME interactions and provide a reductionist tool for modeling specific aspects of these interactions.
Collapse
Affiliation(s)
- Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Qin Zhu
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yuhua Tian
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xin Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zvi Cramer
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Justine Jou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian W Folkert
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pengfei Yu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephanie Adams-Tzivelekidis
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Najia N Mahmoud
- Division of Colorectal Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cary B Aarons
- Division of Colorectal Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert E Roses
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrei Thomas-Tikhonenko
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben Z Stanger
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anil Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York City, NY, 10032, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bryson W Katona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Neziraj T, Siewert L, Pössnecker E, Pröbstel AK. Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases. Eur J Immunol 2023; 53:e2250033. [PMID: 37624875 DOI: 10.1002/eji.202250033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-β. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.
Collapse
Affiliation(s)
- Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Lena Siewert
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Ferar K, Hall TO, Crawford DC, Rowley R, Satterfield BA, Li R, Gragert L, Karlson EW, de Andrade M, Kullo IJ, McCarty CA, Kho A, Hayes MG, Ritchie MD, Crane PK, Mirel DB, Carlson C, Connolly JJ, Hakonarson H, Crenshaw AT, Carrell D, Luo Y, Dikilitas O, Denny JC, Jarvik GP, Crosslin DR. Genetic variation in the human leukocyte antigen region confers susceptibility to Clostridioides difficile infection. Sci Rep 2023; 13:18532. [PMID: 37898691 PMCID: PMC10613277 DOI: 10.1038/s41598-023-45649-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/22/2023] [Indexed: 10/30/2023] Open
Abstract
Clostridioides difficile (C. diff.) infection (CDI) is a leading cause of hospital acquired diarrhea in North America and Europe and a major cause of morbidity and mortality. Known risk factors do not fully explain CDI susceptibility, and genetic susceptibility is suggested by the fact that some patients with colons that are colonized with C. diff. do not develop any infection while others develop severe or recurrent infections. To identify common genetic variants associated with CDI, we performed a genome-wide association analysis in 19,861 participants (1349 cases; 18,512 controls) from the Electronic Medical Records and Genomics (eMERGE) Network. Using logistic regression, we found strong evidence for genetic variation in the DRB locus of the MHC (HLA) II region that predisposes individuals to CDI (P > 1.0 × 10-14; OR 1.56). Altered transcriptional regulation in the HLA region may play a role in conferring susceptibility to this opportunistic enteric pathogen.
Collapse
Affiliation(s)
- Kathleen Ferar
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA.
| | - Taryn O Hall
- Optum Genomics, UnitedHealth Group, Minnetonka, MN, USA
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Robb Rowley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Rongling Li
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Loren Gragert
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Catherine A McCarty
- University of Minnesota Medical School, Duluth, MN, USA
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - Abel Kho
- Divisions of General Internal Medicine and Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marylyn D Ritchie
- Department of Biochemistry and Molecular Biology, Center for Systems Genomics, Pennsylvania State University, University Park, PA, USA
| | - Paul K Crane
- Division of General Internal Medicine, University of Washington, Seattle, WA, USA
| | | | - Christopher Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John J Connolly
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - David Carrell
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Yuan Luo
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ozan Dikilitas
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, USA
| | - David R Crosslin
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
26
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
27
|
Zhang X, Xiao H, Zhang H, Jiang Y. Lactobacillus plantarum surface-displayed FomA ( Fusobacterium nucleatum) protein generally stimulates protective immune responses in mice. Front Microbiol 2023; 14:1228857. [PMID: 37799603 PMCID: PMC10548212 DOI: 10.3389/fmicb.2023.1228857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
A significant correlation is observed between Fusobacterium nucleatum (F. nucleatum) and the evolution of inflammatory bowel disease (IBD). Particularly, FomA, a critical pathogenic element of F. nucleatum, inflicts substantial detriment to human intestinal health. Our research focused on the development of recombinant Lactobacillus plantarum that expresses FomA protein, demonstrating its potential in protecting mice from severe IBD induced by F. nucleatum. To commence, two recombinant strains, namely L. plantarum NC8-pSIP409-pgsA'-FomA and NC8-pSIP409-FnBPA-pgsA'-FomA, were successfully developed. Validation of the results was achieved through flow cytometry, ELISA, and MTT assays. It was observed that recombinant L. plantarum instigated mouse-specific humoral immunity and elicited mucosal and T cell-mediated immune responses. Significantly, it amplified the immune reaction of B cells and CD4+T cells, facilitated the secretion of cytokines such as IgA, IL4, and IL10, and induced lymphocyte proliferation in response to FomA protein stimulation. Finally, we discovered that administering recombinant L. plantarum could protect mice from severe IBD triggered by F. nucleatum, subsequently reducing pathological alterations and inflammatory responses. These empirical findings further the study of an innovative oral recombinant Lactobacillus vaccine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huaiyu Zhang
- Department of Rehabilitation Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Shan J, Liu S, Liu H, Yuan J, Lin J. Mechanism of Qingchang Suppository on repairing the intestinal mucosal barrier in ulcerative colitis. Front Pharmacol 2023; 14:1221849. [PMID: 37675045 PMCID: PMC10478270 DOI: 10.3389/fphar.2023.1221849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, and the outcomes of conventional therapies of UC, including 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are not satisfied with patients and physicians with regard to adverse reactions and financial burden. The abnormality of the intestinal mucosal barrier in the pathogenesis of UC was verified. Qingchang Suppository (QCS) is an herbal preparation and is effective in treating ulcerative proctitis. The mechanism of QCS and its active ingredients have not been concluded especially in mucosal healing. This review elucidated the potential mechanism of QCS from the intestinal mucosal barrier perspective to help exploring future QCS research directions.
Collapse
Affiliation(s)
- Jingyi Shan
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyue Liu
- Department of Intensive Care Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Yu T, Yang W, Yao S, Yu Y, Wakamiya M, Golovko G, Cong Y. STING Promotes Intestinal IgA Production by Regulating Acetate-producing Bacteria to Maintain Host-microbiota Mutualism. Inflamm Bowel Dis 2023; 29:946-959. [PMID: 36661414 PMCID: PMC10233729 DOI: 10.1093/ibd/izac268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intestinal Immunoglobulin A (IgA) is crucial in maintaining host-microbiota mutualism and gut homeostasis. It has been shown that many species of gut bacteria produce cyclic dinucleotides, along with an abundance of microbiota-derived DNA present within the intestinal lumen, which triggers the tonic activation of the cytosolic cGAS-STING pathway. However, the role of STING in intestinal IgA remains poorly understood. We further investigated whether and how STING affects intestinal IgA response. METHODS Intestinal IgA was determined between wild-type (WT) mice and Sting-/- mice in steady conditions and upon enteric Citrobacter rodentium infection. STING agonists were used to stimulating B cells or dendritic cells in vitro. Gut microbiota composition was examined by 16S ribosomal RNA gene sequencing. Bacteria metabolomics functional analyses was performed by PICRUSt2. Fecal short-chain fatty acid (SCFA) was determined by Mass spectrometry and Cedex Bio Analyzer. Gut bacteria from WT mice and Sting-/- mice were transferred into germ-free mice and antibiotic-pretreated mice. RESULTS Intestinal IgA response was impaired in Sting-/- mice. However, STING agonists did not directly stimulate B cells or dendritic cells to induce IgA. Interestingly, Sting-/- mice displayed altered gut microbiota composition with decreased SCFA-producing bacteria and downregulated SCFA fermentation pathways. Transfer of fecal bacteria from Sting-/- mice induced less IgA than that from WT mice in germ-free mice and antibiotic-pretreated mice, which is mediated by GPR43. Acetate, the dominant SCFA, was decreased in Sting-/- mice, and supplementation of acetate restored intestinal IgA production in Sting-/- mice. CONCLUSIONS STING promotes intestinal IgA by regulating acetate-producing gut bacteria.
Collapse
Affiliation(s)
- Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yanbo Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maki Wakamiya
- Germ-free Mouse Facility, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
30
|
von Gunten S, Schneider C, Imamovic L, Gorochov G. Antibody diversity in IVIG: Therapeutic opportunities for novel immunotherapeutic drugs. Front Immunol 2023; 14:1166821. [PMID: 37063852 PMCID: PMC10090664 DOI: 10.3389/fimmu.2023.1166821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Significant progress has been made in the elucidation of human antibody repertoires. Furthermore, non-canonical functions of antibodies have been identified that reach beyond classical functions linked to protection from pathogens. Polyclonal immunoglobulin preparations such as IVIG and SCIG represent the IgG repertoire of the donor population and will likely remain the cornerstone of antibody replacement therapy in immunodeficiencies. However, novel evidence suggests that pooled IgA might promote orthobiotic microbial colonization in gut dysbiosis linked to mucosal IgA immunodeficiency. Plasma-derived polyclonal IgG and IgA exhibit immunoregulatory effects by a diversity of different mechanisms, which have inspired the development of novel drugs. Here we highlight recent insights into IgG and IgA repertoires and discuss potential implications for polyclonal immunoglobulin therapy and inspired drugs.
Collapse
Affiliation(s)
- Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- *Correspondence: Stephan von Gunten,
| | | | - Lejla Imamovic
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Assistance Publique Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
31
|
Vasquez-Martínez N, Guillen D, Moreno-Mendieta SA, Sanchez S, Rodríguez-Sanoja R. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Polymers (Basel) 2023; 15:1615. [PMID: 37050229 PMCID: PMC10097111 DOI: 10.3390/polym15071615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| |
Collapse
|
32
|
Jang J, Hwang S, Oh AR, Park S, Yaseen U, Kim JG, Park S, Jung Y, Cha JY. Fructose malabsorption in ChREBP-deficient mice disrupts the small intestine immune microenvironment and leads to diarrhea-dominant bowel habit changes. Inflamm Res 2023; 72:769-782. [PMID: 36813915 DOI: 10.1007/s00011-023-01707-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The mechanism by which incompletely absorbed fructose causes gastrointestinal symptoms is not fully understood. In this study, we investigated the immunological mechanisms of bowel habit changes associated with fructose malabsorption by examining Chrebp-knockout mice exhibiting defective fructose absorption. METHODS Mice were fed a high-fructose diet (HFrD), and stool parameters were monitored. The gene expression in the small intestine was analyzed by RNA sequencing. Intestinal immune responses were assessed. The microbiota composition was determined by 16S rRNA profiling. Antibiotics were used to assess the relevance of microbes for HFrD-induced bowel habit changes. RESULTS Chrebp-knockout (KO) mice fed HFrD showed diarrhea. Small-intestine samples from HFrD-fed Chrebp-KO mice revealed differentially expressed genes involved in the immune pathways, including IgA production. The number of IgA-producing cells in the small intestine decreased in HFrD-fed Chrebp-KO mice. These mice showed signs of increased intestinal permeability. Chrebp-KO mice fed a control diet showed intestinal bacterial imbalance, which the HFrD exaggerated. Bacterial reduction improved diarrhea-associated stool parameters and restored the decreased IgA synthesis induced in HFrD-fed Chrebp-KO mice. CONCLUSIONS The collective data indicate that gut microbiome imbalance and disrupting homeostatic intestinal immune responses account for the development of gastrointestinal symptoms induced by fructose malabsorption.
Collapse
Affiliation(s)
- Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea
| | - Ah-Reum Oh
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea.,Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Uzma Yaseen
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Jae Gon Kim
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea
| | - Sangbin Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea. .,Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea.
| | - Ji-Young Cha
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea. .,Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea. .,Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
33
|
How Estrogen, Testosterone, and Sex Differences Influence Serum Immunoglobulin Isotype Patterns in Mice and Humans. Viruses 2023; 15:v15020482. [PMID: 36851695 PMCID: PMC9961480 DOI: 10.3390/v15020482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Females often exhibit superior immune responses compared to males toward vaccines and pathogens such as influenza viruses and SARS-CoV-2. To help explain these differences, we first studied serum immunoglobulin isotype patterns in C57BL/6 male and female mice. We focused on IgG2b, an isotype that lends to virus control and that has been previously shown to be elevated in murine females compared to males. Improvements in IgG2b serum levels, and/or IgG2b ratios with other non-IgM isotypes, were observed when: (i) wildtype (WT) female mice were compared to estrogen receptor knockout mice (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all higher in WT mice), (ii) unmanipulated female mice were compared to ovariectomized mice (IgG2b/IgA was higher in unmanipulated animals), (iii) female mice were supplemented with estrogen in the context of an inflammatory insult (IgG2b and IgG2b/IgG3 were improved by estrogen supplementation), and (iv) male mice were supplemented with testosterone, a hormone that can convert to estrogen in vivo (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all improved by supplementation). We next examined data from three sets of previously described male and female human blood samples. In each case, there were higher IgG2 levels, and/or ratios of IgG2 with non-IgM isotypes, in human females compared to males. The effects of sex and sex hormones in the mouse and human studies were subtle, but frequent, suggesting that sex hormones represent only a fraction of the factors that influence isotype patterns. Examination of the gene loci suggested that upregulation of murine IgG2b or human IgG2 could be mediated by estrogen receptor binding to estrogen response elements and cytosine-adenine (CA) repeats upstream of respective Cγ genes. Given that murine IgG2b and human IgG2 lend to virus control, the isotype biases in females may be sufficient to improve outcomes following vaccination or infection. Future attention to sex hormone levels, and consequent immunoglobulin isotype patterns, in clinical trials are encouraged to support the optimization of vaccine and drug products for male and female hosts.
Collapse
|
34
|
Merchak AR, Cahill HJ, Brown LC, Brown RM, Rivet-Noor C, Beiter RM, Slogar ER, Olgun DG, Gaultier A. The activity of the aryl hydrocarbon receptor in T cells tunes the gut microenvironment to sustain autoimmunity and neuroinflammation. PLoS Biol 2023; 21:e3002000. [PMID: 36787309 PMCID: PMC9928083 DOI: 10.1371/journal.pbio.3002000] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Multiple sclerosis (MS) is a T cell-driven autoimmune disease that attacks the myelin of the central nervous system (CNS) and currently has no cure. MS etiology is linked to both the gut flora and external environmental factors but this connection is not well understood. One immune system regulator responsive to nonpathogenic external stimuli is the aryl hydrocarbon receptor (AHR). The AHR, which binds diverse molecules present in the environment in barrier tissues, is a therapeutic target for MS. However, AHR's precise function in T lymphocytes, the orchestrators of MS, has not been described. Here, we show that in a mouse model of MS, T cell-specific Ahr knockout leads to recovery driven by a decrease in T cell fitness. At the mechanistic level, we demonstrate that the absence of AHR changes the gut microenvironment composition to generate metabolites that impact T cell viability, such as bile salts and short chain fatty acids. Our study demonstrates a newly emerging role for AHR in mediating the interdependence between T lymphocytes and the microbiota, while simultaneously identifying new potential molecular targets for the treatment of MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Andrea R. Merchak
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- Neuroscience Graduate Program, University of Virginia, Charlottesville Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hannah J. Cahill
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Lucille C. Brown
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ryan M. Brown
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- Neuroscience Graduate Program, University of Virginia, Charlottesville Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, United States of America
| | - Courtney Rivet-Noor
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- Neuroscience Graduate Program, University of Virginia, Charlottesville Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rebecca M. Beiter
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- Neuroscience Graduate Program, University of Virginia, Charlottesville Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, United States of America
| | - Erica R. Slogar
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Deniz G. Olgun
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alban Gaultier
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
35
|
Xu S, Jia X, Liu Y, Pan X, Chang J, Wei W, Lu P, Petry D, Che L, Jiang X, Wang J, Wu D. Effects of yeast-derived postbiotic supplementation in late gestation and lactation diets on performance, milk quality, and immune function in lactating sows. J Anim Sci 2023; 101:skad201. [PMID: 37330668 PMCID: PMC10294553 DOI: 10.1093/jas/skad201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
This experiment was conducted to determine the effects of yeast-derived postbiotic (YDP) supplementation in sow diets during late gestation and lactation on the performance of sows and their offspring. At 90-d gestation, 150 sows (Landrace × Large White, parity: 3.93 ± 0.11) were allocated to three dietary treatments (n = 50 per treatment): 1) basal diet (control [CON]), 2) basal diet with 1.25 g/kg YDP (0.125 group), and 3) basal diet with 2.00 g/kg YDP (0.200 group). The experiment continued until the end of weaning (day 21 of lactation). Supplementation with YDP resulted in greater deposition of backfat in sows during late gestation and an increasing trend in average weaning weight of piglets than observed in the CON group (P < 0.01, P = 0.05). Supplementation with YDP decreased piglet mortality and diarrhea index in piglets (P < 0.05). In farrowing sows' serum, the glutathione peroxide content in the YDP group was lower than that in the CON group (P < 0.05); the content of immunoglobulin A (IgA) in the 0.200 group or YDP group was higher than that in the CON group (P < 0.05). In lactating sows' serum, malondialdehyde content was higher in the YDP group (P < 0.05). In day 3 milk of sows, the 0.200 group tended to increase the lactose content (P = 0.07), and tended to decrease the secretory immunoglobulin A (sIgA) content (P = 0.06) with respect to that in the CON group. The sIgA content in the YDP group was lower than that in the CON group (P < 0.05). In the milk of sows, the 0.200 group tended to increase the lactose content with respect to that in the CON group (P = 0.08); the immunoglobulin G (IgG) content in the 0.125 group or YDP group was higher than that in the CON group (P < 0.05). YDP supplementation increased the IgA content in the milk (P < 0.01). In sow placenta, the content of total anti-oxidant capacity in the YDP group was higher than that in the CON group (P = 0.05); and the content of transforming growth factor-β in the YDP group was higher than that in the CON group (P < 0.05). In piglet serum, the content of IgG and immunoglobulin M in the 0.125 group was higher than that in the CON and 0.200 groups (P < 0.05). In summary, this study indicated that feeding sows diets supplemented with YDP from late gestation through lactation increased sows' backfat deposition in late gestation and piglets' weaning weight; decreased piglet mortality and diarrhea index in piglets; and improved maternal and offspring immunity.
Collapse
Affiliation(s)
- Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xinlin Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Yalei Liu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - XuJing Pan
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - JunLei Chang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Wenyan Wei
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Ping Lu
- Diamond V Mills LLC, Hilda Rapids, IA, USA
| | | | - Lianqiang Che
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xuemei Jiang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - De Wu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|
36
|
Frede A, Czarnewski P, Monasterio G, Tripathi KP, Bejarano DA, Ramirez Flores RO, Sorini C, Larsson L, Luo X, Geerlings L, Novella-Rausell C, Zagami C, Kuiper R, Morales RA, Castillo F, Hunt M, Mariano LL, Hu YOO, Engblom C, Lennon-Duménil AM, Mittenzwei R, Westendorf AM, Hövelmeyer N, Lundeberg J, Saez-Rodriguez J, Schlitzer A, Das S, Villablanca EJ. B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 2022; 55:2336-2351.e12. [PMID: 36462502 DOI: 10.1016/j.immuni.2022.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 07/14/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.
Collapse
Affiliation(s)
- Annika Frede
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paulo Czarnewski
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Gustavo Monasterio
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kumar P Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David A Bejarano
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | | | - Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ludvig Larsson
- KTH Royal Institute of Technology Stockholm, Science for Life Laboratory, Stockholm, Sweden
| | - Xinxin Luo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Geerlings
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudio Novella-Rausell
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Zagami
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Raoul Kuiper
- Norwegian Veterinary Institute, Section for Aquatic Biosecurity Research, Elisabeth Stephansens vei 1, 1433 Ås, Norway; Core Facility for Morphologic Phenotype Analysis, Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo A Morales
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francisca Castillo
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Hunt
- Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - Yue O O Hu
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Camilla Engblom
- Department of Cell and Molecular Biology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - Romy Mittenzwei
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center Mainz, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine and Research Center for Immunotherapy (FZI), University Medical Center Mainz, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Joakim Lundeberg
- KTH Royal Institute of Technology Stockholm, Science for Life Laboratory, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Srustidhar Das
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
37
|
Dutt TS, Karger BR, Fox A, Youssef N, Dadhwal R, Ali MZ, Patterson J, Creissen E, Rampacci E, Cooper SK, Podell BK, Gonzalez-Juarrero M, Obregon-Henao A, Henao-Tamayo M. Mucosal exposure to non-tuberculous mycobacteria elicits B cell-mediated immunity against pulmonary tuberculosis. Cell Rep 2022; 41:111783. [PMID: 36516760 DOI: 10.1016/j.celrep.2022.111783] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Bacille Calmette-Guerin (BCG) is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) disease. However, BCG has limited efficacy, necessitating the development of better vaccines. Non-tuberculous mycobacteria (NTMs) are opportunistic pathogens present ubiquitously in the environment. TB endemic countries experience higher exposure to NTMs, but previous studies have not elucidated the relationship between NTM exposure and BCG efficacy against TB. Therefore, we develop a mouse model (BCG + NTM) to simulate human BCG immunization regime and continuous NTM exposure. BCG + NTM mice exhibit superior and prolonged protection against pulmonary TB, with increased B cell influx and anti-Mtb antibodies in serum and airways, compared with BCG alone. Notably, spatial transcriptomics and immunohistochemistry reveal that BCG + NTM mice formed B cell aggregates with features of germinal center development, which correlate with reduced Mtb burden. Our studies suggest a direct relationship between NTM exposure and TB protection, with B cells playing a crucial role.
Collapse
Affiliation(s)
- Taru S Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | | | - Rhythm Dadhwal
- College of Business, Colorado State University, Fort Collins, CO, USA
| | - Malik Zohaib Ali
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA; Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Johnathan Patterson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Sarah K Cooper
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
38
|
Lee J, Kim MH, Kim H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int J Mol Sci 2022; 23:ijms232415471. [PMID: 36555112 PMCID: PMC9779521 DOI: 10.3390/ijms232415471] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A moderate amount of reactive oxygen species (ROS) is produced under normal conditions, where they play an important role in cell signaling and are involved in many aspects of the immune response to pathogens. On the other hand, the excessive production of ROS destructs macromolecules, cell membranes, and DNA, and activates pro-inflammatory signaling pathways, which may lead to various pathologic conditions. Gastrointestinal (GI) mucosa is constantly exposed to ROS due to the presence of bacteria and other infectious pathogens in food, as well as alcohol consumption, smoking, and the use of non-steroidal anti-inflammatory drugs (NSAID). Prolonged excessive oxidative stress and inflammation are two major risk factors for GI disorders such as ulcers and cancers. Bioactive food compounds with potent anti-oxidant and anti-inflammatory activity have been tested in experimental GI disease models to evaluate their therapeutic potential. Astaxanthin (AST) is a fat-soluble xanthophyll carotenoid that is naturally present in algae, yeast, salmon, shrimp, and krill. It has been shown that AST exhibits protective effects against GI diseases via multiple mechanisms. Residing at the surface and inside of cell membranes, AST directly neutralizes ROS and lipid peroxyl radicals, enhances the activity of anti-oxidant enzymes, and suppresses pro-inflammatory transcription factors and cytokines. In addition, AST has been shown to inhibit cancer cell growth and metastasis via modulating cell proliferation-related pathways, apoptosis, and autophagy. Considering the potential benefits of AST in GI diseases, this review paper aims to summarize recent advances in AST research, focusing on its anti-oxidant and anti-inflammatory effects against gastric and intestinal ulcers and cancers.
Collapse
Affiliation(s)
- Jaeeun Lee
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Hyun Kim
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK21 FOUR, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
- Correspondence: (M.-H.K.); (H.K.); Tel.: +1-602-496-4163 (M.-H.K.); +82-2-2123-3125 (H.K.)
| |
Collapse
|
39
|
Jacobsen EM, Fabricius D, Class M, Topfstedt F, Lorenzetti R, Janowska I, Schmidt F, Staniek J, Zernickel M, Stamminger T, Dietz AN, Zellmer A, Hecht M, Rauch P, Blum C, Ludwig C, Jahrsdörfer B, Schrezenmeier H, Heeg M, Mayer B, Seidel A, Groß R, Münch J, Kirchhoff F, Bode SFN, Strauss G, Renk H, Elling R, Stich M, Voll RE, Tönshof B, Franz AR, Henneke P, Debatin KM, Rizzi M, Janda A. High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection. Nat Commun 2022; 13:7315. [PMID: 36437276 PMCID: PMC9701757 DOI: 10.1038/s41467-022-35055-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 course and immunity differ in children and adults. We analyzed immune response dynamics in 28 families up to 12 months after mild or asymptomatic infection. Unlike adults, the initial response is plasmablast-driven in children. Four months after infection, children show an enhanced specific antibody response and lower but detectable spike 1 protein (S1)-specific B and T cell responses than their parents. While specific antibodies decline, neutralizing antibody activity and breadth increase in both groups. The frequencies of S1-specific B and T cell responses remain stable. However, in children, one year after infection, an increase in the S1-specific IgA class switch and the expression of CD27 on S1-specific B cells and T cell maturation are observed. These results, together with the enhanced neutralizing potential and breadth of the specific antibodies, suggest a progressive maturation of the S1-specific immune response. Hence, the immune response in children persists over 12 months but dynamically changes in quality, with progressive neutralizing, breadth, and memory maturation. This implies a benefit for booster vaccination in children to consolidate memory formation.
Collapse
Affiliation(s)
- Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Magdalena Class
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Fernando Topfstedt
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Schmidt
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Zernickel
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | | | - Andrea N Dietz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Manuel Hecht
- CANDOR Bioscience GmbH, Wangen im Allgäu, Germany
| | - Peter Rauch
- CANDOR Bioscience GmbH, Wangen im Allgäu, Germany
| | - Carmen Blum
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Carolin Ludwig
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benjamin Mayer
- Department of Statistics, University of Ulm, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian F N Bode
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Hanna Renk
- University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Maximillian Stich
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burkhard Tönshof
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Axel R Franz
- University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty for Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna Medical University of Vienna, Vienna, Austria.
| | - Ales Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany.
| |
Collapse
|
40
|
Sasaki T, Bracero S, Keegan J, Chen L, Cao Y, Stevens E, Qu Y, Wang G, Nguyen J, Sparks JA, Holers VM, Alves SE, Lederer JA, Costenbader KH, Rao DA. Longitudinal Immune Cell Profiling in Patients With Early Systemic Lupus Erythematosus. Arthritis Rheumatol 2022; 74:1808-1821. [PMID: 35644031 PMCID: PMC10238884 DOI: 10.1002/art.42248] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To investigate the immune cell profiles of patients with systemic lupus erythematosus (SLE), and to identify longitudinal changes in those profiles over time. METHODS We employed mass cytometry with 3 different panels of 38-39 markers (an immunophenotyping panel, a T cell/monocyte panel, and a B cell panel) in cryopreserved peripheral blood mononuclear cells (PBMCs) from 9 patients with early SLE, 15 patients with established SLE, and 14 controls without autoimmune disease. We used machine learning-driven clustering, flow self-organizing maps, and dimensional reduction with t-distributed stochastic neighbor embedding to identify unique cell populations in early SLE and established SLE. We used mass cytometry data of PBMCs from 19 patients with early rheumatoid arthritis (RA) and 23 controls to compare levels of specific cell populations in early RA and SLE. For the 9 patients with early SLE, longitudinal mass cytometry analysis was applied to PBMCs at enrollment, 6 months after enrollment, and 1 year after enrollment. Serum samples were also assayed for 65 cytokines using Luminex multiplex assay, and associations between cell types and cytokines/chemokines were assessed. RESULTS Levels of peripheral helper T cells, follicular helper T (Tfh) cells, and several Ki-67+ proliferating subsets (ICOS+Ki-67+ CD8 T cells, Ki-67+ regulatory T cells, CD19intermediate Ki-67high plasmablasts, and PU.1high Ki-67high monocytes) were increased in patients with early SLE, with more prominent alterations than were seen in patients with early RA. Longitudinal mass cytometry and multiplex serum cytokine assays of samples from patients with early SLE revealed that levels of Tfh cells and CXCL10 had decreased 1 year after enrollment. Levels of CXCL13 were positively correlated with levels of several of the expanded cell populations in early SLE. CONCLUSION Two major helper T cell subsets and unique Ki-67+ proliferating immune cell subsets were expanded in patients in the early phase of SLE, and the immunologic features characteristic of early SLE evolved over time.
Collapse
Affiliation(s)
- Takanori Sasaki
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sabrina Bracero
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua Keegan
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lin Chen
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ye Cao
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Emma Stevens
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujie Qu
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Guoxing Wang
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jennifer Nguyen
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A. Sparks
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephen E. Alves
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - James A. Lederer
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Deepak A. Rao
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Ng KW, Hobbs A, Wichmann C, Victora GD, Donaldson GP. B cell responses to the gut microbiota. Adv Immunol 2022; 155:95-131. [PMID: 36357013 DOI: 10.1016/bs.ai.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most antibody produced by humans originates from mucosal B cell responses. The rules, mechanisms, and outcomes of this process are distinct from B cell responses to infection. Within the context of the intestine, we discuss the induction of follicular B cell responses by microbiota, the development and maintenance of mucosal antibody-secreting cells, and the unusual impacts of mucosal antibody on commensal bacteria. Much remains to be learned about the interplay between B cells and the microbiota, but past and present work hints at a complex, nuanced relationship that may be critical to the way the mammalian gut fosters a beneficial microbial ecosystem.
Collapse
Affiliation(s)
- Kevin W Ng
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Alvaro Hobbs
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Christopher Wichmann
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States; Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States; Immune Regulation Group, Department of Pediatrics, University Medical Center Rostock, Rostock, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States.
| | - Gregory P Donaldson
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
42
|
Abstract
Barrier tissues are the primary site of infection for pathogens likely to cause future pandemics. Tissue-resident lymphocytes can rapidly detect pathogens upon infection of barrier tissues and are critical in preventing viral spread. However, most vaccines fail to induce tissue-resident lymphocytes and are instead reliant on circulating antibodies to mediate protective immunity. Circulating antibody titers wane over time following vaccination leaving individuals susceptible to breakthrough infections by variant viral strains that evade antibody neutralization. Memory B cells were recently found to establish tissue residence following infection of barrier tissues. Here, we summarize emerging evidence for the importance of tissue-resident memory B cells in the establishment of protective immunity against viral and bacterial challenge. We also discuss the role of tissue-resident memory B cells in regulating the progression of non-infectious diseases. Finally, we examine new approaches to develop vaccines capable of eliciting barrier immunity.
Collapse
Affiliation(s)
- Changfeng Chen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
43
|
Webster SE, Vos D, Rothstein TL, Holodick NE. Modulation of microbiome diversity and cytokine expression is influenced in a sex-dependent manner during aging. FRONTIERS IN MICROBIOMES 2022; 1:994464. [PMID: 37426084 PMCID: PMC10328149 DOI: 10.3389/frmbi.2022.994464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The microbiome and immune system have a unique interplay, which influences homeostasis within the organism. Both the microbiome and immune system play important roles in health and diseases of the aged including development of cancer, autoimmune disorders, and susceptibility to infection. Various groups have demonstrated divergent changes in the gut microbiota during aging, yet the compounding factor of biological sex within the context of aging remains incompletely understood, and little is known about the effect of housing location in the composition of gut microbiota in the context of both sex and age. To better understand the roles of sex, aging, and location in influencing the gut microbiome, we obtained normal healthy BALB/cByJ mice from a single source and aged male and female mice in two different geographical locations. The 16S rRNA was analyzed from fecal samples of these mice and cytokine levels were measured from serum.16S rRNA microbiome analysis indicated that both age and sex play a role in microbiome composition, whereas location plays a lesser role in the diversity present. Interestingly, microbiome changes occurred with alterations in serum expression of several different cytokines including IL-10 and IL-6, which were also both differentially regulated in context to sex and aging. We found both IL-10 and IL-6 play a role in the constitutive expression of pSTAT-3 in CD5+ B-1 cells, which are known to regulate the microbiome. Additionally, significant correlations were found between cytokine expression and significantly abundant microbes. Based on these results, we conclude aging mice undergo sex-associated alterations in the gut microbiome and have a distinct cytokine profile. Further, there is significant interplay between B-1 cells and the microbiome which is influenced by aging in a sex-dependent manner. Together, these results illustrate the complex interrelationship among sex, aging, immunity, housing location, and the gut microbiome.
Collapse
Affiliation(s)
- Sarah E. Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Duncan Vos
- Division of Epidemiology and Biostatics, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L. Rothstein
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Nichol E. Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
44
|
Jin H, Che S, Wu K, Wu M. Ellagic acid prevents gut damage via ameliorating microbe-associated intestinal lymphocyte imbalance. Food Funct 2022; 13:9822-9831. [PMID: 36040795 DOI: 10.1039/d2fo01512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammatory bowel disease (IBD) pathogenesis involves a sustained microbial-mediated immune response following intestinal stress. Although administration of antibiotics can be an effective therapy, the misuse of antibiotics may risk unknown drug-resistant bacteria. In this study, piglets pretreated with ellagic acid (EA) and Ampicillin (AMP) for 21 days, and were injected intraperitoneally with paraquat (PQ) on 14 and 18 days. We found piglets lost most of their gut microbes in the AMP group, protected from subsequent intestinal damage caused by gut oxidative stress. Hence, we identified some gut microbes that may play a critical role in mediating cellular responses following cytokine stimulation in PQ-induced stress. EA preprocessing exhibited the same performance as AMP. Pretreatment of EA reduced Streptococcus abundance in the gut. Particularly, EA modulated intestinal lymphocyte distribution, reduced the frequency of CD79a+ cells, and alleviated the upward migration of CD3+ cells to the apex of the intestinal villi in the intestinal epithelium. Additionally, the intestinal immune response had been known associated closely with the abundance of Streptococcus in the gut. Thus, we concluded that EA has the potential to replace antibiotics to prevent microbial-mediated immune responses in the gut, and EA can be applied as a supplement candidate to alleviate the development of inflammation caused by intestinal stress.
Collapse
Affiliation(s)
- Huimin Jin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Siyan Che
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Kunfu Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
45
|
Papoutsopoulou S, Pollock L, Williams JM, Abdul-Mahdi MMLF, Dobbash R, Duckworth CA, Campbell BJ. Interleukin-10 Deficiency Impacts on TNF-Induced NFκB Regulated Responses In Vivo. BIOLOGY 2022; 11:1377. [PMID: 36290283 PMCID: PMC9598475 DOI: 10.3390/biology11101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022]
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that has a major protective role against intestinal inflammation. We recently revealed that intestinal epithelial cells in vitro regulate NFκB-driven transcriptional responses to TNF via an autocrine mechanism dependent on IL-10 secretion. Here in this study, we investigated the impact of IL-10 deficiency on the NFκB pathway and its downstream targets in the small intestinal mucosa in vivo. We observed dysregulation of TNF, IκBα, and A20 gene and protein expression in the small intestine of steady-state or TNF-injected Il10-/- mice, compared to wild-type C57BL6/J counterparts. Upon TNF injection, tissue from the small intestine showed upregulation of NFκB p65[RelA] activity, which was totally diminished in Il10-/- mice and correlated with reduced levels of TNF, IκBα, and A20 expression. In serum, whilst IgA levels were noted to be markedly downregulated in IL-10-deficient- mice, normal levels of mucosal IgA were seen in intestine mucosa. Importantly, dysregulated cytokine/chemokine levels were observed in both serum and intestinal tissue lysates from naïve, as well as TNF-injected Il10-/- mice. These data further support the importance of the IL-10-canonical NFκB signaling pathway axis in regulating intestinal mucosa homeostasis and response to inflammatory triggers in vivo.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Liam Pollock
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Jonathan M. Williams
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Maya M. L. F. Abdul-Mahdi
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- School of Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Reyhaneh Dobbash
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- School of Life Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Carrie A. Duckworth
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
46
|
Park JC, Noh J, Jang S, Kim KH, Choi H, Lee D, Kim J, Chung J, Lee DY, Lee Y, Lee H, Yoo DK, Lee AC, Byun MS, Yi D, Han SH, Kwon S, Mook-Jung I. Association of B cell profile and receptor repertoire with the progression of Alzheimer's disease. Cell Rep 2022; 40:111391. [PMID: 36130492 DOI: 10.1016/j.celrep.2022.111391] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Reports have revealed that the peripheral immune system is linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, 133 participants are included at baseline and second-year follow-up. Also, we analyze B cell receptor (BCR) repertoire data generated from a public dataset of three normal and 10 AD samples and perform BCR repertoire profiling and pairwise sharing analysis. As a result, longitudinal increase in B lymphocytes is associated with increased cerebral amyloid deposition and hyperactivates induced pluripotent stem cell-derived microglia with loss-of-function for beta-amyloid clearance. Patients with AD share similar class-switched BCR sequences with identical isotypes, despite the high somatic hypermutation rate. Thus, BCR repertoire profiling can lead to the development of individualized immune-based therapeutics and treatment. We provide evidence of both quantitative and qualitative changes in B lymphocytes during AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sukjin Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hayoung Choi
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jieun Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dahyun Yi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul 08826, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
47
|
Wang L, Pelgrim CE, Peralta Marzal LN, Korver S, van Ark I, Leusink-Muis T, van Helvoort A, Keshavarzian A, Kraneveld AD, Garssen J, Henricks PAJ, Folkerts G, Braber S. Changes in intestinal homeostasis and immunity in a cigarette smoke- and LPS-induced murine model for COPD: the lung-gut axis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L266-L280. [PMID: 35699290 PMCID: PMC9423728 DOI: 10.1152/ajplung.00486.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte E Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lucía N Peralta Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Stephanie Korver
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, Illinois
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, The Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Juarez VM, Montalbine AN, Singh A. Microbiome as an immune regulator in health, disease, and therapeutics. Adv Drug Deliv Rev 2022; 188:114400. [PMID: 35718251 PMCID: PMC10751508 DOI: 10.1016/j.addr.2022.114400] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 11/27/2022]
Abstract
New discoveries in drugs and drug delivery systems are focused on identifying and delivering a pharmacologically effective agent, potentially targeting a specific molecular component. However, current drug discovery and therapeutic delivery approaches do not necessarily exploit the complex regulatory network of an indispensable microbiota that has been engineered through evolutionary processes in humans or has been altered by environmental exposure or diseases. The human microbiome, in all its complexity, plays an integral role in the maintenance of host functions such as metabolism and immunity. However, dysregulation in this intricate ecosystem has been linked with a variety of diseases, ranging from inflammatory bowel disease to cancer. Therapeutics and bacteria have an undeniable effect on each other and understanding the interplay between microbes and drugs could lead to new therapies, or to changes in how existing drugs are delivered. In addition, targeting the human microbiome using engineered therapeutics has the potential to address global health challenges. Here, we present the challenges and cutting-edge developments in microbiome-immune cell interactions and outline novel targeting strategies to advance drug discovery and therapeutics, which are defining a new era of personalized and precision medicine.
Collapse
Affiliation(s)
- Valeria M Juarez
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Alyssa N Montalbine
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Ankur Singh
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
49
|
Fuloria S, Mehta J, Talukdar MP, Sekar M, Gan SH, Subramaniyan V, Rani NNIM, Begum MY, Chidambaram K, Nordin R, Maziz MNH, Sathasivam KV, Lum PT, Fuloria NK. Synbiotic Effects of Fermented Rice on Human Health and Wellness: A Natural Beverage That Boosts Immunity. Front Microbiol 2022; 13:950913. [PMID: 35910609 PMCID: PMC9325588 DOI: 10.3389/fmicb.2022.950913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 12/26/2022] Open
Abstract
Fermented foods have been an important component of the human diet from the time immemorial. It contains a high amount of probiotics that have been associated to a wide range of health benefits, including improved digestion and immunity. This review focuses on the indigenously prepared prebiotic- and probiotic-containing functional fermented rice (named Xaj-pani) by the Ahom Community from Assam, in Northeast India, including all the beneficial and potential effects on human health. Literature was searched from scientific databases such as PubMed, ScienceDirect and Google Scholar. Glutinous rice (commonly known as bora rice of sali variety) is primarily employed to prepare beverages that are recovered through the filtration process. The beer is normally consumed during religious rites, festivals and ritual practices, as well as being used as a refreshing healthy drink. Traditionally, it is prepared by incorporating a variety of medicinal herbs into their starter culture (Xaj-pitha) inoculum which is rich in yeasts, molds and lactic acid bacteria (LAB) and then incorporated in alcoholic beverage fermentation. The Ahom communities routinely consume this traditionally prepared alcoholic drink with no understanding of its quality and shelf life. Additionally, a finally produced dried cake, known as vekur pitha act as a source of Saccharomyces cerevisiae and can be stored for future use. Despite the rampant use in this community, the relationship between Xaj-pani's consumption, immunological response, infectious and inflammatory processes remains unknown in the presence of factors unrelated or indirectly connected to immune function. Overall, this review provides the guidelines to promote the development of prebiotic- and probiotic-containing functional fermented rice that could significantly have an impact on the health of the consumers.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Department of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
50
|
NK cell spatial dynamics and IgA responses in gut-associated lymphoid tissues during SIV infections. Commun Biol 2022; 5:674. [PMID: 35798936 PMCID: PMC9262959 DOI: 10.1038/s42003-022-03619-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection induces tissue damage including lymph node (LN) fibrosis and intestinal epithelial barrier disruption leading to bacterial translocation and systemic inflammation. Natural hosts of SIV, such as African Green Monkeys (AGM), do not display tissue damage despite high viral load in blood and intestinal mucosa. AGM mount a NK cell-mediated control of SIVagm replication in peripheral LN. We analyzed if NK cells also control SIVagm in mesenteric (mes) LN and if this has an impact on gut humoral responses and the production of IgA known for their anti-inflammatory role in the gut. We show that CXCR5 + NK cell frequencies increase in mesLN upon SIVagm infection and that NK cells migrate into and control viral replication in B cell follicles (BCF) of mesLN. The proportion of IgA+ memory B cells were increased in mesLN during SIVagm infection in contrast to SIVmac infection. Total IgA levels in gut remained normal during SIVagm infection, while strongly decreased in intestine of chronically SIVmac-infected macaques. Our data suggest an indirect impact of NK cell-mediated viral control in mesLN during SIVagm infection on preserved BCF function and IgA production in intestinal tissues. Differences between pathogenic and non-pathogenic SIV infections are investigated, in terms of NK cell location, function and IgA responses in gut associated lymphoid tissues (mesenteric lymph nodes, jejunum, ileon, colon).
Collapse
|