1
|
Saouaf OM, Ou BS, Song YE, Carter JJ, Yan J, Jons CK, Barnes CO, Appel EA. Sustained Vaccine Exposure Elicits More Rapid, Consistent, and Broad Humoral Immune Responses to Multivalent Influenza Vaccines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404498. [PMID: 40091614 PMCID: PMC12079443 DOI: 10.1002/advs.202404498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/17/2024] [Indexed: 03/19/2025]
Abstract
With the ever-present threat of pandemics, it is imperative vaccine technologies eliciting broad and durable immunity to high-risk pathogens are developed. Yet, current annual influenza vaccines, for example, fail to provide robust immunity against the 3-4 homologous strains they contain, let alone heterologous strains. Herein, this study demonstrates that sustained delivery of multivalent influenza vaccines from an injectable polymer-nanoparticle (PNP) hydrogel technology induces more rapid, consistent, and potent humoral immune responses against multiple homologous viruses, as well as potent responses against heterologous viruses and potential pandemic subtypes H5N1, H7N9 and H9N2. Further, admixing PNP hydrogels with commercial influenza vaccines results in stronger hemagglutination inhibition against both heterologous and homologous viruses. Additional investigation shows this enhanced potency and breadth arise from higher affinity antibodies targeting both the hemagglutinin stem and head. Overall, this simple and effective sustained delivery platform for multivalent annual influenza vaccines generates durable, potent, and remarkably broad immunity to influenza.
Collapse
Affiliation(s)
- Olivia M. Saouaf
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Ben S. Ou
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ye Eun Song
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Joshua J. Carter
- Department of BiophysicsStanford University School of MedicineStanfordCA94305USA
| | - Jerry Yan
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Carolyn K. Jons
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Christopher O. Barnes
- Department of BiologyStanford University School of MedicineStanfordCA94305USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
- Sarafan ChEM‐H InstituteStanford UniversityStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
- Department of BioengineeringStanford UniversityStanfordCA94305USA
- Sarafan ChEM‐H InstituteStanford UniversityStanfordCA94305USA
- Institute for ImmunityTransplantation & InfectionStanford University School of MedicineStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
- Woods Institute for the EnvironmentStanford UniversityStanfordCA94305USA
| |
Collapse
|
2
|
Sun C, Jiang Y, Liu S, He Q, Han C, Su D, Ma H, Guo X, Zhang Y, Li F, Zhang H. Flow Cytometry-Based Rapid Assay for Antigen Specific Antibody Relative Affinity in SRBC-Immunized Mouse Models. Int J Mol Sci 2025; 26:3664. [PMID: 40332147 PMCID: PMC12027684 DOI: 10.3390/ijms26083664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Sheep red blood cells (SRBC) has a long history as a classical T-cell dependent (TD) antigen. Due to its cost-effectiveness, easy accessibility, and ability to elicit a robust antibody immune response, SRBC continues to be widely used in studies related with humoral immunity modulation, vaccine development, and immunoactivity/immunotoxicity testing of bioactive agents. However, detecting the relative affinity levels of SRBC-specific antibodies in SRBC-immunized animal models remains challenging. Using flow cytometry, we established a detection system capable of quickly and accurately assessing the SRBC-specific antibody relative affinity levels in humoral samples (e.g., serum, tissue fluid) of SRBC-immunized mouse models. We further validated this method using affinity maturation-deficient mice, demonstrating that this method can distinguish affinity levels of the antibodies from different samples. This approach is simple and efficient, providing an accurate and effective technological solution for research on mechanisms of humoral immunity, antibody affinity maturation, vaccine response, and immunoactivity/immunotoxicity testing.
Collapse
Affiliation(s)
- Chunli Sun
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Jiang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Liu
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qilin He
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengyao Han
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dai Su
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Ma
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingyu Guo
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Zhang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fubin Li
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (C.S.); (Y.J.); (S.L.); (Q.H.); (C.H.); (D.S.); (H.M.); (X.G.); (Y.Z.)
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Madden PJ, Marina-Zárate E, Rodrigues KA, Steichen JM, Shil M, Ni K, Michaels KK, Maiorino L, Upadhyay AA, Saha S, Pradhan A, Kalyuzhiny O, Liguori A, Lopez PG, Phung I, Flynn C, Zhou A, Melo MB, Lemnios A, Phelps N, Georgeson E, Alavi N, Kubitz M, Lu D, Eskandarzadeh S, Metz A, Rodriguez OL, Shields K, Schultze S, Smith ML, Healy BS, Lim D, Lewis VR, Ben-Akiva E, Pinney W, Gregory J, Xiao S, Carnathan DG, Pai Kasturi S, Watson CT, Bosinger SE, Silvestri G, Schief WR, Irvine DJ, Crotty S. Diverse priming outcomes under conditions of very rare precursor B cells. Immunity 2025; 58:997-1014.e11. [PMID: 40168992 PMCID: PMC12060733 DOI: 10.1016/j.immuni.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 04/03/2025]
Abstract
Rare naive B cells have special pathogen-recognition features that enable outsized contributions to protective immunity but infrequently participate in immune responses. We investigatee how germline-targeting vaccine delivery and adjuvant selection affect priming of exceptionally rare BG18-like HIV broadly neutralizing antibody-precursor B cells (<1-in-50 million) in non-human primates. Only escalating dose (ED) priming immunization using the saponin adjuvant SMNP elicited detectable BG18-like cells in germinal centers (GCs) compared with other conditions. All groups had strong GC responses, but only ED+SMNP and bolus+SMNP induced BG18-like memory B cells in >50% of animals. One group had vaccine-specific GC responses equivalent to ED+SMNP but scarce BG18-like B cells. Following homologous boosting, BG18-like memory B cells were present in a bolus priming group but with lower somatic hypermutation and affinities than ED+SMNP. This outcome inversely associated with post-prime antibody titers, suggesting antibody feedback significantly influences rare precursor B cell responses. Thus, antigen and inflammatory stimuli extensively impact priming and affinity maturation of rare B cells.
Collapse
Affiliation(s)
- Patrick J Madden
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ester Marina-Zárate
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jon M Steichen
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Monolina Shil
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amit A Upadhyay
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Arpan Pradhan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Oleksandr Kalyuzhiny
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Liguori
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul G Lopez
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Ivy Phung
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - Claudia Flynn
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Amelia Zhou
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mariane B Melo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashley Lemnios
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicole Phelps
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nushin Alavi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael Kubitz
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Danny Lu
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Saman Eskandarzadeh
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Amanda Metz
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kaitlyn Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Schultze
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brandon S Healy
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Deuk Lim
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Vanessa R Lewis
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Justin Gregory
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuhao Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diane G Carnathan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudhir Pai Kasturi
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven E Bosinger
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Guido Silvestri
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA; Moderna, Inc., Cambridge, MA, USA
| | - Darrell J Irvine
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Shane Crotty
- La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Peres A, Upadhyay AA, Klein VH, Saha S, Rodriguez OL, Vanwinkle ZM, Karunakaran K, Metz A, Lauer W, Lin MC, Melton T, Granholm L, Polak P, Peterson SM, Peterson EJ, Raju N, Shields K, Schultze S, Ton T, Ericsen A, Lapp SA, Villinger FJ, Ohlin M, Cottrell C, Amara RR, Derdeyn CA, Crotty S, Schief W, Karlsson Hedestam GB, Smith M, Lees W, Watson CT, Yaari G, Bosinger SE. A Broad Survey and Functional Analysis of Immunoglobulin Loci Variation in Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631319. [PMID: 39829807 PMCID: PMC11741282 DOI: 10.1101/2025.01.07.631319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Rhesus macaques (RMs) are a vital model for studying human disease and invaluable to pre-clinical vaccine research, particularly for the study of broadly neutralizing antibody responses. Such studies require robust genetic resources for antibody-encoding genes within the immunoglobulin (IG) loci. The complexity of the IG loci has historically made them challenging to characterize accurately. To address this, we developed novel experimental and computational methodologies to generate the largest collection to date of integrated antibody repertoire and long-read genomic sequencing data in 106 Indian origin RMs. We created a comprehensive resource of IG heavy and light chain variable (V), diversity (D), and joining (J) alleles, as well as leader, intronic, and recombination signal sequences (RSSs), including the curation of 1474 novel alleles, unveiling tremendous diversity, and expanding existing IG allele sets by 60%. This publicly available, continually updated resource (https://vdjbase.org/reference_book/Rhesus_Macaque) provides the foundation for advancing RM immunogenomics, vaccine discovery, and translational research.
Collapse
|
5
|
Chernyshev M, Stålmarck A, Corcoran M, Hedestam GBK, Murrell B. Detection of PCR chimeras in adaptive immune receptor repertoire sequencing using hidden Markov models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.638809. [PMID: 40060431 PMCID: PMC11888211 DOI: 10.1101/2025.02.21.638809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) has emerged as a central approach for studying T cell and B cell receptor populations, and is now an important component of studies of autoimmunity, immune responses to pathogens, vaccines, allergens, and cancers, and for antibody discovery. When amplifying the rearranged V(D)J genes encoding antigen receptors, each cycle of the Polymerase Chain Reaction (PCR) can produce spurious "chimeric" hybrids of two or more different template sequences. While the generation of chimeras is well understood in bacterial and viral sequencing, and there are dedicated tools to detect such sequences in bacterial and viral datasets, this is not the case for AIRR-seq. Further, the process that results in immune receptor sequences has domain-specific challenges, such as somatic hypermutation (SHM), and domain-specific opportunities, such as relatively well-known germline gene "reference" sequences. Here we describe CHMMAIRRa, a hidden Markov model for detecting chimeric sequences in AIRR-seq data, that specifically models SHM and incorporates germline reference sequences. We use simulations to characterize the performance of CHMMAIRRa and compare it to existing methods from other domains, we test the effect of PCR conditions on chimerism using IgM libraries generated in this study, and we apply CHMMAIRRa to four published AIRR-seq datasets to show the extent and impact of artifactual chimerism.
Collapse
Affiliation(s)
- Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aron Stålmarck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Guo Y, Waltari E, Lu H, Sheng Z, Wu X. Novel rhesus macaque immunoglobulin germline genes identified by three sequencing approaches. Front Immunol 2024; 15:1506348. [PMID: 39776901 PMCID: PMC11703713 DOI: 10.3389/fimmu.2024.1506348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction Rhesus macaques have long been a focus of research for understanding immune responses to human pathogens due to their close phylogenetic relationship with humans. As rhesus macaque antibody germlines show high degrees of polymorphism, the spectrum of database-covered genes expressed in individual macaques remains to be determined. Methods Here, four rhesus macaques infected with SHIVSF162P3N became a study of interest because they developed broadly neutralizing antibodies against HIV-1. To identify the immunoglobulin heavy chain V-gene (IGHV) germlines in these macaques, we applied three sequencing approaches - genomic DNA (gDNA) TOPO sequencing, gDNA MiSeq, and messenger RNA (mRNA) MiSeq inference with IgDiscover, and illustrated the detection power of each method. Results Of the 197 new rhesus IGHV germline sequences identified, 116 (59%) were validated by at least two methods, and 143 (73%) were found in at least two macaques or two sample sources. About 20% of germlines in each macaque are missing from the current database, including a subset frequently expressed. Overall, gDNA MiSeq determined the greatest number of germline sequences, followed by gDNA TOPO sequencing and mRNA MiSeq inference by IgDiscover, with IgDiscover providing direct evidence of allele expression and usage. Discussion Our interdisciplinary study sheds light on germline sequencing, enhances the rhesus IGHV germline database, and highlights the importance of germline sequencing in rhesus immune repertoire studies.
Collapse
Affiliation(s)
- Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Eric Waltari
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Hong Lu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
7
|
Gupta A, Rudra A, Reed K, Langer R, Anderson DG. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 2024; 23:914-938. [PMID: 39433939 DOI: 10.1038/s41573-024-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnab Rudra
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kaelan Reed
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Madden PJ, Marina-Zárate E, Rodrigues KA, Steichen JM, Shil M, Ni K, Michaels KK, Maiorino L, Upadhyay AA, Saha S, Pradhan A, Kalyuzhiny O, Liguori A, Lopez PG, Phung I, Phelps N, Georgeson E, Alavi N, Kubitz M, Lu D, Eskandarzadeh S, Metz A, Rodriguez OL, Shields K, Schultze S, Smith ML, Healy BS, Lim D, Lewis VR, Ben-Akiva E, Pinney W, Gregory J, Xiao S, Carnathan DG, Kasturi SP, Watson CT, Bosinger SE, Silvestri G, Schief WR, Irvine DJ, Crotty S. Diverse priming outcomes under conditions of very rare precursor B cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624746. [PMID: 39651117 PMCID: PMC11623517 DOI: 10.1101/2024.11.21.624746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Rare B cells can have special pathogen-recognition features giving them the potential to make outsized contributions to protective immunity. However, rare naive B cells infrequently participate in immune responses. We investigated how germline-targeting vaccine antigen delivery and adjuvant selection affect priming of exceptionally rare BG18-like HIV broadly neutralizing antibody-precursor B cells (~1 in 50 million) in non-human primates. Only escalating dose (ED) priming immunization using the saponin adjuvant SMNP elicited detectable BG18-like cells in germinal centers (GCs). All groups had strong GC responses, but only ED+SMNP and bolus+SMNP induced BG18-like memory B cells in >50% of animals. One group had vaccine-specific GC responses equivalent to ED+SMNP, but BG18-like memory B cells were rarely detected. Following homologous boosting, BG18-like memory B cells were more frequent in a bolus priming group, but had lower somatic hypermutation and affinities. This outcome was inversely associated with post-prime antibody titers, suggesting antibody feedback can significantly influence rare precursor B cell responses.
Collapse
|
9
|
Kawai A, Noda M, Hirata H, Munakata L, Matsuda T, Omata D, Takemura N, Onoe S, Hirose M, Kato T, Saitoh T, Hirai T, Suzuki R, Yoshioka Y. Lipid Nanoparticle with 1,2-Di-O-octadecenyl-3-trimethylammonium-propane as a Component Lipid Confers Potent Responses of Th1 Cells and Antibody against Vaccine Antigen. ACS NANO 2024; 18:16589-16609. [PMID: 38885198 PMCID: PMC11223497 DOI: 10.1021/acsnano.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Adjuvants are effective tools to enhance vaccine efficacy and control the type of immune responses such as antibody and T helper 1 (Th1)- or Th2-type responses. Several studies suggest that interferon (IFN)-γ-producing Th1 cells play a significant role against infections caused by intracellular bacteria and viruses; however, only a few adjuvants can induce a strong Th1-type immune response. Recently, several studies have shown that lipid nanoparticles (LNPs) can be used as vaccine adjuvants and that each LNP has a different adjuvant activity. In this study, we screened LNPs to develop an adjuvant that can induce Th1 cells and antibodies using a conventional influenza split vaccine (SV) as an antigen in mice. We observed that LNP with 1,2-di-O-octadecenyl-3-trimethylammonium-propane (DOTMA) as a component lipid (DOTMA-LNP) elicited robust SV-specific IgG1 and IgG2 responses compared with SV alone in mice and was as efficient as SV adjuvanted with other adjuvants in mice. Furthermore, DOTMA-LNPs induced robust IFN-γ-producing Th1 cells without inflammatory responses compared to those of other adjuvants, which conferred strong cross-protection in mice. We also demonstrated the high versatility of DOTMA-LNP as a Th1 cell-inducing vaccine adjuvant using vaccine antigens derived from severe acute respiratory syndrome coronavirus 2 and Streptococcus pneumoniae. Our findings suggest the potential of DOTMA-LNP as a safe and effective Th1 cell-inducing adjuvant and show that LNP formulations are potentially potent adjuvants to enhance the effectiveness of other subunit vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruki Hirata
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Lisa Munakata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Teppei Matsuda
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Omata
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Naoki Takemura
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sakura Onoe
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mika Hirose
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuya Saitoh
- Laboratory
of Bioresponse Regulation, Graduate School
of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yasuo Yoshioka
- Laboratory
of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research
Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Global
Center for Medical Engineering and Informatics, Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine
Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, The Research Foundation for Microbial Diseases of
Osaka University, 3-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Roark RS, Habib R, Gorman J, Li H, Connell AJ, Bonsignori M, Guo Y, Hogarty MP, Olia AS, Sowers K, Zhang B, Bibollet-Ruche F, Callaghan S, Carey JW, Cerutti G, Harris DR, He W, Lewis E, Liu T, Mason RD, Park Y, Rando JM, Singh A, Wolff J, Lei QP, Louder MK, Doria-Rose NA, Andrabi R, Saunders KO, Seaman MS, Haynes BF, Kulp DW, Mascola JR, Roederer M, Sheng Z, Hahn BH, Shaw GM, Kwong PD, Shapiro L. HIV-1 neutralizing antibodies in SHIV-infected macaques recapitulate structurally divergent modes of human V2 apex recognition with a single D gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598384. [PMID: 38903070 PMCID: PMC11188099 DOI: 10.1101/2024.06.11.598384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Broadly neutralizing antibodies targeting the V2 apex of the HIV-1 envelope trimer are among the most common specificities elicited in HIV-1-infected humans and simian-human immunodeficiency virus (SHIV)-infected macaques. To gain insight into the prevalent induction of these antibodies, we isolated and characterized 11 V2 apex-directed neutralizing antibody lineages from SHIV-infected rhesus macaques. Remarkably, all SHIV-induced V2 apex lineages were derived from reading frame two of the rhesus DH3-15*01 gene. Cryo-EM structures of envelope trimers in complex with antibodies from nine rhesus lineages revealed modes of recognition that mimicked three canonical human V2 apex-recognition modes. Notably, amino acids encoded by DH3-15*01 played divergent structural roles, inserting into a hole at the trimer apex, H-bonding to an exposed strand, or forming part of a loop scaffold. Overall, we identify a DH3-15*01-signature for rhesus V2 apex broadly neutralizing antibodies and show that highly selected genetic elements can play multiple roles in antigen recognition. Highlights Isolated 11 V2 apex-targeted HIV-neutralizing lineages from 10 SHIV-infected Indian-origin rhesus macaquesCryo-EM structures of Fab-Env complexes for nine rhesus lineages reveal modes of recognition that mimic three modes of human V2 apex antibody recognitionAll SHIV-elicited V2 apex lineages, including two others previously published, derive from the same DH3-15*01 gene utilizing reading frame twoThe DH3-15*01 gene in reading frame two provides a necessary, but not sufficient, signature for V2 apex-directed broadly neutralizing antibodiesStructural roles played by DH3-15*01-encoded amino acids differed substantially in different lineages, even for those with the same recognition modePropose that the anionic, aromatic, and extended character of DH3-15*01 in reading frame two provides a selective advantage for V2 apex recognition compared to B cells derived from other D genes in the naïve rhesus repertoireDemonstrate that highly selected genetic elements can play multiple roles in antigen recognition, providing a structural means to enhance recognition diversity.
Collapse
|
11
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. mBio 2024; 15:e0268623. [PMID: 38470051 PMCID: PMC11005340 DOI: 10.1128/mbio.02686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes, with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity with high levels of cell surface expression and slightly higher gp120 shedding than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs were in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states. IMPORTANCE Glycan attached to amino acid asparagine at position 332 of HIV-1 envelope glycoproteins is a main target of a subset of broadly neutralizing antibodies that block HIV-1 infection. Here, we defined the contribution of different amino acids at this position to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Moodie Z, Andersen-Nissen E, Grunenberg N, Dintwe OB, Omar FL, Kee JJ, Bekker LG, Laher F, Naicker N, Jani I, Mgodi NM, Hunidzarira P, Sebe M, Miner MD, Polakowski L, Ramirez S, Nebergall M, Takuva S, Sikhosana L, Heptinstall J, Seaton KE, De Rosa S, Diazgranados CA, Koutsoukos M, Van Der Meeren O, Barnett SW, Kanesa-thasan N, Kublin JG, Tomaras GD, McElrath MJ, Corey L, Mngadi K, Goepfert P. Safety and immunogenicity of a subtype C ALVAC-HIV (vCP2438) vaccine prime plus bivalent subtype C gp120 vaccine boost adjuvanted with MF59 or alum in healthy adults without HIV (HVTN 107): A phase 1/2a randomized trial. PLoS Med 2024; 21:e1004360. [PMID: 38502656 PMCID: PMC10986991 DOI: 10.1371/journal.pmed.1004360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy. Data generated after RV144 suggested that use of MF59 adjuvant might allow lower protein doses to be used while maintaining robust immune responses. We evaluated safety and immunogenicity of an HIV recombinant canarypox vaccine vector expressing HIV env subtype C (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost (gp120) adjuvanted with alum (ALVAC-HIV+gp120/alum) or MF59 (ALVAC-HIV+gp120/MF59) or unadjuvanted (ALVAC-HIV+gp120/no-adjuvant) and a regimen where ALVAC-HIV+gp120 adjuvanted with MF59 was used for the prime and boost (ALVAC-HIV+gp120/MF59 coadministration). METHODS AND FINDINGS Between June 19, 2017 and June 14, 2018, 132 healthy adults without HIV in South Africa, Zimbabwe, and Mozambique were randomized to receive intramuscularly: (1) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/MF59 (months 3, 6, and 12), n = 36; (2) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/alum (months 3, 6, and 12), n = 36; (3) 4 doses of ALVAC-HIV+gp120/MF59 coadministered (months 0, 1, 6, and 12), n = 36; or (4) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/no adjuvant (months 3, 6, and 12), n = 24. Primary outcomes were safety and occurrence and mean fluorescence intensity (MFI) of vaccine-induced gp120-specific IgG and IgA binding antibodies at month 6.5. All vaccinations were safe and well-tolerated; increased alanine aminotransferase was the most frequent related adverse event, occurring in 2 (1.5%) participants (1 severe, 1 mild). At month 6.5, vaccine-specific gp120 IgG binding antibodies were detected in 100% of vaccinees for all 4 vaccine groups. No significant differences were seen in the occurrence and net MFI of vaccine-specific IgA responses between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/alum-prime-boost groups or between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/MF59 coadministration groups. Limitations were the relatively small sample size per group and lack of evaluation of higher gp120 doses. CONCLUSIONS Although MF59 was expected to enhance immune responses, alum induced similar responses to MF59, suggesting that the choice between these adjuvants may not be critical for the ALVAC+gp120 regimen. TRIAL REGISTRATION HVTN 107 was registered with the South African National Clinical Trials Registry (DOH-27-0715-4894) and ClinicalTrials.gov (NCT03284710).
Collapse
Affiliation(s)
- Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - One B. Dintwe
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Faatima Laher Omar
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Jia J. Kee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nivashnee Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa; and Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Ilesh Jani
- Instituto Nacional de Saude, Maputo, Mozambique
| | - Nyaradzo M. Mgodi
- Clinical Trials Research Centre, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Portia Hunidzarira
- Clinical Trials Research Centre, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | | | - Maurine D. Miner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | | | - Shelly Ramirez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michelle Nebergall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Simbarashe Takuva
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lerato Sikhosana
- Hutchinson Centre Research Institute of South Africa, Johannesburg, South Africa
| | - Jack Heptinstall
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kelly E. Seaton
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Carlos A. Diazgranados
- Formerly Sanofi-Pasteur, Swiftwater, Pennsylvania, Pennsylvania, United States of America
| | | | | | - Susan W. Barnett
- Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | | | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | | | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | |
Collapse
|
13
|
D'Oro U, O'Hagan DT. The scientific journey of a novel adjuvant (AS37) from bench to bedside. NPJ Vaccines 2024; 9:26. [PMID: 38332005 PMCID: PMC10853242 DOI: 10.1038/s41541-024-00810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
A decade ago, we described a new approach to discover next generation adjuvants, identifying small-molecule immune potentiators (SMIPs) as Toll-like receptor (TLR)7 agonists. We also optimally formulated these drugs through adsorption to aluminum salts (alum), allowing them to be evaluated with a range of established and early-stage vaccines. Early proof-of-concept studies showed that a TLR7 agonist (TLR7a)-based SMIP, when adsorbed to alum, could perform as an effective adjuvant for a variety of different antigens, in both small and large animals. Studies in rodents demonstrated that the adjuvant enhanced immunogenicity of a recombinant protein-based vaccine against Staphylococcus aureus, and also showed potential to improve existing vaccines against pertussis or meningococcal infection. Extensive evaluations showed that the adjuvant was effective in non-human primates (NHPs), exploiting a mechanism of action that was consistent across the different animal models. The adjuvant formulation (named AS37) has now been advanced into clinical evaluation. A systems biology-based evaluation of the phase I clinical data with a meningococcal C conjugate vaccine showed that the AS37-adjuvanted formulation had an acceptable safety profile, was potent, and activated the expected immune pathways in humans, which was consistent with observations from the NHP studies. In the intervening decade, several alternative TLR7 agonists have also emerged and advanced into clinical development, such as the alum adsorbed TLR7/8 SMIP present in a widely distributed COVID-19 vaccine. This review summarizes the research and early development of the new adjuvant AS37, with an emphasis on the steps taken to allow its progression into clinical evaluations.
Collapse
|
14
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567910. [PMID: 38045336 PMCID: PMC10690231 DOI: 10.1101/2023.11.20.567910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332 but Asn at this position is not absolutely conserved or required for HIV-1 entry based on prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity even though cell surface expression levels are lower than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and to evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs was in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, the College of Veterinary Medicine Graduate Program, and Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
15
|
Phung I, Rodrigues KA, Marina-Zárate E, Maiorino L, Pahar B, Lee WH, Melo M, Kaur A, Allers C, Fahlberg M, Grasperge BF, Dufour JP, Schiro F, Aye PP, Lopez PG, Torres JL, Ozorowski G, Eskandarzadeh S, Kubitz M, Georgeson E, Groschel B, Nedellec R, Bick M, Kaczmarek Michaels K, Gao H, Shen X, Carnathan DG, Silvestri G, Montefiori DC, Ward AB, Hangartner L, Veazey RS, Burton DR, Schief WR, Irvine DJ, Crotty S. A combined adjuvant approach primes robust germinal center responses and humoral immunity in non-human primates. Nat Commun 2023; 14:7107. [PMID: 37925510 PMCID: PMC10625619 DOI: 10.1038/s41467-023-42923-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Adjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum). Here we explore the use of a combined adjuvant approach that incorporates pSer:alum-mediated antigen delivery with potent adjuvants (SMNP, 3M-052) in an extensive head-to-head comparison study with conventional alum to assess germinal center (GC) and humoral immune responses. Priming with pSer:alum plus SMNP induces additive effects that enhance the magnitude and persistence of GCs, which correlate with better GC-TFH cell help. Autologous HIV-neutralizing antibody titers are improved in SMNP-immunized animals after two immunizations. Over 9 months after priming immunization of pSer:alum with either SMNP or 3M-052, robust Env-specific bone marrow plasma cells (BM BPC) are observed. Furthermore, pSer-modification of Env trimer reduce targeting towards immunodominant non-neutralizing epitopes. The study shows that a combined adjuvant approach can augment humoral immunity by modulating immunodominance and shows promise for clinical translation.
Collapse
Affiliation(s)
- Ivy Phung
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Ester Marina-Zárate
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Mariane Melo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Carolina Allers
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Marissa Fahlberg
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Paul G Lopez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saman Eskandarzadeh
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Kubitz
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Katarzyna Kaczmarek Michaels
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Hongmei Gao
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Xiaoying Shen
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Diane G Carnathan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Guido Silvestri
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David C Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Andrew B Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lars Hangartner
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Darrell J Irvine
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA.
| |
Collapse
|
16
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
17
|
Hashemi Goradel N, Nemati M, Bakhshandeh A, Arashkia A, Negahdari B. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen. Int Immunopharmacol 2023; 117:109887. [PMID: 36841155 DOI: 10.1016/j.intimp.2023.109887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
As an interesting cancer immunotherapy approach, cancer vaccines have been developed to deliver tumor antigens and adjuvants to antigen-presenting cells (APCs). Although the safety and easy production shifted the vaccine designing platforms toward the subunit vaccines, their efficacy is limited due to inefficient vaccine delivery. Nanotechnology-based vaccines, called nanovaccines, address the delivery limitations through co-delivery of antigens and adjuvants into lymphoid organs and APCs and their intracellular release, leading to cross-presentation of antigens and induction of potent anti-tumor immune responses. Although the nanovaccines, either as encapsulating agents or biomimetic nanoparticles, exert the desired anti-tumor activities, there is evidence that the mixing formulation to form nanocomplexes between antigens and adjuvants based on the electrostatic interactions provokes high levels of immune responses owing to Ags' availability and faster release. Here, we summarized the various platforms for developing cancer vaccines and the advantages of using delivery systems. The cancer nanovaccines, including nanoparticle-based and biomimetic-based nanovaccines, are discussed in detail. Finally, we focused on the nanocomplexes formation between antigens and adjuvants as promising cancer nanovaccine platforms.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Bakhshandeh
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Cagigi A, Douradinha B. Have mRNA vaccines sentenced DNA vaccines to death? Expert Rev Vaccines 2023; 22:1154-1167. [PMID: 37941101 DOI: 10.1080/14760584.2023.2282065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION After receiving emergency approval during the COVID-19 pandemic, mRNA vaccines have taken center stage in the quest to enhance future vaccination strategies for both infectious diseases and cancer. Indeed, they have significantly overshadowed another facet of genetic vaccination, specifically DNA vaccines. Nevertheless, it is important to acknowledge that both types of genetic vaccines have distinct advantages and disadvantages that set them apart from each other. AREAS COVERED In this work, we delve extensively into the history of genetic vaccines, their mechanisms of action, their strengths, and limitations, and ultimately highlight ongoing research in key areas for potential enhancement of both DNA and mRNA vaccines. EXPERT OPINION Here, we assess the significance of the primary benefits and drawbacks associated with DNA and mRNA vaccination. We challenge the current lines of thought by highlighting that the existing drawbacks of DNA vaccination could potentially be more straightforward to address compared to those linked with mRNA vaccination. In our view, this suggests that DNA vaccines should remain viable contenders in the pursuit of the future of vaccination.
Collapse
Affiliation(s)
- Alberto Cagigi
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| | | |
Collapse
|
19
|
Single cell multi-omic reference atlases of non-human primate immune tissues reveals CD102 as a biomarker for long-lived plasma cells. Commun Biol 2022; 5:1399. [PMID: 36543997 PMCID: PMC9770566 DOI: 10.1038/s42003-022-04216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
In response to infection or immunization, antibodies are produced that provide protection against re-exposure with the same pathogen. These antibodies can persist at high titers for decades and are maintained by bone marrow-resident long-lived plasma cells (LLPC). However, the durability of antibody responses to immunization varies amongst vaccines. It is unknown what factors contribute to the differential longevity of serum antibody responses and whether heterogeneity in LLPC contributes to this phenomenon. While LLPC differentiation has been studied extensively in mice, little is known about this population in humans or non-human primates (NHP). Here, we use multi-omic single-cell profiling to identify and characterize the LLPC compartment in NHP. We identify LLPC biomarkers including the marker CD102 and show that CD102 in combination with CD31 identifies LLPC in NHP bone marrow. Additionally, we find that CD102 is expressed by LLPC in mouse and humans. These results further our understanding of the LLPC compartment in NHP, identify biomarkers of LLPC, and provide tissue-specific single cell references for future studies.
Collapse
|
20
|
Lenart K, Hellgren F, Ols S, Yan X, Cagigi A, Cerveira RA, Winge I, Hanczak J, Mueller SO, Jasny E, Schwendt K, Rauch S, Petsch B, Loré K. A third dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances quality and quantity of immune responses. Mol Ther Methods Clin Dev 2022; 27:309-323. [PMID: 36217434 PMCID: PMC9535876 DOI: 10.1016/j.omtm.2022.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 10/24/2022]
Abstract
A third vaccine dose is often required to achieve potent, long-lasting immune responses. We investigated the impact of three 8 μg doses of CVnCoV, CureVac's SARS-CoV-2 vaccine candidate containing sequence-optimized unmodified mRNA encoding spike (S) glycoprotein, administered at 0, 4 and 28 weeks on immune responses in rhesus macaques. Following the third dose S-specific binding and neutralizing antibodies increased 50-fold compared with post-dose 2 levels, with increased responses also evident in the lower airways and against the SARS-CoV-2 B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) variants. Enhanced binding affinity of serum antibodies after the third dose correlated with higher somatic hypermutation in S-specific B cells, corresponding with improved binding properties of monoclonal antibodies expressed from isolated B cells. Administration of low dose mRNA led to fewer cells expressing antigen in vivo at the injection site and in the draining lymph nodes compared with a tenfold higher dose, possibly reducing the engagement of precursor cells with the antigen and resulting in the suboptimal response observed following two-dose vaccination schedules in phase IIb/III clinical trials of CVnCoV. However, when immune memory is established, a third dose efficiently boosts the immunological responses as well as improves antibody affinity and breadth.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xianglei Yan
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inga Winge
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jakub Hanczak
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Correspondence should be addressed to: Karin Loré, Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Visionsgatan 4, BioClinicum J7:30, Karolinska University Hospital, 171 64 Stockholm, Sweden. E-mail address:
| |
Collapse
|
21
|
Zhao F, Berndsen ZT, Pedreño-Lopez N, Burns A, Allen JD, Barman S, Lee WH, Chakraborty S, Gnanakaran S, Sewall LM, Ozorowski G, Limbo O, Song G, Yong P, Callaghan S, Coppola J, Weisgrau KL, Lifson JD, Nedellec R, Voigt TB, Laurino F, Louw J, Rosen BC, Ricciardi M, Crispin M, Desrosiers RC, Rakasz EG, Watkins DI, Andrabi R, Ward AB, Burton DR, Sok D. Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus. Nat Commun 2022; 13:5236. [PMID: 36068229 PMCID: PMC9446601 DOI: 10.1038/s41467-022-32783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zachary T Berndsen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Leigh M Sewall
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI, New York, NY, 10004, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica Coppola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas B Voigt
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Fernanda Laurino
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Johan Louw
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Brandon C Rosen
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Ricciardi
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David I Watkins
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, 02139, USA.
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI, New York, NY, 10004, USA.
| |
Collapse
|
22
|
Kaduk M, Corcoran M, Karlsson Hedestam GB. Addressing IGHV Gene Structural Diversity Enhances Immunoglobulin Repertoire Analysis: Lessons From Rhesus Macaque. Front Immunol 2022; 13:818440. [PMID: 35419009 PMCID: PMC8995469 DOI: 10.3389/fimmu.2022.818440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The accurate germline gene assignment and assessment of somatic hypermutation in antibodies induced by immunization or infection are important in immunological studies. Here, we illustrate issues specific to the construction of comprehensive immunoglobulin (IG) germline gene reference databases for outbred animal species using rhesus macaques, a frequently used non-human primate model, as a model test case. We demonstrate that the genotypic variation found in macaque germline inference studies is reflected in similar levels of gene diversity in genomic assemblies. We show that the high frequency of IG heavy chain V (IGHV) region structural and gene copy number variation between subjects means that individual animals lack genes that are present in other animals. Therefore, gene databases compiled from a single or too few animals will inevitably result in inaccurate gene assignment and erroneous SHM level assessment for those genes it lacks. We demonstrate this by assigning a test macaque IgG library to the KIMDB, a database compiled of germline IGHV sequences from 27 rhesus macaques, and, alternatively, to the IMGT rhesus macaque database, based on IGHV genes inferred primarily from the genomic sequence of the rheMac10 reference assembly, supplemented with 10 genes from the Mmul_051212 assembly. We found that the use of a gene-restricted database led to overestimations of SHM by up to 5% due to misassignments. The principles described in the current study provide a model for the creation of comprehensive immunoglobulin reference databases from outbred species to ensure accurate gene assignment, lineage tracing and SHM calculations.
Collapse
Affiliation(s)
- Mateusz Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
23
|
IMGT® Biocuration and Analysis of the Rhesus Monkey IG Loci. Vaccines (Basel) 2022; 10:vaccines10030394. [PMID: 35335026 PMCID: PMC8950363 DOI: 10.3390/vaccines10030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
The adaptive immune system, along with the innate immune system, are the two main biological processes that protect an organism from pathogens. The adaptive immune system is characterized by the specificity and extreme diversity of its antigen receptors. These antigen receptors are the immunoglobulins (IG) or antibodies of the B cells and the T cell receptors (TR) of the T cells. The IG are proteins that have a dual role in immunity: they recognize antigens and trigger elimination mechanisms, to rid the body of foreign cells. The synthesis of the immunoglobulin heavy and light chains requires gene rearrangements at the DNA level in the IGH, IGK, and IGL loci. The rhesus monkey (Macaca mulatta) is one of the most widely used nonhuman primate species in biomedical research. In this manuscript, we provide a thorough analysis of the three IG loci of the Mmul_10 assembly of rhesus monkey, integrating IMGT previously existing data. Detailed characterization of IG genes includes their localization and position in the loci, the determination of the allele functionality, and the description of the regulatory elements of their promoters as well as the sequences of the conventional recombination signals (RS). This complete annotation of the genomic IG loci of Mmul_10 assembly and the highly detailed IG gene characterization could be used as a model, in additional rhesus monkey assemblies, for the analysis of the IG allelic polymorphism and structural variation, which have been described in rhesus monkeys.
Collapse
|
24
|
Antanasijevic A, Bowman CA, Kirchdoerfer RN, Cottrell CA, Ozorowski G, Upadhyay AA, Cirelli KM, Carnathan DG, Enemuo CA, Sewall LM, Nogal B, Zhao F, Groschel B, Schief WR, Sok D, Silvestri G, Crotty S, Bosinger SE, Ward AB. From structure to sequence: Antibody discovery using cryoEM. SCIENCE ADVANCES 2022; 8:eabk2039. [PMID: 35044813 PMCID: PMC8769551 DOI: 10.1126/sciadv.abk2039] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/23/2021] [Indexed: 06/02/2023]
Abstract
One of the rate-limiting steps in analyzing immune responses to vaccines or infections is the isolation and characterization of monoclonal antibodies. Here, we present a hybrid structural and bioinformatic approach to directly assign the heavy and light chains, identify complementarity-determining regions, and discover sequences from cryoEM density maps of serum-derived polyclonal antibodies bound to an antigen. When combined with next-generation sequencing of immune repertoires, we were able to specifically identify clonal family members, synthesize the monoclonal antibodies, and confirm that they interact with the antigen in a manner equivalent to the corresponding polyclonal antibodies. This structure-based approach for identification of monoclonal antibodies from polyclonal sera opens new avenues for analysis of immune responses and iterative vaccine design.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles A. Bowman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert N. Kirchdoerfer
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Christopher A. Cottrell
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amit A. Upadhyay
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Kimberly M. Cirelli
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diane G. Carnathan
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Chiamaka A. Enemuo
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R. Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guido Silvestri
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Shane Crotty
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Steven E. Bosinger
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Chernyshev M, Kaduk M, Corcoran M, Karlsson Hedestam GB. VDJ Gene Usage in IgM Repertoires of Rhesus and Cynomolgus Macaques. Front Immunol 2022; 12:815680. [PMID: 35087534 PMCID: PMC8786739 DOI: 10.3389/fimmu.2021.815680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Macaques are frequently used to evaluate candidate vaccines and to study infection-induced antibody responses, requiring an improved understanding of their naïve immunoglobulin (IG) repertoires. Baseline gene usage frequencies contextualize studies of antigen-specific immune responses, providing information about how easily one may stimulate a response with a particular VDJ recombination. Studies of human IgM repertoires have shown that IG VDJ gene frequencies vary several orders of magnitude between the most and least utilized genes in a manner that is consistent across many individuals but to date similar analyses are lacking for macaque IgM repertoires. Here, we quantified VDJ gene usage levels in unmutated IgM repertoires of 45 macaques, belonging to two species and four commonly used subgroups: Indian and Chinese origin rhesus macaques and Indonesian and Mauritian origin cynomolgus macaques. We show that VDJ gene frequencies differed greatly between the most and least used genes, with similar overall patterns observed in macaque subgroups and individuals. However, there were also clear differences affecting the use of specific V, D and J genes. Furthermore, in contrast to humans, macaques of both species utilized IGHV4 family genes to a much higher extent and showed evidence of evolutionary expansion of genes of this family. Finally, we used the results to inform the analysis of a broadly neutralizing HIV-1 antibody elicited in SHIV-infected rhesus macaques, RHA1.V2.01, which binds the apex of the Env trimer in a manner that mimics the binding mode of PGT145. We discuss the likelihood that similar antibodies could be elicited in different macaque subgroups.
Collapse
|
26
|
Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. NATURE REVIEWS. MATERIALS 2022; 7:174-195. [PMID: 34603749 PMCID: PMC8477997 DOI: 10.1038/s41578-021-00372-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 05/02/2023]
Abstract
Vaccines are the key technology to combat existing and emerging infectious diseases. However, increasing the potency, quality and durability of the vaccine response remains a challenge. As our knowledge of the immune system deepens, it becomes clear that vaccine components must be in the right place at the right time to orchestrate a potent and durable response. Material platforms, such as nanoparticles, hydrogels and microneedles, can be engineered to spatially and temporally control the interactions of vaccine components with immune cells. Materials-based vaccination strategies can augment the immune response by improving innate immune cell activation, creating local inflammatory niches, targeting lymph node delivery and controlling the time frame of vaccine delivery, with the goal of inducing enhanced memory immunity to protect against future infections. In this Review, we highlight the biological mechanisms underlying strong humoral and cell-mediated immune responses and explore materials design strategies to manipulate and control these mechanisms.
Collapse
Affiliation(s)
- Gillie A. Roth
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Vittoria C. T. M. Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Ben S. Ou
- Department of Bioengineering, Stanford University, Stanford, CA USA
| | - Wei Luo
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA USA
| | - Eric A. Appel
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA USA
- ChEM-H Institute, Stanford University, Stanford, CA USA
- Department of Paediatrics — Endocrinology, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
27
|
Silva M, Kato Y, Melo MB, Phung I, Freeman BL, Li Z, Roh K, Van Wijnbergen JW, Watkins H, Enemuo CA, Hartwell BL, Chang JYH, Xiao S, Rodrigues KA, Cirelli KM, Li N, Haupt S, Aung A, Cossette B, Abraham W, Kataria S, Bastidas R, Bhiman J, Linde C, Bloom NI, Groschel B, Georgeson E, Phelps N, Thomas A, Bals J, Carnathan DG, Lingwood D, Burton DR, Alter G, Padera TP, Belcher AM, Schief WR, Silvestri G, Ruprecht RM, Crotty S, Irvine DJ. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci Immunol 2021; 6:eabf1152. [PMID: 34860581 DOI: 10.1126/sciimmunol.abf1152] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Kato
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Ivy Phung
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Brian L Freeman
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhongming Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan W Van Wijnbergen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannah Watkins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chiamaka A Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brittany L Hartwell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuhao Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kimberly M Cirelli
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Cossette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Swati Kataria
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raiza Bastidas
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinal Bhiman
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Caitlyn Linde
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nathaniel I Bloom
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole Phelps
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Diane G Carnathan
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angela M Belcher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
28
|
Frank I, Cigoli M, Arif MS, Fahlberg MD, Maldonado S, Calenda G, Pegu A, Yang ES, Rawi R, Chuang GY, Geng H, Liu C, Zhou T, Kwong PD, Arthos J, Cicala C, Grasperge BF, Blanchard JL, Gettie A, Fennessey CM, Keele BF, Vaccari M, Hope TJ, Fauci AS, Mascola JR, Martinelli E. Blocking α 4β 7 integrin delays viral rebound in SHIV SF162P3-infected macaques treated with anti-HIV broadly neutralizing antibodies. Sci Transl Med 2021; 13:eabf7201. [PMID: 34408080 PMCID: PMC8977869 DOI: 10.1126/scitranslmed.abf7201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) may favor development of antiviral immunity by engaging the immune system during immunotherapy. Targeting integrin α4β7 with an anti-α4β7 monoclonal antibody (Rh-α4β7) affects immune responses in SIV/SHIV-infected macaques. To explore the therapeutic potential of combining bNAbs with α4β7 integrin blockade, SHIVSF162P3-infected, viremic rhesus macaques were treated with bNAbs only (VRC07-523LS and PGT128 anti-HIV antibodies) or a combination of bNAbs and Rh-α4β7 or were left untreated as a control. Treatment with bNAbs alone decreased viremia below 200 copies/ml in all macaques, but seven of eight macaques (87.5%) in the bNAbs-only group rebounded within a median of 3 weeks (95% CI: 2 to 9). In contrast, three of six macaques treated with a combination of Rh-α4β7 and bNAbs (50%) maintained a viremia below 200 copies/ml until the end of the follow-up period; viremia in the other three macaques rebounded within a median of 6 weeks (95% CI: 5 to 11). Thus, there was a modest delay in viral rebound in the macaques treated with the combination antibody therapy compared to bNAbs alone. Our study suggests that α4β7 integrin blockade may prolong virologic control by bNAbs in SHIVSF162P3-infected macaques.
Collapse
Affiliation(s)
- Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Mariasole Cigoli
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Muhammad S Arif
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marissa D Fahlberg
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | | | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - James L Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monica Vaccari
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, USA.
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
Tan J, Cho H, Pholcharee T, Pereira LS, Doumbo S, Doumtabe D, Flynn BJ, Schön A, Kanatani S, Aylor SO, Oyen D, Vistein R, Wang L, Dillon M, Skinner J, Peterson M, Li S, Idris AH, Molina-Cruz A, Zhao M, Olano LR, Lee PJ, Roth A, Sinnis P, Barillas-Mury C, Kayentao K, Ongoiba A, Francica JR, Traore B, Wilson IA, Seder RA, Crompton PD. Functional human IgA targets a conserved site on malaria sporozoites. Sci Transl Med 2021; 13:eabg2344. [PMID: 34162751 PMCID: PMC7611206 DOI: 10.1126/scitranslmed.abg2344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 12/27/2022]
Abstract
Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as Plasmodium falciparum, is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to P. falciparum sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection. We found that circulating IgA was induced in three independent sporozoite-exposed cohorts: individuals living in an endemic region in Mali, malaria-naïve individuals immunized intravenously with three large doses of irradiated sporozoites, and malaria-naïve individuals exposed to a single controlled mosquito bite infection. Mechanistically, we found evidence in an animal model that IgA responses were induced by sporozoites at dermal inoculation sites. From malaria-resistant individuals, we isolated several IgA monoclonal antibodies that reduced liver parasite burden in mice. One antibody, MAD2-6, bound to a conserved epitope in the amino terminus of the P. falciparum circumsporozoite protein, the dominant protein on the sporozoite surface. Crystal structures of this antibody revealed a unique mode of binding whereby two Fabs simultaneously bound either side of the target peptide. This study reveals a role for circulating IgA in malaria and identifies the amino terminus of the circumsporozoite protein as a target of functional antibodies.
Collapse
Affiliation(s)
- Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852, USA.
| | - Hyeseon Cho
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Samantha O Aylor
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - David Oyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mary Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lisa Renee Olano
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Patricia J Lee
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
30
|
Saouaf OM, Roth GA, Ou BS, Smith AAA, Yu AC, Gale EC, Grosskopf AK, Picece VCTM, Appel EA. Modulation of injectable hydrogel properties for slow co-delivery of influenza subunit vaccine components enhance the potency of humoral immunity. J Biomed Mater Res A 2021; 109:2173-2186. [PMID: 33955657 PMCID: PMC8518857 DOI: 10.1002/jbm.a.37203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 11/06/2022]
Abstract
Vaccines are critical for combating infectious diseases across the globe. Influenza, for example, kills roughly 500,000 people annually worldwide, despite annual vaccination campaigns. Efficacious vaccines must elicit a robust and durable antibody response, and poor efficacy often arises from inappropriate temporal control over antigen and adjuvant presentation to the immune system. In this work, we sought to exploit the immune system's natural response to extended pathogen exposure during infection by designing an easily administered slow-delivery influenza vaccine platform. We utilized an injectable and self-healing polymer-nanoparticle (PNP) hydrogel platform to prolong the co-delivery of vaccine components to the immune system. We demonstrated that these hydrogels exhibit unique dynamic physical characteristics whereby physicochemically distinct influenza hemagglutinin antigen and a toll-like receptor 7/8 agonist adjuvant could be co-delivered over prolonged timeframes that were tunable through simple alteration of the gel formulation. We show a relationship between hydrogel physical properties and the resulting immune response to immunization. When administered in mice, hydrogel-based vaccines demonstrated enhancements in the magnitude and duration of humoral immune responses compared to alum, a widely used clinical adjuvant system. We found stiffer hydrogel formulations exhibited slower release and resulted in the greatest improvements to the antibody response while also enabling significant adjuvant dose sparing. In summary, this work introduces a simple and effective vaccine delivery platform that increases the potency and durability of influenza subunit vaccines.
Collapse
Affiliation(s)
- Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Ben S Ou
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Anton A A Smith
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Anthony C Yu
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| | - Emily C Gale
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Vittoria C T M Picece
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA.,Department of Chemistry & Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA.,Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, California, USA.,ChEM-H Institute, Stanford University, Stanford, California, USA.,Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
31
|
A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 2021; 4:350. [PMID: 33742103 PMCID: PMC7979914 DOI: 10.1038/s42003-021-01881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Antibody complementarity determining region diversity has been considered to be the most important metric for the production of a functional antibody library. Generally, the greater the antibody library diversity, the greater the probability of selecting a diverse array of high affinity leads. According to this paradigm, the primary means of elevating library diversity has been by increasing the number of donors. In the present study we explored the possibility of creating an in vitro antibody library from a single healthy individual, showing that the number of lymphocytes, rather than the number of donors, is the key criterion in the production of a diverse and functional antibody library. We describe the construction of a high-quality phage display library comprising 5 × 109 human antibodies by applying an efficient B cell extraction protocol from a single donor and a targeted V-gene amplification strategy favoring specific antibody families for their improved developability profiles. Each step of the library generation process was followed and validated by next generation sequencing to monitor the library quality and diversity. The functionality of the library was tested using several therapeutically relevant targets for which a vast number of different antibodies with desired biophysical properties were obtained.
Collapse
|
32
|
Ratnapriya S, Perez-Greene E, Schifanella L, Herschhorn A. Adjuvant-mediated enhancement of the immune response to HIV vaccines. FEBS J 2021; 289:3317-3334. [PMID: 33705608 DOI: 10.1111/febs.15814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Protection from human immunodeficiency virus (HIV) acquisition will likely require an effective vaccine that elicits antibodies against the HIV-1 envelope glycoproteins (Envs), which are the sole target of neutralizing antibodies and a main focus of vaccine development. Adjuvants have been widely used to augment the magnitude and longevity of the adaptive immune responses to immunizations with HIV-1 Envs and to guide the development of specific immune responses. Here, we review the adjuvants that have been used in combination with HIV-1 Envs in several preclinical and human clinical trials in recent years. We summarize the interactions between the HIV-1 Envs and adjuvants, and highlight the routes of vaccine administration for various formulations. We then discuss the use of combinations of different adjuvants, the potential effect of adjuvants on the elicitation of antibodies enriched in somatic hypermutation and containing long complementarity-determining region 3 of the antibody heavy chain, and the elicitation of non-neutralizing antibodies.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eva Perez-Greene
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA.,The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
33
|
Cagigi A, Loré K. Immune Responses Induced by mRNA Vaccination in Mice, Monkeys and Humans. Vaccines (Basel) 2021; 9:61. [PMID: 33477534 PMCID: PMC7831080 DOI: 10.3390/vaccines9010061] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
In this concise review, we summarize the concepts behind mRNA vaccination. We discuss the innate and adaptive immune response generated by mRNA vaccines in different animal models and in humans. We give examples of viral infections where mRNA vaccines have shown to induce potent responses and we discuss in more detail the recent SARS-CoV-2 mRNA vaccine trials in humans.
Collapse
Affiliation(s)
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 161 64 Solna, Sweden;
| |
Collapse
|
34
|
Anvari D, Rezaei F, Ashouri A, Rezaei S, Majidiani H, Pagheh AS, Rezaei F, Shariatzadeh SA, Fotovati A, Siyadatpanah A, Gholami S, Ahmadpour E. Current situation and future prospects of Echinococcus granulosus vaccine candidates: A systematic review. Transbound Emerg Dis 2020; 68:1080-1096. [PMID: 32762075 DOI: 10.1111/tbed.13772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
Cystic echinococcosis is a worldwide zoonotic disease, represents a threat for livestock and humans, manifests as a quiescent, subclinical and chronic hydatid cyst infection. The disease imposes high expenditures and economic losses in medical and veterinary. Prophylactic vaccination would be one of the effective preventive health care against echinococcosis. During the last decades, many studies have characterized the protective antigens of Echinococcus granulosus and their role in immunization of various animal host species. Herein, we aimed to systematically evaluate and represent the best antigens as possible vaccine candidates for cystic echinococcosis. Data were systematically searched from five databases including ProQuest, PubMed, Scopus, ScienceDirect and Web of Science, up to 1 February 2020. Two reviewers independently screened and assessed data extraction and quality assessment. A total of 47 articles were eligible for inclusion criteria in the current study. The most common antigens used for vaccination against E. granulosus were EG95 and antigen B. Freund's adjuvant and Quil A have been predominantly utilized. In addition, regarding the antigen delivery, animal models, measurement of immune responses and reduction in hydatid cyst have been discussed in the text. The data demonstrated that DNA vaccines with antigen B and recombinant protein vaccines based on EG95 antigen have the best results and elicited protective immune responses.
Collapse
Affiliation(s)
- Davood Anvari
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fatemeh Rezaei
- Faculty of Modern Sciences and Technologies, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Alireza Ashouri
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Hamidreza Majidiani
- Zonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Rezaei
- Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Ali Shariatzadeh
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Fotovati
- Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| | | | - Shirzad Gholami
- Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Pedreño-Lopez N, Ricciardi MJ, Rosen BC, Song G, Andrabi R, Burton DR, Rakasz EG, Watkins DI. An Automated Fluorescence-Based Method to Isolate Bone Marrow-Derived Plasma Cells from Rhesus Macaques Using SIVmac239 SOSIP.664. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:781-790. [PMID: 32953929 PMCID: PMC7476808 DOI: 10.1016/j.omtm.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/31/2020] [Indexed: 11/20/2022]
Abstract
Simian immunodeficiency virus (SIV) infection of Indian rhesus macaques (RMs) is one of the best-characterized animal models for human immunodeficiency virus (HIV) infection. Monoclonal antibodies (mAbs) have shown promise for prevention and treatment of HIV infection. However, it has been difficult to isolate mAbs that potently neutralize the highly pathogenic SIVmac239 strain. This has been largely due to the low frequency of circulating B cells encoding neutralizing Abs. Here we describe a novel technique to isolate mAbs directly from bone marrow-derived, Ab-secreting plasma cells. We employed an automated micromanipulator to isolate single SIVmac239 SOSIP.664-specific plasma cells from the bone marrow of a SIVmac239-infected RM with serum neutralization titers against SIVmac239. After picking plasma cells, we obtained 44 paired Ab sequences. Ten of these mAbs were SIV specific. Although none of these mAbs neutralized SIVmac239, three mAbs completely neutralized the related SIVmac316 strain. The majority of these mAbs bound to primary rhesus CD4+ T cells infected with SIVmac239 and induced Ab-dependent cellular cytotoxicity. This method is a first step in successful isolation of antigen-specific bone marrow-derived plasma cells from RMs.
Collapse
Affiliation(s)
- Nuria Pedreño-Lopez
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Corresponding author: Nuria Pedreño-Lopez, Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA.
| | - Michael J. Ricciardi
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Brandon C. Rosen
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David I. Watkins
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
36
|
Wu Y, Kelly SH, Sanchez-Perez L, Sampson JH, Collier JH. Comparative study of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: influence of integrated T-cell epitopes. Biomater Sci 2020; 8:3522-3535. [PMID: 32452474 DOI: 10.1039/d0bm00521e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several different self-assembling peptide systems that form nanofibers have been investigated as vaccine platforms, but design principles for adjusting the character of the immune responses they raise have yet to be well articulated. Here we compared the immune responses raised by two structurally dissimilar peptide nanofibers, one a β-sheet fibrillar system (Q11), and one an α-helical nanofiber system (Coil29), hypothesizing that integrated T-cell epitopes within the latter would promote T follicular helper (Tfh) cell engagement and lead to improved antibody titers and quality. Despite significantly different internal structures, nanofibers of the two peptides exhibited surprisingly similar nanoscale morphologies, and both were capable of raising strong antibody responses to conjugated peptide epitopes in mice without adjuvant. Both were minimally inflammatory, but as hypothesized Coil29 nanofibers elicited antibody responses with higher titers and avidities against a conjugated model epitope (OVA323-339) and a candidate peptide epitope for vaccination against S. aureus. Subsequent investigation indicated that Coil29 nanofibers possessed internal CD4+ T cell epitopes: whereas Q11 nanofibers required co-assembly of additional CD4+ T cell epitopes to be immunogenic, Coil29 nanofibers did not. Coil29 nanofibers also raised stronger germinal center B cell responses and follicular helper T cell (Tfh) responses relative to Q11 nanofibers, likely facilitating the improvement of the antibody response. These findings illustrate design strategies for improving humoral responses raised by self-assembled peptide nanofibers.
Collapse
Affiliation(s)
- Yaoying Wu
- Biomedical Engineering Department, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
37
|
Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens? Cell Host Microbe 2020; 27:507-518. [PMID: 32272076 PMCID: PMC7187920 DOI: 10.1016/j.chom.2020.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine Development, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
38
|
Pedreño-Lopez N, Dang CM, Rosen BC, Ricciardi MJ, Bailey VK, Gutman MJ, Gonzalez-Nieto L, Pauthner MG, Le K, Song G, Andrabi R, Weisgrau KL, Pomplun N, Martinez-Navio JM, Fuchs SP, Wrammert J, Rakasz EG, Lifson JD, Martins MA, Burton DR, Watkins DI, Magnani DM. Induction of Transient Virus Replication Facilitates Antigen-Independent Isolation of SIV-Specific Monoclonal Antibodies. Mol Ther Methods Clin Dev 2020; 16:225-237. [PMID: 32083148 PMCID: PMC7021589 DOI: 10.1016/j.omtm.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/26/2020] [Indexed: 02/04/2023]
Abstract
Structural characterization of the HIV-1 Envelope (Env) glycoprotein has facilitated the development of Env probes to isolate HIV-specific monoclonal antibodies (mAbs). However, preclinical studies have largely evaluated these virus-specific mAbs against chimeric viruses, which do not naturally infect non-human primates, in contrast to the unconstrained simian immunodeficiency virus (SIV)mac239 clone. Given the paucity of native-like reagents for the isolation of SIV-specific B cells, we examined a method to isolate SIVmac239-specific mAbs without using Env probes. We first activated virus-specific B cells by inducing viral replication after the infusion of a CD8β-depleting mAb or withdrawal of antiretroviral therapy in SIVmac239-infected rhesus macaques. Following the rise in viremia, we observed 2- to 4-fold increases in the number of SIVmac239 Env-reactive plasmablasts in circulation. We then sorted these activated B cells and obtained 206 paired Ab sequences. After expressing 122 mAbs, we identified 14 Env-specific mAbs. While these Env-specific mAbs bound to both the SIVmac239 SOSIP.664 trimer and to infected primary rhesus CD4+ T cells, five also neutralized SIVmac316. Unfortunately, none of these mAbs neutralized SIVmac239. Our data show that this method can be used to isolate virus-specific mAbs without antigenic probes by inducing bursts of contemporary replicating viruses in vivo.
Collapse
Affiliation(s)
- Nuria Pedreño-Lopez
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Christine M. Dang
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Brandon C. Rosen
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Michael J. Ricciardi
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Varian K. Bailey
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Martin J. Gutman
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Lucas Gonzalez-Nieto
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Matthias G. Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nicholas Pomplun
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - José M. Martinez-Navio
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Sebastian P. Fuchs
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Jens Wrammert
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Mauricio A. Martins
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - David I. Watkins
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
39
|
Moyer TJ, Kato Y, Abraham W, Chang JYH, Kulp DW, Watson N, Turner HL, Menis S, Abbott RK, Bhiman JN, Melo MB, Simon HA, Herrera-De la Mata S, Liang S, Seumois G, Agarwal Y, Li N, Burton DR, Ward AB, Schief WR, Crotty S, Irvine DJ. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat Med 2020; 26:430-440. [PMID: 32066977 PMCID: PMC7069805 DOI: 10.1038/s41591-020-0753-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
Adjuvants are central to the efficacy of subunit vaccines. Aluminum hydroxide (alum) is the most commonly used vaccine adjuvant, yet its adjuvanticity is often weak and mechanisms of triggering antibody responses remain poorly understood. We demonstrate that site-specific modification of immunogens with short peptides composed of repeating phosphoserine (pSer) residues enhances binding to alum and prolongs immunogen bioavailability. The pSer-modified immunogens formulated in alum elicited greatly increased germinal center, antibody, neutralizing antibody, memory and long-lived plasma cell responses compared to conventional alum-adsorbed immunogens. Mechanistically, pSer-immunogen:alum complexes form nanoparticles that traffic to lymph nodes and trigger B cell activation through multivalent and oriented antigen display. Direct uptake of antigen-decorated alum particles by B cells upregulated antigen processing and presentation pathways, further enhancing B cell activation. These data provide insights into mechanisms of action of alum and introduce a readily translatable approach to significantly improve humoral immunity to subunit vaccines using a clinical adjuvant.
Collapse
Affiliation(s)
- Tyson J Moyer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
| | - Yu Kato
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel W Kulp
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicki Watson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Hannah L Turner
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergey Menis
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert K Abbott
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jinal N Bhiman
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Hayley A Simon
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Shu Liang
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gregory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Andrew B Ward
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
40
|
Phad GE, Pushparaj P, Tran K, Dubrovskaya V, Àdori M, Martinez-Murillo P, Vázquez Bernat N, Singh S, Dionne G, O’Dell S, Bhullar K, Narang S, Sorini C, Villablanca EJ, Sundling C, Murrell B, Mascola JR, Shapiro L, Pancera M, Martin M, Corcoran M, Wyatt RT, Karlsson Hedestam GB. Extensive dissemination and intraclonal maturation of HIV Env vaccine-induced B cell responses. J Exp Med 2020; 217:e20191155. [PMID: 31704807 PMCID: PMC7041718 DOI: 10.1084/jem.20191155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Well-ordered HIV-1 envelope glycoprotein (Env) trimers are prioritized for clinical evaluation, and there is a need for an improved understanding about how elicited B cell responses evolve following immunization. To accomplish this, we prime-boosted rhesus macaques with clade C NFL trimers and identified 180 unique Ab lineages from ∼1,000 single-sorted Env-specific memory B cells. We traced all lineages in high-throughput heavy chain (HC) repertoire (Rep-seq) data generated from multiple immune compartments and time points and expressed several as monoclonal Abs (mAbs). Our results revealed broad dissemination and high levels of somatic hypermutation (SHM) of most lineages, including tier 2 virus neutralizing lineages, following boosting. SHM was highest in the Ab complementarity determining regions (CDRs) but also surprisingly high in the framework regions (FRs), especially FR3. Our results demonstrate the capacity of the immune system to affinity-mature large numbers of Env-specific B cell lineages simultaneously, supporting the use of regimens consisting of repeated boosts to improve each Ab, even those belonging to less expanded lineages.
Collapse
Affiliation(s)
- Ganesh E. Phad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pradeepa Pushparaj
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Tran
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Viktoriya Dubrovskaya
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Paola Martinez-Murillo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Néstor Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Suruchi Singh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gilman Dionne
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Komal Bhullar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sanjana Narang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Sorini
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eduardo J. Villablanca
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Marcel Martin
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Richard T. Wyatt
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | |
Collapse
|
41
|
B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 2019; 20:229-238. [PMID: 31836872 PMCID: PMC7223087 DOI: 10.1038/s41577-019-0244-2] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Surviving a single infection often results in lifelong immunity to the infecting pathogen. Such protection is mediated, in large part, by two main B cell memory ‘walls’ — namely, long-lived plasma cells and memory B cells. The cellular and molecular processes that drive the production of long-lived plasma cells and memory B cells are subjects of intensive research and have important implications for global health. Indeed, although nearly all vaccines in use today depend on their ability to induce B cell memory, we have not yet succeeded in developing vaccines for some of the world’s most deadly diseases, including AIDS and malaria. Here, we describe the two-phase process by which antigen drives the generation of long-lived plasma cells and memory B cells and highlight the challenges for successful vaccine development in each phase. The authors discuss the formation of two main ‘walls’ of B cell memory to protect against pathogen reinfection. The first wall comprises high-affinity antibodies produced by long-lived plasma cells, while the second wall is formed by memory B cells.
Collapse
|
42
|
Guo Y, Chen K, Kwong PD, Shapiro L, Sheng Z. cAb-Rep: A Database of Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody Prevalence. Front Immunol 2019; 10:2365. [PMID: 31649674 PMCID: PMC6794461 DOI: 10.3389/fimmu.2019.02365] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022] Open
Abstract
The diversity of B cell receptors provides a basis for recognizing numerous pathogens. Antibody repertoire sequencing has revealed relationships between B cell receptor sequences, their diversity, and their function in infection, vaccination, and disease. However, many repertoire datasets have been deposited without annotation or quality control, limiting their utility. To accelerate investigations of B cell immunoglobulin sequence repertoires and to facilitate development of algorithms for their analysis, we constructed a comprehensive public database of curated human B cell immunoglobulin sequence repertoires, cAb-Rep (https://cab-rep.c2b2.columbia.edu), which currently includes 306 immunoglobulin repertoires from 121 human donors, who were healthy, vaccinated, or had autoimmune disease. The database contains a total of 267.9 million V(D)J heavy chain and 72.9 million VJ light chain transcripts. These transcripts are full-length or near full-length, have been annotated with gene origin, antibody isotype, somatic hypermutations, and other biological characteristics, and are stored in FASTA format to facilitate their direct use by most current repertoire-analysis programs. We describe a website to search cAb-Rep for similar antibodies along with methods for analysis of the prevalence of antibodies with specific genetic signatures, for estimation of reproducibility of somatic hypermutation patterns of interest, and for delineating frequencies of somatically introduced N-glycosylation. cAb-Rep should be useful for investigating attributes of B cell sequence repertoires, for understanding characteristics of affinity maturation, and for identifying potential barriers to the elicitation of effective neutralizing antibodies in infection or by vaccination.
Collapse
Affiliation(s)
- Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Kevin Chen
- College of Arts and Science, Stony Brook University, Stony Brook, NY, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
43
|
Simian-Human Immunodeficiency Virus SHIV.CH505 Infection of Rhesus Macaques Results in Persistent Viral Replication and Induces Intestinal Immunopathology. J Virol 2019; 93:JVI.00372-19. [PMID: 31217249 DOI: 10.1128/jvi.00372-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.
Collapse
|
44
|
Francica JR, Laga R, Lynn GM, Mužíková G, Androvič L, Aussedat B, Walkowicz WE, Padhan K, Ramirez-Valdez RA, Parks R, Schmidt SD, Flynn BJ, Tsybovsky Y, Stewart-Jones GBE, Saunders KO, Baharom F, Petrovas C, Haynes BF, Seder RA. Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biol 2019; 17:e3000328. [PMID: 31206510 PMCID: PMC6597128 DOI: 10.1371/journal.pbio.3000328] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/27/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic “star” nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core. In mice, these star nanoparticles trafficked to lymph nodes (LNs) by 4 hours following vaccination, where they were taken up by subcapsular macrophages and then resident dendritic cells (DCs). Immunogenicity optimization studies revealed a correlation of immunogen density with antibody titers. Furthermore, the co-delivery of Env variable loop 3 (V3) and T-helper peptides induced titers that were 2 logs higher than if the peptides were given in separate nanoparticles. Finally, we performed a nonhuman primate (NHP) study using a V3 glycopeptide minimal immunogen that was structurally optimized to be recognized by Env V3/glycan broadly neutralizing antibodies (bnAbs). When administered with a potent Toll-like receptor (TLR) 7/8 agonist adjuvant, these nanoparticles elicited high antibody binding titers to the V3 site. Similar to human V3/glycan bnAbs, certain monoclonal antibodies (mAbs) elicited by this vaccine were glycan dependent or targeted the GDIR peptide motif. To improve affinity to native Env trimer affinity, nonhuman primates (NHPs) were boosted with various SOSIP Env proteins; however, significant neutralization was not observed. Taken together, this study provides a new vaccine platform for administration of glycopeptide immunogens for focusing immune responses to specific bnAb epitopes. Synthetic polymer-based nanoparticles effectively deliver HIV Env glycopeptide immunogens to lymph nodes and stimulate B cell lineages with characteristics resembling broadly neutralizing antibodies, in nonhuman primates.
Collapse
Affiliation(s)
- Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Geoffrey M Lynn
- Avidea Technologies, Inc., Baltimore, Maryland, United States of America
| | - Gabriela Mužíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Baptiste Aussedat
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - William E Walkowicz
- Department of Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kartika Padhan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ramiro Andrei Ramirez-Valdez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Faezzah Baharom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
45
|
Cirelli KM, Carnathan DG, Nogal B, Martin JT, Rodriguez OL, Upadhyay AA, Enemuo CA, Gebru EH, Choe Y, Viviano F, Nakao C, Pauthner MG, Reiss S, Cottrell CA, Smith ML, Bastidas R, Gibson W, Wolabaugh AN, Melo MB, Cossette B, Kumar V, Patel NB, Tokatlian T, Menis S, Kulp DW, Burton DR, Murrell B, Schief WR, Bosinger SE, Ward AB, Watson CT, Silvestri G, Irvine DJ, Crotty S. Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell 2019; 177:1153-1171.e28. [PMID: 31080066 PMCID: PMC6619430 DOI: 10.1016/j.cell.2019.04.012] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/26/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.
Collapse
Affiliation(s)
- Kimberly M Cirelli
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bartek Nogal
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob T Martin
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oscar L Rodriguez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amit A Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Chiamaka A Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Etse H Gebru
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury Choe
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Federico Viviano
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Catherine Nakao
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Matthias G Pauthner
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Samantha Reiss
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raiza Bastidas
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Amber N Wolabaugh
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mariane B Melo
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Cossette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Venkatesh Kumar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nirav B Patel
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Talar Tokatlian
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergey Menis
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel W Kulp
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Dennis R Burton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - William R Schief
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Andrew B Ward
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Darrell J Irvine
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA; Departments of Biological Engineering and Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
46
|
Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine 2019; 37:3167-3178. [PMID: 31047671 DOI: 10.1016/j.vaccine.2019.04.055] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
In conjugate, inactivated, recombinant, and toxoid vaccines, adjuvants are extensively and essentially used for enhanced and long-lasting protective immune responses. Depending on the type of diseases and immune responses required, adjuvants with different design strategies are developed. With aluminum salt-based adjuvants as the most used ones in commercial vaccines, other limited adjuvants, e.g., AS01, AS03, AS04, CpG ODN, and MF59, are used in FDA-approved vaccines for human use. In this paper, we review the uses of different adjuvants in vaccines including the ones used in FDA-approved vaccines and vaccines under clinical investigations. We discuss how adjuvants with different formulations could affect the magnitude and quality of adaptive immune response for optimized protection against specific pathogens. We emphasize the molecular mechanisms of various adjuvants, with the aim to establish structure-activity relationships (SARs) for designing more effective and safer adjuvants for both preventative and therapeutic vaccines.
Collapse
Affiliation(s)
- Shuting Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Haoru Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xinyu Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| |
Collapse
|
47
|
Lofano G, Gorman MJ, Yousif AS, Yu WH, Fox JM, Dugast AS, Ackerman ME, Suscovich TJ, Weiner J, Barouch D, Streeck H, Little S, Smith D, Richman D, Lauffenburger D, Walker BD, Diamond MS, Alter G. Antigen-specific antibody Fc glycosylation enhances humoral immunity via the recruitment of complement. Sci Immunol 2019; 3:3/26/eaat7796. [PMID: 30120121 PMCID: PMC6298214 DOI: 10.1126/sciimmunol.aat7796] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
HIV-specific broadly neutralizing antibodies (bNAbs) confer protection after passive immunization, but the immunological mechanisms that drive their development are poorly understood. Structural features of bNAbs indicate that they originate from extensive germinal center (GC) selection, which relies on persistent GC activity. However, why a fraction of infected individuals are able to successfully drive more effective affinity maturation is unclear. Delivery of antigens in the form of antibody-immune complexes (ICs), which bind to complement receptors (CRs) or Fc receptors (FcRs) on follicular dendritic cells, represents an effective mechanism for antigen delivery to the GC. We sought to define whether IC-FcR or CR interactions differ among individuals who develop bNAb responses to HIV. Enhanced Fc effector functions and FcR/CR interactions, via altered Fc glycosylation profiles, were observed among individuals with neutralizing antibody responses to HIV compared with those without neutralizing antibody activity. Moreover, both polyclonal neutralizer ICs and monoclonal IC mimics of neutralizer antibodies induced higher antibody titers, higher-avidity antibodies, and expanded GC B cell reactions after immunization of mice via accelerated antigen deposition within B cell follicles in a complement-dependent manner. Thus, these data point to a direct role for altered Fc profile/complement interactions in shaping the maturation of the humoral immune response, providing insights into how GC activity may be enhanced to drive affinity maturation in next-generation vaccine approaches.
Collapse
Affiliation(s)
- Giuseppe Lofano
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Department of Immunology and Biotechnology, Tropical Medicine Research Institute, Khartoum, Sudan
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Julie M Fox
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Joshua Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Dan Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Hendrik Streeck
- Institut für HIV Forschung, Universität Duisburg-Essen, Essen, Germany
| | - Susan Little
- University of California, San Diego, San Diego, CA 92093, USA
| | - Davey Smith
- University of California, San Diego, San Diego, CA 92093, USA.,VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Douglas Richman
- University of California, San Diego, San Diego, CA 92093, USA.,VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
48
|
Induction of neutralizing antibodies against tier 2 human immunodeficiency virus 1 in rhesus macaques infected with tier 1B simian/human immunodeficiency virus. Arch Virol 2019; 164:1297-1308. [PMID: 30820667 PMCID: PMC6469619 DOI: 10.1007/s00705-019-04173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 11/21/2022]
Abstract
We previously developed CCR5-tropic neutralization-resistant simian/human immunodeficiency virus (SHIV) strains and a rhesus macaque model of infection with these SHIVs. We induced the production of neutralizing antibodies (nAbs) against HIV-1 by infecting rhesus macaques with different neutralization-resistant SHIV strains. First, SHIV-MK1 (MK1) (neutralization susceptible, tier 1B) with CCR5 tropism was generated from SHIV-KS661 using CXCR4 as the main co-receptor. nAbs against parental-lineage and heterologous tier 2 viruses were induced by tier 1B virus (MK1) infection of the rhesus macaque MM482. We analyzed viral resistance to neutralization over time in MM482 and observed that the infecting virus mutated from tier 1B to tier 2 at 36 weeks postinfection (wpi). In addition, an analysis of mutations showed that N169D, K187E, S190N, S239, T459N (T459D at 91 wpi), and V842A mutations were present after 36 wpi. This led to the appearance of neutralization-resistant viral clones. In addition, MK1 was passaged in three rhesus macaques to generate neutralization-resistant SHIV-MK38 (MK38) (tier 2). We evaluated nAb production by rhesus macaques infected with SHIV-MK38 #818 (#818) (tier 2), a molecular clone of MK38. Neutralization of the parental lineage was induced earlier than in macaques infected with tier 1B virus, and neutralization activity against heterologous tier 2 virus was beginning to develop. Therefore, CCR5-tropic neutralization-resistant SHIV-infected rhesus macaques may be useful models of anti-HIV-1 nAb production and will facilitate the development of a vaccine that elicits nAbs against HIV-1.
Collapse
|
49
|
Yacoob C, Lange MD, Cohen K, Lathia K, Feng J, Glenn J, Carbonetti S, Oliver B, Vigdorovich V, Sather DN, Stamatatos L. B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of rhesus macaques. PLoS Pathog 2018; 14:e1007120. [PMID: 29933399 PMCID: PMC6033445 DOI: 10.1371/journal.ppat.1007120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/05/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutralizing antibodies. Env-based immunogens tested so far in various animal species and humans have elicited binding and autologous neutralizing antibodies but not bNAbs (with a few notable exceptions). The underlying reasons for this are not well understood despite intensive efforts to characterize the binding specificities of the elicited antibodies; mostly by employing serologic methodologies and monoclonal antibody isolation and characterization. These approaches provide limited information on the ontogenies and clonal B cell lineages that expand following Env-immunization. Thus, our current understanding on how the expansion of particular B cell lineages by Env may be linked to the development of non-neutralizing antibodies is limited. Here, in addition to serological analysis, we employed high-throughput BCR sequence analysis from the periphery, lymph nodes and bone marrow, as well as B cell- and antibody-isolation and characterization methods, to compare in great detail the B cell and antibody responses elicited in non-human primates by two forms of the clade C HIV Env 426c: one representing the full length extracellular portion of Env while the other lacking the variable domains 1, 2 and 3 and three conserved N-linked glycosylation sites. The two forms were equally immunogenic, but only the latter elicited neutralizing antibodies by stimulating a more restricted expansion of B cells to a narrower set of IGH/IGK/IGL-V genes that represented a small fraction (0.003-0.02%) of total B cells. Our study provides new information on how Env antigenic differences drastically affect the expansion of particular B cell lineages and supports immunogen-design efforts aiming at stimulating the expansion of cells expressing particular B cell receptors.
Collapse
Affiliation(s)
- Christina Yacoob
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Miles Darnell Lange
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Kristen Cohen
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Kanan Lathia
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Jolene Glenn
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Sara Carbonetti
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Brian Oliver
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Vladimir Vigdorovich
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - David Noah Sather
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
- * E-mail: (DNS); (LS)
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
- University of Washington, Department of Global Health, Seattle, Washington, United States of America
- * E-mail: (DNS); (LS)
| |
Collapse
|
50
|
Parsons MS, Lloyd SB, Lee WS, Kristensen AB, Amarasena T, Center RJ, Keele BF, Lifson JD, LaBranche CC, Montefiori D, Wines BD, Hogarth PM, Swiderek KM, Venturi V, Davenport MP, Kent SJ. Partial efficacy of a broadly neutralizing antibody against cell-associated SHIV infection. Sci Transl Med 2018; 9:9/402/eaaf1483. [PMID: 28794282 DOI: 10.1126/scitranslmed.aaf1483] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/08/2016] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
Broadly neutralizing antibodies (BnAbs) protect macaques from cell-free simian/human immunodeficiency virus (SHIV) challenge, but their efficacy against cell-associated SHIV is unclear. Virus in cell-associated format is highly infectious, present in transmission-competent bodily fluids, and potentially capable of evading antibody-mediated neutralization. The PGT121 BnAb, which recognizes an epitope consisting of the V3 loop and envelope glycans, mediates antibody-dependent cellular cytotoxicity and neutralization of cell-to-cell HIV-1 transmission. To evaluate whether a BnAb can prevent infection after cell-associated viral challenge, we infused pigtail macaques with PGT121 or an isotype control and challenged animals 1 hour later intravenously with SHIVSF162P3-infected splenocytes. All five controls had high viremia 1 week after challenge. Three of six PGT121-infused animals were completely protected, two of six animals had a 1-week delay in onset of high viremia, and one animal had a 7-week delay in onset of viremia. The infused antibody had decayed on average to 2.0 μg/ml by 1 week after infusion and was well below 1 μg/ml (range, <0.1 to 0.8 μg/ml) by 8 weeks. The animals with a 1-week delay before high viremia had relatively lower plasma concentrations of PGT121. Transfer of 22 million peripheral blood mononuclear cells (PBMCs) stored at weeks 1 to 4 from the animal with the 7-week delayed onset of viremia into uninfected macaques did not initiate infection. Our results show that HIV-1-specific neutralizing antibodies have partial efficacy against cell-associated virus exposure in macaques. We conclude that sustaining high concentrations of bioavailable BnAb is important for protecting against cell-associated virus.
Collapse
Affiliation(s)
- Matthew S Parsons
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.
| | - Sarah B Lloyd
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Rob J Center
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | - Vanessa Venturi
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia. .,Melbourne Sexual Health Centre, Alfred Hospital Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3053, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|