1
|
Pierre F, Baillez A, Dewitte A, Rolandelli A, Sebbane F. Proteins of the SubB family provide multiple mechanisms of serum resistance in Yersinia pestis. Emerg Microbes Infect 2025; 14:2493926. [PMID: 40237516 PMCID: PMC12064104 DOI: 10.1080/22221751.2025.2493926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
The serum complement system is a cornerstone element of the innate immune response. Bacterial resistance to this system is a multifaceted process involving various proteins and molecular mechanisms. Here, we report several genes required for the growth of Yersinia pestis in serum. Among them, we found that ypo0337 encodes an outer-membrane-associated lectin that recruits factor H, C4BP and hemopexin, conferring resistance to the serum complement system. YPO0337 displays high sequence similarity with the SubB subunit of the AB5 toxin from Escherichia coli, as well as other SubB-like proteins, and subB from E. coli restores the ability of Y. pestis Δypo0337 mutant to resist to serum complement. Altogether, the data suggest that at least two members of the SubB protein family function as virulence factors, conferring resistance to serum complement through a unique mode of action.
Collapse
Affiliation(s)
- François Pierre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Alexandre Baillez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Amélie Dewitte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Agustin Rolandelli
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
2
|
Guerra FE, Karlinsey JE, Libby SJ, Fang FC. Evasion of serum antibodies and complement by Salmonella Typhi and Paratyphi A. PLoS Pathog 2025; 21:e1012917. [PMID: 40315236 PMCID: PMC12068720 DOI: 10.1371/journal.ppat.1012917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/12/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025] Open
Abstract
Nontyphoidal and enteric fever serovars of Salmonella enterica display distinctive interactions with serum antibodies and the complement system, which initiate the host immune response to invading microbes. This study examines the contributions of lipopolysaccharide O-antigen (O-ag) and the S. Typhi Vi polysaccharide capsule to serum resistance, complement activation and deposition, and immunoglobulin (Ig) binding in nontyphoidal S. enterica serovar Typhimurium and the enteric fever serovars S. Typhi and S. Paratyphi A. Although all three serovars are resistant to serum killing, S. Typhi and S. Paratyphi A exhibit lower levels of Ig binding, complement binding and complement activation compared to S. Typhimurium. In S. Typhimurium, WzzB-dependent long O-antigen (L O-ag) production with 16-to-35 repeating O-ag units, and FepE-dependent very long O-antigen (VL O-ag) production with over 100 repeating O-ag units, are required for serum resistance but do not prevent IgM binding or complement deposition. S. Typhi lacks VL O-ag, but its production of Vi capsule inhibits IgM binding and complement deposition, while acting in concert with L O-ag to resist serum killing. In S. Paratyphi A, L O-ag production is deficient due to a hypofunctional WzzB protein, but this is compensated by greater quantities of VL O-ag, which are required for serum resistance. Restoration of WzzB function by exchange with the S. Typhimurium or S. Typhi wzzB alleles can restore L O-ag production in S. Paratyphi A but decreases VL O-ag production, resulting in increased IgM binding. Replacement of the S. Paratyphi A O2-type polysaccharide with the S. Typhi O9 polysaccharide further increases IgM binding of S. Paratyphi A, which enhances complement activation but not complement deposition. Lastly, a gene duplication of rfbV in S. Paratyphi A is necessary for higher levels of VL O-ag and resistance to complement deposition and antibody binding. Collectively, these observations demonstrate fundamental differences between nontyphoidal and enteric fever Salmonella serovars in their interactions with innate immune effectors. Whereas nontyphoidal S. Typhimurium elicits, exploits and withstands the host acute inflammatory response, the enteric fever serovars S. Typhi and S. Paratyphi A evade it by limiting antibody recognition and complement activation and deposition.
Collapse
Affiliation(s)
- Fermin E. Guerra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Joyce E. Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Stephen J. Libby
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ferric C. Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Bickel JK, Ahmed AIS, Pidd AB, Morgan RM, McAllister TE, Horrell S, Couves EC, Nagaraj H, Bartlett EJ, El Omari K, Kawamura A, Bubeck D, Tate EW. Macrocyclic Peptide Probes for Immunomodulatory Protein CD59: Potent Modulators of Bacterial Toxin Activity and Antibody-Dependent Cytotoxicity. Angew Chem Int Ed Engl 2025:e202422673. [PMID: 40272315 DOI: 10.1002/anie.202422673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
CD59 is an immunomodulatory cell surface receptor associated with human disease. Despite its importance in complement regulation and bacterial pathogenesis, CD59 remains a challenging therapeutic target. Research to date has focused on antibody or protein-based strategies. Here we present a new approach to target CD59 using macrocyclic peptides with low nanomolar affinity for CD59. Through X-ray crystallographic studies and structure-activity relationship (SAR) studies, we identify key interactions that are essential for binding and activity. We find that the macrocyclic peptide CP-06 adopts a beta-hairpin structure and binds CD59 through an intermolecular beta-sheet, mimicking protein-protein interactions of biologically relevant CD59 interaction partners. We create dimeric and lipidated macrocyclic peptide conjugates as enhanced cell-active CD59 inhibitors and show that these probes can be used to modulate both complement-mediated killing of human cells and lytic activity of bacterial virulence factors. Together, our data provide a starting point for future development of macrocyclic peptides to target CD59 activity in diverse cellular contexts.
Collapse
Affiliation(s)
- Jasmine K Bickel
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Ammar I S Ahmed
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Aidan B Pidd
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Rhodri M Morgan
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Tom E McAllister
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, Newcastle, NE1 7RU, UK
| | - Sam Horrell
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Emma C Couves
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | | | - Edward J Bartlett
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxford, OX11 0DE, UK
| | - Akane Kawamura
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, Newcastle, NE1 7RU, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
4
|
Johnstone BA, Christie MP, Joseph R, Morton CJ, Brown HG, Hanssen E, Sanford TC, Abrahamsen HL, Tweten RK, Parker MW. Structural basis for the pore-forming activity of a complement-like toxin. SCIENCE ADVANCES 2025; 11:eadt2127. [PMID: 40153490 PMCID: PMC11952106 DOI: 10.1126/sciadv.adt2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Pore-forming proteins comprise a highly diverse group of proteins exemplified by the membrane attack complex/perforin (MACPF), cholesterol-dependent cytolysin (CDC), and gasdermin superfamilies, which all form gigantic pores (>150 angstroms). A recently found family of pore-forming toxins, called CDC-like proteins (CDCLs), are wide-spread in gut microbes and are a prevalent means of antibacterial antagonism. However, the structural aspects of how CDCLs assemble a pore remain a mystery. Here, we report the crystal structure of a proteolytically activated CDCL and cryo-electron microscopy structures of a prepore-like intermediate and a transmembrane pore providing detailed snapshots across the entire pore-forming pathway. These studies reveal a sophisticated array of regulatory features to ensure productive pore formation, and, thus, CDCLs straddle the MACPF, CDC, and gasdermin lineages of the giant pore superfamilies.
Collapse
Affiliation(s)
- Bronte A. Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michelle P. Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Riya Joseph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hamish G. Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eric Hanssen
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Ian Holmes Imaging Centre, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tristan C. Sanford
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hunter L. Abrahamsen
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rodney K. Tweten
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| |
Collapse
|
5
|
Chanakul W, Mukhopadhyay A, Awasthi S, Protopopova AD, Ianiro A, Mayer M. Large and Stable Nanopores Formed by Complement Component 9 for Characterizing Single Folded Proteins. ACS NANO 2025; 19:5240-5252. [PMID: 39871506 PMCID: PMC11823641 DOI: 10.1021/acsnano.4c11666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm. These poly(C9) pores remain stable for up to 30 min without indications of gating, flickering, or clogging across a range of transmembrane voltages (-150 to +150 mV) and ionic strengths (50 to 1000 mM). At physiologic pH, the ring-shaped distribution of negative and positive surface charges in the lumen of the pore enables capture of analyte proteins by electro-osmotic flow and leads to residence times of analyte proteins whose most probable values can exceed 300 μs. We used poly(C9) nanopores to determine the volume and shape of unlabeled folded proteins with molecular weights between 9 and 230 kDa with unprecedented accuracy in the context of resistive pulse recordings. Finally, poly(C9) pores made it possible to distinguish between the open and closed conformations of adenylate kinase based on differences in current modulations within resistive pulses and the corresponding differences in approximations of their shape. Thus, poly(C9) nanopores enable highly sensitive and accurate characterization of a wide range of natively folded proteins on a single molecule level.
Collapse
Affiliation(s)
- Wachara Chanakul
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Anasua Mukhopadhyay
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
- National
Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg 1700, Switzerland
| | - Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Anna D. Protopopova
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Alessandro Ianiro
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
- National
Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg 1700, Switzerland
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
- National
Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
6
|
Yang R, Fu D, Liao A. The role of complement in tumor immune tolerance and drug resistance: a double-edged sword. Front Immunol 2025; 16:1529184. [PMID: 39958348 PMCID: PMC11825488 DOI: 10.3389/fimmu.2025.1529184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
The domain of cancer treatment has persistently been confronted with significant challenges, including those associated with recurrence and drug resistance. The complement system, which serves as the foundation of the innate immune system, exhibits intricate and nuanced dual characteristics in the evolution of tumors. On the one hand, the complement system has the capacity to directly inhibit cancer cell proliferation via specific pathways, thereby exerting a beneficial anti-tumor effect. Conversely, the complement system can also facilitate the establishment of an immune escape barrier for cancer cells through non-complement-mediated mechanisms, thereby protecting them from eradication. Concurrently, the complement system can also be implicated in the emergence of drug resistance through a multitude of complex mechanisms, directly or indirectly reducing the efficacy of therapeutic interventions and facilitating the progression of cancer. This paper analyses the role of the complement system in tumors and reviews recent research advances in the mechanisms of tumor immune tolerance and drug resistance.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Blood Transfusion, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Di Fu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of General Practice, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Li Z, Lu F, Zhou F, Song D, Chang L, Liu W, Yan G, Zhang G. From actinic keratosis to cutaneous squamous cell carcinoma: the key pathogenesis and treatments. Front Immunol 2025; 16:1518633. [PMID: 39925808 PMCID: PMC11802505 DOI: 10.3389/fimmu.2025.1518633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common non-melanoma skin cancer, among which 82% arise from actinic keratosis (AK) characterized by lesions of epidermal keratinocyte dysplasia. It is of great significance to uncover the progression mechanisms from AK to cSCC, which will facilitate the early therapeutic intervention of AK before malignant transformation. Thus, more and more studies are trying to ascertain the potential transformation mechanisms through multi-omics, including genetics, transcriptomics, and epigenetics. In this review, we gave an overview of the specific biomarkers and signaling pathways that may be involved in the pathogenesis from AK to cSCC, pointing out future possible molecular therapies for the early intervention of AK and cSCC. We also discussed current interventions on AK and cSCC, together with future perspectives.
Collapse
MESH Headings
- Humans
- Keratosis, Actinic/therapy
- Keratosis, Actinic/pathology
- Keratosis, Actinic/etiology
- Keratosis, Actinic/metabolism
- Skin Neoplasms/therapy
- Skin Neoplasms/etiology
- Skin Neoplasms/pathology
- Skin Neoplasms/metabolism
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Animals
- Signal Transduction
- Cell Transformation, Neoplastic/genetics
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Zhenlin Li
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Fangqi Lu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Fujin Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dekun Song
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lunhui Chang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Weiying Liu
- Department of Dermatology, Hunan Aerospace Hospital, Changsha, China
| | - Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Gencsoy Eker S, Inetas Yengin G, Tatar C, Oktem G. A Comprehensive Review of the Mechanisms and Clinical Development of Monoclonal Antibodies in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:181-203. [PMID: 39666264 DOI: 10.1007/5584_2024_838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cancer is still the disease that ranks first in human mortality in the twenty-first century. In the last 20 years, the concept of molecular targeted therapy has come to the fore with the use of small molecule agents or signal transduction inhibitors that show anticancer effects for certain types of cancer. Monoclonal antibodies, which have a therapeutic effect, especially by providing signal transduction inhibition, are used clinically as first-line treatment in various types of cancer. Molecular targeted therapies are critical for eliminating the adverse effects and drug resistance problems that occur in traditional cancer treatments. This review summarizes current information on various targeted therapeutic agents, including the structure and classification of monoclonal antibodies, their production methods and mechanisms of action, the monoclonal antibodies used in clinical trials, the complement system mechanism and cancer relationship, and the relationship between complement-dependent cytotoxicity and monoclonal antibodies.
Collapse
Affiliation(s)
- Selen Gencsoy Eker
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey
| | - Gizem Inetas Yengin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Cansu Tatar
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Gulperi Oktem
- Department of Stem Cell, Graduate School of Health Sciences, Ege University, Izmir, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
9
|
Benn G, Bortolini C, Roberts DM, Pyne ALB, Holden S, Hoogenboom BW. Complement-mediated killing of Escherichia coli by mechanical destabilization of the cell envelope. EMBO J 2024; 43:6152-6160. [PMID: 39402327 PMCID: PMC11612287 DOI: 10.1038/s44318-024-00266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 12/06/2024] Open
Abstract
Complement proteins eliminate Gram-negative bacteria in the blood via the formation of membrane attack complex (MAC) pores in the outer membrane. However, it remains unclear how outer membrane poration leads to inner membrane permeation and cell lysis. Using atomic force microscopy (AFM) on living Escherichia coli (E. coli), we probed MAC-induced changes in the cell envelope and correlated these with subsequent cell death. Initially, bacteria survived despite the formation of hundreds of MACs that were randomly distributed over the cell surface. This was followed by larger-scale disruption of the outer membrane, including propagating defects and fractures, and by an overall swelling and stiffening of the bacterial surface, which precede inner membrane permeation. We conclude that bacterial cell lysis is only an indirect effect of MAC formation; outer membrane poration leads to mechanical destabilization of the cell envelope, reducing its ability to contain the turgor pressure, leading to inner membrane permeation and cell death.
Collapse
Affiliation(s)
- Georgina Benn
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Christian Bortolini
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - David M Roberts
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Alice L B Pyne
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - Séamus Holden
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Cheng R, Xu L, Gong J, Yu F, Lv Y, Yuan H, Hu F. Complement activation in wasp venom-induced acute kidney injury. Ren Fail 2024; 46:2344658. [PMID: 38644359 PMCID: PMC11034453 DOI: 10.1080/0886022x.2024.2344658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Previous studies have highlighted the significant role of complement activation in kidney injuries induced by rhabdomyolysis, intravascular hemolysis, sepsis, and ischemia-reperfusion. Nevertheless, the specific role and mechanism of complement activation in acute kidney injury (AKI) caused by wasp venom remain unclear. The aim of this study was to elucidate the specific complement pathway activated and investigate complement activation in AKI induced by wasp venom. In this study, a complement-depleted mouse model was used to investigate the role of complement in wasp venom-induced AKI. Mice were randomly categorized into control, cobra venom factor (CVF), AKI, and CVF + AKI groups. Compared to the AKI group, the CVF + AKI group showed improved pathological changes in kidneys and reduced blood urea nitrogen (BUN) levels. The expression levels of renal complement 3 (C3), complement 5 (C5), complement 1q (C1q), factor B (FB), mannose-binding lectin (MBL), and C5b-9 in AKI group were upregulated compared with the control group. Conversely, the renal tissue expression levels of C3, C5, C1q, FB, MBL, and C5b-9 were decreased in the CVF + AKI group compared to those in the AKI group. Complement activation occurs through all three pathways in AKI induced by wasp venom. Furthermore, complement depletion by CVF attenuates wasp venom-induced nephrotoxicity, suggesting that complement activation plays a primary role in the pathogenesis of wasp venom-induced AKI.
Collapse
Affiliation(s)
- Rui Cheng
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianhua Gong
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fanglin Yu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Lv
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
11
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 PMCID: PMC11641342 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Priyanka K. Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA;
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
12
|
Prado LG, Nagy LE. Role of Complement in Liver Diseases. Semin Liver Dis 2024; 44:510-522. [PMID: 39608405 DOI: 10.1055/s-0044-1795143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This review aims to summarize recent research using animal models, cell models, and human data regarding the role of complement in liver disease. Complement is part of the innate immune system and was initially characterized for its role in control of pathogens. However, evidence now indicates that complement also plays an important role in the response to cellular injury that is independent of pathogens. The liver is the main organ responsible for producing circulating complement. In response to liver injury, complement is activated and likely plays a dual role, both contributing to and protecting from injury. In uncontrolled complement activation, cell injury and liver inflammation occur, contributing to progression of liver disease. Complement activation is implicated in the pathogenesis of multiple liver diseases, including alcohol-associated liver disease, metabolic dysfunction-associated steatotic liver disease, fibrosis and cirrhosis, hepatocellular carcinoma, and autoimmune hepatitis. However, the mechanisms by which complement is overactivated in liver diseases are still being unraveled.
Collapse
Affiliation(s)
- Luan G Prado
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
13
|
Masson FM, Káradóttir S, van der Lans SPA, Doorduijn DJ, de Haas CJC, Rooijakkers SHM, Bardoel BW. Klebsiella LPS O1-antigen prevents complement-mediated killing by inhibiting C9 polymerization. Sci Rep 2024; 14:20701. [PMID: 39237647 PMCID: PMC11377433 DOI: 10.1038/s41598-024-71487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The Gram-negative bacterium Klebsiella pneumoniae is an important human pathogen. Its treatment has been complicated by the emergence of multi-drug resistant strains. The human complement system is an important part of our innate immune response that can directly kill Gram-negative bacteria by assembling membrane attack complex (MAC) pores into the bacterial outer membrane. To resist this attack, Gram-negative bacteria can modify their lipopolysaccharide (LPS). Especially the decoration of the LPS outer core with the O-antigen polysaccharide has been linked to increased bacterial survival in serum, but not studied in detail. In this study, we characterized various clinical Klebsiella pneumoniae isolates and show that expression of the LPS O1-antigen correlates with resistance to complement-mediated killing. Mechanistic data reveal that the O1-antigen does not inhibit C3b deposition and C5 conversion. In contrast, we see more efficient formation of C5a, and deposition of C6 and C9 when an O-antigen is present. Further downstream analyses revealed that the O1-antigen prevents correct insertion and polymerization of the final MAC component C9 into the bacterial membrane. Altogether, we show that the LPS O1-antigen is a key determining factor for complement resistance by K. pneumoniae and provide insights into the molecular basis of O1-mediated MAC evasion.
Collapse
Affiliation(s)
- Frerich M Masson
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Salvör Káradóttir
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Dennis J Doorduijn
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Turko IV. Quantitative Analysis of Complement Membrane Attack Complex Proteins Associated with Extracellular Vesicles. Proteomes 2024; 12:21. [PMID: 39051239 PMCID: PMC11270256 DOI: 10.3390/proteomes12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular vesicles (EVs) represent a universal mechanism of intercellular communication in normal and pathological conditions. There are reports showing the presence of complement proteins in EV preparations, specifically those that can form a membrane attack complex (MAC). In the present work, we have used a quantitative mass spectrometry method that allows for the measurement of multiple targeted proteins in one experimental run. The quantification of MAC-forming proteins, namely C5b, C6, C7, C8, and C9, in highly purified EVs from normal human plasma revealed the presence of MAC proteins at approximately equal stoichiometry that does not fit the expected stoichiometry of preformed MAC. We concluded that while MAC proteins can be associated with EVs from normal plasma and presumably can be delivered to the recipient cells, there is no evidence that the EVs carry preformed MAC.
Collapse
Affiliation(s)
- Illarion V Turko
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, University of Maryland, Rockville, ML 20850, USA
| |
Collapse
|
15
|
Du YJ, Jiang Y, Hou YM, Shi YB. Complement factor I knockdown inhibits colon cancer development by affecting Wnt/β-catenin/c-Myc signaling pathway and glycolysis. World J Gastrointest Oncol 2024; 16:2634-2650. [DOI: 10.4251/wjgo.v16.i6.2634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Colon cancer (CC) occurrence and progression are considerably influenced by the tumor microenvironment. However, the exact underlying regulatory mechanisms remain unclear.
AIM To investigate immune infiltration-related differentially expressed genes (DEGs) in CC and specifically explored the role and potential molecular mechanisms of complement factor I (CFI).
METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics. Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines. Stable CFI-knockdown HT29 and HCT116 cell lines were constructed, and the diverse roles of CFI in vitro were assessed using CCK-8, 5-ethynyl-2’-deoxyuridine, wound healing, and transwell assays. Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice. Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.
RESULTS Six key immune infiltration-related DEGs were screened, among which the expression of CFI, complement factor B, lymphoid enhancer binding factor 1, and SRY-related high-mobility-group box 4 was upregulated, whereas that of fatty acid-binding protein 1, and bone morphogenic protein-2 was downregulated. Furthermore, CFI could be used as a diagnostic biomarker for CC. Functionally, CFI silencing inhibited CC cell proliferation, migration, invasion, and tumor growth. Mechanistically, CFI knockdown downregulated the expression of key glycolysis-related proteins (glucose transporter type 1, hexokinase 2, lactate dehydrogenase A, and pyruvate kinase M2) and the Wnt pathway-related proteins (β-catenin and c-Myc). Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.
CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway, indicating that it could serve as a promising target for therapeutic intervention in CC.
Collapse
Affiliation(s)
- Yong-Jun Du
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yue Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yan-Mei Hou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yong-Bo Shi
- Department of Proctology, Zigong Hospital of Traditional Chinese Medicine, Zigong 643000, Sichuan Province, China
| |
Collapse
|
16
|
Du YJ, Jiang Y, Hou YM, Shi YB. Complement factor I knockdown inhibits colon cancer development by affecting Wnt/β-catenin/c-Myc signaling pathway and glycolysis. World J Gastrointest Oncol 2024; 16:2646-2662. [PMID: 38994157 PMCID: PMC11236223 DOI: 10.4251/wjgo.v16.i6.2646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Colon cancer (CC) occurrence and progression are considerably influenced by the tumor microenvironment. However, the exact underlying regulatory mechanisms remain unclear. AIM To investigate immune infiltration-related differentially expressed genes (DEGs) in CC and specifically explored the role and potential molecular mechanisms of complement factor I (CFI). METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics. Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines. Stable CFI-knockdown HT29 and HCT116 cell lines were constructed, and the diverse roles of CFI in vitro were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice. Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting. RESULTS Six key immune infiltration-related DEGs were screened, among which the expression of CFI, complement factor B, lymphoid enhancer binding factor 1, and SRY-related high-mobility-group box 4 was upregulated, whereas that of fatty acid-binding protein 1, and bone morphogenic protein-2 was downregulated. Furthermore, CFI could be used as a diagnostic biomarker for CC. Functionally, CFI silencing inhibited CC cell proliferation, migration, invasion, and tumor growth. Mechanistically, CFI knockdown downregulated the expression of key glycolysis-related proteins (glucose transporter type 1, hexokinase 2, lactate dehydrogenase A, and pyruvate kinase M2) and the Wnt pathway-related proteins (β-catenin and c-Myc). Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway. CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway, indicating that it could serve as a promising target for therapeutic intervention in CC.
Collapse
Affiliation(s)
- Yong-Jun Du
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yue Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yan-Mei Hou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yong-Bo Shi
- Department of Proctology, Zigong Hospital of Traditional Chinese Medicine, Zigong 643000, Sichuan Province, China
| |
Collapse
|
17
|
Abrahamsen HL, Sanford TC, Collamore CE, Johnstone BA, Coyne MJ, García-Bayona L, Christie MP, Evans JC, Farrand AJ, Flores K, Morton CJ, Parker MW, Comstock LE, Tweten RK. Distant relatives of a eukaryotic cell-specific toxin family evolved a complement-like mechanism to kill bacteria. Nat Commun 2024; 15:5028. [PMID: 38866748 PMCID: PMC11169675 DOI: 10.1038/s41467-024-49103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) comprise a large family of pore-forming toxins produced by Gram-positive bacteria, which are used to attack eukaryotic cells. Here, we functionally characterize a family of 2-component CDC-like (CDCL) toxins produced by the Gram-negative Bacteroidota that form pores by a mechanism only described for the mammalian complement membrane attack complex (MAC). We further show that the Bacteroides CDCLs are not eukaryotic cell toxins like the CDCs, but instead bind to and are proteolytically activated on the surface of closely related species, resulting in pore formation and cell death. The CDCL-producing Bacteroides is protected from the effects of its own CDCL by the presence of a surface lipoprotein that blocks CDCL pore formation. These studies suggest a prevalent mode of bacterial antagonism by a family of two-component CDCLs that function like mammalian MAC and that are wide-spread in the gut microbiota of diverse human populations.
Collapse
Affiliation(s)
- Hunter L Abrahamsen
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tristan C Sanford
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Casie E Collamore
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bronte A Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Coyne
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Leonor García-Bayona
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jordan C Evans
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Wheeler Bio, Oklahoma City, OK, 73104, USA
| | - Allison J Farrand
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Wheeler Bio, Oklahoma City, OK, 73104, USA
| | - Katia Flores
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- CSIRO Biomedical Manufacturing Program, Clayton, VIC, 3168, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, VIC, 2065, Australia.
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Rodney K Tweten
- Department of Microbiology & Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
18
|
Zhao ZX, Li S, Liu LX. Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways. World J Gastroenterol 2024; 30:2793-2816. [PMID: 38899332 PMCID: PMC11185293 DOI: 10.3748/wjg.v30.i21.2793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is associated with some of the worst prognoses of all major cancers. Thymoquinone (TQ) has a long history in traditional medical practice and is known for its anti-cancer, anti-inflammatory, anti-fibrosis and antioxidant pharmacological activities. Recent studies on hypoxia-inducible factor-1α (HIF-1α) and PC have shown that HIF-1α affects the occurrence and development of PC in many aspects. In addition, TQ could inhibit the development of renal cancer by decreasing the expression of HIF-1α. Therefore, we speculate whether TQ affects HIF-1α expression in PC cells and explore the mechanism. AIM To elucidate the effect of TQ in PC cells and the regulatory mechanism of HIF-1α expression. METHODS Cell counting kit-8 assay, Transwell assay and flow cytometry were performed to detect the effects of TQ on the proliferative activity, migration and invasion ability and apoptosis of PANC-1 cells and normal pancreatic duct epithelial (hTERT-HPNE) cells. Quantitative real-time polymerase chain reaction and western blot assay were performed to detect the expression of HIF-1α mRNA and protein in PC cells. The effects of TQ on the HIF-1α protein initial expression pathway and ubiquitination degradation in PANC-1 cells were examined by western blot assay and co-immunoprecipitation. RESULTS TQ significantly inhibited proliferative activity, migration, and invasion ability and promoted apoptosis of PANC-1 cells; however, no significant effects on hTERT-HPNE cells were observed. TQ significantly reduced the mRNA and protein expression levels of HIF-1α in PANC-1, AsPC-1, and BxPC-3 cells. TQ significantly inhibited the expression of the HIF-1α initial expression pathway (PI3K/AKT/mTOR) related proteins, and promoted the ubiquitination degradation of the HIF-1α protein in PANC-1 cells. TQ had no effect on the hydroxylation and von Hippel Lindau protein mediated ubiquitination degradation of the HIF-1α protein but affected the stability of the HIF-1α protein by inhibiting the interaction between HIF-1α and HSP90, thus promoting its ubiquitination degradation. CONCLUSION The regulatory mechanism of TQ on HIF-1α protein expression in PC cells was mainly to promote the ubiquitination degradation of the HIF-1α protein by inhibiting the interaction between HIF-1α and HSP90; Secondly, TQ reduced the initial expression of HIF-1α protein by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zhan-Xue Zhao
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| | - Shuai Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Lin-Xun Liu
- Department of General Surgery, Qinghai Provincial People's Hospital, Xining 810007, Qinghai Province, China
| |
Collapse
|
19
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
20
|
Shangguan W, Li X, Wang Y, Huang Z, Dong Y, Feng M, Feng J. Design and Biological Evaluation of the Long-Acting C5-Inhibited Ornithodoros moubata Complement Inhibitor (OmCI) Modified with Fatty Acid. Bioconjug Chem 2024; 35:653-664. [PMID: 38593046 DOI: 10.1021/acs.bioconjchem.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Disorder of complement response is a significant pathogenic factor causing some autoimmune and inflammation diseases. The Ornithodoros moubata Complement Inhibitor (OmCI), a small 17 kDa natural protein, was initially extracted from soft tick salivary glands. The protein was found binding to complement C5 specifically, inhibiting the activation of the complement pathway, which is a successful therapeutic basis of complement-mediated diseases. However, a short half-life due to rapid renal clearance is a common limitation of small proteins for clinical application. In this study, we extended the half-life of OmCI by modifying it with fatty acid, which was a method used to improve the pharmacokinetics of native peptides and proteins. Five OmCI mutants were initially designed, and single-site cysteine mutation was introduced to each of them. After purification, four OmCI mutants were obtained that showed similar in vitro biological activities. Three mutants of them were subsequently coupled with different fatty acids by nucleophilic substitution. In total, 15 modified derivatives were screened and tested for anticomplement activity in vitro. The results showed that coupling with fatty acid would not significantly affect their complement-inhibitory activity (CH50 and AH50). OmCIT90C-CM02 and OmCIT90C-CM05 were validated as the applicable OmCI bioconjugates for further pharmacokinetic assessments, and both showed improved plasma half-life in mice compared with unmodified OmCI (15.86, 17.96 vs 2.57 h). In summary, our data demonstrated that OmCI conjugated with fatty acid could be developed as the potential long-acting C5 complement inhibitor in the clinic.
Collapse
Affiliation(s)
- Wenwen Shangguan
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Xiaowan Li
- School of Pharmacy, Fudan University, 201203 Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Yandan Wang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zongqing Huang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Yuanzhen Dong
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
- Shanghai Duomirui Biotechnology Co Ltd, 201203 Shanghai, China
| | - Meiqing Feng
- School of Pharmacy, Fudan University, 201203 Shanghai, China
| | - Jun Feng
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| |
Collapse
|
21
|
Antonucci L, Thurman JM, Vivarelli M. Complement inhibitors in pediatric kidney diseases: new therapeutic opportunities. Pediatr Nephrol 2024; 39:1387-1404. [PMID: 37733095 DOI: 10.1007/s00467-023-06120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023]
Abstract
Historically, the complement system (classical, lectin, alternative, and terminal pathways) is known to play a crucial role in the etiopathogenesis of many kidney diseases. Direct or indirect activation in these settings is revealed by consumption of complement proteins at the serum level and kidney tissue deposition seen by immunofluorescence and electron microscopy. The advent of eculizumab has shown that complement inhibitors may improve the natural history of certain kidney diseases. Since then, the number of available therapeutic molecules and experimental studies on complement inhibition has increased exponentially. In our narrative review, we give a summary of the main complement inhibitors that have completed phase II and phase III studies or are currently used in adult and pediatric nephrology. The relevant full-text works, abstracts, and ongoing trials (clinicaltrials.gov site) are discussed. Data and key clinical features are reported for eculizumab, ravulizumab, crovalimab, avacopan, danicopan, iptacopan, pegcetacoplan, and narsoplimab. Many of these molecules have been shown to be effective in reducing proteinuria and stabilizing kidney function in different complement-mediated kidney diseases. Thanks to their efficacy and target specificity, these novel drugs may radically improve the outcome of complement-mediated kidney diseases, contributing to an improvement in our understanding of their underlying pathophysiology.
Collapse
Affiliation(s)
- Luca Antonucci
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- Ph.D. Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), University of Rome Tor Vergata, Rome, Italy
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Marina Vivarelli
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
- Division of Nephrology, Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
22
|
Chandrasekaran P, Weiskirchen S, Weiskirchen R. Structure, Functions, and Implications of Selected Lipocalins in Human Disease. Int J Mol Sci 2024; 25:4290. [PMID: 38673873 PMCID: PMC11050150 DOI: 10.3390/ijms25084290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The lipocalin proteins are a large family of small extracellular proteins that demonstrate significant heterogeneity in sequence similarity and have highly conserved crystal structures. They have a variety of functions, including acting as carrier proteins, transporting retinol, participating in olfaction, and synthesizing prostaglandins. Importantly, they also play a critical role in human diseases, including cancer. Additionally, they are involved in regulating cellular homeostasis and immune response and dispensing various compounds. This comprehensive review provides information on the lipocalin family, including their structure, functions, and implications in various diseases. It focuses on selective important human lipocalin proteins, such as lipocalin 2 (LCN2), retinol binding protein 4 (RBP4), prostaglandin D2 synthase (PTGDS), and α1-microglobulin (A1M).
Collapse
Affiliation(s)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
23
|
Heggli I, Teixeira GQ, Iatridis JC, Neidlinger‐Wilke C, Dudli S. The role of the complement system in disc degeneration and Modic changes. JOR Spine 2024; 7:e1312. [PMID: 38312949 PMCID: PMC10835744 DOI: 10.1002/jsp2.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Disc degeneration and vertebral endplate bone marrow lesions called Modic changes are prevalent spinal pathologies found in chronic low back pain patients. Their pathomechanisms are complex and not fully understood. Recent studies have revealed that complement system proteins and interactors are dysregulated in disc degeneration and Modic changes. The complement system is part of the innate immune system and plays a critical role in tissue homeostasis. However, its dysregulation has also been associated with various pathological conditions such as rheumatoid arthritis and osteoarthritis. Here, we review the evidence for the involvement of the complement system in intervertebral disc degeneration and Modic changes. We found that only a handful of studies reported on complement factors in Modic changes and disc degeneration. Therefore, the level of evidence for the involvement of the complement system is currently low. Nevertheless, the complement system is tightly intertwined with processes known to occur during disc degeneration and Modic changes, such as increased cell death, autoantibody production, bacterial defense processes, neutrophil activation, and osteoclast formation, indicating a contribution of the complement system to these spinal pathologies. Based on these mechanisms, we propose a model how the complement system could contribute to the vicious cycle of tissue damage and chronic inflammation in disc degeneration and Modic changes. With this review, we aim to highlight a currently understudied but potentially important inflammatory pathomechanism of disc degeneration and Modic changes that may be a novel therapeutic target.
Collapse
Affiliation(s)
- Irina Heggli
- Center of Experimental Rheumatology, Department of RheumatologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Graciosa Q. Teixeira
- Institute of Orthopedic Research and Biomechanics, Trauma Research Centre, Ulm UniversityUlmGermany
| | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Stefan Dudli
- Center of Experimental Rheumatology, Department of RheumatologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| |
Collapse
|
24
|
Nell D, Wolf R, Podgorny PM, Kuschnereit T, Kuschnereit R, Dabers T, Stracke S, Schmidt T. Complement Activation in Nephrotic Glomerular Diseases. Biomedicines 2024; 12:455. [PMID: 38398059 PMCID: PMC10886869 DOI: 10.3390/biomedicines12020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The nephrotic syndrome holds significant clinical importance and is characterized by a substantial protein loss in the urine. Damage to the glomerular basement membrane or podocytes frequently underlies renal protein loss. There is an increasing belief in the involvement of the complement system, a part of the innate immune system, in these conditions. Understanding the interactions between the complement system and glomerular structures continually evolves, challenging the traditional view of the blood-urine barrier as a passive filter. Clinical studies suggest that a precise inhibition of the complement system at various points may soon become feasible. However, a thorough understanding of current knowledge is imperative for planning future therapies in nephrotic glomerular diseases such as membranous glomerulopathy, membranoproliferative glomerulonephritis, lupus nephritis, focal segmental glomerulosclerosis, and minimal change disease. This review provides an overview of the complement system, its interactions with glomerular structures, and insights into specific glomerular diseases exhibiting a nephrotic course. Additionally, we explore new diagnostic tools and future therapeutic approaches.
Collapse
|
25
|
Massri M, Toonen EJ, Sarg B, Kremser L, Grasse M, Fleischer V, Torres-Quesada O, Hengst L, Skjoedt MO, Bayarri-Olmos R, Rosbjerg A, Garred P, Orth-Höller D, Prohászka Z, Würzner R. Complement C7 and clusterin form a complex in circulation. Front Immunol 2024; 15:1330095. [PMID: 38333209 PMCID: PMC10850381 DOI: 10.3389/fimmu.2024.1330095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum‑purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size‑exclusion chromatography. Results Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.
Collapse
Affiliation(s)
- Mariam Massri
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Bettina Sarg
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marco Grasse
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Fleischer
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Omar Torres-Quesada
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Immunology & Microbiology , University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorothea Orth-Höller
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
- MB-LAB Clinical Microbiology Laboratory, Innsbruck, Austria
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Hematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Heggi MT, Nour El-Din HT, Morsy DI, Abdelaziz NI, Attia AS. Microbial evasion of the complement system: a continuous and evolving story. Front Immunol 2024; 14:1281096. [PMID: 38239357 PMCID: PMC10794618 DOI: 10.3389/fimmu.2023.1281096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024] Open
Abstract
The complement system is a fundamental part of the innate immune system that plays a key role in the battle of the human body against invading pathogens. Through its three pathways, represented by the classical, alternative, and lectin pathways, the complement system forms a tightly regulated network of soluble proteins, membrane-expressed receptors, and regulators with versatile protective and killing mechanisms. However, ingenious pathogens have developed strategies over the years to protect themselves from this complex part of the immune system. This review briefly discusses the sequence of the complement activation pathways. Then, we present a comprehensive updated overview of how the major four pathogenic groups, namely, bacteria, viruses, fungi, and parasites, control, modulate, and block the complement attacks at different steps of the complement cascade. We shed more light on the ability of those pathogens to deploy more than one mechanism to tackle the complement system in their path to establish infection within the human host.
Collapse
Affiliation(s)
- Mariam T. Heggi
- Clinical Pharmacy Undergraduate Program, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanzada T. Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Abstract
The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic-uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.
Collapse
Affiliation(s)
- Vojtech Petr
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
28
|
Heurich M, McCluskey G. Complement and coagulation crosstalk - Factor H in the spotlight. Immunobiology 2023; 228:152707. [PMID: 37633063 DOI: 10.1016/j.imbio.2023.152707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom.
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase, Inflammation, Thrombose HITH U1176, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
29
|
Vashishtha A, Maina SW, Altman J, Jones G, Lee TJ, Bollinger KE, Ulrich L, Töteberg-Harms M, Estes AJ, Zhi W, Sharma S, Sharma A. Complement System Proteins in the Human Aqueous Humor and Their Association with Primary Open-Angle Glaucoma. J Pers Med 2023; 13:1400. [PMID: 37763167 PMCID: PMC10532607 DOI: 10.3390/jpm13091400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
This study discovers the complement protein profile in the aqueous humor (AH) of human subjects and investigates its association with primary open-angle glaucoma (POAG) pathogenesis. Among the 32 complement proteins identified, 22 were highly abundant and detected in more than 50% of AH samples. The most predominant active complement proteins in the AH are C3, C4B, C4A, CFB, CFD, and C9. Additionally, the most prevalent complement regulators and receptors include CLU, SERPING1, F2, CFH, CFI, and VTN. Significant alterations in complement proteins were observed in individuals with POAG compared to those with cataracts. Specifically, complement protein F2 was upregulated, while C8G, C6, and CFH were downregulated in POAG samples. Stratification of the samples by race and sex revealed distinct alterations of complement proteins in patients with POAG. In the African American cohort, five complement proteins (C4A, C4B, F2, C7, and C3) were upregulated in POAG compared to cataract patients. In the Caucasian cohort, eight complement proteins (C3, SERPING1, CFI, CLU, CFHR1, C8G, C6, and CFH) were downregulated in the POAG samples compared to the cataract samples. Within the male cohort, three complement proteins (CLU, C6, and CFH) were downregulated in POAG patients compared to those with cataracts. Whereas, within the female cohort, two complement proteins (C4B and F2) were upregulated and one (C8G) downregulated in the POAG samples when compared to cataracts. Discerning these changes in the AH complement protein profile will assist in the development of tailored therapies to modulate the complement system for managing ocular disorders. These insights may also lead to novel biomarkers for diagnosing and monitoring disease progression.
Collapse
Affiliation(s)
- Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Sharon W. Maina
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Marc Töteberg-Harms
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Voisin TB, Couves EC, Tate EW, Bubeck D. Dynamics and Molecular Interactions of GPI-Anchored CD59. Toxins (Basel) 2023; 15:430. [PMID: 37505699 PMCID: PMC10467114 DOI: 10.3390/toxins15070430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
CD59 is a GPI-anchored cell surface receptor that serves as a gatekeeper to controlling pore formation. It is the only membrane-bound inhibitor of the complement membrane attack complex (MAC), an immune pore that can damage human cells. While CD59 blocks MAC pores, the receptor is co-opted by bacterial pore-forming proteins to target human cells. Recent structures of CD59 in complexes with binding partners showed dramatic differences in the orientation of its ectodomain relative to the membrane. Here, we show how GPI-anchored CD59 can satisfy this diversity in binding modes. We present a PyLipID analysis of coarse-grain molecular dynamics simulations of a CD59-inhibited MAC to reveal residues of complement proteins (C6:Y285, C6:R407 C6:K412, C7:F224, C8β:F202, C8β:K326) that likely interact with lipids. Using modules of the MDAnalysis package to investigate atomistic simulations of GPI-anchored CD59, we discover properties of CD59 that encode the flexibility necessary to bind both complement proteins and bacterial virulence factors.
Collapse
Affiliation(s)
- Tomas B. Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Emma C. Couves
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
31
|
Krawetz RJ, Larijani L, Corpuz JM, Ninkovic N, Das N, Olsen A, Mohtadi N, Rezansoff A, Dufour A. Mesenchymal progenitor cells from non-inflamed versus inflamed synovium post-ACL injury present with distinct phenotypes and cartilage regeneration capacity. Stem Cell Res Ther 2023; 14:168. [PMID: 37357305 DOI: 10.1186/s13287-023-03396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic debilitating disease impacting a significant percentage of the global population. While there are numerous surgical and non-invasive interventions that can postpone joint replacement, there are no current treatments which can reverse the joint damage occurring during the pathogenesis of the disease. While many groups are investigating the use of stem cell therapies in the treatment of OA, we still don't have a clear understanding of the role of these cells in the body, including heterogeneity of tissue resident adult mesenchymal progenitor cells (MPCs). METHODS In the current study, we examined MPCs from the synovium and individuals with or without a traumatic knee joint injury and explored the chondrogenic differentiation capacity of these MPCs in vitro and in vivo. RESULTS We found that there is heterogeneity of MPCs with the adult synovium and distinct sub-populations of MPCs and the abundancy of these sub-populations change with joint injury. Furthermore, only some of these sub-populations have the ability to effect cartilage repair in vivo. Using an unbiased proteomics approach, we were able to identify cell surface markers that identify this pro-chondrogenic MPC population in normal and injured joints, specifically CD82LowCD59+ synovial MPCs have robust cartilage regenerative properties in vivo. CONCLUSIONS The results of this study clearly show that cells within the adult human joint can impact cartilage repair and that these sub-populations exist within joints that have undergone a traumatic joint injury. Therefore, these populations can be exploited for the treatment of cartilage injuries and OA in future clinical trials.
Collapse
Affiliation(s)
- Roman J Krawetz
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Department Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
- Department of Surgery, University of Calgary, Calgary, AB, Canada.
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
| | - Leila Larijani
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jessica May Corpuz
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Nicoletta Ninkovic
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Nabangshu Das
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Alexandra Olsen
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Nicholas Mohtadi
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Alexander Rezansoff
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Zelinger L, Martin TM, Advani J, Campello L, English MA, Kwong A, Weber C, Maykoski J, Sergeev YV, Fariss R, Chew EY, Klein ML, Swaroop A. Ultra-rare complement factor 8 coding variants in families with age-related macular degeneration. iScience 2023; 26:106417. [PMID: 37153444 PMCID: PMC10156737 DOI: 10.1016/j.isci.2023.106417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
Genome-wide association studies have uncovered 52 independent common and rare variants across 34 genetic loci, which influence susceptibility to age related macular degeneration (AMD). Of the 5 AMD-associated complement genes, complement factor H (CFH) and CFI exhibit a significant rare variant burden implicating a major contribution of the complement pathway to disease pathology. However, the efforts for developing AMD therapy have been challenging as of yet. Here, we report the identification of ultra-rare variants in complement factors 8A and 8B, two components of the terminal complement membrane attack complex (MAC), by whole exome sequencing of a cohort of AMD families. The identified C8 variants impact local interactions among proteins of C8 triplex in vitro, indicating their effect on MAC stability. Our results suggest that MAC, and not the early steps of the complement pathway, might be a more effective target for designing treatments for AMD.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tammy M. Martin
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Milton A. English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan Kwong
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- 23andMe, Inc, Sunnyvale, CA, USA
| | - Claire Weber
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Maykoski
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael L. Klein
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Wijaya C, Burns C, Hall S, Farmer M, Jones D, Rowlandson M, Choi P, Formby M, de Malmanche T. Measurement of Complement Activation via Plasma-Soluble C5b-9 Comparison with Terminal Complement Complex Staining in a Series of Kidney Biopsies. Kidney Blood Press Res 2023; 48:220-230. [PMID: 36917968 PMCID: PMC10124756 DOI: 10.1159/000529734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION With the emergence of therapeutic complement inhibitors, there is a need to identify patients with complement-driven inflammation. C5b-9 is the terminal product of the three complement pathways and therefore a marker of total complement activation. We present a pilot study which aims to assess whether plasma soluble C5b-9 (sC5b-9) correlates with terminal complement complex (TCC) staining in kidney tissue. The secondary aim was to assess the utility of plasma sC5b-9 as part of routine workup in kidney patients undergoing kidney biopsy. METHODS Thirty-seven patients undergoing kidney biopsy had plasma sC5b-9 and TCC staining on kidney tissue performed. Additional blood markers including creatinine, haemoglobin, CRP, factor H, factor I, and midkine levels were also taken. These parameters were correlated with the histological diagnoses. Patients were divided into a diseased group (n = 31) and a control group (n = 6) consisting of transplanted kidneys with minor or no changes. Of the biopsies in the control group, 50% were performed as per protocol, and the other 50% were performed due to clinical need. RESULTS There was no correlation found between plasma sC5b-9 and TCC kidney staining. Elevated sC5b-9 levels were found in a heterogeneous group of patients but were associated with higher CRP and lower haemoglobin levels. Overall, there was more TCC kidney staining in the diseased group compared with the control group, and a trend was observed of diabetic, primary membranous nephropathy, and amyloidosis patients having more intense glomerular and peritubular/interstitial staining. CONCLUSION Plasma sC5b-9 as a marker of total complement activation does not correlate with TCC kidney staining. This discordance suggests that plasma sC5b-9 and TCC staining are distinct markers of disease. TCC staining reflects chronicity and tissue deposition of complement over time. Conversely, plasma sC5b-9 concentrations change rapidly and reflect systemic complement activation. Complement activation was present in a heterogeneous group of kidney disease, indicating the underlying role of complement in many disorders.
Collapse
Affiliation(s)
- Carolyn Wijaya
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Christine Burns
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Sharron Hall
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa Farmer
- Anatomical Pathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Denise Jones
- Renal Department, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Matthew Rowlandson
- Renal Department, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Peter Choi
- Renal Department, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Mark Formby
- Anatomical Pathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Theo de Malmanche
- Immunopathology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
34
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
35
|
Couves EC, Gardner S, Voisin TB, Bickel JK, Stansfeld PJ, Tate EW, Bubeck D. Structural basis for membrane attack complex inhibition by CD59. Nat Commun 2023; 14:890. [PMID: 36797260 PMCID: PMC9935631 DOI: 10.1038/s41467-023-36441-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
CD59 is an abundant immuno-regulatory receptor that protects human cells from damage during complement activation. Here we show how the receptor binds complement proteins C8 and C9 at the membrane to prevent insertion and polymerization of membrane attack complex (MAC) pores. We present cryo-electron microscopy structures of two inhibited MAC precursors known as C5b8 and C5b9. We discover that in both complexes, CD59 binds the pore-forming β-hairpins of C8 to form an intermolecular β-sheet that prevents membrane perforation. While bound to C8, CD59 deflects the cascading C9 β-hairpins, rerouting their trajectory into the membrane. Preventing insertion of C9 restricts structural transitions of subsequent monomers and indirectly halts MAC polymerization. We combine our structural data with cellular assays and molecular dynamics simulations to explain how the membrane environment impacts the dual roles of CD59 in controlling pore formation of MAC, and as a target of bacterial virulence factors which hijack CD59 to lyse human cells.
Collapse
Affiliation(s)
- Emma C Couves
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Scott Gardner
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Tomas B Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jasmine K Bickel
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, United Kingdom
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, United Kingdom
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
36
|
Xu BB, Huang Y, Zheng ED, Wang JY, Zhang CJ, Geng XG, Wang YN, Pan WS. Hsa_circ_0072309 is a prognostic biomarker and is correlated with immune infiltration in gastric cancer. Heliyon 2023; 9:e13191. [PMID: 36852074 PMCID: PMC9958299 DOI: 10.1016/j.heliyon.2023.e13191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Background Hsa_circ_0072309 has been identified as a tumor suppressor in several carcinomas. However, its precise role in gastric cancer (GC) remains largely unknown. This study was aimed to explore the precise role of Hsa_circ_0072309 in GC. Methods The transcriptional and clinical data of stomach adenocarcinoma were downloaded using the University of California SantaCruz (UCSC) Xena browser. The circular RNA (circRNA) datasets were obtained from the Gene Expression Omnibus (GEO) database. The expression profile and survival analysis of differentially expressed micro RNAs (DEMIs) and differentially expressed messenger RNAs (DEMs) were performed. Correlations between the expression and immune infiltration of the DEMS were studied. Additionally, the expression of hsa_circ_0072309 in GC tissues and cell lines were validated, and the relationship between its expression and clinical features was investigated. Gain- and loss-of function experiments and molecular interaction experiments were also conducted. Results Overall, 7 differentially expressed circRNAs, 13 DEMIs, and 17 DEMs were screened. Two DEMIs (hsa_miR-34a-3p and hsa_miR-326) and five DEMs (C7, MARCKSL1, UBE2T, OLR1, and HOXC11) showed significant differences in the high- and low-risk groups. The most significantly enriched Gene Ontology terms were the circadian regulation of gene expression and protein binding. The most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were the PI3K-Akt and Ras signal pathways. Additionally, six genes were significantly correlated with immune infiltration. The real-time quantitative PCR (RT-qPCR) results revealed a significant downregulation of hsa_circ_0072309 in GC tissues related to tumor size, vascular invasion, and lymph node metastasis. A hsa_circ_0072309 overexpression suppressed whereas a hsa_circ_0072309 knockdown promoted GC cells proliferation and migration in vitro; in addition, hsa_circ_0072309 could directly bind to has-miR-34a-3p and has-miR-330-5p. Conclusions Hsa_circ_0072309 is a potential diagnostic biomarker for GC, and complement component 7 may be a tumor suppressor. These may potentially predict the prognosis of patients with GC and may become new therapeutic targets.
Collapse
Affiliation(s)
- Bei-Bei Xu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China.,Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Yi Huang
- Department of General Surgery, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - En-Dian Zheng
- Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Jing-Ya Wang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Chen-Jing Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Xiao-Ge Geng
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Ya-Nan Wang
- Zhejiang University of Technology, Hangzhou, 310000, Zhejiang, China
| | - Wen-Sheng Pan
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China.,People's Hospital of Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
37
|
Complement, but Not Platelets, Plays a Pivotal Role in the Outcome of Mucormycosis In Vivo. J Fungi (Basel) 2023; 9:jof9020162. [PMID: 36836277 PMCID: PMC9965864 DOI: 10.3390/jof9020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Mucormycetes, a heterogeneous group of fungi, induce a life-threatening disease called mucormycosis. Immune deficiencies represent a major risk factor; hence, we wanted to illuminate the role of complement and platelets in the defense against mucormycetes. METHODS Rhizopus arrhizus (Ra), Rhizopus microsporus (Rm), Lichtheimia ramosa (Lr), Lichtheimia corymbifera (Lc), Rhizomucor pusillus (Rmp), and Mucor circinelloides (Mc) spores were opsonized with human and mouse serum, and C1q, C3c, and terminal complement complex (C5b-9) deposition was measured. Additionally, thrombocytopenic, C3-deficient, or C6-deficient mice were intravenously infected with selected isolates. Survival and immunological parameters were monitored, and fungal burden was determined and compared to that of immunocompetent and neutropenic mice. RESULTS In vitro experiments showed significant differences in complement deposition between mucormycetes. Mc isolates bound up to threefold more human C5b-9 than other mucormycetes. Lr, Lc, and Mc bound high levels of murine C3c, whereas human C3c deposition was reduced on Mc compared to Lr and Lc. Murine C3c deposition negatively correlated with virulence. Complement deficiencies and neutropenia, but not thrombocytopenia, were shown to be a risk factor for a lethal outcome. CONCLUSION Complement deposition varies between mucormycetes. Additionally, we demonstrated that complement and neutrophilic granulocytes, but not platelets, play an important role in a murine model of disseminated mucormycosis.
Collapse
|
38
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
39
|
Lin L, Liu S, Chen Z, Xia Y, Xie J, Fu M, Lu D, Wu Y, Shen H, Yang P, Qian J. Anatomically resolved transcriptome and proteome landscapes reveal disease‐relevant molecular signatures and systematic changes in heart function of end‐stage dilated cardiomyopathy. VIEW 2022. [DOI: 10.1002/viw.20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ling Lin
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Shanshan Liu
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Zhangwei Chen
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yan Xia
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Juanjuan Xie
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Mingqiang Fu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Danbo Lu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yuan Wu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Huali Shen
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of chemistry Fudan University Shanghai China
| | - Juying Qian
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
40
|
Zhang HJ, Ding PP, Zhang XS, Wang XC, Sun DW, Bu QA, Li XQ. MAC mediates mammary duct epithelial cell injury in plasma cell mastitis and granulomatous mastitis. Int Immunopharmacol 2022; 113:109303. [DOI: 10.1016/j.intimp.2022.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
41
|
Dai B, Zhang R, Qi S, Liu L, Zhang X, Deng D, Zhang J, Xu Y, Liu F, Liu Z, Luo Q, Zhang Z. Intravital molecular imaging reveals that ROS-caspase-3-GSDME-induced cell punching enhances humoral immunotherapy targeting intracellular tumor antigens. Theranostics 2022; 12:7603-7623. [PMID: 36438480 PMCID: PMC9691348 DOI: 10.7150/thno.75966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor antigens (TAs)-induced humoral immune responses or TAs-specific antibodies have great application prospects for tumor therapy. However, more than half of TAs are intracellular antigens (intra-Ags) that are hardly recognized by antibodies. It is worthy to develop immunotherapeutic strategies for targeting intra-Ags. Methods: We used the far-red fluorescent protein tfRFP as an intracellular antigen to immunize mice and generated a liver metastasis model by injecting tfRFP-expressing B16 melanoma cells (tfRFP-B16) via the spleen. Intravital molecular imaging and atomic force microscopy were performed to visualize the formation of tfRFP antigen-antibody complexes (also known as immune complexes) and punched holes in cell membranes. Results: The results showed that the tfRFP-elicited immune responses inhibited the metastasis of tfRFP-expressing melanoma cells in the liver. In the circulating tfRFP-B16 tumor cells, elevated reactive oxygen species (ROS) induced slight caspase-3 activation, a probable key factor in the cleavage of gasdermin E (GSDME) proteins and punching of holes in the tumor cell membrane. Increased tumor cell membrane permeability led to the release of intra-Ag tfRFP and binding with anti-tfRFP antibodies. The formation of tfRFP antigen-antibody complexes on the membranes of tfRFP-B16 cells activated complement components to form membrane attack complexes to further destroy the cell membrane. Neutrophils were rapidly recruited, and F4/80+ macrophages phagocytized the dying tumor cells. Conclusion: The process of circulating tumor cell elimination in the tfRFP-immunized mice was triggered through the ROS-caspase-3-GSDME pathway to form intra-Ag-antibody immune complexes, which were involved in the activation of the complement system, as well as the recruitment of neutrophils and F4/80+ macrophages. An intra-Ag-elicited humoral immune response is a potent strategy for eliminating liver metastasis, which is unaffected by the liver immune tolerogenic status.
Collapse
Affiliation(s)
- Bolei Dai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ren Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuhong Qi
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lei Liu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xian Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Deqiang Deng
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jie Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yilun Xu
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Fanxuan Liu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zheng Liu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
42
|
Savchenko VG, Lukina EA, Mikhaylova EA, Tsvetaeva NV, Latyshev VD, Lukina KA, Fidarova ZT, Galtseva IV, Dvirnik VN, Ptushkin VV, Afanasyev BV, Kulagin AD, Shilova ER, Maschan AA, Smetanina NS, Lugovskaya SA. Clinical guidelines for the management of patients with paroxysmal nocturnal hemoglobinuria. RUSSIAN JOURNAL OF HEMATOLOGY AND TRANSFUSIOLOGY 2022. [DOI: 10.35754/0234-5730-2022-67-3-426-439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Introduction. Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired clonal disease of the blood system characterized by intravascular hemolysis, bone marrow dysfunction and an increased risk of thrombotic and organ complications.Aim — to provide relevant clinical recommendations for the provision of medical care to adults and children with PNH.Basic information. Experts from the National Hematological Society association which is focused on the promotion of hematology, transfusiology and bone marrow transplantation along with experts from the public organization, National Society of Pediatric Hematologists and Oncologists, have developed current clinical recommendations for providing medical care to adults and children with PNH. The recommendations address in detail the issues of etiology, pathogenesis, epidemiology, and clinical manifestations of the disease. Special attention is paid to the diagnosis, differential diagnosis, and treatment of PNH based on the principles of evidence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - V. V. Ptushkin
- Botkin City Clinical Hospital of the Moscow Health Department
| | - B. V. Afanasyev
- Raisa Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation, Pavlov First State Medical University of St. Petersburg
| | - A. D. Kulagin
- Raisa Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation, Pavlov First State Medical University of St. Petersburg
| | - E. R. Shilova
- Russian Research Institute of Hematology and Transfusiology of the Federal Medical and Biological Agency
| | - A. A. Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
| | - N. S. Smetanina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
| | | |
Collapse
|
43
|
A system pharmacology Boolean network model for the TLR4-mediated inflammatory response in early sepsis. J Pharmacokinet Pharmacodyn 2022; 49:645-655. [PMID: 36261775 DOI: 10.1007/s10928-022-09828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2022]
Abstract
Sepsis is a life-threatening condition driven by the dysregulation of the host immune response to an infection. The complex and interacting mechanisms underlying sepsis remain not fully understood. By integrating prior knowledge from literature using mathematical modelling techniques, we aimed to obtain a deeper mechanistic insight into sepsis pathogenesis and to evaluate promising novel therapeutic targets, with a focus on Toll-like receptor 4 (TLR4)-mediated pathways. A Boolean network of regulatory relationships was developed for key immune components associated with sepsis pathogenesis after TLR4 activation. Perturbation analyses were conducted to identify therapeutic targets associated with organ dysfunction or antibacterial activity. The developed model consisted of 42 nodes and 183 interactions. Perturbation analyses suggest that over-expression of tumour necrosis factor alpha (TNF-α) or inhibition of soluble receptor sTNF-R, tissue factor, and inflammatory cytokines (IFN-γ, IL-12) may lead to a reduced activation of organ dysfunction related endpoints. Over-expression of complement factor C3b and C5b led to an increase in the bacterial clearance related endpoint. We identified that combinatory blockade of IFN-γ and IL-10 may reduce the risk of organ dysfunction. Finally, we found that combining antibiotic treatment with IL-1β targeted therapy may have the potential to decrease thrombosis. In summary, we demonstrate how existing biological knowledge can be effectively integrated using Boolean network analysis for hypothesis generation of potential treatment strategies and characterization of biomarker responses associated with the early inflammatory response in sepsis.
Collapse
|
44
|
Yang W, Cerier EJ, Núñez-Santana FL, Wu Q, Yan Y, Kurihara C, Liu X, Yeldandi A, Khurram N, Avella-Patino D, Sun H, Budinger GS, Kreisel D, Mohanakumar T, Lecuona E, Bharat A. IL-1β-dependent extravasation of preexisting lung-restricted autoantibodies during lung transplantation activates complement and mediates primary graft dysfunction. J Clin Invest 2022; 132:157975. [PMID: 36250462 PMCID: PMC9566897 DOI: 10.1172/jci157975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Preexisting lung-restricted autoantibodies (LRAs) are associated with a higher incidence of primary graft dysfunction (PGD), although it remains unclear whether LRAs can drive its pathogenesis. In syngeneic murine left lung transplant recipients, preexisting LRAs worsened graft dysfunction, which was evident by impaired gas exchange, increased pulmonary edema, and activation of damage-associated pathways in lung epithelial cells. LRA-mediated injury was distinct from ischemia-reperfusion injury since deletion of donor nonclassical monocytes and host neutrophils could not prevent graft dysfunction in LRA-pretreated recipients. Whole LRA IgG molecules were necessary for lung injury, which was mediated by the classical and alternative complement pathways and reversed by complement inhibition. However, deletion of Fc receptors in donor macrophages or mannose-binding lectin in recipient mice failed to rescue lung function. LRA-mediated injury was localized to the transplanted lung and dependent on IL-1β-mediated permeabilization of pulmonary vascular endothelium, which allowed extravasation of antibodies. Genetic deletion or pharmacological inhibition of IL-1R in the donor lungs prevented LRA-induced graft injury. In humans, preexisting LRAs were an independent risk factor for severe PGD and could be treated with plasmapheresis and complement blockade. We conclude that preexisting LRAs can compound ischemia-reperfusion injury to worsen PGD for which complement inhibition may be effective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - G.R. Scott Budinger
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Departments of Surgery, Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | | | | | - Ankit Bharat
- Division of Thoracic Surgery
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
45
|
Song G, Wang S, Barkestani MN, Mullan C, Fan M, Jiang B, Jiang Q, Li X, Jane-wit D. Membrane attack complexes, endothelial cell activation, and direct allorecognition. Front Immunol 2022; 13:1020889. [PMID: 36211400 PMCID: PMC9539657 DOI: 10.3389/fimmu.2022.1020889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells (ECs) form a critical immune interface regulating both the activation and trafficking of alloreactive T cells. In the setting of solid organ transplantation, donor-derived ECs represent sites where alloreactive T cells encounter major and minor tissue-derived alloantigens. During this initial encounter, ECs may formatively modulate effector responses of these T cells through expression of inflammatory mediators. Direct allorecognition is a process whereby recipient T cells recognize alloantigen in the context of donor EC-derived HLA molecules. Direct alloresponses are strongly modulated by human ECs and are galvanized by EC-derived inflammatory mediators. Complement are immune proteins that mark damaged or foreign surfaces for immune cell activation. Following labeling by natural IgM during ischemia reperfusion injury (IRI) or IgG during antibody-mediated rejection (ABMR), the complement cascade is terminally activated in the vicinity of donor-derived ECs to locally generate the solid-phase inflammatory mediator, the membrane attack complex (MAC). Via upregulation of leukocyte adhesion molecules, costimulatory molecules, and cytokine trans-presentation, MAC strengthen EC:T cell direct alloresponses and qualitatively shape the alloimmune T cell response. These processes together promote T cell-mediated inflammation during solid organ transplant rejection. In this review we describe molecular pathways downstream of IgM- and IgG-mediated MAC assembly on ECs in the setting of IRI and ABMR of tissue allografts, respectively. We describe work demonstrating that MAC deposition on ECs generates 'signaling endosomes' that sequester and post-translationally enhance the stability of inflammatory signaling molecules to promote EC activation, a process potentiating EC-mediated direct allorecognition. Additionally, with consideration to first-in-human xenotransplantation procedures, we describe clinical therapeutics based on inhibition of the complement pathway. The complement cascade critically mediates EC activation and improved understanding of relevant effector pathways will uncover druggable targets to obviate dysregulated alloimmune T cell infiltration into tissue allografts.
Collapse
Affiliation(s)
- Guiyu Song
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoxun Wang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Mahsa Nouri Barkestani
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Clancy Mullan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew Fan
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xue Li
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Dan Jane-wit
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiology, West Haven VA Medical Center, West Haven, CT, United States
| |
Collapse
|
46
|
Jiao F, Dehez F, Ni T, Yu X, Dittman JS, Gilbert R, Chipot C, Scheuring S. Perforin-2 clockwise hand-over-hand pre-pore to pore transition mechanism. Nat Commun 2022; 13:5039. [PMID: 36028507 PMCID: PMC9418332 DOI: 10.1038/s41467-022-32757-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Perforin-2 (PFN2, MPEG1) is a pore-forming protein that acts as a first line of defense in the mammalian immune system, rapidly killing engulfed microbes within the phagolysosome in macrophages. PFN2 self-assembles into hexadecameric pre-pore rings that transition upon acidification into pores damaging target cell membranes. Here, using high-speed atomic force microscopy (HS-AFM) imaging and line-scanning and molecular dynamics simulation, we elucidate PFN2 pre-pore to pore transition pathways and dynamics. Upon acidification, the pre-pore rings (pre-pore-I) display frequent, 1.8 s-1, ring-opening dynamics that eventually, 0.2 s-1, initiate transition into an intermediate, short-lived, ~75 ms, pre-pore-II state, inducing a clockwise pre-pore-I to pre-pore-II propagation. Concomitantly, the first pre-pore-II subunit, undergoes a major conformational change to the pore state that propagates also clockwise at a rate ~15 s-1. Thus, the pre-pore to pore transition is a clockwise hand-over-hand mechanism that is accomplished within ~1.3 s. Our findings suggest a clockwise mechanism of membrane insertion that with variations may be general for the MACPF/CDC superfamily.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, USA.
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - François Dehez
- Laboratoire International Associé, Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford, UK
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Robert Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford, UK
| | - Christophe Chipot
- Laboratoire International Associé, Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no 7019, Université de Lorraine, Vandœuvre-lès-Nancy cedex, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
47
|
Massri M, Foco L, Würzner R. Comprehensive Update and Revision of Nomenclature on Complement C6 and C7 Variants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2597-2612. [PMID: 35867677 DOI: 10.4049/jimmunol.2200045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Complement genes encompass a wide array of variants, giving rise to numerous protein isoforms that have often been shown to exhibit clinical significance. Given that these variants have been discovered over a span of 50 y, one challenging consequence is the inconsistency in the terminology used to classify them. This issue is prominently evident in the nomenclature used for complement C6 and C7 variants, for which we observed a great discrepancy between previously published works and variants described in current genome browsers. This report discusses the causes for the discrepancies in C6 and C7 nomenclature and seeks to establish a classification system that would unify existing and future variants. The inconsistency in the methods used to annotate amino acids and the modifications pinpointed in the C6 and C7 primers are some of the factors that contribute greatly to the discrepancy in the nomenclature. Several variants that were classified incorrectly are highlighted in this report, and we showcase first-hand how a unified classification system is important to match previous with current genetic information. Ultimately, we hope that the proposed classification system of nomenclature becomes an incentive for studies on complement variants and their physiological and/or pathological effects.
Collapse
Affiliation(s)
- Mariam Massri
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria; and
| | - Luisa Foco
- Institute for Biomedicine (affiliated with the University of Lübeck), Eurac Research, Bolzano, Italy
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria; and
| |
Collapse
|
48
|
Couves EC, Bubeck D. Capturing pore-forming intermediates of MACPF and binary toxin assemblies by cryoEM. Curr Opin Struct Biol 2022; 75:102401. [PMID: 35700576 DOI: 10.1016/j.sbi.2022.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
Abstract
Deployed by both pathogenic bacteria and host immune systems, pore-forming proteins rupture target membranes and can serve as conduits for effector proteins. Understanding how these proteins work relies on capturing assembly intermediates. Advances in cryoEM allowing in silico purification of heterogeneous assemblies has led to new insights into two main classes of pore-forming proteins: membrane attack complex perforin (MACPF) proteins and binary toxins. The structure of an immune activation complex, sMAC, shows how pores form by sequential templating and insertion of β-hairpins. CryoEM structures of bacterial binary toxins present a series of transitions along the pore formation pathway and reveal a general mechanism of effector protein translocation. Future developments in time-resolved cryoEM could capture and place short-lived states along the trajectory of pore-formation.
Collapse
Affiliation(s)
- Emma C Couves
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, United Kingdom. https://twitter.com/@EmmaCouves
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
49
|
Herwerth M, Kenet S, Schifferer M, Winkler A, Weber M, Snaidero N, Wang M, Lohrberg M, Bennett JL, Stadelmann C, Hemmer B, Misgeld T. A new form of axonal pathology in a spinal model of neuromyelitis optica. Brain 2022; 145:1726-1742. [PMID: 35202467 PMCID: PMC9166560 DOI: 10.1093/brain/awac079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 11/14/2022] Open
Abstract
Neuromyelitis optica is a chronic neuroinflammatory disease, which primarily targets astrocytes and often results in severe axon injury of unknown mechanism. Neuromyelitis optica patients harbour autoantibodies against the astrocytic water channel protein, aquaporin-4 (AQP4-IgG), which induce complement-mediated astrocyte lysis and subsequent axon damage. Using spinal in vivo imaging in a mouse model of such astrocytopathic lesions, we explored the mechanism underlying neuromyelitis optica-related axon injury. Many axons showed a swift and morphologically distinct 'pearls-on-string' transformation also readily detectable in human neuromyelitis optica lesions, which especially affected small calibre axons independently of myelination. Functional imaging revealed that calcium homeostasis was initially preserved in this 'acute axonal beading' state, ruling out disruption of the axonal membrane, which sets this form of axon injury apart from previously described forms of traumatic and inflammatory axon damage. Morphological, pharmacological and genetic analyses showed that AQP4-IgG-induced axon injury involved osmotic stress and ionic overload, but does not appear to use canonical pathways of Wallerian-like degeneration. Subcellular analysis demonstrated remodelling of the axonal cytoskeleton in beaded axons, especially local loss of microtubules. Treatment with the microtubule stabilizer epothilone, a putative therapy approach for traumatic and degenerative axonopathies, prevented axonal beading, while destabilizing microtubules sensitized axons for beading. Our results reveal a distinct form of immune-mediated axon pathology in neuromyelitis optica that mechanistically differs from known cascades of post-traumatic and inflammatory axon loss, and suggest a new strategy for neuroprotection in neuromyelitis optica and related diseases.
Collapse
Affiliation(s)
- Marina Herwerth
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Selin Kenet
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians University, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Anne Winkler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Melanie Weber
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Melanie Lohrberg
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Aurora, USA
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
50
|
Wang F, Huang M, Wang Y, Hong Y, Zang D, Yang C, Wu C, Zhu Q. Membrane Attack Complex C5b-9 Promotes Renal Tubular Epithelial Cell Pyroptosis in Trichloroethylene-Sensitized Mice. Front Pharmacol 2022; 13:877988. [PMID: 35656289 PMCID: PMC9152256 DOI: 10.3389/fphar.2022.877988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Trichloroethylene (TCE), a commonly used organic solvent, is known to cause trichloroethylene hypersensitivity syndrome (THS), also called occupational medicamentosa-like dermatitis due to TCE (OMDT) in China. OMDT patients presented with severe inflammatory kidney damage, and we have previously shown that the renal damage is related to the terminal complement complex C5b-9. Here, we sought to determine whether C5b-9 participated in TCE-induced immune kidney injury by promoting pyroptosis, a new form of programed cell death linked to inflammatory response, with underlying molecular mechanisms involving the NLRP3 inflammasome. A BALB/c mouse-based model of OMDT was established by dermal TCE sensitization in the presence or absence of C5b-9 inhibitor (sCD59-Cys, 25μg/mouse) and NLRP3 antagonist (MCC950, 10 mg/kg). Kidney histopathology, renal function, expression of inflammatory mediators and the pyroptosis executive protein gasdermin D (GSDMD), and the activation of pyroptosis canonical NLRP3/caspase-1 pathway were examined in the mouse model. Renal tubular damage was observed in TCE-sensitized mice. GSDMD was mainly expressed on renal tubular epithelial cells (RTECs). The caspase-1-dependent canonical pathway of pyroptosis was activated in TCE-induced renal damage. Pharmacological inhibition of C5b-9 could restrain the caspase-1-dependent canonical pathway and rescued the renal tubular damage. Taken together, our results demonstrated that complement C5b-9 plays a central role in TCE-induced immune kidney damage, and the underlying mechanisms involve NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yican Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yiting Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Dandan Zang
- Center for Scientific Research and Experiment, Anhui Medical University, Hefei, China
| | - Chunjun Yang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|