1
|
Vanherle S, Janssen A, Gutiérrez de Ravé M, Janssen B, Lodder C, Botella Lucena P, Kessels S, Hardy J, Vandeput E, Wang Y, Stancu IC, Segal A, Kleinewietfeld M, Voets T, Brône B, Poovathingal S, Alpizar YA, Dewachter I. APOE deficiency inhibits amyloid-facilitated (A) tau pathology (T) and neurodegeneration (N), halting progressive ATN pathology in a preclinical model. Mol Psychiatry 2025:10.1038/s41380-025-03036-7. [PMID: 40307424 DOI: 10.1038/s41380-025-03036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
In AD, amyloid pathology (A) precedes progressive development of tau pathology (T) and neurodegeneration (N), with the latter (T/N) processes associated with symptom progression. Recent anti-amyloid beta (Aβ) clinical trials raise hope but indicate the need for multi-targeted therapies, to effectively halt clinical AD and ATN pathology progression. APOE-related putative protective mutations (including APOE3Christchurch, RELN-COLBOS) were recently identified in case reports with exceptionally high resilience to autosomal dominant AD. In these cases, Nature provided proof of concept for halting autosomal dominant AD and ATN progression in humans, despite a high amyloid load, and pointing to the APOE pathway as a potential target. This is further supported by the recent identification of APOE4 homozygosity as genetic AD. Here we studied the role of APOE in a preclinical model that robustly mimics amyloid-facilitated (A) tau pathology (T) and subsequent neurodegeneration (N), denoted as ATN model, generated by crossing 5xFAD (F +) and TauP301S (T +) mice. We show that APOE deficiency, markedly inhibited progression to tau pathology and tau-induced neurodegeneration in this ATN model, despite a high Aβ load, reminiscent of the high resilience ADAD case reports. Further study identified, despite increased Aβ load (W02 stained), a significant decrease in compacted, dense core plaques stained by ThioS in APOE deficient ATN mice. Furthermore, single-cell RNA sequencing (scRNA-seq) showed a crucial role of APOE in microglial conversion beyond homeostatic microglia to reactive and disease associated microglia (DAM) in this ATN preclinical model. Microglial elimination significantly decreased amyloid-driven tau pathology, in the presence of APOE, but not in APOE deficient mice. Together the data demonstrate that APOE deficiency inhibits amyloid-driven tau pathology and subsequent neurodegeneration, by pleiotropic effects including prevention of dense core plaque formation and halting conversion of homeostatic microglia. We here present a model recapitulating inhibition of amyloid-facilitated tau pathology by APOE deficiency despite high Aβ load, important for understanding the role of APOE, and APOE-dependent processes in ATN progression and its therapeutic exploitation in AD.
Collapse
Affiliation(s)
- Sarah Vanherle
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Art Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Manuel Gutiérrez de Ravé
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Bieke Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Chritica Lodder
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Pablo Botella Lucena
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Sofie Kessels
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Jana Hardy
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Eline Vandeput
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Yanyan Wang
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Ilie-Cosmin Stancu
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Bert Brône
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | | | - Yeranddy A Alpizar
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Ilse Dewachter
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
2
|
Feleke R, Jogaudaite S, Velentza-Almpani E, Yeung-Yeung L, Clode D, Ko JH, Shin B, Matthews S, Otero-Jimenez M, Wojewska MJ, Gray-Rodriguez S, Marzi SJ, Spires-Jones MP, Spires-Jones TL, Johnson MR, Alegre-Abarrategui J. Seeding-competent early tau multimers are associated with cell type-specific transcriptional signatures. Acta Neuropathol 2025; 149:31. [PMID: 40183825 PMCID: PMC11971191 DOI: 10.1007/s00401-025-02869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 04/05/2025]
Abstract
The initial molecular alterations of Alzheimer's disease (AD) are unknown. Established AD is characterized by profound structural and transcriptional alterations in the human brain, with the hallmark neuropathological features being beta-amyloid (Aβ) accumulation in senile plaques and hyperphosphorylated fibrillar tau in neurofibrillary tangles (NFTs). Previous evidence indicates that tau multimerization into small aggregates is one of the earliest molecular alterations, anticipating the accumulation of hyperphosphorylated tau in NFTs. In this study, we investigated the seeding capacity of these early small tau multimers and the transcriptional changes associated with them, aiming to unveil early pathogenic processes in AD-type tau pathology. Early tau multimers visualized with tau proximity ligation assay (tau-PLA) in the post-mortem temporal cortex demonstrated high seeding activity detected by real-time quaking-induced conversion (RT-QuIC) assay and induction of aggregates in a tau biosensor cell line. Using single-nucleus transcriptomics, we showed that brain tissue harboring seeding-competent early tau multimers, but without significant NFT pathology, is associated with substantial gene expression alterations across diverse cell types when compared to control tissue lacking either multimers or NFTs. Differentially expressed genes, such as APP, MAPT, and PSEN1, exhibited significant enrichment of AD heritability in up-regulated genes within excitatory neurons, astrocytes, and oligodendrocytes. Pseudotime analysis exposed a positive correlation between the progression of tau pathology and the expression of genes marking reactive astrocytes. In summary, our results support the hypothesis that seeding-competent tau multimerization may initiate AD-type tau pathology cascades before the accumulation of tau in NFTs. This research contributes valuable insights into the early molecular events associated with AD, with implications for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Rahel Feleke
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Simona Jogaudaite
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | | | - Leung Yeung-Yeung
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Daniel Clode
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Jeong Hun Ko
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Ben Shin
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Steve Matthews
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Maria Otero-Jimenez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Marcelina J Wojewska
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sandra Gray-Rodriguez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sarah J Marzi
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- UK Dementia Research Institute at King's College London, London, SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Maxwell P Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Michael R Johnson
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | | |
Collapse
|
3
|
Gilmore N, McKinney IR, Tseng CEJ, Greve DN, Maffei C, Healy BC, Zürcher NR, Hooker JM, Tromly SL, Perl DP, Dams-O'Connor K, Mac Donald CL, Edlow BL, Bodien YG. Investigating the neural network correlates of apathy, disinhibition, and executive dysfunction in active-duty United States Special Operations Forces. Brain Imaging Behav 2025:10.1007/s11682-025-00980-4. [PMID: 40100566 DOI: 10.1007/s11682-025-00980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
United States Special Operations Forces (SOF) experience neurobehavioral symptoms that can adversely affect training and combat operations. Understanding the neurobiological basis for these symptoms may guide prevention and treatment. In 29 male active-duty SOF with mean (SD) 17(4) years of service, we tested whether self-reported symptoms of apathy, disinhibition, and executive dysfunction measured by the Frontal Systems Behavior Scale, were related to functional magnetic resonance imaging and positron emission tomography biomarkers (translocator protein and tau) of the limbic, salience, and executive control networks. Higher disinhibition was associated with lower functional connectivity and higher tau signal within the salience network, though both associations diminished with age. These findings provide the basis for future multimodal studies to elucidate the relationship between neurobehavioral symptoms and neuroimaging biomarkers in the context of repeated blast exposure.
Collapse
Affiliation(s)
- Natalie Gilmore
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Isabella R McKinney
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Chieh-En J Tseng
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chiara Maffei
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian C Healy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Nicole R Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jacob M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Samantha L Tromly
- Institute of Applied Engineering, University of South Florida, Tampa, FL, 33612, USA
| | - Daniel P Perl
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
4
|
Reid AN, Jayadev S, Prater KE. Microglial Responses to Alzheimer's Disease Pathology: Insights From "Omics" Studies. Glia 2025; 73:519-538. [PMID: 39760224 PMCID: PMC11801359 DOI: 10.1002/glia.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Human genetics studies lent firm evidence that microglia are key to Alzheimer's disease (AD) pathogenesis over a decade ago following the identification of AD-associated genes that are expressed in a microglia-specific manner. However, while alterations in microglial morphology and gene expression are observed in human postmortem brain tissue, the mechanisms by which microglia drive and contribute to AD pathology remain ill-defined. Numerous mouse models have been developed to facilitate the disambiguation of the biological mechanisms underlying AD, incorporating amyloidosis, phosphorylated tau, or both. Over time, the use of multiple technologies including bulk tissue and single cell transcriptomics, epigenomics, spatial transcriptomics, proteomics, lipidomics, and metabolomics have shed light on the heterogeneity of microglial phenotypes and molecular patterns altered in AD mouse models. Each of these 'omics technologies provide unique information and biological insight. Here, we review the literature on the approaches and findings of these methods and provide a synthesis of the knowledge generated by applying these technologies to mouse models of AD.
Collapse
Affiliation(s)
- Aquene N. Reid
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Katherine E. Prater
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
5
|
Yılmaz S, Blasco Tavares Pereira Lopes F, Schlatzer D, Wang R, Qi X, Koyutürk M, Chance MR. Exploring temporal and sex-linked dysregulation in Alzheimer disease phosphoproteome. iScience 2024; 27:110941. [PMID: 39391719 PMCID: PMC11465087 DOI: 10.1016/j.isci.2024.110941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/28/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
This study aims to characterize dysregulation of phosphorylation for the 5XFAD mouse model of Alzheimer disease (AD). Employing global phosphoproteome measurements, we analyze temporal (3, 6, and 9 months) and sex-dependent effects on mouse hippocampus tissue to unveil molecular signatures associated with AD initiation and progression. Our findings reveal consistent phosphorylation of known AD biomarkers APOE and GFAP in 5XFAD mice, alongside candidates BIG3, CLCN6, and STX7, suggesting their potential as biomarkers for AD pathology. In addition, we identify PDK1 as a significantly dysregulated kinase at 9 months in females, and the regulation of gap junction activity as a key pathway associated with Alzheimer disease across all time points. AD-Xplorer, the interactive browser of our dataset, enables exploration of AD-related changes in phosphorylation, protein expression, kinase activities, and pathways. AD-Xplorer aids in biomarker discovery and therapeutic target identification, emphasizing temporal and sex-specific nature of significant phosphoproteomic signatures. Available at: https://yilmazs.shinyapps.io/ADXplorer.
Collapse
Affiliation(s)
- Serhan Yılmaz
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Filipa Blasco Tavares Pereira Lopes
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniela Schlatzer
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mehmet Koyutürk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark R. Chance
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Kim HJ, Kim H, Song J, Hong JY, Lee EH, Londhe AM, Choi JW, Park SJ, Oh E, Yoon H, Hwang H, Hahn D, Jung K, Kwon S, Kadayat TM, Ma MJ, Joo J, Kim J, Bae JH, Hwang H, Pae AN, Cho SJ, Park JH, Chin J, Kang H, Park KD. Highly potent and selective PPARδ agonist reverses memory deficits in mouse models of Alzheimer's disease. Theranostics 2024; 14:6088-6108. [PMID: 39431021 PMCID: PMC11488110 DOI: 10.7150/thno.96707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Rationale: Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by neurotoxicity, excessive inflammation, and cognitive impairment. The peroxisome proliferator-activated receptor (PPAR) δ is a potential target for AD. However, its regulatory mechanisms and therapeutic potential in AD remain unclear. We aimed to investigate if the activation of PPARδ using a highly selective and potent agonist could provide an effective therapeutic strategy against AD. Methods: We synthesized a novel PPARδ agonist, 5a, containing a selenazole group and determined the X-ray crystal structure of its complex with PPARδ. The drug-like properties of 5a were assessed by analyzing cytochrome P450 (CYP) inhibition, microsomal stability, pharmacokinetics, and mutagenicity. We investigated the anti-inflammatory effects of 5a using lipopolysaccharide (LPS)-stimulated BV-2 microglia and neuroinflammatory mouse model. The therapeutic efficacy of 5a was evaluated in AD mice with scopolamine-induced memory impairment and APP/PS1 by analyzing cognitive function, glial reactivity, and amyloid pathology. Results: Compound 5a, the most potent and selective PPARδ agonist, was confirmed to bind hPPARδ in a complex by X-ray crystallographic analysis. PPARδ activation using 5a showed potent anti-inflammatory effects in activated glial cells and mouse model of neuroinflammation. Administration of 5a inhibited amyloid plaque deposition by suppressing the expression of neuronal beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), and reduced abnormal glial hyperactivation and inflammatory responses, resulting in improved learning and memory in the APP/PS1 mouse model of AD. Conclusion: We identified that specific activation of PPARδ provides therapeutic effects on multiple pathogenic phenotypes of AD, including neuroinflammation and amyloid deposition. Our findings suggest the potential of PPARδ as a promising drug target for treating AD.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Haelee Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jaeyoung Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jun Young Hong
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea
| | - Elijah Hwejin Lee
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ashwini M. Londhe
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ji Won Choi
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sun Jun Park
- Cureverse, lnc., H2 building, KIST, Seoul 02792, Republic of Korea
| | - Eunseok Oh
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
| | - Heeseok Yoon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hoosang Hwang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
| | - Dongyup Hahn
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyungjin Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sugyeong Kwon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Min Jung Ma
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jeongmin Joo
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jae Hyun Bae
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Ae Nim Pae
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Jin Cho
- Cureverse, lnc., H2 building, KIST, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Cureverse, lnc., H2 building, KIST, Seoul 02792, Republic of Korea
| | - Heonjoong Kang
- Laboratory of Marine Drugs, School of Earth and Environmental Sciences, Seoul National University, NS-80 Seoul 08826, Republic of Korea
- Research Institute of Oceanography, Seoul National University, NS-80, Seoul 08826, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Yu L, Wang H, Yao Q, Li K, Qu L, Tang B, Zeng W, Qiao G, Tang Y, Hu G, Hu G, Wong VKW, Wang Q, Qin D, Wu J, Zhou X, Sun X, Law BYK, Wu A. Thonningianin A from Penthorum chinense Pursh as a targeted inhibitor of Alzheimer's disease-related β-amyloid and Tau proteins. Phytother Res 2024; 38:4815-4831. [PMID: 39225174 DOI: 10.1002/ptr.8060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathogenesis mechanisms. Among these, β-amyloid plaques and hyperphosphorylated Tau protein tangles have been identified as significant contributors to neuronal damage. This study investigates thonningianin A (TA) from Penthorum chinense Pursh (PCP) as a potential inhibitor targeting these pivotal proteins in AD progression. The inhibitory potential of PCP and TA on Aβ fibrillization was initially investigated. Subsequently, ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry and biolayer interferometry were employed to determine TA's affinity for both Aβ and Tau. The inhibitory effects of TA on the levels and cytotoxicity of AD-related proteins were then assessed. In 3xTg-AD mice, the therapeutic potential of TA was evaluated. Additionally, the molecular interactions between TA and either Aβ or Tau were explored using molecular docking. We found that PCP-total ethanol extract and TA significantly inhibited Aβ fibrillization. Additionally, TA demonstrated strong affinity to Aβ and Tau, reduced levels of amyloid precursor protein and Tau, and alleviated mitochondrial distress in PC-12 cells. In 3xTg-AD mice, TA improved cognition, reduced Aβ and Tau pathology, and strengthened neurons. Moreover, molecular analyses revealed efficient binding of TA to Aβ and Tau. In conclusion, TA, derived from PCP, shows significant neuroprotection against AD proteins, highlighting its potential as an anti-AD drug candidate.
Collapse
Affiliation(s)
- Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Huimiao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Keru Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Liqun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Bin Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Gan Qiao
- Nucleic Acid Medicine of Luzhou Key Laboratory, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qiong Wang
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Chung S, Jeong JH, Park JC, Han JW, Lee Y, Kim JI, Mook-Jung I. Blockade of STING activation alleviates microglial dysfunction and a broad spectrum of Alzheimer's disease pathologies. Exp Mol Med 2024; 56:1936-1951. [PMID: 39218977 PMCID: PMC11447230 DOI: 10.1038/s12276-024-01295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
Collapse
Affiliation(s)
- Sunwoo Chung
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - June-Hyun Jeong
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - Jong-Chan Park
- Department of Biophysics & Institute of Quantum Biophysics, Sungkyunkwan University, 16419, Gyeonggi-do, Korea
| | - Jong Won Han
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - Yeajina Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 03080, Seoul, Korea
| | - Jong-Il Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 03080, Seoul, Korea
| | - Inhee Mook-Jung
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea.
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea.
| |
Collapse
|
9
|
Liu XT, Chen X, Zhao N, Geng F, Zhu MM, Ren QG. Synergism of ApoE4 and systemic infectious burden is mediated by the APOE-NLRP3 axis in Alzheimer's disease. Psychiatry Clin Neurosci 2024; 78:517-526. [PMID: 39011734 DOI: 10.1111/pcn.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/12/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Systemic infections are associated with the development of AD, especially in individuals carrying the APOE4 genotype. However, the detailed mechanism through which APOE4 affects microglia inflammatory response remains unclear. METHODS We obtained human snRNA-seq data from the Synapse AD Knowledge Portal and assessed the DEGs between APOE3 and APOE4 isoforms in microglia. To verify the interaction between ApoE and infectious products, we used ApoE to stimulate in vitro and in vivo models in the presence or absence of LPS (or ATP). The NLRP3 gene knockout experiment was performed to demonstrate whether the APOE-NLRP3 axis was indispensable for microglia to regulate inflammation and mitochondrial autophagy. Results were evaluated by biochemical analyses and fluorescence imaging. RESULTS Compared with APOE3, up-regulated genes in APOE4 gene carriers were involved in pro-inflammatory responses. ApoE4-stimulation significantly increased the levels of NLRP3 inflammasomes and ROS in microglia. Moreover, compared with ApoE4 alone, the co-incubation of ApoE4 with LPS (or ATP) markedly promoted pyroptosis. Both NF-κB activation and mitochondrial autophagy dysfunction were contributed by the increased level of NLRP3 inflammasomes induced by ApoE4. Furthermore, the pathological impairment induced by ApoE4 could be reversed by NLRP3 KO. CONCLUSIONS Our study highlights the importance of NLRP3 inflammasomes in linking ApoE4 with microglia innate immune function. These findings not only provide a molecular basis for APOE4-mediated neuroinflammatory but also reveal the potential reason for the increased risk of AD in APOE4 gene carriers after contracting infectious diseases.
Collapse
Affiliation(s)
- Xue-Ting Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Xiu Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Na Zhao
- School of Medicine, Southeast University, Nanjing, China
| | - Fan Geng
- School of Medicine, Southeast University, Nanjing, China
| | - Meng-Meng Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Kumar S, Song K, Wang J, Baghel MS, Wong P, Cao X, Wan M. Serum Amyloid P Secreted by Bone Marrow Adipocytes Drives Skeletal Amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608092. [PMID: 39211279 PMCID: PMC11361041 DOI: 10.1101/2024.08.15.608092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The accumulation of amyloid fibrils has been identified in tissues outside the brain, yet little is understood about the formation of extracerebral amyloidosis and its impact on the aging process of these organs. Here, we demonstrate that both transgenic mice modeling Alzheimer's disease (AD) and naturally aging mice exhibit accumulated senescent bone marrow adipocytes (BMAds), accompanied by amyloid deposits surrounding the BMAds. Senescent BMAds acquire a secretory phenotype, resulting in a marked increase in the secretion of serum amyloid P component (SAP), also known as pentraxin 2 (PTX2). SAP/PTX2 colocalizes with amyloid deposits around senescent BMAds in vivo and is sufficient to promote the formation of insoluble amyloid deposits from soluble Aβ peptides in in vitro and ex vivo 3D BMAd-based culture experiments. Additionally, Combined treatment with SAP/PTX2 and Aβ peptides promotes osteoclastogenesis but inhibits osteoblastogenesis of the precursor cells. Transplantation of senescent BMAds into the bone marrow cavity of healthy young mice is sufficient to induce bone loss. Finally, pharmacological depletion of SAP/PTX2 from aged mice abolishes bone marrow amyloid deposition and effectively rescues the low bone mass phenotype. Thus, senescent BMAds, through the secretion of SAP/PTX2, contribute to the age-associated development of skeletal amyloidosis and resultant bone deficits.
Collapse
|
11
|
Jury-Garfe N, Redding-Ochoa J, You Y, Martínez P, Karahan H, Chimal-Juárez E, Johnson TS, Zhang J, Resnick S, Kim J, Troncoso JC, Lasagna-Reeves CA. Enhanced microglial dynamics and a paucity of tau seeding in the amyloid plaque microenvironment contribute to cognitive resilience in Alzheimer's disease. Acta Neuropathol 2024; 148:15. [PMID: 39102080 PMCID: PMC11300572 DOI: 10.1007/s00401-024-02775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Asymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aβ) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aβ, preserving brain health, and slowing AD pathology progression.
Collapse
Affiliation(s)
- Nur Jury-Garfe
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martínez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Enrique Chimal-Juárez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Travis S Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging and National Institute of Health, Baltimore, MD, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Lee S, Ju IG, Eo H, Kim JH, Choi Y, Oh MS. Rhei Undulati Rhizoma attenuates memory decline and reduces amyloid-β induced neuritic dystrophy in 5xFAD mouse. Chin Med 2024; 19:95. [PMID: 38965625 PMCID: PMC11223309 DOI: 10.1186/s13020-024-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common type of dementia characterized by amyloid-β (Aβ) accumulation, lysosomal dysfunction, and tau hyperphosphorylation, leading to neurite dystrophy and memory loss. This study aimed to investigate whether Rhei Undulati Rhizoma (RUR), which has been reported to have anti-neuroinflammatory effect, attenuates Aβ-induced memory impairment, neuritic dystrophy, and tau hyperphosphorylation, and to reveal its mode of action. METHODS Five-month-old 5xFAD mice received RUR (50 mg/kg) orally for 2 months. The Y-maze test was used to assess working memory. After behavioral testing, brain tissue was analyzed using thioflavin S staining, western blotting, and immunofluorescence staining to investigate the mode of action of RUR. To confirm whether RUR directly reduces Aβ aggregation, a thioflavin T assay and dot blot were performed after incubating Aβ with RUR. RESULTS RUR administration attenuated the Aβ-induced memory impairment in 5xFAD mice. Furthermore, decreased accumulation of Aβ was observed in the hippocampus of the RUR-treated 5xFAD group compare to the vehicle-treated 5xFAD group. Moreover, RUR reduced the dystrophic neurites (DNs) that accumulate impaired endolysosomal organelles around Aβ. In particular, RUR treatment downregulated the expression of β-site amyloid precursor protein cleaving enzyme 1 and the hyperphosphorylation of tau within DNs. Additionally, RUR directly suppressed the aggregation of Aβ, and eliminated Aβ oligomers in vitro. CONCLUSIONS This study showed that RUR could attenuate Aβ-induced pathology and directly regulate the aggregation of Aβ. These results suggest that RUR could be an efficient material for AD treatment through Aβ regulation.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Rice M, Nuovo GJ, Sawant D, Mishra A, Tili E. Comparison of Neuroinflammation Induced by Hyperphosphorylated Tau Protein Versus Ab42 in Alzheimer's Disease. Mol Neurobiol 2024; 61:4589-4601. [PMID: 38105410 DOI: 10.1007/s12035-023-03822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
Both neurofibrillary tangles and senile plaques are associated with inflammation in Alzheimer's disease (AD). Their relative degree of induced neuroinflammation, however, is not well established. Mouse models of AD that expressed either human Aβ42 (n = 7) or human hyperphosphorylated tau protein alone (n = 3), wild type (n = 10), and human AD samples (n = 29 with 18 controls) were studied. The benefit of using mouse models that possess only human tau or amyloid-b is that it allows for the individual evaluation of how each protein affects neuroinflammation, something not possible in human tissue. Three indicators of neuroinflammation were examined: TLRs/RIG1 expression, the density of astrocytes and microglial cells, and well-established mediators of neuroinflammation (IL6, TNFα, IL1β, and CXCL10). There was a statistically significant increase in neuroinflammation with all three variables in the mouse models with human tau only as compared to human Aβ42 only or wild-type mice (each at p < 0.0001). Only the Aβ42 5xFAD mice (n = 4) showed statistically higher neuroinflammation versus wild type (p = 0.0030). The human AD tissues were segregated into Aβ42 only or hyperphosphorylated tau protein with Aβ42. The latter areas showed increased neuroinflammation with each of the three variables compared to the areas with only Aβ42. Of the TLRs and RIG-1, TLR8 was significantly elevated in both the mouse model and human AD and only in areas with the abnormal tau protein. It is concluded that although Aβ42 and hyperphosphorylated tau protein can each induce inflammation, the latter protein is associated with a much stronger neuroinflammatory response vis-a-vis a significantly greater activated microglial response.
Collapse
Affiliation(s)
| | | | | | | | - Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Baghel MS, Burns GD, Tsapatsis M, Mallika AP, Cruz ALF, Cao T, Chen XK, Rosa IDL, Marx SR, Ye Y, Sun S, Li T, Wong PC. Depletion of TDP-43 exacerbates tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-mediated endoproteolysis of tau in a mouse model of Multiple Etiology Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600814. [PMID: 38979270 PMCID: PMC11230425 DOI: 10.1101/2024.06.26.600814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
TDP-43 proteinopathy, initially disclosed in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coexists with tauopathy in a variety of neurodegenerative disorders, termed multiple etiology dementias (MEDs), including Alzheimer's Disease (AD). While such co-pathology of TDP-43 is strongly associated with worsened neurodegeneration and steeper cognitive decline, the pathogenic mechanism underlying the exacerbated neuron loss remains elusive. The loss of TDP-43 splicing repression that occurs in presymptomatic ALS-FTD individuals suggests that such early loss could facilitate the pathological conversion of tau to accelerate neuron loss. Here, we report that the loss of TDP-43 repression of cryptic exons in forebrain neurons (CaMKII-CreER;Tardbp f/f mice) is necessary to exacerbate tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-dependent cleavage of endogenous tau to promote tauopathy. Corroborating this finding within the human context, we demonstrate that loss of TDP-43 function in iPSC-derived cortical neurons promotes early cryptic exon inclusion and subsequent caspase 3-mediated endoproteolysis of tau. Using a genetic approach to seed tauopathy in CaMKII-CreER;Tardbp f/f mice by expressing a four-repeat microtubule binding domain of human tau, we show that the amount of tau seed positively correlates with levels of caspase 3-cleaved tau. Importantly, we found that the vulnerability of hippocampal neurons to TDP-43 depletion is dependent on the amount of caspase 3-cleaved tau: from most vulnerable neurons in the CA2/3, followed by those in the dentate gyrus, to the least in CA1. Taken together, our findings strongly support the view that TDP-43 loss-of-function exacerbates tauopathy-dependent brain atrophy by increasing the sensitivity of vulnerable neurons to caspase 3-mediated endoproteolysis of tau, resulting in a greater degree of neurodegeneration in human disorders with co-pathologies of tau and TDP-43. Our work thus discloses novel mechanistic insights and therapeutic targets for human tauopathies harboring co-pathology of TDP-43 and provides a new MED model for testing therapeutic strategies.
Collapse
Affiliation(s)
- Meghraj S Baghel
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Grace D Burns
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Margarita Tsapatsis
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Aswathy Peethambaran Mallika
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Anna Lourdes F Cruz
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tianyu Cao
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Xiaoke K Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Isabel De La Rosa
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shaelyn R Marx
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Philip C Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Tsering W, Prokop S. Neuritic Plaques - Gateways to Understanding Alzheimer's Disease. Mol Neurobiol 2024; 61:2808-2821. [PMID: 37940777 PMCID: PMC11043180 DOI: 10.1007/s12035-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Extracellular deposits of amyloid-β (Aβ) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aβ plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aβ plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aβ plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aβ plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aβ deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Pathology, University of Florida, Gainesville, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA.
| |
Collapse
|
16
|
Finneran DJ, Desjarlais T, Henry A, Jackman BM, Gordon MN, Morgan D. Induction of tauopathy in a mouse model of amyloidosis using intravenous administration of adeno-associated virus vectors expressing human P301L tau. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12470. [PMID: 38689599 PMCID: PMC11058624 DOI: 10.1002/trc2.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease in which extracellular aggregates of the amyloid beta (Aβ) peptide precede widespread intracellular inclusions of the microtubule-associated protein tau. The autosomal dominant form of AD requires mutations that increase production or aggregation of the Aβ peptide. This has led to the hypothesis that amyloid deposition initiates downstream responses that lead to the hyperphosphorylation and aggregation of tau. METHODS Here we use a novel approach, somatic gene transfer via intravenous adeno-associated virus (AAV), to further explore the effects of pre-existing amyloid deposits on tauopathy. APP+PS1 mice, which develop amyloid deposits at 3 to 6 months of age, and non-transgenic littermates were injected at 8 months of age intravenously with AAV-PHP.eB encoding P301L human tau. Tissue was collected at 13 months and tauopathy was assessed. RESULTS Total human tau expression was observed to be relatively uniform throughout the brain, reflecting the vascular route of AAV administration. Phospho-tau deposition was not equal across brain regions and significantly increased in APP+PS1 mice compared to non-transgenic controls. Interestingly, the rank order of phospho-tau deposition of affected brain regions in both genotypes paralleled the rank order of amyloid plaque deposits in APP+PS1 mice. We also observed significantly increased MAPT RNA expression in APP+PS1 mice compared to non-transgenic despite equal AAV transduction efficiency between groups. DISCUSSION This model has advantages over prior approaches with widespread uniform human tau expression throughout the brain and the ability to specify the stage of amyloidosis when the tau pathology is initiated. These data add further support to the amyloid cascade hypothesis and suggest RNA metabolism as a potential mechanism for amyloid-induced tauopathy.
Collapse
Affiliation(s)
- Dylan J. Finneran
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Taylor Desjarlais
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Alayna Henry
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Brianna M. Jackman
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - Marcia N. Gordon
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| | - David Morgan
- Department of Translational Neuroscience and the Alzheimer's AllianceMichigan State UniversityGrand RapidsMichiganUSA
| |
Collapse
|
17
|
Kourti M, Metaxas A. A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer's disease. Neurobiol Dis 2024; 192:106427. [PMID: 38307366 DOI: 10.1016/j.nbd.2024.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aβ)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aβ and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.
Collapse
Affiliation(s)
- Malamati Kourti
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus.
| | - Athanasios Metaxas
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
18
|
Yılmaz S, Pereira Lopes FBT, Schlatzer D, Wang R, Qi X, Koyutürk M, Chance MR. Exploring Temporal and Sex-Linked Dysregulation in Alzheimer's Disease Phospho-Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553056. [PMID: 37645993 PMCID: PMC10461982 DOI: 10.1101/2023.08.15.553056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This study aims to characterize dysregulation of phosphorylation for the 5XFAD mouse model of Alzheimer's disease (AD). Employing global phosphoproteome measurements, we analyze temporal (3, 6, 9 months) and sex-dependent effects on mouse hippocampus tissue to unveil molecular signatures associated with AD initiation and progression. Our results indicate 1.9 to 4.4 times higher phosphorylation prevalence compared to protein expression across all time points, with approximately 4.5 times greater prevalence in females compared to males at 3 and 9 months. Moreover, our findings reveal consistent phosphorylation of known AD biomarkers APOE and GFAP in 5XFAD mice, alongside novel candidates BIG3, CLCN6 and STX7, suggesting their potential as biomarkers for AD pathology. In addition, we identify PDK1 as a significantly dysregulated kinase at 9 months in females, and the regulation of gap junction activity as a key pathway associated with Alzheimer's disease across all time points. AD-Xplorer, the interactive browser of our dataset, enables exploration of AD-related changes in phosphorylation, protein expression, kinase activities, and pathways. AD-Xplorer aids in biomarker discovery and therapeutic target identification, emphasizing temporal and sex-specific nature of significant phosphoproteomic signatures. Available at: https://yilmazs.shinyapps.io/ADXplorer.
Collapse
Affiliation(s)
- Serhan Yılmaz
- Department of Computer and Data Sciences, Case Western Reserve University
| | - Filipa Blasco Tavares Pereira Lopes
- Department of Nutrition, School of Medicine, Case Western Reserve University
- Center for Proteomics and Bioinformatics, Case Western Reserve University
| | - Daniela Schlatzer
- Department of Nutrition, School of Medicine, Case Western Reserve University
- Center for Proteomics and Bioinformatics, Case Western Reserve University
| | - Rihua Wang
- Department of Physiology & Biophysics, Case Western Reserve University
- Center for Mitochondrial Diseases, Case Western Reserve University
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University
- Center for Mitochondrial Diseases, Case Western Reserve University
| | - Mehmet Koyutürk
- Department of Computer and Data Sciences, Case Western Reserve University
- Center for Proteomics and Bioinformatics, Case Western Reserve University
| | - Mark R Chance
- Department of Nutrition, School of Medicine, Case Western Reserve University
- Center for Proteomics and Bioinformatics, Case Western Reserve University
| |
Collapse
|
19
|
Jury-Garfe N, You Y, Martínez P, Redding-Ochoa J, Karahan H, Johnson TS, Zhang J, Kim J, Troncoso JC, Lasagna-Reeves CA. Enhanced microglial dynamics and paucity of tau seeding in the amyloid plaque microenvironment contributes to cognitive resilience in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550884. [PMID: 37546928 PMCID: PMC10402121 DOI: 10.1101/2023.07.27.550884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Asymptomatic Alzheimer's disease (AsymAD) describes the status of subjects with preserved cognition but with identifiable Alzheimer's disease (AD) brain pathology (i.e. Aβ-amyloid deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD cases to gain insight into the underlying mechanisms of resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit an enrichment of core plaques and decreased filamentous plaque accumulation, as well as an increase in microglia surrounding this last type. In AsymAD cases we found less pathological tau aggregation in dystrophic neurites compared to AD and tau seeding activity comparable to healthy control subjects. We used spatial transcriptomics to further characterize the plaque niche and found autophagy, endocytosis, and phagocytosis within the top upregulated pathways in the AsymAD plaque niche, but not in AD. Furthermore, we found ARP2, an actin-based motility protein crucial to initiate the formation of new actin filaments, increased within microglia in the proximity of amyloid plaques in AsymAD. Our findings support that the amyloid-plaque microenvironment in AsymAD cases is characterized by microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared to AD. These two mechanisms can potentially provide protection against the toxic cascade initiated by Aβ that preserves brain health and slows down the progression of AD pathology.
Collapse
Affiliation(s)
- Nur Jury-Garfe
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanwen You
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martínez
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hande Karahan
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Travis S. Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, USA
| | - Jie Zhang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jungsu Kim
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Juan C. Troncoso
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cristian A. Lasagna-Reeves
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
20
|
Beigom Hejaziyan L, Hosseini SM, Taravati A, Asadi M, Bakhshi M, Moshaei Nezhad P, Gol M, Mououdi M. Effect of Rosa damascena Extract on Rat Model Alzheimer's Disease: A Histopathological, Behavioral, Enzyme Activities, and Oxidative Stress Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4926151. [PMID: 37078068 PMCID: PMC10110374 DOI: 10.1155/2023/4926151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/28/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
The purpose of the current study is to investigate the effect of aquatic Rosa damascena extract against the oxidative damage induced by aluminum chloride intoxication in Alzheimer's model of Wister rats. Rats were divided randomly into seven groups (n = 10). Control group received no treatment, sham group received distilled water orally, aluminum group (AL) was administered AlCl3 (100 mg/kg) orally, extract 1 and 2 groups were treated with only aqueous R. damascena extract (DRE) (500 and 1000 mg/kg), and treatment 1 and 2 groups received aqueous R. damascena extract (500 and 1000 mg/kg) and AlCl3 (100 mg/kg) orally. The brain tissues were sampled for histopathological examination, and biochemical analysis was conducted for estimating the enzyme activities of acetylcholinesterase and catalase (CAT), the levels of GSH and MDA, and ferric reducing antioxidant power. According to the results of behavioral tests, AL administration showed a reduction in spatial memory and remarkably increased the time needed for reaching the invisible platform. The administration of Al-induced oxidative stress and an increase of the enzyme activity of AChE. Al administration increased AChE level from 1.176 ± 0.173 to 3.62 ± 0.348, which was a significant rise. However, treating with the extract at the dose of 1000 mg/kg downregulated it to 1.56 ± 0.303. Administration of the R. damascene extract caused an increased level of catalase and glutathione levels in treatment groups, attenuated MDA level, and regulated AChE activity. Our results illustrate that administration of R. damascene extract has a protective effect against the oxidative damage induced by AlCl3 intoxication in Alzheimer's model.
Collapse
Affiliation(s)
- Leila Beigom Hejaziyan
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran
- Department of Human Anatomy, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Asadi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Mahyar Bakhshi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | | | - Mohammad Gol
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran
- Department of Human Anatomy, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mobina Mououdi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| |
Collapse
|
21
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Honey and Alzheimer's Disease-Current Understanding and Future Prospects. Antioxidants (Basel) 2023; 12:427. [PMID: 36829985 PMCID: PMC9952506 DOI: 10.3390/antiox12020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD), a leading cause of dementia, has been a global concern. AD is associated with the involvement of the central nervous system that causes the characteristic impaired memory, cognitive deficits, and behavioral abnormalities. These abnormalities caused by AD is known to be attributed by extracellular aggregates of amyloid beta plaques and intracellular neurofibrillary tangles. Additionally, genetic factors such as abnormality in the expression of APOE, APP, BACE1, PSEN-1, and PSEN-2 play a role in the disease. As the current treatment aims to treat the symptoms and to slow the disease progression, there has been a continuous search for new nutraceutical agent or medicine to help prevent and cure AD pathology. In this quest, honey has emerged as a powerful nootropic agent. Numerous studies have demonstrated that the high flavonoids and phenolic acids content in honey exerts its antioxidant, anti-inflammatory, and neuroprotective properties. This review summarizes the effect of main flavonoid compounds found in honey on the physiological functioning of the central nervous system, and the effect of honey intake on memory and cognition in various animal model. This review provides a new insight on the potential of honey to prevent AD pathology, as well as to ameliorate the damage in the developed AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Quan L, Moreno-Gonzalez I, Xie Z, Gamez N, Vegas-Gomez L, Song Q, Gu J, Lin W, Gomez-Gutierrez R, Wu T. A near-infrared probe for detecting and interposing amyloid beta oligomerization in early Alzheimer's disease. Alzheimers Dement 2023; 19:456-466. [PMID: 35436382 DOI: 10.1002/alz.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The misfolding and deposition of amyloid beta (Aβ) in human brain is the main hallmark of Alzheimer's disease (AD) pathology. One of the drivers of Alzheimer´s pathogenesis is the production of soluble oligomeric Aβ, which could potentially serve as a biomarker of AD. METHODS Given that the diphenylalanine (FF) at the C-terminus of Aβ fragments plays a key role in inducing the AD pathology, based on the hydrophobic structure of FF, we synthesized a near-infrared BF2-dipyrrolmethane fluorescent imaging probe (NB) to detect both soluble and insoluble Aβ. RESULTS We found that NB not only binds Aβ, particularly oligomeric Aβ, but also interposes self-assembly of Aβ through π-π interaction between NB and FF. CONCLUSION This work holds great promise in the early detection of AD and may also provide an innovative approach to decelerate and even halt AD onset and progression.
Collapse
Affiliation(s)
- Li Quan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China.,Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ines Moreno-Gonzalez
- The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Malaga, Malaga, Spain
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Nazaret Gamez
- The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Spain
| | - Laura Vegas-Gomez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Spain
| | - Qinyong Song
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, China
| | - Jianhua Gu
- Electron Microscopy Core, Houston Methodist Research Institute, Houston, Texas, USA
| | - Wenhai Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Ruben Gomez-Gutierrez
- The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, Instituto de Investigacion Biomedica de Malaga-IBIMA, Spain
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
23
|
Kim DW, Tu KJ, Wei A, Lau AJ, Gonzalez-Gil A, Cao T, Braunstein K, Ling JP, Troncoso JC, Wong PC, Blackshaw S, Schnaar RL, Li T. Amyloid-beta and tau pathologies act synergistically to induce novel disease stage-specific microglia subtypes. Mol Neurodegener 2022; 17:83. [PMID: 36536457 PMCID: PMC9762062 DOI: 10.1186/s13024-022-00589-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Amongst risk alleles associated with late-onset Alzheimer's disease (AD), those that converged on the regulation of microglia activity have emerged as central to disease progression. Yet, how canonical amyloid-β (Aβ) and tau pathologies regulate microglia subtypes during the progression of AD remains poorly understood. METHODS We use single-cell RNA-sequencing to profile microglia subtypes from mice exhibiting both Aβ and tau pathologies across disease progression. We identify novel microglia subtypes that are induced in response to both Aβ and tau pathologies in a disease-stage-specific manner. To validate the observation in AD mouse models, we also generated a snRNA-Seq dataset from the human superior frontal gyrus (SFG) and entorhinal cortex (ERC) at different Braak stages. RESULTS We show that during early-stage disease, interferon signaling induces a subtype of microglia termed Early-stage AD-Associated Microglia (EADAM) in response to both Aβ and tau pathologies. During late-stage disease, a second microglia subtype termed Late-stage AD-Associated Microglia (LADAM) is detected. While similar microglia subtypes are observed in other models of neurodegenerative disease, the magnitude and composition of gene signatures found in EADAM and LADAM are distinct, suggesting the necessity of both Aβ and tau pathologies to elicit their emergence. Importantly, the pattern of EADAM- and LADAM-associated gene expression is observed in microglia from AD brains, during the early (Braak II)- or late (Braak VI/V)- stage of the disease, respectively. Furthermore, we show that several Siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of Siglec-10, the human orthologue of Siglecg, is progressively elevated in an AD-stage-dependent manner but not shown in non-AD tauopathy. CONCLUSIONS Using scRNA-Seq in mouse models bearing amyloid-β and/or tau pathologies, we identify novel microglia subtypes induced by the combination of Aβ and tau pathologies in a disease stage-specific manner. Our findings suggest that both Aβ and tau pathologies are required for the disease stage-specific induction of EADAM and LADAM. In addition, we revealed Siglecs as biomarkers of AD progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kevin J. Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Alice Wei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ashley J. Lau
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tianyu Cao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kerstin Braunstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Philip C. Wong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Ronald L. Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
24
|
Cegarra L, Aguirre P, Nuñez MT, Gerdtzen ZP, Salgado JC. Calcium is a noncompetitive inhibitor of DMT1 on the intestinal iron absorption process: empirical evidence and mathematical modeling analysis. Am J Physiol Cell Physiol 2022; 323:C1791-C1806. [PMID: 36342159 DOI: 10.1152/ajpcell.00411.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron absorption is a complex and highly controlled process where DMT1 transports nonheme iron through the brush-border membrane of enterocytes to the cytoplasm but does not transport alkaline-earth metals such as calcium. However, it has been proposed that high concentrations of calcium in the diet could reduce iron bioavailability. In this work, we investigate the effect of intracellular and extracellular calcium on iron uptake by Caco-2 cells, as determined by calcein fluorescence quenching. We found that extracellular calcium inhibits iron uptake by Caco-2 cells in a concentration-dependent manner. Chelation of intracellular calcium with BAPTA did not affect iron uptake, which indicates that the inhibitory effect of calcium is not exerted through intracellular calcium signaling. Kinetic studies performed, provided evidence that calcium acts as a reversible noncompetitive inhibitor of the iron transport activity of DMT1. Based on these experimental results, a mathematical model was developed that considers the dynamics of noncompetitive inhibition using a four-state mechanism to describe the inhibitory effect of calcium on the DMT1 iron transport process in intestinal cells. The model accurately predicts the calcein fluorescence quenching dynamics observed experimentally after an iron challenge. Therefore, the proposed model structure is capable of representing the inhibitory effect of extracellular calcium on DMT1-mediated iron entry into the cLIP of Caco-2 cells. Considering the range of calcium concentrations that can inhibit iron uptake, the possible inhibition of dietary calcium on intestinal iron uptake is discussed.
Collapse
Affiliation(s)
- Layimar Cegarra
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| | - Pabla Aguirre
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Marco T Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile.,Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.,Millennium Nucleus Marine Agronomy of Seaweed Holobionts, Puerto Mont, Chile
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| |
Collapse
|
25
|
Song X, Ding Q, Wei W, Pu Y. LP-05 A Novel Targeted Prussian Blue-Based Nanomaterial for Inhibiting Oxidative Stress and Aβ Aggregation of Alzheimer’s Disease. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Blasco Tavares Pereira Lopes F, Schlatzer D, Wang R, Li X, Feng E, Koyutürk M, Qi X, Chance MR. Temporal and Sex-Linked Protein Expression Dynamics in a Familial Model of Alzheimer's Disease. Mol Cell Proteomics 2022; 21:100280. [PMID: 35944844 PMCID: PMC9483563 DOI: 10.1016/j.mcpro.2022.100280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mouse models of Alzheimer's disease (AD) show progression through stages reflective of human pathology. Proteomics identification of temporal and sex-linked factors driving AD-related pathways can be used to dissect initiating and propagating events of AD stages to develop biomarkers or design interventions. In the present study, we conducted label-free proteome measurements of mouse hippocampus tissue with variables of time (3, 6, and 9 months), genetic background (5XFAD versus WT), and sex (equal males and females). These time points are associated with well-defined phenotypes with respect to the following: Aβ42 plaque deposition, memory deficits, and neuronal loss, allowing correlation of proteome-based molecular signatures with the mouse model stages. Our data show 5XFAD mice exhibit increases in known human AD biomarkers as amyloid-beta peptide, APOE, GFAP, and ITM2B are upregulated across all time points/stages. At the same time, 23 proteins are here newly associated with Alzheimer's pathology as they are also dysregulated in 5XFAD mice. At a pathways level, the 5XFAD-specific upregulated proteins are significantly enriched for DNA damage and stress-induced senescence at 3-month only, while at 6-month, the AD-specific proteome signature is altered and significantly enriched for membrane trafficking and vesicle-mediated transport protein annotations. By 9-month, AD-specific dysregulation is also characterized by significant neuroinflammation with innate immune system, platelet activation, and hyper-reactive astrocyte-related enrichments. Aside from these temporal changes, analysis of sex-linked differences in proteome signatures uncovered novel sex and AD-associated proteins. Pathway analysis revealed sex-linked differences in the 5XFAD model to be involved in the regulation of well-known human AD-related processes of amyloid fibril formation, wound healing, lysosome biogenesis, and DNA damage. Verification of the discovery results by Western blot and parallel reaction monitoring confirm the fundamental conclusions of the study and poise the 5XFAD model for further use as a molecular tool for understanding AD.
Collapse
Affiliation(s)
- Filipa Blasco Tavares Pereira Lopes
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniela Schlatzer
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rihua Wang
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaolin Li
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Emily Feng
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mehmet Koyutürk
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Computer and Data Sciences, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Qi
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Mitochondrial Diseases, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark R Chance
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
27
|
Gonzalez-Gil A, Porell RN, Fernandes SM, Maenpaa E, Li TA, Li T, Wong PC, Aoki K, Tiemeyer M, Yu ZJ, Orsburn BC, Bumpus NN, Matthews RT, Schnaar RL. Human brain sialoglycan ligand for CD33, a microglial inhibitory Siglec implicated in Alzheimer's disease. J Biol Chem 2022; 298:101960. [PMID: 35452678 PMCID: PMC9130525 DOI: 10.1016/j.jbc.2022.101960] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan N Porell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eila Maenpaa
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Zaikuan J Yu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
28
|
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, Nuñez-Diaz C, Caceres-Palomo L, Vegas-Gomez L, Sanchez-Mejias E, Trujillo-Estrada L, Garcia-Leon JA, Moreno-Gonzalez I, Vizuete M, Vitorica J, Baglietto-Vargas D, Gutierrez A. Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. Int J Mol Sci 2022; 23:5404. [PMID: 35628216 PMCID: PMC9142061 DOI: 10.3390/ijms23105404] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Vegas-Gomez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Marisa Vizuete
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| |
Collapse
|
29
|
Xu G, Ulm BS, Howard J, Fromholt SE, Lu Q, Lee BB, Walker A, Borchelt DR, Lewis J. TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathol Appl Neurobiol 2022; 48:e12791. [PMID: 35067965 DOI: 10.1111/nan.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
AIMS Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS We crossed an inducible tauopathy model with two β-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aβ and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS These data suggest that tau misfolding is exacerbated by both newly forming Aβ deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Brittany S Ulm
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Susan E Fromholt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Qing Lu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Brian Benedict Lee
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- SantaFe HealthCare Alzheimer's Disease Research Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Koller EJ, Ibanez KR, Vo Q, McFarland KN, De La Cruz EG, Zobel L, Williams T, Xu G, Ryu D, Patel P, Giasson BI, Prokop S, Chakrabarty P. Combinatorial model of amyloid β and tau reveals synergy between amyloid deposits and tangle formation. Neuropathol Appl Neurobiol 2022; 48:e12779. [PMID: 34825397 PMCID: PMC8810717 DOI: 10.1111/nan.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
AIMS To illuminate the pathological synergy between Aβ and tau leading to emergence of neurofibrillary tangles (NFT) in Alzheimer's disease (AD), here, we have performed a comparative neuropathological study utilising three distinctive variants of human tau (WT tau, P301L mutant tau and S320F mutant tau). Previously, in non-transgenic mice, we showed that WT tau or P301L tau does not form NFT while S320F tau can spontaneously aggregate into NFT, allowing us to test the selective vulnerability of these different tau conformations to the presence of Aβ plaques. METHODS We injected recombinant AAV-tau constructs into neonatal APP transgenic TgCRND8 mice or into 3-month-old TgCRND8 mice; both cohorts were aged 3 months post injection. This allowed us to test how different tau variants synergise with soluble forms of Aβ (pre-deposit cohort) or with frank Aβ deposits (post-deposit cohort). RESULTS Expression of WT tau did not produce NFT or altered Aβ in either cohort. In the pre-deposit cohort, S320F tau induced Aβ plaque deposition, neuroinflammation and synaptic abnormalities, suggesting that early tau tangles affect the amyloid cascade. In the post-deposit cohort, contemporaneous expression of S320F tau did not exacerbate amyloid pathology, showing a dichotomy in Aβ-tau synergy based on the nature of Aβ. P301L tau produced NFT-type inclusions in the post-deposit cohort, but not in the pre-deposit cohort, indicating pathological synergy with pre-existing Aβ deposits. CONCLUSIONS Our data show that different tau mutations representing specific folding variants of tau synergise with Aβ to different extents, depending on the presence of cerebral deposits.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Kristen R Ibanez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Lillian Zobel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Tristan Williams
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Preya Patel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
Orzyłowska A, Oakden W. Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer's Disease. Brain Sci 2021; 12:53. [PMID: 35053797 PMCID: PMC8773856 DOI: 10.3390/brainsci12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.
Collapse
Affiliation(s)
- Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8 (SPSK 4), 20-090 Lublin, Poland
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada;
| |
Collapse
|
32
|
Wei Z, Xu J, Chen L, Hirschler L, Barbier EL, Li T, Wong PC, Lu H. Brain metabolism in tau and amyloid mouse models of Alzheimer's disease: An MRI study. NMR IN BIOMEDICINE 2021; 34:e4568. [PMID: 34050996 PMCID: PMC9574887 DOI: 10.1002/nbm.4568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia in elderly individuals. According to the current biomarker framework for "unbiased descriptive classification", biomarkers of neurodegeneration, "N", constitute a critical component in the tri-category "A/T/N" system. Current biomarkers of neurodegeneration suffer from potential drawbacks such as requiring invasive lumbar puncture, involving ionizing radiation, or representing a late, irreversible marker. Recent human studies have suggested that reduced brain oxygen metabolism may be a new functional marker of neurodegeneration in AD, but the heterogeneity and the presence of mixed pathology in human patients did not allow a full understanding of the role of oxygen extraction and metabolism in AD. In this report, global brain oxygen metabolism and related physiological parameters were studied in two AD mouse models with relatively pure pathology, using advanced MRI techniques including T2 -relaxation-under-spin-tagging (TRUST) and phase contrast (PC) MRI. Additionally, regional cerebral blood flow (CBF) was determined with pseudocontinuous arterial spin labeling. Reduced global oxygen extraction fraction (by -18.7%, p = 0.008), unit-mass cerebral metabolic rate of oxygen (CMRO2 ) (by -17.4%, p = 0.04) and total CMRO2 (by -30.8%, p < 0.001) were observed in Tau4RΔK mice-referred to as the tau AD model-which manifested pronounced neurodegeneration, as measured by diminished brain volume (by -15.2%, p < 0.001). Global and regional CBF in these mice were not different from those of wild-type mice (p > 0.05), suggesting normal vascular function. By contrast, in B6;SJL-Tg [APPSWE]2576Kha (APP) mice-referred to as the amyloid AD model-no brain volume reduction, as well as relatively intact brain oxygen extraction and metabolism, were found (p > 0.05). Consistent with the imaging data, behavioral measures of walking distance were impaired in Tau4RΔK mice (p = 0.004), but not in APP mice (p = 0.88). Collectively, these findings support the hypothesis that noninvasive MRI measurement of brain oxygen metabolism may be a promising biomarker of neurodegeneration in AD.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China
| | - Lydiane Hirschler
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel L. Barbier
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip C. Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Chen L, van Zijl PC, Wei Z, Lu H, Duan W, Wong PC, Li T, Xu J. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neuroimage 2021; 236:118071. [PMID: 33878375 PMCID: PMC8321389 DOI: 10.1016/j.neuroimage.2021.118071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
Detecting Alzheimer's disease (AD) at an early stage brings a lot of benefits including disease management and actions to slow the progression of the disease. Here, we demonstrate that reduced creatine chemical exchange saturation transfer (CrCEST) contrast has the potential to serve as a new biomarker for early detection of AD. The results on wild type (WT) mice and two age-matched AD models, namely tauopathy (Tau) and Aβ amyloidosis (APP), indicated that CrCEST contrasts of the cortex and corpus callosum in the APP and Tau mice were significantly reduced compared to WT counterpart at an early stage (6-7 months) (p < 0.011). Two main causes of the reduced CrCEST contrast, i.e. cerebral pH and creatine concentration, were investigated. From phantom and hypercapnia experiments, CrCEST showed excellent sensitivity to pH variations. From MRS results, the creatine concentration in WT and AD mouse brain was equivalent, which suggests that the reduced CrCEST contrast was dominated by cerebral pH change involved in the progression of AD. Immunohistochemical analysis revealed that the abnormal cerebral pH in AD mice may relate to neuroinflammation, a known factor that can cause pH reduction.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Lodder C, Scheyltjens I, Stancu IC, Botella Lucena P, Gutiérrez de Ravé M, Vanherle S, Vanmierlo T, Cremers N, Vanrusselt H, Brône B, Hanseeuw B, Octave JN, Bottelbergs A, Movahedi K, Dewachter I. CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia. Acta Neuropathol Commun 2021; 9:108. [PMID: 34103079 PMCID: PMC8188790 DOI: 10.1186/s40478-021-01204-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by a sequential progression of amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N), constituting ATN pathology. While microglia are considered key contributors to AD pathogenesis, their contribution in the combined presence of ATN pathologies remains incompletely understood. As sensors of the brain microenvironment, microglial phenotypes and contributions are importantly defined by the pathologies in the brain, indicating the need for their analysis in preclinical models that recapitulate combined ATN pathologies, besides their role in A and T models only. Here, we report a new tau-seed model in which amyloid pathology facilitates bilateral tau propagation associated with brain atrophy, thereby recapitulating robust ATN pathology. Single-cell RNA sequencing revealed that ATN pathology exacerbated microglial activation towards disease-associated microglia states, with a significant upregulation of Apoe as compared to amyloid-only models (A). Importantly, Colony-Stimulating Factor 1 Receptor inhibition preferentially eliminated non-plaque-associated versus plaque associated microglia. The preferential depletion of non-plaque-associated microglia significantly attenuated tau pathology and neuronal atrophy, indicating their detrimental role during ATN progression. Together, our data reveal the intricacies of microglial activation and their contributions to pathology in a model that recapitulates the combined ATN pathologies of AD. Our data may provide a basis for microglia-targeting therapies selectively targeting detrimental microglial populations, while conserving protective populations.
Collapse
|
35
|
Chen L, Wei Z, Chan KWY, Li Y, Suchal K, Bi S, Huang J, Xu X, Wong PC, Lu H, van Zijl PCM, Li T, Xu J. D-Glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on-resonance variable delay multiple pulse MRI. J Cereb Blood Flow Metab 2021; 41:1013-1025. [PMID: 32669023 PMCID: PMC8054725 DOI: 10.1177/0271678x20941264] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
In this study, we applied on-resonance variable delay multiple pulse (onVDMP) MRI to study D-glucose uptake in a mouse model of Alzheimer's disease (AD) tauopathy and demonstrated its feasibility in discriminating AD mice from wild-type mice. The D-glucose uptake in the cortex of AD mice (1.70 ± 1.33%) was significantly reduced compared to that of wild-type mice (5.42 ± 0.70%, p = 0.0051). Also, a slower D-glucose uptake rate was found in the cerebrospinal fluid (CSF) of AD mice (0.08 ± 0.01 min-1) compared to their wild-type counterpart (0.56 ± 0.1 min-1, p < 0.001), which suggests the presence of an impaired glucose transporter on both blood-brain and blood-CSF barriers of these AD mice. Clearance of D-glucose was observed in the CSF of wild-type mice but not AD mice, which suggests dysfunction of the glymphatic system in the AD mice. The results in this study indicate that onVDMP MRI could be a cost-effective and widely available method for simultaneously evaluating glucose transporter and glymphatic function of AD. This study also suggests that tau protein affects the D-glucose uptake and glymphatic impairment in AD at a time point preceding neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kapil Suchal
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Retromer dysfunction at the nexus of tauopathies. Cell Death Differ 2021; 28:884-899. [PMID: 33473181 PMCID: PMC7937680 DOI: 10.1038/s41418-020-00727-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Tauopathies define a broad range of neurodegenerative diseases that encompass pathological aggregation of the microtubule-associated protein tau. Although tau aggregation is a central feature of these diseases, their underlying pathobiology is remarkably heterogeneous at the molecular level. In this review, we summarize critical differences that account for this heterogeneity and contrast the physiological and pathological functions of tau. We focus on the recent understanding of its prion-like behavior that accounts for its spread in the brain. Moreover, we acknowledge the limited appreciation about how upstream cellular changes influence tauopathy. Dysfunction of the highly conserved endosomal trafficking complex retromer is found in numerous tauopathies such as Alzheimer's disease, Pick's disease, and progressive supranuclear palsy, and we discuss how this has emerged as a major contributor to various aspects of neurodegenerative diseases. In particular, we highlight recent investigations that have elucidated the contribution of retromer dysfunction to distinct measures of tauopathy such as tau hyperphosphorylation, aggregation, and impaired cognition and behavior. Finally, we discuss the potential benefit of targeting retromer for modifying disease burden and identify important considerations with such an approach moving toward clinical translation.
Collapse
|
37
|
Spatial memory deficiency early in 6xTg Alzheimer's disease mouse model. Sci Rep 2021; 11:1334. [PMID: 33446720 PMCID: PMC7809274 DOI: 10.1038/s41598-020-79344-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/08/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is mainly characterized by the deposition of extracellular amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFTs). While the recent 5xFAD AD mouse model exhibits many AD-related phenotypes and a relatively early and aggressive amyloid β production, it does not show NFTs. Here, we developed and evaluated a novel AD mouse model (6xTg-AD, 6xTg) by crossbreeding 5xFAD mice with mice expressing mutant (P301L) tau protein (MAPT). Through behavioral and histopathological tests, we analyzed cognitive changes and neuropathology in 6xTg mice compared to their respective parental strains according to age. Spatial memory deficits occurred in 6xTg mice at 2 months of age, earlier than they occurred in 5xFAD mice. Histopathological data revealed aggressive Aβ42 and p-tau accumulation in 6xTg mice. Microglial activation occurred in the cortex and hippocampus of 6xTg mice beginning at 2 months. In 6xTg model mice, the synaptic loss was observed in the cortex from 4 months of age and in the hippocampus from 6 months of age, and neuronal loss appeared in the cortex from 4 months of age and in the hippocampus 6 months of age, earlier than it is observed in the 5xFAD and JNPL3 models. These results showed that each pathological symptom appeared much faster than in their parental animal models. In conclusion, these novel 6xTg-AD mice might be an advanced animal model for studying AD, representing a promising approach to developing effective therapy.
Collapse
|
38
|
Laversenne V, Nazeeruddin S, Källstig EC, Colin P, Voize C, Schneider BL. Anti-Aβ antibodies bound to neuritic plaques enhance microglia activity and mitigate tau pathology. Acta Neuropathol Commun 2020; 8:198. [PMID: 33225991 PMCID: PMC7681991 DOI: 10.1186/s40478-020-01069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
The brain pathology of Alzheimer's disease (AD) is characterized by the misfolding and aggregation of both the amyloid beta (Aβ) peptide and hyperphosphorylated forms of the tau protein. Initial Aβ deposition is considered to trigger a sequence of deleterious events contributing to tau pathology, neuroinflammation and ultimately causing the loss of synapses and neurons. To assess the effect of anti-Aβ immunization in this context, we generated a mouse model by overexpressing the human tau protein in the hippocampus of 5xFAD mice. Aβ plaque deposition combined with human tau overexpression leads to an array of pathological manifestations including the formation of tau-positive dystrophic neurites and accumulation of hyperphosphorylated tau at the level of neuritic plaques. Remarkably, the presence of human tau reduces microglial clustering in proximity to the Aβ plaques, which may affect the barrier role of microglia. In this mouse model, continuous administration of anti-Aβ antibodies enhances the clustering of microglial cells even in the presence of tau. Anti-Aβ immunization increases plaque compaction, reduces the spread of tau in the hippocampal formation and prevents the formation of tau-positive dystrophic neurites. However, the treatment does not significantly reduce tau-induced neurodegeneration in the dentate gyrus. These results highlight that anti-Aβ immunization is able to enhance microglial activity around neuritic plaques, mitigating part of the tau-induced pathological manifestations.
Collapse
|
39
|
Trejo-Lopez JA, Sorrentino ZA, Riffe CJ, Prokop S, Dickson DW, Yachnis AT, Giasson BI. Generation and Characterization of Novel Monoclonal Antibodies Targeting p62/sequestosome-1 Across Human Neurodegenerative Diseases. J Neuropathol Exp Neurol 2020; 79:407-418. [PMID: 32106300 DOI: 10.1093/jnen/nlaa007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Human neurodegenerative diseases can be characterized as disorders of protein aggregation. As a key player in cellular autophagy and the ubiquitin proteasome system, p62 may represent an effective immunohistochemical target, as well as mechanistic operator, across neurodegenerative proteinopathies. In this study, 2 novel mouse-derived monoclonal antibodies 5G3 and 2A5 raised against residues 360-380 of human p62/sequestosome-1 were characterized via immunohistochemical application upon human tissues derived from cases of C9orf72-expansion spectrum diseases, Alzheimer disease, progressive supranuclear palsy, Lewy body disease, and multiple system atrophy. 5G3 and 2A5 reliably highlighted neuronal dipeptide repeat, tau, and α-synuclein inclusions in a distribution similar to a polyclonal antibody to p62, phospho-tau antibodies 7F2 and AT8, and phospho-α-synuclein antibody 81A. However, antibodies 5G3 and 2A5 consistently stained less neuropil structures, such as tau neuropil threads and Lewy neurites, while 2A5 marked fewer glial inclusions in progressive supranuclear palsy. Both 5G3 and 2A5 revealed incidental astrocytic tau immunoreactivity in cases of Alzheimer disease and Lewy body disease with resolution superior to 7F2. Through their unique ability to highlight specific types of pathological deposits in neurodegenerative brain tissue, these novel monoclonal p62 antibodies may provide utility in both research and diagnostic efforts.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease
| | - Zachary A Sorrentino
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Cara J Riffe
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine.,Center for Translational Research in Neurodegenerative Disease.,McKnight Brain Institute.,Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | | | | | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease.,Department of Neuroscience.,McKnight Brain Institute
| |
Collapse
|
40
|
Kawarabayashi T, Terakawa T, Takahashi A, Hasegawa H, Narita S, Sato K, Nakamura T, Seino Y, Hirohata M, Baba N, Ueda T, Harigaya Y, Kametani F, Maruyama N, Ishimoto M, St George-Hyslop P, Shoji M. Oral Immunization with Soybean Storage Protein Containing Amyloid-β 4-10 Prevents Spatial Learning Decline. J Alzheimers Dis 2020; 70:487-503. [PMID: 31177217 PMCID: PMC6700641 DOI: 10.3233/jad-190023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) plays a central role in the pathogenesis of Alzheimer’s disease (AD). Because AD pathologies begin two decades before the onset of dementia, prevention of Aβ amyloidosis has been proposed as a mean to block the pathological cascade. Here, we generate a transgenic plant-based vaccine, a soybean storage protein containing Aβ4–10, named Aβ+, for oral Aβ immunization. One mg of Aβ+ or control protein (Aβ–) was administered to TgCRND8 mice once a week from 9 weeks up to 58 weeks. Aβ+ immunization raised both anti-Aβ antibodies and cellular immune responses. Spatial learning decline was prevented in the Aβ+ immunized group in an extended reference memory version of Morris water maze test from 21 to 57 weeks. In Tris-buffered saline (TBS), sodium dodecyl sulfate (SDS), and formic acid (FA) serial extractions, all sets of Aβ species from Aβ monomer, low to high molecular weight Aβ oligomers, and Aβ smears had different solubility in TgCRND8 brains. Aβ oligomers decreased in TBS fractions, corresponding to an increase in high molecular weight Aβ oligomers in SDS extracts and Aβ smears in FA fraction of the Aβ+ treated group. There was significant inhibition of histological Aβ burden, especially in diffuse plaques, and suppression of microglial inflammation. Processing of amyloid-β protein precursor was not different between Aβ+ and Aβ– groups. No evidence of amyloid-related inflammatory angiopathy was observed. Thus, Aβ+ oral immunization could be a promising, cheap, and long-term safe disease-modifying therapy to prevent the pathological process in AD.
Collapse
Affiliation(s)
- Takeshi Kawarabayashi
- Department of Neurology, Geriatrics Research Institute Hospital, Maebashi, Aomori, Japan.,Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Teruhiko Terakawa
- Hokko Chemical Industry Co., Ltd, Atsugi-shi, Kanagawa, Japan.,Inplanta Innovations Inc. Yokohama, Kanagawa, Japan
| | | | | | - Sakiko Narita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kaoru Sato
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takumi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.,Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yusuke Seino
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Mie Hirohata
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Nobue Baba
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Yasuo Harigaya
- Department of Neurology, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Masao Ishimoto
- Institute of Crop Science, NARO, Tsukuba, Ibaraki, Japan
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mikio Shoji
- Department of Neurology, Geriatrics Research Institute Hospital, Maebashi, Aomori, Japan.,Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
41
|
Chen YY, Wang MC, Wang YN, Hu HH, Liu QQ, Liu HJ, Zhao YY. Redox signaling and Alzheimer's disease: from pathomechanism insights to biomarker discovery and therapy strategy. Biomark Res 2020; 8:42. [PMID: 32944245 PMCID: PMC7488504 DOI: 10.1186/s40364-020-00218-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT Aging and average life expectancy have been increasing at a rapid rate, while there is an exponential risk to suffer from brain-related frailties and neurodegenerative diseases as the population ages. Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide with a projected expectation to blossom into the major challenge in elders and the cases are forecasted to increase about 3-fold in the next 40 years. Considering the etiological factors of AD are too complex to be completely understood, there is almost no effective cure to date, suggesting deeper pathomechanism insights are urgently needed. Metabolites are able to reflect the dynamic processes that are in progress or have happened, and metabolomic may therefore provide a more cost-effective and productive route to disease intervention, especially in the arena for pathomechanism exploration and new biomarker identification. In this review, we primarily focused on how redox signaling was involved in AD-related pathologies and the association between redox signaling and altered metabolic pathways. Moreover, we also expatiated the main redox signaling-associated mechanisms and their cross-talk that may be amenable to mechanism-based therapies. Five natural products with promising efficacy on AD inhibition and the benefit of AD intervention on its complications were highlighted as well.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an, 710069 Shaanxi China
| | - Min-Chang Wang
- Instrumental Analysis Center, Xi’an Modern Chemistry Institute, Xi’an, 710065 Shaanxi China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an, 710069 Shaanxi China
| | - He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an, 710069 Shaanxi China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Hai-Jing Liu
- Shaanxi Institute for Food and Drug Control, Xi’an, 710065 Shaanxi China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an, 710069 Shaanxi China
| |
Collapse
|
42
|
Weng CC, Hsiao IT, Yang QF, Yao CH, Tai CY, Wu MF, Yen TC, Jang MK, Lin KJ. Characterization of 18F-PM-PBB3 ( 18F-APN-1607) Uptake in the rTg4510 Mouse Model of Tauopathy. Molecules 2020; 25:molecules25071750. [PMID: 32290239 PMCID: PMC7181044 DOI: 10.3390/molecules25071750] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Misfolding, aggregation, and cerebral accumulation of tau deposits are hallmark features of Alzheimer’s disease. Positron emission tomography study of tau can facilitate the development of anti-tau treatment. Here, we investigated a novel tau tracer 18F-PM-PBB3 (18F-APN-1607) in a mouse model of tauopathy. Dynamic PET scans were collected in groups of rTg4510 transgenic mice at 2–11 months of age. Associations between distribution volume ratios (DVR) and standardized uptake value ratios (SUVR) with cerebellum reference were used to determine the optimal scanning time and uptake pattern for each age. Immunohistochemistry staining of neurofibrillary tangles and autoradiography study was performed for ex vivo validation. An SUVR 40–70 min was most consistently correlated with DVR and was used in further analyses. Significant increased 18F-PM-PBB3 uptake in the brain cortex was found in six-month-old mice (+28.9%, p < 0.05), and increased further in the nine-month-old group (+38.8%, p < 0.01). The trend of increased SUVR value remained evident in the hippocampus and striatum regions except for cortex where uptake becomes slightly reduced in 11-month-old animals (+37.3%, p < 0.05). Radioactivity distributions from autoradiography correlate well to the presence of human tau (HT7 antibody) and hyperphosphorylated tau (antibody AT8) from the immunohistochemistry study of the adjacent brain sections. These findings supported that the 40–70 min 18F-PM-PBB3 PET scan with SUVR measurement can detect significantly increased tau deposits in a living rTg4510 transgenic mouse models as early as six-months-old. The result exhibited promising dynamic imaging capability of this novel tau tracer, and the above image characteristics should be considered in the design of longitudinal preclinical tau image studies.
Collapse
Affiliation(s)
- Chi-Chang Weng
- HARC and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333, Taiwan; (C.C.-W.); (I.-T.H.); (Q.-F.Y.)
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ing-Tsung Hsiao
- HARC and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333, Taiwan; (C.C.-W.); (I.-T.H.); (Q.-F.Y.)
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Qing-Fang Yang
- HARC and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 333, Taiwan; (C.C.-W.); (I.-T.H.); (Q.-F.Y.)
| | - Cheng-Hsiang Yao
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chin-Yin Tai
- APRINOIA Therapeutics Inc., Taipei 11503, Taiwan; (C.-Y.T.); (M.-F.W.); (T.-C.Y.); (M.-K.J.)
| | - Meng-Fang Wu
- APRINOIA Therapeutics Inc., Taipei 11503, Taiwan; (C.-Y.T.); (M.-F.W.); (T.-C.Y.); (M.-K.J.)
| | - Tzu-Chen Yen
- APRINOIA Therapeutics Inc., Taipei 11503, Taiwan; (C.-Y.T.); (M.-F.W.); (T.-C.Y.); (M.-K.J.)
| | - Ming-Kuei Jang
- APRINOIA Therapeutics Inc., Taipei 11503, Taiwan; (C.-Y.T.); (M.-F.W.); (T.-C.Y.); (M.-K.J.)
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|
43
|
Abstract
Tau protein which was discovered in 1975 [310] became of great interest when it was identified as the main component of neurofibrillary tangles (NFT), a pathological feature in the brain of patients with Alzheimer's disease (AD) [39, 110, 232]. Tau protein is expressed mainly in the brain as six isoforms generated by alternative splicing [46, 97]. Tau is a microtubule associated proteins (MAPs) and plays a role in microtubules assembly and stability, as well as diverse cellular processes such as cell morphogenesis, cell division, and intracellular trafficking [49]. Additionally, Tau is involved in much larger neuronal functions particularly at the level of synapses and nuclei [11, 133, 280]. Tau is also physiologically released by neurons [233] even if the natural function of extracellular Tau remains to be uncovered (see other chapters of the present book).
Collapse
|
44
|
Age related neurodegenerative Alzheimer's disease: Usage of traditional herbs in therapeutics. Neurosci Lett 2020; 717:134679. [PMID: 31816333 DOI: 10.1016/j.neulet.2019.134679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease mainly associated with cognition impairment. Studies in last more than six decades have suggested that the disease pathology primarily includes the depleted cholinergic neurons, accumulation of amyloid beta plaques and hyper phosphorylation of tau proteins. However, the disease etiology remains enigmatic and no therapy is available to modify the disease status. Studies in experimental models and in post mortem brain of AD patients have suggested the involvement of oxidative stress, inflammatory responses, unfolded protein responses and apoptosis in disease pathology, yet the information is deficit to develop the disease modifying therapeutics. Owing to the need of novel effective treatment, chronic consumption of medicines with minimum side effects, recently the researchers turned towards the traditional medicines. This review is mainly focusing on the traditional herbs which have been suggested to contain disease related antidote activities and may be utilized for the effective treatment of AD patients.
Collapse
|
45
|
Krivinko JM, Koppel J, Savonenko A, Sweet RA. Animal Models of Psychosis in Alzheimer Disease. Am J Geriatr Psychiatry 2020; 28:1-19. [PMID: 31278012 PMCID: PMC6858948 DOI: 10.1016/j.jagp.2019.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Psychosis in Alzheimer Disease (AD) represents a distinct clinicopathologic variant associated with increased cognitive and functional morbidity and an accelerated disease course. To date, extant treatments offer modest benefits with significant risks. The development of new pharmacologic treatments for psychosis in AD would be facilitated by validated preclinical models with which to test candidate interventions. The current review provides a brief summary of the process of validating animal models of human disease together with a critical analysis of the challenges posed in attempting to apply those standards to AD-related behavioral models. An overview of phenotypic analogues of human cognitive and behavioral impairments, with an emphasis on those relevant to psychosis, in AD-related mouse models is provided, followed by an update on recent progress in efforts to translate findings in the pathophysiology of psychotic AD into novel models. Finally, some future directions are suggested to expand the catalogue of psychosis-relevant phenotypes that may provide a sturdier framework for model development and targets for preclinical treatment outcomes.
Collapse
Affiliation(s)
- Josh M. Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| |
Collapse
|
46
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
47
|
Hollinger KR, Alt J, Rais R, Kaplin AI, Slusher BS. The NAAG’ing Concerns of Modeling Human Alzheimer’s Disease in Mice. J Alzheimers Dis 2019; 68:939-945. [DOI: 10.3233/jad-181251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kristen R. Hollinger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Rana Rais
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| | - Adam I. Kaplin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara S. Slusher
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Fichou Y, Al-Hilaly YK, Devred F, Smet-Nocca C, Tsvetkov PO, Verelst J, Winderickx J, Geukens N, Vanmechelen E, Perrotin A, Serpell L, Hanseeuw BJ, Medina M, Buée L, Landrieu I. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun 2019; 7:31. [PMID: 30823892 PMCID: PMC6397507 DOI: 10.1186/s40478-019-0682-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Insights into tau molecular structures have advanced significantly in recent years. This field has been the subject of recent breakthroughs, including the first cryo-electron microscopy structures of tau filaments from Alzheimer’s and Pick’s disease inclusions, as well as the structure of the repeat regions of tau bound to microtubules. Tau structure covers various species as the tau protein itself takes many forms. We will here address a range of studies that help to define the many facets of tau protein structures and how they translate into pathogenic forms. New results shed light on previous data that need now to be revisited in order to up-date our knowledge of tau molecular structure. Finally, we explore how these data can contribute the important medical aspects of this research - diagnosis and therapeutics.
Collapse
|
49
|
Chen L, Wei Z, Chan K, Cai S, Liu G, Lu H, Wong PC, van Zijl PCM, Li T, Xu J. Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neuroimage 2019; 188:380-390. [PMID: 30553917 PMCID: PMC6401270 DOI: 10.1016/j.neuroimage.2018.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to develop a molecular biomarker for the detection of protein aggregation involved in Alzheimer's disease (AD) by exploiting the features of the water saturation transfer spectrum (Z-spectrum), the CEST signal of which is sensitive to the molecular configuration of proteins. A radial-sampling steady-state sequence based ultrashort echo time (UTE) readout was implemented to image the Z-spectrum in the mouse brain, especially the contributions from mobile proteins at the frequency offsets for the composite protein amide proton (+3.6 ppm) and aliphatic proton (-3.6 ppm) signals. Using a relatively weak radiofrequency (RF) saturation amplitude, contributions due to strong magnetization transfer contrast (MTC) from solid-like macromolecules and direct water saturation (DS) were minimized. For practical measure of the changes in the mobile protein configuration, we defined a saturation transfer difference (ΔST) by subtracting the Z-spectral signals at ±3.6 ppm from a control signal at 8 ppm. Phantom studies of glutamate solution, protein (egg white) and hair conditioner show the capability of the proposed scheme to minimize the contributions from amine protons, DS, and MTC, respectively. The ST signal at ±3.6 ppm of the cross-linked bovine serum albumin (BSA) solutions demonstrated that the ΔST signal can be used to monitor the aggregation process of the mobile proteins. High-resolution ΔST images of AD mouse brains at ±3.6 ppm of mouse brains showed significantly reduced ΔST (-3.6) signal compared to the age-matched wild-type (WT) mice. Thus, this signal has potential to serve as a molecular biomarker for monitoring protein aggregation in AD.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
Saha P, Sen N. Tauopathy: A common mechanism for neurodegeneration and brain aging. Mech Ageing Dev 2019; 178:72-79. [PMID: 30668956 DOI: 10.1016/j.mad.2019.01.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Tau, a microtubule-associated protein promotes assembly and stability of microtubules which is related to axoplasmic flow and critical neuronal activities upon physiological conditions. Under neurodegenerative condition such as in Alzheimer's Disease (AD), tau-microtubule binding dynamics and equilibrium are severely affected due to its aberrant post-translational modifications including acetylation and hyperphosphorylation. This event results in its conformational changes to form neurofibrillary tangles (NFT) after aggregation in the cytosol. The formation of NFT is more strongly correlated with cognitive decline than the distribution of senile plaque, which is formed by polymorphous beta-amyloid (Aβ) protein deposits, another pathological hallmark of AD. In neurodegenerative conditions, other than AD, the disease manifestation is correlated with mutations of the MAPT gene. In Primary age-related tauopathy (PART), which is commonly observed in the brains of aged individuals, tau deposition is directly correlated with cognitive deficits even in the absence of Aβ deposition. Thus, tauopathy has been considered as an essential hallmark in neurodegeneration and normal brain aging. In this review, we highlighted the recent progress about the tauopathies in the light of its posttranslational modifications and its implication in AD and the aged brain.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States.
| |
Collapse
|