1
|
Garcia VA, Sarkar CA, Ogle BM. Syncytial therapeutics: Receptor-specific and direct-to-cytosol biologic drug delivery mediated by measles fusion complex. J Control Release 2025; 380:967-975. [PMID: 39956393 PMCID: PMC11967904 DOI: 10.1016/j.jconrel.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
This work explores cell-cell fusion mediated by measles virus (MeV) as a potential new cell therapy modality that achieves direct-to-cytosol (DTC) drug delivery. MeV induces receptor-mediated fusion at the cell surface via its hemagglutinin (H) and fusion glycoproteins (F), bypassing endocytic membrane transport, and enabling direct cytosolic mixing between a fusogenic donor and host target cell. Fusion of this type gives rise to large syncytia formed by the inclusion of additional target cells over time. Fusion receptor specificity was first examined in CHO "non-target" and CHO "target" cells exogenously expressing the measles target SLAM (CHO-SLAM) by mono- or co-transfection of each cell type with plasmids encoding MeV-H and MeV-F. Fusion was observed only in CHO-SLAM cells which were co-transfected with both plasmids, which verified receptor-specificity without false-triggering of fusion in co-transfected "non-target" CHO or in MeV-F mono-transfectants of either cell type. Next, CHO donor cells with constitutive mCherry expression were co-transfected with MeV-H and MeV-F, and mCherry-positive syncytia were observed when cells were mixed with CHO-SLAM demonstrating the ability to deliver the mCherry payload via DTC. Increasing the cell dose does not affect the size distribution of resulting syncytia but contributes to a higher total mCherry delivery. Further, control of MeV stoichiometry can modulate the degree of syncytia formation and protein delivery, demonstrating that limiting MeV-H and increasing MeV-F favors fusion and cytosolic delivery. Taken together, these results demonstrate MeV cell-fusion-based, DTC delivery as a robust and tunable system for achieving targeted cytosolic delivery and controlled syncytia formation.
Collapse
Affiliation(s)
- Victor A Garcia
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Jiang H, Nace R, Ferguson C, Zhang L, Peng KW, Russell SJ. Oncolytic cytomegaloviruses expressing EGFR-retargeted fusogenic glycoprotein complex and drug-controllable interleukin 12. Cell Rep Med 2025; 6:101874. [PMID: 39694038 PMCID: PMC11866437 DOI: 10.1016/j.xcrm.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Cytomegalovirus (CMV) infects a wide range of cell types, including tumor-associated myeloid cells and glioma cells. Clinical observations suggest a potential link between long-term glioblastoma survival and CMV reactivation. We herein present an oncolytic CMV vector, AD169r, which includes a restored pentamer complex gH/gL/pUL128-131 and the removal of UL1-UL20 and UL/b' sequences. The epidermal growth factor receptor (EGFR)-retargeted paramyxoviral glycoprotein H/F complexes are incorporated into AD169r backbone to enhance viral oncolysis. Additionally, a tet-off-controlled single-chain interleukin (IL)-12 is added to boost antitumor immune responses. The engineered oncolytic CMVs expressing EGFR-retargeted H/F complex demonstrate enhanced antitumor efficacy in human glioblastoma xenograft models. In the immunocompetent mouse CT-2A glioblastoma model, an oncolytic murine CMV (mCMV) expressing IL-12 significantly increases the abundance and cytotoxicity of CD4+ T cells, CD8+ T cells, and CD4-CD8- T cells in both treated and untreated tumors. Our findings highlight the potential of the AD169r-derived oncolytic viruses as CMV-based cancer viroimmunotherapy.
Collapse
Affiliation(s)
- Haifei Jiang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Coryn Ferguson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
3
|
Nielsen IH, Rovsing AB, Janns JH, Thomsen EA, Ruzo A, Bøggild A, Nedergaard F, Møller CT, Boesen T, Degn SE, Shah JV, Mikkelsen JG. Cell-targeted gene modification by delivery of CRISPR-Cas9 ribonucleoprotein complexes in pseudotyped lentivirus-derived nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102318. [PMID: 39329149 PMCID: PMC11426049 DOI: 10.1016/j.omtn.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
To fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2+/ACE2- population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout. Additionally, LVNPs pseudotyped with Edmonston strain measles virus glycoproteins (MV-H/F) delivered Cas9/sgRNA RNPs to CD46+ cells with and without additional expression of SLAM (signaling lymphocytic activation molecule; CD150). However, an engineered SLAM-specific measles virus pseudotype (measles virus-hemagglutinin/fusion [MV-H/F]-SLAM) efficiently targeted LVNPs to SLAM+ cells. Lentiviral vectors (LVs) pseudotyped with MV-H/F-SLAM efficiently transduced >80% of interleukin (IL)-4/IL-21-stimulated primary B cells cultured on CD40 ligand (CD40L)-expressing feeder cells. Notably, LVNPs pseudotyped with MV-H/F and MV-H/F-SLAM reached indel rates of >80% and >60% in stimulated primary B cells, respectively. Collectively, our findings demonstrate the modularity of LVNP-directed delivery of ready-to-function Cas9/sgRNA complexes. Using a panel of different pseudotypes, we provide evidence that LVNPs can be engineered to induce effective indel formation in a subpopulation of cells defined by the expression of surface receptors.
Collapse
Affiliation(s)
- Ian Helstrup Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Bruun Rovsing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jacob Hørlück Janns
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Emil Aagaard Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Albert Ruzo
- Sana Biotechnology, Inc, Cambridge, MA 02139, USA
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Frederikke Nedergaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Zhang Y, Shi X, Shen Y, Dong X, He R, Chen G, Zhang Y, Tan H, Zhang K. Nanoengineering-armed oncolytic viruses drive antitumor response: progress and challenges. MedComm (Beijing) 2024; 5:e755. [PMID: 39399642 PMCID: PMC11467370 DOI: 10.1002/mco2.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a powerful tool in cancer therapy. Characterized with the unique abilities to selectively target and lyse tumor cells, OVs can expedite the induction of cell death, thereby facilitating effective tumor eradication. Nanoengineering-derived OVs overcome traditional OV therapy limitations by enhancing the stability of viral circulation, and tumor targeting, promising improved clinical safety and efficacy and so on. This review provides a comprehensive analysis of the multifaceted mechanisms through which engineered OVs can suppress tumor progression. It initiates with a concise delineation on the fundamental attributes of existing OVs, followed by the exploration of their mechanisms of the antitumor response. Amid rapid advancements in nanomedicine, this review presents an extensive overview of the latest developments in the synergy between nanomaterials, nanotechnologies, and OVs, highlighting the unique characteristics and properties of the nanomaterials employed and their potential to spur innovation in novel virus design. Additionally, it delves into the current challenges in this emerging field and proposes strategies to overcome these obstacles, aiming to spur innovation in the design and application of next-generation OVs.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyu Shi
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yifan Shen
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiulin Dong
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ruiqing He
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guo Chen
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Medical UltrasoundRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Honghong Tan
- Department of VIP ClinicGeneral Division, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
5
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Rossi M, Breman E. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. [PMID: 38962002 PMCID: PMC11219585 DOI: 10.3389/fimmu.2024.1411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
Collapse
|
7
|
Takano KA, Wong AAL, Brown R, Situ K, Chua BA, Abu AE, Pham TT, Reyes GC, Ramachandran S, Kamata M, Li MMH, Wu TT, Rao DS, Arumugaswami V, Dorshkind K, Cole S, Morizono K. Envelope protein-specific B cell receptors direct lentiviral vector tropism in vivo. Mol Ther 2024; 32:1311-1327. [PMID: 38449314 PMCID: PMC11081870 DOI: 10.1016/j.ymthe.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.
Collapse
Affiliation(s)
- Kari-Ann Takano
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anita A L Wong
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca Brown
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bernadette Anne Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angel Elma Abu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Truc T Pham
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Glania Carel Reyes
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Masakazu Kamata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Melody M H Li
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dinesh S Rao
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kenneth Dorshkind
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steve Cole
- Departments of Psychiatry & Biobehavioral Sciences and Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, Peng KW, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024; 15:e0292823. [PMID: 38193729 PMCID: PMC10865805 DOI: 10.1128/mbio.02928-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Vyriad Inc, Rochester, Minnesota, USA
- Imanis Life Sciences, Rochester, Minnesota, USA
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Ratnikova NM, Kravchenko Y, Ivanova A, Zhuchkov V, Frolova E, Chumakov S. A Novel Anti-CD47 Nanobody Tetramer for Cancer Therapy. Antibodies (Basel) 2024; 13:2. [PMID: 38247566 PMCID: PMC10801496 DOI: 10.3390/antib13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
CD47 acts as a defense mechanism for tumor cells by sending a "don't eat me" signal via its bond with SIRPα. With CD47's overexpression linked to poor cancer outcomes, its pathway has become a target in cancer immunotherapy. Though monoclonal antibodies offer specificity, they have limitations like the large size and production costs. Nanobodies, due to their small size and unique properties, present a promising therapeutic alternative. In our study, a high-affinity anti-CD47 nanobody was engineered from an immunized alpaca. We isolated a specific VHH from the phage library, which has nanomolar affinity to SIRPα, and constructed a streptavidin-based tetramer. The efficacy of the nanobody and its derivative was evaluated using various assays. The new nanobody demonstrated higher affinity than the monoclonal anti-CD47 antibody, B6H12.2. The nanobody and its derivatives also stimulated substantial phagocytosis of tumor cell lines and induced apoptosis in U937 cells, a response confirmed in both in vitro and in vivo settings. Our results underscore the potential of the engineered anti-CD47 nanobody as a promising candidate for cancer immunotherapy. The derived nanobody could offer a more effective, cost-efficient alternative to conventional antibodies in disrupting the CD47-SIRPα axis, opening doors for its standalone or combinatorial therapeutic applications in oncology.
Collapse
Affiliation(s)
- Nataliya M. Ratnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (N.M.R.); (V.Z.)
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow 119071, Russia
| | - Yulia Kravchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (N.M.R.); (V.Z.)
| | - Anna Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (N.M.R.); (V.Z.)
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Vladislav Zhuchkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (N.M.R.); (V.Z.)
| | - Elena Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (N.M.R.); (V.Z.)
| | - Stepan Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (N.M.R.); (V.Z.)
| |
Collapse
|
10
|
Fang C, Xiao G, Wang T, Song L, Peng B, Xu B, Zhang K. Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. RESEARCH 2023; 6:0108. [PMID: 37040283 PMCID: PMC10079287 DOI: 10.34133/research.0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Oncolytic viruses (OVs) as one promising antitumor methods have made important contributions to tumor immunotherapy, which arouse increasing attention. They provide the dual mechanisms including direct killing effect toward tumor cells and immune activation for elevating antitumor responses, which have been proved in many preclinical studies. Especially, natural or genetically modified viruses as clinical immune preparations have emerged as a new promising approach objective to oncology treatment. The approval of talimogene laherparepvec (T-VEC) by the U.S. Food and Drug Administration (FDA) for the therapy of advanced melanoma could be considered as a milestone achievement in the clinical translation of OV. In this review, we first discussed the antitumor mechanisms of OVs with an emphasis on targeting, replication, and propagation. We further outlined the state of the art of current OVs in tumor and underlined the activated biological effects especially including immunity. More significantly, the enhanced immune responses based on OVs were systematically discussed from different perspectives such as combination with immunotherapy, genetic engineering of OVs, integration with nanobiotechnology or nanoparticles, and antiviral response counteraction, where their principles were shed light on. The development of OVs in the clinics was also highlighted to analyze the actuality and concerns of different OV applications in clinical trials. At last, the future perspectives and challenges of OVs as an already widely accepted treatment means were discussed. This review will provide a systematic review and deep insight into OV development and also offer new opportunities and guidance pathways to drive the further clinical translation.
Collapse
Affiliation(s)
- Chao Fang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Gaozhe Xiao
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| | - Taixia Wang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Li Song
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bo Peng
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Huangpu, Shanghai 200011, China
| | - Kun Zhang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| |
Collapse
|
11
|
Muñoz-Alía MÁ, Nace RA, Balakrishnan B, Zhang L, Packiriswamy N, Singh G, Warang P, Mena I, Narjari R, Vandergaast R, García-Sastre A, Schotsaert M, Russell SJ. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.16.520799. [PMID: 36561187 PMCID: PMC9774211 DOI: 10.1101/2022.12.16.520799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Miguel Á. Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Vyriad Inc, Rochester, MN, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Imanis Life Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Cordes N, Winter N, Kolbe C, Kotter B, Mittelstaet J, Assenmacher M, Cathomen T, Kaiser A, Schaser T. Adapter-Mediated Transduction with Lentiviral Vectors: A Novel Tool for Cell-Type-Specific Gene Transfer. Viruses 2022; 14:2157. [PMID: 36298713 PMCID: PMC9607492 DOI: 10.3390/v14102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Selective gene delivery to a cell type of interest utilizing targeted lentiviral vectors (LVs) is an efficient and safe strategy for cell and gene therapy applications, including chimeric antigen receptor (CAR)-T cell therapy. LVs pseudotyped with measles virus envelope proteins (MV-LVs) have been retargeted by ablating binding to natural receptors while fusing to a single-chain antibody specific for the antigen of choice. However, the broad application of MV-LVs is hampered by the laborious LV engineering required for every new target. Here, we report the first versatile targeting system for MV-LVs that solely requires mixing with biotinylated adapter molecules to enable selective gene transfer. The analysis of the selectivity in mixed cell populations revealed transduction efficiencies below the detection limit in the absence of an adapter and up to 5000-fold on-to-off-target ratios. Flexibility was confirmed by transducing cell lines and primary cells applying seven different adapter specificities in total. Furthermore, adapter mixtures were applied to generate CAR-T cells with varying CD4/CD8-ratios in a single transduction step. In summary, a selective and flexible targeting system was established that may serve to improve the safety and efficacy of cellular therapies. Compatibility with a wide range of readily available biotinylated molecules provides an ideal technology for a variety of applications.
Collapse
Affiliation(s)
- Nicole Cordes
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Nora Winter
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Carolin Kolbe
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Bettina Kotter
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | | | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andrew Kaiser
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
13
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
14
|
Michels A, Ho N, Buchholz CJ. Precision Medicine: In Vivo CAR Therapy as a Showcase for Receptor-Targeted Vector Platforms. Mol Ther 2022; 30:2401-2415. [PMID: 35598048 DOI: 10.1016/j.ymthe.2022.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells are a cancer immunotherapy of extremes: Unprecedentedly effective, but complex and costly to manufacture, they are not yet a therapeutic option for all who would benefit. This disparity has motivated worldwide efforts to simplify treatment. Among the proposed solutions, the generation of CAR T cells directly in the patient, i.e. in vivo, is arguably simultaneously the most technically challenging and clinically useful approach to convert CAR therapy from a cell-based autologous medicinal product into a universally applicable off-the-shelf treatment. Here we review the current state-of-the-art of in vivo CAR therapy, focusing especially on the vector technologies used. These cover lentiviral vectors, adenovirus-associated vectors as well as synthetic polymer nanocarriers and lipid nanoparticles. Proof-of-concept, i.e. the generation of CAR cells directly in mouse models, has been demonstrated for all vector platforms. Receptor-targeting of vector particles is crucial, as it can prevent CAR gene delivery into off-target cells, thus reducing toxicities. We discuss the properties of the vector platforms, such as their immunogenicity, potency, and modes of CAR delivery (permanent versus transient). Finally, we outline the work required to advance in vivo CAR therapy from proof-of-concept to a robust, scalable technology for clinical testing.
Collapse
Affiliation(s)
- Alexander Michels
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Naphang Ho
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany;; Frankfurt Cancer Institute (FCI), Goethe-University, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Oncolytic measles vaccines encoding PD-1 and PD-L1 checkpoint blocking antibodies to increase tumor-specific T cell memory. Mol Ther Oncolytics 2022; 24:43-58. [PMID: 34977341 PMCID: PMC8693420 DOI: 10.1016/j.omto.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
PD-1/PD-L1 checkpoint blockade has achieved unprecedented success in cancer immunotherapy. Nevertheless, many immune-excluded tumors are resistant to therapy. Combination with oncolytic virotherapy may overcome resistance by inducing acute inflammation, immune cell recruitment, and remodeling of the tumor immune environment. Here, we assessed the combination of oncolytic measles vaccine (MV) vectors and PD-1/PD-L1 blockade. In the MC38cea model of measles virus oncolysis, MV combined with anti-PD-1 and MV vectors encoding anti-PD-1 or anti-PD-L1 antibodies achieved modest survival benefits compared with control MV or vectors encoding the antibody constant regions only. Analyses of tumor samples and tumor-draining lymph nodes revealed slight increases in intratumoral T cell effector cytokines as well as a shift toward an effector memory phenotype in the T cell compartment. Importantly, increased IFN-γ recall responses were observed in tumor rechallenge experiments with mice in complete tumor remission after treatment with MV encoding anti-PD-1 or anti-PD-L1 compared with control MV. These results prompted us to generate MV encoding the clinically approved agents pembrolizumab and nivolumab. Previously, we have generated MV encoding atezolizumab. We demonstrated the functionality of the novel vectors in vitro. We envision these vectors as therapeutics that induce and support durable anti-tumor immune memory.
Collapse
|
16
|
Kemler I, Karamched B, Neuhauser C, Dingli D. Quantitative imaging and dynamics of tumor therapy with viruses. FEBS J 2021; 288:6273-6285. [PMID: 34213827 DOI: 10.1111/febs.16102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022]
Abstract
Cancer therapy remains challenging due to the myriad presentations of the disease and the vast genetic diversity of tumors that continuously evolve and often become resistant to therapy. Viruses can be engineered to specifically infect, replicate, and kill tumor cells (tumor virotherapy). Moreover, the viruses can be "armed" with therapeutic genes to enhance their oncolytic effect. Using viruses to treat cancer is exciting and novel and in principle can be used for a broad variety of tumors. However, the approach is distinctly different from other cancer therapies since success depends on establishment of an infection within the tumor and ongoing propagation of the oncolytic virus within the tumor itself. Therefore, the target itself amplifies the therapy. This introduces complex dynamics especially when the immune system is taken into consideration as well as the physical and other biological barriers to virus growth. Understanding these dynamics not only requires mathematical and computational models but also approaches for the noninvasive monitoring of the virus and tumor populations. In this perspective, we discuss strategies and current results to achieve this important goal of understanding these dynamics in pursuit of optimization of oncolytic virotherapy.
Collapse
Affiliation(s)
- Iris Kemler
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bhargav Karamched
- Department of Mathematics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | | | - David Dingli
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Vandergaast R, Carey T, Reiter S, Lathrum C, Lech P, Gnanadurai C, Haselton M, Buehler J, Narjari R, Schnebeck L, Roesler A, Sevola K, Suksanpaisan L, Bexon A, Naik S, Brunton B, Weaver SC, Rafael G, Tran S, Baum A, Kyratsous CA, Peng KW, Russell SJ. IMMUNO-COV v2.0: Development and Validation of a High-Throughput Clinical Assay for Measuring SARS-CoV-2-Neutralizing Antibody Titers. mSphere 2021; 6:e0017021. [PMID: 34077262 PMCID: PMC8265629 DOI: 10.1128/msphere.00170-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023] Open
Abstract
Neutralizing antibodies are key determinants of protection from future infection, yet well-validated high-throughput assays for measuring titers of SARS-CoV-2-neutralizing antibodies are not generally available. Here, we describe the development and validation of IMMUNO-COV v2.0, a scalable surrogate virus assay, which titrates antibodies that block infection of Vero-ACE2 cells by a luciferase-encoding vesicular stomatitis virus displaying SARS-CoV-2 spike glycoproteins (VSV-SARS2-Fluc). Antibody titers, calculated using a standard curve consisting of stepped concentrations of SARS-CoV-2 spike monoclonal antibody, correlated closely (P < 0.0001) with titers obtained from a gold standard 50% plaque-reduction neutralization test (PRNT50%) performed using a clinical isolate of SARS-CoV-2. IMMUNO-COV v2.0 was comprehensively validated using data acquired from 242 assay runs performed over 7 days by five analysts, utilizing two separate virus lots, and 176 blood samples. Assay performance was acceptable for clinical use in human serum and plasma based on parameters including linearity, dynamic range, limit of blank and limit of detection, dilutional linearity and parallelism, precision, clinical agreement, matrix equivalence, clinical specificity and sensitivity, and robustness. Sufficient VSV-SARS2-Fluc virus reagent has been banked to test 5 million clinical samples. Notably, a significant drop in IMMUNO-COV v2.0 neutralizing antibody titers was observed over a 6-month period in people recovered from SARS-CoV-2 infection. Together, our results demonstrate the feasibility and utility of IMMUNO-COV v2.0 for measuring SARS-CoV-2-neutralizing antibodies in vaccinated individuals and those recovering from natural infections. Such monitoring can be used to better understand what levels of neutralizing antibodies are required for protection from SARS-CoV-2 and what booster dosing schedules are needed to sustain vaccine-induced immunity. IMPORTANCE Since its emergence at the end of 2019, SARS-CoV-2, the causative agent of COVID-19, has caused over 100 million infections and 2.4 million deaths worldwide. Recently, countries have begun administering approved COVID-19 vaccines, which elicit strong immune responses and prevent disease in most vaccinated individuals. A key component of the protective immune response is the production of neutralizing antibodies capable of preventing future SARS-CoV-2 infection. Yet, fundamental questions remain regarding the longevity of neutralizing antibody responses following infection or vaccination and the level of neutralizing antibodies required to confer protection. Our work is significant as it describes the development and validation of a scalable clinical assay that measures SARS-CoV-2-neutraling antibody titers. We have critical virus reagent to test over 5 million samples, making our assay well suited for widespread monitoring of SARS-CoV-2-neutralizing antibodies, which can in turn be used to inform vaccine dosing schedules and answer fundamental questions regarding SARS-CoV-2 immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kara Sevola
- Imanis Life Sciences, Rochester, Minnesota, USA
| | | | | | - Shruthi Naik
- Vyriad, Inc., Rochester, Minnesota, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, Minnesota, USA
| | | | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Grace Rafael
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Alina Baum
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | - Kah Whye Peng
- Imanis Life Sciences, Rochester, Minnesota, USA
- Vyriad, Inc., Rochester, Minnesota, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, Minnesota, USA
| | - Stephen J. Russell
- Imanis Life Sciences, Rochester, Minnesota, USA
- Vyriad, Inc., Rochester, Minnesota, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Combining T-cell-specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv 2021; 4:5702-5715. [PMID: 33216892 DOI: 10.1182/bloodadvances.2020002229] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Genetic modification of T lymphocytes is a key issue in research and therapy. Conventional lentiviral vectors (LVs) are neither selective for T cells nor do they modify resting or minimally stimulated cells, which is crucial for applications, such as efficient in vivo modification of T lymphocytes. Here, we introduce novel CD3-targeted LVs (CD3-LVs) capable of genetically modifying human T lymphocytes without prior activation. For CD3 attachment, agonistic CD3-specific single-chain variable fragments were chosen. Activation, proliferation, and expansion mediated by CD3-LVs were less rapid compared with conventional antibody-mediated activation owing to lack of T-cell receptor costimulation. CD3-LVs delivered genes not only selectively into T cells but also under nonactivating conditions, clearly outperforming the benchmark vector vesicular stomatitis-LV glycoproteins under these conditions. Remarkably, CD3-LVs were properly active in gene delivery even when added to whole human blood in absence of any further stimuli. Upon administration of CD3-LV into NSG mice transplanted with human peripheral blood mononuclear cells, efficient and exclusive transduction of CD3+ T cells in all analyzed organs was achieved. Finally, the most promising CD3-LV successfully delivered a CD19-specific chimeric antigen receptor (CAR) into T lymphocytes in vivo in humanized NSG mice. Generation of CAR T cells was accompanied by elimination of human CD19+ cells from blood. Taken together, the data strongly support implementation of T-cell-activating properties within T-cell-targeted vector particles. These particles may be ideally suited for T-cell-specific in vivo gene delivery.
Collapse
|
19
|
Oncolytic Foamy Virus - generation and properties of a nonpathogenic replicating retroviral vector system that targets chronically proliferating cancer cells. J Virol 2021; 95:JVI.00015-21. [PMID: 33692205 PMCID: PMC8139661 DOI: 10.1128/jvi.00015-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonpathogenic retroviruses of the Spumaretrovirinae subfamily can persist long-term in the cytoplasm of infected cells, completing their lifecycle only after the nuclear membrane dissolves at the time of cell division. Since the targeting of slowly dividing cancer cells remains an unmet need in oncolytic virotherapy we constructed a replication competent Foamy Virus vector (oFV) from the genomes of two chimpanzee Simian Foamy Viruses (PAN1 and PAN2) and inserted a GFP transgene in place of the bel-2 open reading frame. oFV-GFP infected and propagated with slow kinetics in multiple human tumor cell lines, inducing a syncytial cytopathic effect. Infection of growth arrested MRC5 cells was not productive, but oFV genomes persisted in the cytoplasm and the productive viral lifecycle resumed when cell division was later restored. In vivo, the virus propagated extensively in intraperitoneal ovarian cancer xenografts, slowing tumor growth, significantly prolonging survival of the treated mice and sustaining GFP transgene expression for at least 45 days. Our data indicate that oFV is a promising new replication-competent viral and gene delivery platform for efficient targeting of the most fundamental trait of cancer cells, their ability to sustain chronic proliferation.Significance:The infectivity of certain retroviruses is limited to dividing cells, which makes them attractive tools for targeting cancer cell proliferation. Previously developed replication-competent gammaretroviral vectors spread efficiently in rapidly dividing cancer cells, but not in cancer cells that divide more slowly. In contrast to rapidly proliferating transplantable mouse tumors, slow proliferation is a hallmark of human cancers and may have contributed to the clinical failure of the preclinically promising Murine Leukemia Virus vector Toca511 which failed to show efficacy in a phase 3 clinical trial in patients with glioblastoma. The studies presented in our manuscript show that oncolytic Foamy Virus (oFV) vectors are capable of persisting unintegrated in quiescent cells and resuming their life cycle once the cells start dividing again. This property of oFVs, together with their lack of pathogenicity and their ability to catalyze the fusion of infected cancer cells, makes them an attractive platform for further investigation.
Collapse
|
20
|
Muñoz-Alía MÁ, Nace RA, Tischer A, Zhang L, Bah ES, Auton M, Russell SJ. MeV-Stealth: A CD46-specific oncolytic measles virus resistant to neutralization by measles-immune human serum. PLoS Pathog 2021; 17:e1009283. [PMID: 33534834 PMCID: PMC7886131 DOI: 10.1371/journal.ppat.1009283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/16/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
The frequent overexpression of CD46 in malignant tumors has provided a basis to use vaccine-lineage measles virus (MeV) as an oncolytic virotherapy platform. However, widespread measles seropositivity limits the systemic deployment of oncolytic MeV for the treatment of metastatic neoplasia. Here, we report the development of MeV-Stealth, a modified vaccine MeV strain that exhibits oncolytic properties and escapes antimeasles antibodies in vivo. We engineered this virus using homologous envelope glycoproteins from the closely-related but serologically non-cross reactive canine distemper virus (CDV). By fusing a high-affinity CD46 specific single-chain antibody fragment (scFv) to the CDV-Hemagglutinin (H), ablating its tropism for human nectin-4 and modifying the CDV-Fusion (F) signal peptide we achieved efficient retargeting to CD46. A receptor binding affinity of ~20 nM was required to trigger CD46-dependent intercellular fusion at levels comparable to the original MeV H/F complex and to achieve similar antitumor efficacy in myeloma and ovarian tumor-bearing mice models. In mice passively immunized with measles-immune serum, treatment of ovarian tumors with MeV-Stealth significantly increased overall survival compared with treatment with vaccine-lineage MeV. Our results show that MeV-Stealth effectively targets and lyses CD46-expressing cancer cells in mouse models of ovarian cancer and myeloma, and evades inhibition by human measles-immune serum. MeV-Stealth could therefore represent a strong alternative to current oncolytic MeV strains for treatment of measles-immune cancer patients. Vaccine strains of the measles virus (MeV) have been shown to be promising anti-cancer agents because of the frequent overexpression of the host-cell receptor CD46 in human malignancies. However, anti-MeV antibodies in the human population severely restrict the use of MeV as an oncolytic agent. Here, we engineered a neutralization-resistant MeV vaccine, MeV-Stealth, by replacing its envelope glycoproteins with receptor-targeted glycoproteins from wild-type canine distemper virus. By fully-retargeting the new envelope to the receptor CD46, we found that in mouse models of ovarian cancer and myeloma MeV-Stealth displayed oncolytic properties similar to the parental MeV vaccine. Furthermore, we found that passive immunization with measles-immune human serum did not eliminate the oncolytic potency of the MeV-Stealth, whereas it did destroy the potency of the parental MeV strain. The virus we here report may be considered a suitable oncolytic agent for the treatment of MeV-immune patients.
Collapse
Affiliation(s)
- Miguel Ángel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Alexander Tischer
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eugene S. Bah
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Matthew Auton
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (MÁM-A); (SJR)
| |
Collapse
|
21
|
Measles Virus as an Oncolytic Immunotherapy. Cancers (Basel) 2021; 13:cancers13030544. [PMID: 33535479 PMCID: PMC7867054 DOI: 10.3390/cancers13030544] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.
Collapse
|
22
|
Matveeva OV, Shabalina SA. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12123659. [PMID: 33291506 PMCID: PMC7762160 DOI: 10.3390/cancers12123659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA
- Correspondence: (O.V.M.); (S.A.S.)
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Correspondence: (O.V.M.); (S.A.S.)
| |
Collapse
|
23
|
Leber MF, Neault S, Jirovec E, Barkley R, Said A, Bell JC, Ungerechts G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev 2020; 56:39-48. [PMID: 32718830 PMCID: PMC7333629 DOI: 10.1016/j.cytogfr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy using tumor-selective, oncolytic viruses is an emerging therapeutic option for solid and hematologic malignancies. A considerable variety of viruses ranging from small picornaviruses to large poxviruses are currently being investigated as potential candidates. In the early days of virotherapy, non-engineered wild-type or vaccine-strain viruses were employed. However, these viruses often did not fully satisfy the major criteria of safety and efficacy. Since the advent of reverse genetics systems for manipulating various classes of viruses, the field has shifted to developing genetically engineered viruses with an improved therapeutic index. In this review, we will summarize the concepts and strategies of multi-level genetic engineering of oncolytic measles virus, a prime candidate for cancer immunovirotherapy. Furthermore, we will provide a brief overview of measles virus-based multimodal combination therapies for improved tumor control and clinical efficacy.
Collapse
Affiliation(s)
- Mathias F Leber
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| | - Serge Neault
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Elise Jirovec
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Russell Barkley
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada; University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Guy Ungerechts
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
24
|
Lee C, Choi M, MacKay JA. Live long and active: Polypeptide-mediated assembly of antibody variable fragments. Adv Drug Deliv Rev 2020; 167:1-18. [PMID: 33129938 DOI: 10.1016/j.addr.2020.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Antibodies possess multiple biologically relevant features that have been engineered into new therapeutic formats. Two examples include the adaptable specificity of their variable (Fv) region and the extension of plasma circulation times through their crystallizable (Fc) region. Since the invention of the single chain variable fragment (scFv) in 1988, antibody variable regions have been re-engineered into a wide variety of multifunctional nanostructures. Among these strategies, peptide-mediated self-assembly of variable regions through heterologous expression has become a powerful method to produce homogenous, functional biomaterials. This manuscript reviews recent reports of antibody fragments assembled through fusion with peptides and proteins, including elastin-like polypeptides (ELPs), collagen-like polypeptides (CLPs), albumin, transmembrane proteins, leucine zippers, silk protein, and viruses. This review further discusses the current clinical status of engineered antibody fragments and challenges to overcome.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
25
|
Pseudotyping Lentiviral Vectors: When the Clothes Make the Virus. Viruses 2020; 12:v12111311. [PMID: 33207797 PMCID: PMC7697029 DOI: 10.3390/v12111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Delivering transgenes to human cells through transduction with viral vectors constitutes one of the most encouraging approaches in gene therapy. Lentivirus-derived vectors are among the most promising vectors for these approaches. When the genetic modification of the cell must be performed in vivo, efficient specific transduction of the cell targets of the therapy in the absence of off-targeting constitutes the Holy Grail of gene therapy. For viral therapy, this is largely determined by the characteristics of the surface proteins carried by the vector. In this regard, an important property of lentiviral vectors is the possibility of being pseudotyped by envelopes of other viruses, widening the panel of proteins with which they can be armed. Here, we discuss how this is achieved at the molecular level and what the properties and the potentialities of the different envelope proteins that can be used for pseudotyping these vectors are.
Collapse
|
26
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
27
|
Bah ES, Nace RA, Peng KW, Muñoz-Alía MÁ, Russell SJ. Retargeted and Stealth-Modified Oncolytic Measles Viruses for Systemic Cancer Therapy in Measles Immune Patients. Mol Cancer Ther 2020; 19:2057-2067. [PMID: 32847970 DOI: 10.1158/1535-7163.mct-20-0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022]
Abstract
Measles viruses (MV) are rapidly inactivated by anti-measles neutralizing antibodies, which has limited their clinical performance as oncolytic agents. Here, by substituting the H and F surface glycoproteins of MV with those from the homologous canine distemper virus (CDV) and engineering the CDV H attachment protein to target EGFR or CD38, we generated a fully retargeted MV capable of resisting neutralization by measles-immune human serum. The resultant recombinant MVs encoding retargeted CDV envelope glycoproteins had similar growth kinetics as the control MV, showed the expected engineered receptor specificities for cell entry, intercellular fusion, and target cell killing, and were blind to native CDV receptors. In contrast to the control MV, recombinant MVs incorporating CDV F and H glycoproteins retained full infectivity when exposed to high concentrations of pooled measles-immune human serum. Comparing viruses bearing MV or CDV glycoproteins in the SKOV3ip.1 model, only the virus bearing an EGFR-retargeted CDV envelope glycoprotein complex was capable of limiting tumor growth and extending the survival in measles immune mice. MV, "stealthed" and retargeted using engineered CDV surface glycoproteins, may be a promising platform to advance for systemic cancer therapy in measles immune patients.
Collapse
Affiliation(s)
- Eugene S Bah
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, Minnesota
| | - Rebecca A Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota. .,Division of Hematology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Vandergaast R, Carey T, Reiter S, Lech P, Gnanadurai C, Tesfay M, Buehler J, Suksanpaisan L, Naik S, Brunton B, Recker J, Haselton M, Ziegler C, Roesler A, Mills JR, Theel E, Weaver SC, Rafael G, Roforth MM, Jerde C, Tran S, Diaz RM, Bexon A, Baum A, Kyratsous CA, Peng KW, Russell SJ. Development and validation of IMMUNO-COV™: a high-throughput clinical assay for detecting antibodies that neutralize SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577655 DOI: 10.1101/2020.05.26.117549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We here describe the development and validation of IMMUNO-COV™, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-Δ19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system. VSV-SARS-CoV-2-S-Δ19CT infection was blocked by monoclonal α-SARS-CoV-2-spike antibodies and by plasma or serum from SARS-CoV-2 convalescing individuals. The assay exhibited 100% specificity in validation tests, and across all tests zero false positives were detected. In blinded analyses of 230 serum samples, only two unexpected results were observed based on available clinical data. We observed a perfect correlation between results from our assay and 80 samples that were also assayed using a commercially available ELISA. To quantify the magnitude of the anti-viral response, we generated a calibration curve by adding stepped concentrations of α-SARS-CoV-2-spike monoclonal antibody to pooled SARS-CoV-2 seronegative serum. Using the calibration curve and a single optimal 1:100 serum test dilution, we reliably measured neutralizing antibody levels in each test sample. Virus neutralization units (VNUs) calculated from the assay correlated closely (p < 0.0001) with PRNT EC50 values determined by plaque reduction neutralization test against a clinical isolate of SARS-CoV-2. Taken together, these results demonstrate that the IMMUNO-COV™ assay accurately quantitates SARS-CoV-2 neutralizing antibodies in human sera and therefore is a potentially valuable addition to the currently available serological tests. The assay can provide vital information for comparing immune responses to the various SARS-CoV-2 vaccines that are currently in development, or for evaluating donor eligibility in convalescent plasma therapy studies.
Collapse
|
29
|
Structural characteristics of measles virus entry. Curr Opin Virol 2020; 41:52-58. [PMID: 32413678 DOI: 10.1016/j.coviro.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/30/2022]
Abstract
Measles virus, a member of the genus Morbillivirus, is highly contagious and still shows considerable mortality with over 100000 deaths annually, although efficient attenuated vaccines exist. Recent studies of measles virus haemagglutinin (MeV-H) and its receptor, including crystallographic and electron microscopic structural analyses combined with functional assays, have revealed how the MeV-H protein recognizes its cognate receptors, SLAM and Nectin-4, and how the glycan shield ensures effective vaccination. In addition, the crystal structure of the MeV-F protein indicated its similarity to those of other paramyxoviruses. Taking into account these data, several models of viral entry/membrane fusion of measles viruses and related paramyxoviruses have been proposed. Furthermore, anti-MeV-F inhibitors targeted to specific regions to inhibit MeV-F protein activation were reported, with potency for preventing MeV infection. The inhibitors targeted for entry events may potentially be applied to treatment of MeV-derived diseases, although escape mutations and drug profiles should be considered.
Collapse
|
30
|
Jing Y, Chavez V, Khatwani N, Ban Y, Espejo AP, Chen X, Merchan JR. In vivo antitumor activity by dual stromal and tumor-targeted oncolytic measles viruses. Cancer Gene Ther 2020; 27:910-922. [PMID: 32231231 DOI: 10.1038/s41417-020-0171-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
The tumor stroma acts as a barrier that limits the efficacy of systemically administered oncolytic viruses (OV). We previously demonstrated that stromal-selective, retargeted oncolytic measles viruses (MVs) delay in vivo tumor progression. To further characterize the contribution of stromal targeting to MV's overall in vivo efficacy in an experimental cancer model, a dual targeted oncolytic measles virus (MV-CD46-muPA) able to simultaneously infect murine stromal (via murine uPAR) and human cancer (via CD46) cells was developed. MV-CD46-muPA infected, replicated, and induced cytotoxicity in both murine and human cancer cells. Viral infection was successfully transferred from stromal to tumor cells in vitro, leading to tumor cell oncolysis. Systemic administration of MV-CD46-muPA led to improved antitumor effects in colon (HT-29) cancer xenografts compared to vehicle or CD46 only targeted MVs. These effects were associated with improved tumor viral deposition, increased apoptosis, and decreases in murine stromal endothelial cells and fibroblasts. MV-CD46-muPA modulated cell cycle, survival, proliferation, and metabolic pathways, as determined by functional proteomic analysis of treated tumors. The above findings further validate the concept that dual stromal and tumor cell viral targeting enhances the therapeutic effects of systemically administered OVs and support further preclinical and clinical development of stromal directed virotherapies.
Collapse
Affiliation(s)
- Yuqi Jing
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Valery Chavez
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Natasha Khatwani
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer, Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea P Espejo
- Division of Internal Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xi Chen
- Division of Biostatistics and Bioinformatics, Sylvester Comprehensive Cancer, Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaime R Merchan
- Division of Medical Oncology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
31
|
Jayawardena N, Poirier JT, Burga LN, Bostina M. Virus-Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. Oncolytic Virother 2020; 9:1-15. [PMID: 32185149 PMCID: PMC7064293 DOI: 10.2147/ov.s186337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) are replication competent agents that selectively target cancer cells. After penetrating the tumor cell, viruses replicate and eventually trigger cell lysis, releasing the new viral progeny, which at their turn will attack and kill neighbouring cells. The ability of OVs to self-amplify within the tumor while sparing normal cells can provide several advantages including the capacity to encode and locally produce therapeutic protein payloads, and to prime the host immune system. OVs targeting of cancer cells is mediated by host factors that are differentially expressed between normal tissue and tumors, including viral receptors and internalization factors. In this review article, we will discuss the evolution of oncolytic viruses that have reached the stage of clinical trials, their mechanisms of oncolysis, cellular receptors, strategies for targeting cancers, viral neutralization and developments to bypass virus neutralization.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Department of Medicine and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Leber MF, Hoyler B, Prien S, Neault S, Engeland CE, Förster JM, Bossow S, Springfeld C, von Kalle C, Jäger D, Bell JC, Ungerechts G. Sequencing of serially passaged measles virus affirms its genomic stability and reveals a nonrandom distribution of consensus mutations. J Gen Virol 2020; 101:399-409. [PMID: 32053093 DOI: 10.1099/jgv.0.001395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy is an emerging treatment option for numerous cancers, with several virus families currently being evaluated in clinical trials. More specifically, vaccine-strain measles virus has arisen as a promising candidate for the treatment of different tumour types in several early clinical trials. Replicating viruses, and especially RNA viruses without proofreading polymerases, can rapidly adapt to varying environments by selecting quasispecies with advantageous genetic mutations. Subsequently, these genetic alterations could potentially weaken the safety profile of virotherapy. In this study, we demonstrate that, following an extended period of virus replication in producer or cancer cell lines, the quasispecies consensus sequence of vaccine strain-derived measles virus accrues a remarkably small number of mutations throughout the nonsegmented negative-stranded RNA genome. Interestingly, we detected a nonrandom distribution of genetic alterations within the genome, with an overall decreasing frequency of mutations from the 3' genome start to its 5' end. Comparing the serially passaged viruses to the parental virus on producer cells, we found that the acquired consensus mutations did not drastically change viral replication kinetics or cytolytic potency. Collectively, our data corroborate the genomic stability and excellent safety profile of oncolytic measles virus, thus supporting its continued development and clinical translation as a promising viro-immunotherapeutic.
Collapse
Affiliation(s)
- Mathias Felix Leber
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Birgit Hoyler
- Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefanie Prien
- Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Serge Neault
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Christine E Engeland
- Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Judith M Förster
- Heidelberg University, Faculty of Biosciences, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sascha Bossow
- Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Sidra Medical and Research Center, Al Luqta Street, Education City, North Campus, 26999, Doha, Qatar.,Berlin Institute of Health and Charité, Universitätsmedizin, Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany.,German Cancer Research Center (DKFZ), Division of Translational Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - John C Bell
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Guy Ungerechts
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.,Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Abstract
This chapter describes the development of recombinant oncolytic measles viruses (MeV) that selectively enter and destroy tumor cells. The envelope of MeV is a favorable targeting substrate because receptor attachment and membrane fusion functions are separated on two proteins: the hemagglutinin (H) that binds receptors, and the fusion (F) protein that fuses the viral envelope with the cell membrane. The cell entry process, which depends on receptor recognition and occurs at the plasma membrane at neutral pH, results in the delivery of encapsidated genomes to the cytoplasm, where they replicate. Towards improving cancer specificity of oncolytic MeV, two types of cell entry targeting have been achieved. First, entry has been redirected through cancer-specific cell surface proteins. This was done by displaying specificity domains on H while also ablating binding to its natural receptors. Second, activation of the F protein was made dependent on secreted cancer proteases, while also interfering with F cleavage/activation by a ubiquitous intracellular protease. This chapter describes how entry-targeted MeV are produced: In short, gene cassettes with modified H or F coding regions are generated, and then introduced into the viral genome available on plasmid DNA. Such full-length genome plasmids are transfected in cell lines expressing, stably or transiently, the three viral proteins necessary for genome replication. Infectious centers form among these "rescue" cells, which allow isolation of clonal recombinant viruses. These are amplified, characterized in vitro, and then evaluated for their oncolytic activity in appropriate preclinical animal models.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Section Product Testing of Immunological Veterinary Medicinal Products, Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany.
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
34
|
Jayawardena N, Burga LN, Poirier JT, Bostina M. Virus-Receptor Interactions: Structural Insights For Oncolytic Virus Development. Oncolytic Virother 2019; 8:39-56. [PMID: 31754615 PMCID: PMC6825474 DOI: 10.2147/ov.s218494] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Recent advancements in oncolytic virotherapy commend a special attention to developing new strategies for targeting cancer cells with oncolytic viruses (OVs). Modifications of the viral envelope or coat proteins serve as a logical mean of repurposing viruses for cancer treatment. In this review, we discuss how detailed structural knowledge of the interactions between OVs and their natural receptors provide valuable insights into tumor specificity of some viruses and re-targeting of alternate receptors for broad tumor tropism or improved tumor selectivity.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
Hanauer JRH, Koch V, Lauer UM, Mühlebach MD. High-Affinity DARPin Allows Targeting of MeV to Glioblastoma Multiforme in Combination with Protease Targeting without Loss of Potency. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:186-200. [PMID: 31788553 PMCID: PMC6880102 DOI: 10.1016/j.omto.2019.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Measles virus (MeV) is naturally cytolytic by extensive cell-to-cell fusion. Vaccine-derived MeV is toxic for cancer cells and is clinically tested as oncolytic virus. To combine the potential of MeV with enhanced safety, different targeting strategies have been described. We generated a receptor-targeted MeV by using receptor-blind viral attachment protein genetically fused to designed ankyrin repeat protein (DARPin) binding domains specific for the epidermal growth factor receptor (EGFR). To reduce on-target toxicity for EGFR+ healthy cells, we used an engineered viral fusion protein activatable by tumor-associated matrix metalloproteases (MMPs) for additional protease targeting. The dual-targeted virus replicated exclusively on EGFR+/MMP+ tumor cells but was safe on healthy EGFR+ target cells, primary human keratinocytes. Nevertheless, glioblastoma and other tumor cells were efficiently killed by all targeted viruses, although replication and oncolysis were slower for protease-targeted MeV. In vivo, efficacy of EGFR-targeted MeV was virtually unimpaired, whereas also dual-targeted MeV showed significant intra-tumoral spread and efficacy and could be armed with a prodrug convertase. The use of DARPin-domains resulted in potent EGFR-targeted MeV and for the first time effective dual retargeting of an oncolytic virus, further enhancing tumor selectivity. Together with powerful cell-toxic genes, the application as highly tumor-specific platform is promising.
Collapse
Affiliation(s)
- Jan R H Hanauer
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Vivian Koch
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, University Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Michael D Mühlebach
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Veterinary Medicine, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
36
|
Backhaus PS, Veinalde R, Hartmann L, Dunder JE, Jeworowski LM, Albert J, Hoyler B, Poth T, Jäger D, Ungerechts G, Engeland CE. Immunological Effects and Viral Gene Expression Determine the Efficacy of Oncolytic Measles Vaccines Encoding IL-12 or IL-15 Agonists. Viruses 2019; 11:v11100914. [PMID: 31623390 PMCID: PMC6832518 DOI: 10.3390/v11100914] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor-targeted immunomodulation using oncolytic viral vectors is currently being investigated as a promising strategy in cancer therapy. In a previous study, we showed that a measles virus Schwarz vaccine strain (MeVac) vector encoding an interleukin-12 fusion protein (FmIL-12) is an effective immunotherapy in the MC38cea murine colon adenocarcinoma model. We hypothesized that MeVac encoding interleukin-15 may mediate enhanced T and NK cell responses and thus increase the therapeutic efficacy, especially in NK cell-controlled tumors. Therefore, we generated MeVac vectors encoding an interleukin-15 superagonist, FmIL-15. Replication and oncolytic capacity, transgene expression, and functionality of MeVac FmIL-15 vectors were validated in vitro. Effects on the tumor immune landscape and therapeutic efficacy of both FmIL-12 and FmIL-15 vectors were studied in the MC38cea and B16hCD46 tumor models. Treatment with MeVac FmIL-15 increased T and NK cell infiltration in both models. However, MeVac FmIL-12 showed more robust viral gene expression and immune activation, resulting in superior anti-tumor efficacy. Based on these results, MeVac encoding a human IL-12 fusion protein was developed for future clinical translation.
Collapse
Affiliation(s)
- Paul S Backhaus
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Rūta Veinalde
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Present address: Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Laura Hartmann
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- German Cancer Research Center, 69120 Heidelberg, Germany.
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Jessica E Dunder
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Lara M Jeworowski
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| | - Jessica Albert
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Birgit Hoyler
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Dirk Jäger
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Guy Ungerechts
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.
| | - Christine E Engeland
- National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
37
|
ElMallah MK, Kalfopolous M, Flotte TR. GENE THERAPY. Cancer 2019. [DOI: 10.1002/9781119645214.ch28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Russell SJ, Babovic-Vuksanovic D, Bexon A, Cattaneo R, Dingli D, Dispenzieri A, Deyle DR, Federspiel MJ, Fielding A, Galanis E, Lacy MQ, Leibovich BC, Liu MC, Muñoz-Alía M, Miest TC, Molina JR, Mueller S, Okuno SH, Packiriswamy N, Peikert T, Raffel C, Van Rhee F, Ungerechts G, Young PR, Zhou Y, Peng KW. Oncolytic Measles Virotherapy and Opposition to Measles Vaccination. Mayo Clin Proc 2019; 94:1834-1839. [PMID: 31235278 PMCID: PMC6800178 DOI: 10.1016/j.mayocp.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Recent measles epidemics in US and European cities where vaccination coverage has declined are providing a harsh reminder for the need to maintain protective levels of immunity across the entire population. Vaccine uptake rates have been declining in large part because of public misinformation regarding a possible association between measles vaccination and autism for which there is no scientific basis. The purpose of this article is to address a new misinformed antivaccination argument-that measles immunity is undesirable because measles virus is protective against cancer. Having worked for many years to develop engineered measles viruses as anticancer therapies, we have concluded (1) that measles is not protective against cancer and (2) that its potential utility as a cancer therapy will be enhanced, not diminished, by prior vaccination.
Collapse
Affiliation(s)
- Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN.
| | | | | | | | - David Dingli
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - David R Deyle
- Division of Medical Genetics, Mayo Clinic, Rochester, MN
| | | | - Adele Fielding
- Department of Hematology, UCL Cancer Institute, London, UK
| | - Eva Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN; Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | | | - Minetta C Liu
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | | | | | - Sabine Mueller
- Department of Neurology, University of California, San Francisco
| | - Scott H Okuno
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | | | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Corey Raffel
- Department of Neurology, University of California, San Francisco
| | - Frits Van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock
| | - Guy Ungerechts
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Paul R Young
- Department of Urology, Mayo Clinic, Jacksonville, FL
| | - Yumei Zhou
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
39
|
Muñoz-Alía MA, Russell SJ. Probing Morbillivirus Antisera Neutralization Using Functional Chimerism between Measles Virus and Canine Distemper Virus Envelope Glycoproteins. Viruses 2019; 11:E688. [PMID: 31357579 PMCID: PMC6722617 DOI: 10.3390/v11080688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Measles virus (MeV) is monotypic. Live virus challenge provokes a broadly protective humoral immune response that neutralizes all known measles genotypes. The two surface glycoproteins, H and F, mediate virus attachment and entry, respectively, and neutralizing antibodies to H are considered the main correlate of protection. Herein, we made improvements to the MeV reverse genetics system and generated a panel of recombinant MeVs in which the globular head domain or stalk region of the H glycoprotein or the entire F protein, or both, were substituted with the corresponding protein domains from canine distemper virus (CDV), a closely related morbillivirus that resists neutralization by measles-immune sera. The viruses were tested for sensitivity to human or guinea pig neutralizing anti-MeV antisera and to ferret anti-CDV antisera. Virus neutralization was mediated by antibodies to both H and F proteins, with H being immunodominant in the case of MeV and F being so in the case of CDV. Additionally, the globular head domains of both MeV and CDV H proteins were immunodominant over their stalk regions. These data shed further light on the factors constraining the evolution of new morbillivirus serotypes.
Collapse
Affiliation(s)
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Affiliation(s)
- Claudia Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, Galanis E. Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Curr Cancer Drug Targets 2019; 18:177-187. [PMID: 28228086 DOI: 10.2174/1568009617666170222125035] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023]
Abstract
Attenuated Edmonston lineage measles virus (MV-Edm) vaccine strains can preferentially infect and lyse a wide variety of cancer cells. Oncolytic MV-Edm derivatives are genetically engineered to express the human carcinoembryonic antigen (MV-CEA virus) or the human sodium iodide symporter (MV-NIS virus) and are currently being tested in clinical trials against ovarian cancer, glioblastoma multiforme, multiple myeloma, mesothelioma, head and neck cancer, breast cancer and malignant peripheral nerve sheath tumors. This review describes the basic and preclinical data that facilitated the clinical translation of MV-Edm strains, and summarizes the clinical results of this oncolytic platform to date. Furthermore, we discuss the latest clinically relevant MV-Edm vector developments and creative strategies for future translational steps.
Collapse
Affiliation(s)
- Pavlos Msaouel
- MD Anderson Cancer Center, Division of Cancer Medicine, 1400 Holcombe Blvd, Unit 0463, Houston, TX 77030, USA
| | - Mateusz Opyrchal
- Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Angela Dispenzieri
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen J Russell
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Frank AM, Buchholz CJ. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:19-31. [PMID: 30417026 PMCID: PMC6216101 DOI: 10.1016/j.omtm.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphocytes have always been among the prime targets in gene therapy, even more so since chimeric antigen receptor (CAR) T cells have reached the clinic. However, other gene therapeutic approaches hold great promise as well. The first part of this review provides an overview of current strategies in lymphocyte gene therapy. The second part highlights the importance of precise gene delivery into B and T cells as well as distinct subtypes of lymphocytes. This can be achieved with lentiviral vectors (LVs) pseudotyped with engineered glycoproteins recognizing lymphocyte surface markers as entry receptors. Different strategies for envelope glycoprotein engineering and selection of the targeting ligand are discussed. With a CD8-targeted LV that was recently used to achieve proof of principle for the in vivo reprogramming of CAR T cells, these vectors are becoming a key tool to genetically engineer lymphocytes directly in vivo.
Collapse
Affiliation(s)
- Annika M Frank
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
43
|
Russell L, Peng KW. The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol 2018; 7:16. [PMID: 29764161 DOI: 10.21037/cco.2018.04.04] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
This review discusses current clinical advancements in oncolytic viral therapy, with a focus on the viral platforms approved for clinical use and highlights the benefits each platform provides. Three oncolytic viruses (OVs), an echovirus, an adenovirus, and a herpes simplex-1 virus, have passed governmental regulatory approval in Latvia, China, and the USA and EU. Numerous other recombinant viruses from diverse families are in clinical testing in cancer patients and we highlight the design features of selected examples, including adenovirus, herpes simplex virus, measles virus, retrovirus, reovirus, vaccinia virus, vesicular stomatitis virus. Lastly, we provide thoughts on the path forward for this rapidly expanding field especially in combination with immune modulating drugs.
Collapse
|
44
|
Versatile targeting system for lentiviral vectors involving biotinylated targeting molecules. Virology 2018; 525:170-181. [PMID: 30290312 DOI: 10.1016/j.virol.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/11/2022]
Abstract
Conjugating certain types of lentiviral vectors with targeting ligands can redirect the vectors to specifically transduce desired cell types. However, extensive genetic and/or biochemical manipulations are required for conjugation, which hinders applications for targeting lentiviral vectors for broader research fields. We developed envelope proteins fused with biotin-binding molecules to conjugate the pseudotyped vectors with biotinylated targeting molecules by simply mixing them. The envelope proteins fused with the monomeric, but not tetrameric, biotin-binding molecules can pseudotype lentiviral vectors and be conjugated with biotinylated targeting ligands. The conjugation is stable enough to redirect lentiviral transduction in the presence of serum, indicating their potential in in vivo . When a signaling molecule is conjugated with the vector, the conjugation facilitates transduction and signaling in a receptor-specific manner. This simple method of ligand conjugation and ease of obtaining various types of biotinylated ligands will make targeted lentiviral transduction easily applicable to broad fields of research.
Collapse
|
45
|
For the Success of Oncolytic Viruses: Single Cycle Cures or Repeat Treatments? (One Cycle Should Be Enough). Mol Ther 2018; 26:1876-1880. [PMID: 30029891 DOI: 10.1016/j.ymthe.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
46
|
Mazar J, Li Y, Rosado A, Phelan P, Kedarinath K, Parks GD, Alexander KA, Westmoreland TJ. Zika virus as an oncolytic treatment of human neuroblastoma cells requires CD24. PLoS One 2018; 13:e0200358. [PMID: 30044847 PMCID: PMC6059425 DOI: 10.1371/journal.pone.0200358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is the second most common childhood tumor. Survival is poor even with intensive therapy. In a search for therapies to neuroblastoma, we assessed the oncolytic potential of Zika virus. Zika virus is an emerging mosquito-borne pathogen unique among flaviviruses because of its association with congenital defects. Recent studies have shown that neuronal progenitor cells are likely the human target of Zika virus. Neuroblastoma has been shown to be responsive to infection. In this study, we show that neuroblastoma cells are widely permissive to Zika infection, revealing extensive cytopathic effects (CPE) and producing high titers of virus. However, a single cell line appeared poorly responsive to infection, producing undetectable levels of non-structural protein 1 (NS1), limited CPE, and low virus titers. A comparison of these poorly permissive cells to highly permissive neuroblastoma cells revealed a dramatic loss in the expression of the cell surface glycoprotein CD24 in poorly permissive cells. Complementation of CD24 expression in these cells led to the production of detectable levels of NS1 expression after infection with Zika, as well as dramatic increases in viral titers and CPE. Complementary studies using the Zika virus index strain and a north African isolate confirmed these phenotypes. These results suggest a possible role for CD24 in host cell specificity by Zika virus and offer a potential therapeutic target for its treatment. In addition, Zika viral therapy can serve as an adjunctive treatment for neuroblastoma by targeting tumor cells that can lead to recurrent disease and treatment failure.
Collapse
Affiliation(s)
- Joseph Mazar
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
| | - Yujia Li
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Amy Rosado
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
| | - Peter Phelan
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
| | - Kritika Kedarinath
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Griffith D. Parks
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Kenneth A. Alexander
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Tamarah J. Westmoreland
- Department of Biomedical Research, Nemours Children’s Hospital, Orlando, Florida, United States of America
- Burnett School of Biological Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| |
Collapse
|
47
|
Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B, Campadelli-Fiume G. HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses 2018; 10:E352. [PMID: 29966356 PMCID: PMC6070899 DOI: 10.3390/v10070352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Previously, we engineered oncolytic herpes simplex viruses (o-HSVs) retargeted to the HER2 (epidermal growth factor receptor 2) tumor cell specific receptor by the insertion of a single chain antibody (scFv) to HER2 in gD, gH, or gB. Here, the insertion of scFvs to three additional cancer targets—EGFR (epidermal growth factor receptor), EGFRvIII, and PSMA (prostate specific membrane antigen)—in gD Δ6–38 enabled the generation of specifically retargeted o-HSVs. Viable recombinants resulted from the insertion of an scFv in place of aa 6–38, but not in place of aa 61–218. Hence, only the gD N-terminus accepted all tested scFv inserts. Additionally, the insertion of mIL12 in the US1-US2 intergenic region of the HER2- or EGFRvIII-retargeted o-HSVs, and the further insertion of Gaussia Luciferase, gave rise to viable recombinants capable of secreting the cytokine and the reporter. Lastly, we engineered two known mutations in gB; they increased the ability of an HER2-retargeted recombinant to spread among murine cells. Altogether, current data show that the o-HSV carrying the aa 6–38 deletion in gD serves as a platform for the specific retargeting of o-HSV tropism to a number of human cancer targets, and the retargeted o-HSVs serve as simultaneous vectors for two molecules.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Paolo Malatesta
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy.
- Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa 16132, Italy.
| | - Biljana Petrovic
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
48
|
Fusogenic Viruses in Oncolytic Immunotherapy. Cancers (Basel) 2018; 10:cancers10070216. [PMID: 29949934 PMCID: PMC6070779 DOI: 10.3390/cancers10070216] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/09/2023] Open
Abstract
Oncolytic viruses are under intense development and have earned their place among the novel class of cancer immunotherapeutics that are changing the face of cancer therapy. Their ability to specifically infect and efficiently kill tumor cells, while breaking immune tolerance and mediating immune responses directed against the tumor, make oncolytic viruses highly attractive candidates for immunotherapy. Increasing evidence indicates that a subclass of oncolytic viruses, which encodes for fusion proteins, could outperform non-fusogenic viruses, both in their direct oncolytic potential, as well as their immune-stimulatory properties. Tumor cell infection with these viruses leads to characteristic syncytia formation and cell death due to fusion, as infected cells become fused with neighboring cells, which promotes intratumoral spread of the infection and releases additional immunogenic signals. In this review, we discuss the potential of fusogenic oncolytic viruses as optimal candidates to enhance immunotherapy and initiate broad antitumor responses. We provide an overview of the cytopathic mechanism of syncytia formation through viral-mediated expression of fusion proteins, either endogenous or engineered, and their benefits for cancer therapy. Growing evidence indicates that fusogenicity could be an important feature to consider in the design of optimal oncolytic virus platforms for combinatorial oncolytic immunotherapy.
Collapse
|
49
|
Bhattacharjee S, Yadava PK. Measles virus: Background and oncolytic virotherapy. Biochem Biophys Rep 2018; 13:58-62. [PMID: 29326986 PMCID: PMC5758921 DOI: 10.1016/j.bbrep.2017.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Measles is a highly transmissible disease caused by measles virus and remains a major cause of child mortality in developing countries. Measles virus nucleoprotein (N) encapsidates the RNA genome of the virus for providing protection from host cell endonucleases and for specific recognition of viral RNA as template for transcription and replication. This protein is over-expressed at the time of viral replication. The C-terminal of N protein is intrinsically disordered, which enables this protein to interact with several host cell proteins. It was previously proved in our laboratory that N expressing human cancerous cells undergo programmed cell death because of reactive oxygen species (ROS) generation as well as Caspase 3 activation. The phosphoprotein (P) along with N protein enclosed viral genomic RNA forming a ribonucleoprotein complex (RNP). It also establishes interaction with the large protein (L) i.e. viral RNA dependent RNA polymerase to ensure viral replication within host cells. The host cell receptors of this virus are CD46, SLAM/CD150 and PVRL4. Measles virus is latently oncotropic in nature and possesses oncolytic property by syncytia formation. We try to highlight the application of this property in developing a virotherapeutic vehicle.
Collapse
Affiliation(s)
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
50
|
Simultaneous Insertion of Two Ligands in gD for Cultivation of Oncolytic Herpes Simplex Viruses in Noncancer Cells and Retargeting to Cancer Receptors. J Virol 2018; 92:JVI.02132-17. [PMID: 29263255 PMCID: PMC5827369 DOI: 10.1128/jvi.02132-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/31/2023] Open
Abstract
Insertion of a single-chain variable-fragment antibody (scFv) to HER2 (human epidermal growth factor receptor 2) in gD, gH, or gB gives rise to herpes simplex viruses (HSVs) specifically retargeted to HER2-positive cancer cells, hence to highly specific nonattenuated oncolytic agents. Clinical-grade virus production cannot rely on cancer cells. Recently, we developed a double-retargeting strategy whereby gH carries the GCN4 peptide for retargeting to the noncancer producer Vero-GCN4R cell line and gD carries the scFv to HER2 for cancer retargeting. Here, we engineered double-retargeted recombinants, which carry both the GCN4 peptide and the scFv to HER2 in gD. Novel, more-advantageous detargeting strategies were devised so as to optimize the cultivation of the double-retargeted recombinants. Nectin1 detargeting was achieved by deletion of amino acids (aa) 35 to 39, 214 to 223, or 219 to 223 and replacement of the deleted sequences with one of the two ligands. The last two deletions were not attempted before. All recombinants exhibited the double retargeting to HER2 and to the Vero-GCN4R cells, as well as detargeting from the natural receptors HVEM and nectin1. Of note, some recombinants grew to higher yields than others. The best-performing recombinants carried a gD deletion as small as 5 amino acids and grew to titers similar to those exhibited by the singly retargeted R-LM113 and by the nonretargeted R-LM5. This study shows that double retargeting through insertion of two ligands in gD is feasible and, when combined with appropriate detargeting modifications, can result in recombinants highly effective in vitro and in vivo. IMPORTANCE There is increasing interest in oncolytic viruses following the FDA and European Medicines Agency (EMA) approval of the oncolytic HSV OncovexGM-CSF and, mainly, because they greatly boost the immune response to the tumor and can be combined with immunotherapeutic agents, particularly immune checkpoint inhibitors. A strategy to gain high cancer specificity and avoid virus attenuation is to retarget the virus tropism to cancer-specific receptors of choice. However, cultivation of retargeted oncolytics in cells expressing the cancer receptor may not be approvable by regulatory agencies. We devised a strategy for their cultivation in noncancer cells. Here, we describe a double-retargeting strategy, based on the simultaneous insertion of two ligands in gD, one for retargeting to a producer, universal Vero cell derivative and one for retargeting to the HER2 cancer receptor. These insertions were combined with novel, minimally disadvantageous detargeting modifications. The current and accompanying studies indicate how to best achieve the clinical-grade cultivation of retargeted oncolytics.
Collapse
|