1
|
Zeun J, Bernhardt AL, Neubeck S, Lang V, Korn K, Nagel L, Kunert T, Brey S, Atreya I, Denzin L, Bäuerle T, Hildner K, Büttner-Herold M, Winkler T, Mackensen A, Reimann H, Kremer AN. Selective H2-O tissue expression reduces risk for graft-versus-host disease in an in vivo transplantation model. Transplant Cell Ther 2025:S2666-6367(25)01162-5. [PMID: 40340027 DOI: 10.1016/j.jtct.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Allogeneic stem cell transplantation (aSCT) is frequently used to treat patients with hematological malignancies. The therapeutic effect relies mainly on the graft-versus-leukemia (GvL) effect, in which donor T-cells eliminate residual malignant cells. Unfortunately, the beneficial GvL is often accompanied by detrimental graft-versus-host disease (GvHD). A successful separation of both effects could not yet be achieved. In previous work, we identified two groups of HLA-class II restricted antigens depending on their behavior towards HLA-DM. DM-resistant antigens are presented in the presence of HLA-DM, whereas presentation of DM-sensitive antigens relies on the inhibitory molecule HLA-DO. Due to the unique expression pattern of HLA-DO, DM sensitive antigens cannot be presented efficiently by non-hematopoietic cells even under inflammatory conditions. This suggests that CD4+ T-cells directed against DM-sensitive antigens may be able to separate GvL from GvHD. OBJECTIVE In this study, we wanted to demonstrate convincingly that HLA-DO expression strongly influences the severity of GvHD in allogeneic stem cell transplantation. METHODS Therefore, we generated a modified CD4 donor lymphocyte infusion (DLI) depleted of CD4+ T-cells directed against DM resistant antigens to address its potential to induce GvHD in an in vivo MHC mismatch transplantation model in dependency on selective tissue expression of H2-O using H2-O wildtype, knockout and transgenic recipients. RESULTS Intriguingly, we could demonstrate that our modified CD4 DLI targeting DM-sensitive antigens only induced mild GvHD in wildtype recipients with endogenous selective H2-O expression and none in H2-O knockouts, while assessing the immunogenic potential of DM-sensitive antigens in H2-O transgenic recipients. CONCLUSION The results of the present work provide evidence that DM-resistant antigens are main targets of GvHD and addressing DM-sensitive antigens might be a promising tool to improve outcome after aSCT by separating GvL from GvHD.
Collapse
Affiliation(s)
- J Zeun
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - A L Bernhardt
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - S Neubeck
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - V Lang
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - K Korn
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - L Nagel
- Department of Radiology, Preclinical Imaging Plattform Erlangen, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - T Kunert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - S Brey
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - I Atreya
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - L Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, USA.
| | - T Bäuerle
- Department of Radiology, Preclinical Imaging Plattform Erlangen, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - K Hildner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - M Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - T Winkler
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - A Mackensen
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - H Reimann
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - A N Kremer
- Department of Medicine 5 - Hematology/Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
2
|
Zhou Z, Su J, van Os BW, Plug LG, de Jonge-Muller ESM, Brands L, Janson SGT, van de Beek LM, van der Meulen-de Jong AE, Hawinkels LJAC, Barnhoorn MC. Stromal Cell Subsets Show Model-Dependent Changes in Experimental Colitis and Affect Epithelial Tissue Repair and Immune Cell Activation. Inflamm Bowel Dis 2025; 31:1051-1066. [PMID: 40100003 PMCID: PMC11985400 DOI: 10.1093/ibd/izae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND Previous work on inflammatory bowel disease (IBD) revealed changes in the abundance of colonic stromal subsets during intestinal inflammation. However, it is currently unknown whether these stromal cell subset changes are also reflected in different IBD mouse models and how commonly used IBD therapies affect stromal cell subset composition. METHODS Stromal subset markers CD55, C-X-C motif chemokine 12 (CXCL12), podoplanin (PDPN), CD90, and CD73 were analyzed by flow cytometry in 3 mouse models for IBD, namely interleukin (IL)-10 knockout (KO), dextran sulfate sodium-induced, and T-cell transfer model for colitis. Next, the effects of IBD therapies on the stromal subset composition were studied. In vitro experiments were performed to study the interaction between stromal cell subsets and epithelial/immune cells. RESULTS The colitis-induced changes in the abundance of stromal cell subsets differed considerably between the 3 colitis mouse models. Interestingly, treatment with IBD medication affected specific stromal subsets in a therapy and model-specific manner. In vitro experiments showed that specific stromal subsets affected epithelial wound healing and/or T-cell activation. CONCLUSIONS The relative abundance changes of stromal cell subsets during experimental colitis differ between 3 established colitis models. Treatment with IBD therapies influences stromal subset abundance, indicating their importance in IBD pathogenesis, possibly through affecting epithelial migration, and T-cell activation.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jie Su
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bram W van Os
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Leonie G Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | | | - Stef G T Janson
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Andrea E van der Meulen-de Jong
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
3
|
Isermann T, Schneider KL, Wegwitz F, De Oliveira T, Conradi LC, Volk V, Feuerhake F, Papke B, Stintzing S, Mundt B, Kühnel F, Moll UM, Schulz-Heddergott R. Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition. Cell Death Differ 2025:10.1038/s41418-025-01502-x. [PMID: 40204953 DOI: 10.1038/s41418-025-01502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The stress-associated chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing oncoproteins. Most inhibitors target the key component, heat-shock protein 90 (HSP90). Although HSP90 inhibitors are highly tumor-selective, they fail in clinical trials. These failures are partly due to interference with a negative regulatory feedback loop in the heat-shock response (HSR): in response to HSP90 inhibition, there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock-factor 1 (HSF1). We recently identified that wild-type p53 reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here, we test whether in HSP90-based therapies, simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. We found that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids, and patient-derived organoids (PDOs). Mechanistically, upon combination therapy, CRC cells upregulate p53-associated pathways, apoptosis, and inflammatory pathways. Likewise, in a CRC mouse model, dual HSF1-HSP90 inhibition represses tumor growth and remodels immune cell composition. Importantly, inhibition of the cyclin-dependent kinases 4/6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Moreover, in p53-deficient CRC cells, HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR and reduces cancer growth. Likewise, p53-mutated PDOs respond to dual HSF1-HSP90 inhibition, providing a strategy to target CRC independent of the p53 status. In sum, we provide new options to improve HSP90-based therapies to enhance CRC therapies.
Collapse
Affiliation(s)
- Tamara Isermann
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Björn Papke
- Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Mundt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
4
|
Guilbaud L, Chen C, Domingues I, Kavungere EK, Marotti V, Yagoubi H, Zhang W, Malfanti A, Beloqui A. Oral Lipid-Based Nanomedicine for the Inhibition of the cGAS-STING Pathway in Inflammatory Bowel Disease Treatment. Mol Pharm 2025; 22:2108-2121. [PMID: 40032274 PMCID: PMC11979890 DOI: 10.1021/acs.molpharmaceut.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Harnessing the effect of the cyclic GMP-AMP Synthase-STimulator of INterferon Genes (cGAS-STING) signaling pathway has emerged as a promising approach to developing novel strategies for the oral treatment of inflammatory bowel disease (IBD). In this work, we screened different cGAS-STING inhibitors in vitro in murine macrophages. Then, we encapsulated the cGAS-STING inhibitor H-151 within lipid nanocapsules (LNCs), owing to their inherent ability to induce the secretion of glucagon-like peptide 2 (GLP-2), a re-epithelizing peptide, upon oral administration. We demonstrated that our formulation (LNC(H-151)) could induce GLP-2 secretion and selectively target the cGAS-STING pathway and its downstream key markers (including TBK1 and pTBK1) while reducing the expression of pro-inflammatory cytokines associated with the cGAS-STING pathway (TNF-α and CXCL10) in murine macrophages. In an in vivo acute dextran sodium sulfate (DSS)-induced colitis mouse model, the oral administration of LNC(H-151) significantly reduced pro-inflammatory cytokines to levels comparable to the CTRL Healthy group while promoting mucosal healing. The therapeutic potential of this scalable and cost-effective nanomedicine warrants further investigation as an alternative for the oral treatment of IBD.
Collapse
Affiliation(s)
- Léo Guilbaud
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Cheng Chen
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Inês Domingues
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Espoir K. Kavungere
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Valentina Marotti
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Hafsa Yagoubi
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Wunan Zhang
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Alessio Malfanti
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Ana Beloqui
- Louvain
Drug Research Institute, Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WEL
Research Institute, Avenue
Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
5
|
Wang L, Zhang Z, Chen X, Wang Z, Song X, Geng Z, Zhang X, Wang Y, Li J, Hu J, Zuo L. Sakuranetin ameliorates experimental colitis in a gut microbiota-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156540. [PMID: 40007342 DOI: 10.1016/j.phymed.2025.156540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/29/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The progression of inflammatory bowel disease (IBD) is closely connected with intestinal flora dysbiosis. Sakuranetin (SAK) is a natural compound with anti-inflammatory and antibiosis activities. We investigated the properties and mechanisms of SAK on IBD-like colitis. METHODS Mice with dextran sulfate sodium (DSS)-induced colitis were accomplished to assess the effects of SAK on colitis, as well as intestinal mucosal immune imbalance and intestinal barrier dysfunction. 16S rDNA was used to characterize the intestinal flora, and the short-chain fatty acid (SCFA) content in faeces was calculated using GS‒MS. Faecal microbiota transplantation (FMT) and a pseudosterile model (antibiotic cocktail, ABX) were used to evaluate whether the effects of SAK on colitis were dependent on the gut flora. Pathohistological and biochemical tests were used to estimate the safety of SAK. RESULTS SAK significantly ameliorated DSS-induced colitis in mice, verified by decreased weight loss, less colon shortening, and lower disease activity, histology and colonoscopy scores. Moreover, SAK alleviated gut dysbiosis and elevated the abundance of SCFA-producing bacteria in DSS-treated mice. Meanwhile, SAK increased faecal SCFA levels and activated GPR41/43 signalling. SAK also improved Treg/Th17 homeostasis and intestinal barrier function. In addition, ABX and FMT experiments confirmed that the ability of SAK to alleviate colitis was mediated through the gut flora. Finally, a safety experiment revealed that SAK had no significant adverse effects on major organ or liver/kidney function. CONCLUSIONS SAK may improve the intestinal immune balance and barrier function by regulating intestinal flora dysbiosis and increasing SCFA production, thereby protecting against colitis.
Collapse
Affiliation(s)
- Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Zhen Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Xiaohua Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China.
| |
Collapse
|
6
|
Erkert L, Ruder B, Kabisch M, Gamez Belmonte R, Patankar JV, Gonzalez Acera M, Schödel L, Chiriac MT, Cineus R, Gnafakis S, Leupold T, Thoma OM, Stolzer I, Taut A, Thonn V, Zundler S, Günther C, Diefenbach A, Kühl AA, Hegazy AN, Waldner M, Basic M, Bleich A, Neurath MF, Wirtz S, Becker C. TIFA renders intestinal epithelial cells responsive to microbial ADP-heptose and drives colonic inflammation in mice. Mucosal Immunol 2025; 18:453-466. [PMID: 39842611 DOI: 10.1016/j.mucimm.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Intestinal immune homeostasis relies on intestinal epithelial cells (IECs), which provide an efficient barrier, and warrant a state of tolerance between the microbiome and the mucosal immune system. Thus, proper epithelial microbial sensing and handling of microbes is key to preventing excessive immunity, such as seen in patients with inflammatory bowel disease (IBD). To date, the molecular underpinnings of these processes remain incompletely understood. This study identifies TIFA as a driver of intestinal inflammation and an epithelial signaling hub between the microbiome and mucosal immune cells. TIFA was constitutively expressed in crypt epithelial cells and was highly induced in the intestine of mice and IBD patients with intestinal inflammation. We further identified IL-22 signaling via STAT3 as key mechanism driving TIFA expression in IECs. At the molecular level, we demonstrate that TIFA expression is essential for IEC responsiveness to the bacterial metabolite ADP-heptose. Most importantly, ADP-heptose-induced TIFA signaling orchestrates an inflammatory cellular response in the epithelium, with NF-κB and inflammasome activation, and high levels of chemokine production. Finally, mice lacking TIFA were protected from intestinal inflammation when subjected to a model of experimental colitis. In conclusion, our study implicates that targeting TIFA may be a strategy for future IBD therapy.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Barbara Ruder
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Reyes Gamez Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Mircea T Chiriac
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Roodline Cineus
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Germany
| | - Stylianos Gnafakis
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Germany
| | - Tamara Leupold
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Astrid Taut
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Veronika Thonn
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ahmed N Hegazy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
7
|
Lee J, Kwak D, Kim H, Ullah M, Kim J, Naeem M, Hwang S, Im E, Yoon IS, Jung Y, Yoo JW. Elucidating a Tumor-Selective Nanoparticle Delivery Mechanism at the Colorectal Lumen-Tumor Interface for Precise Local Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409994. [PMID: 39828655 DOI: 10.1002/smll.202409994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Although various colorectal cancer (CRC)-targeted nanoparticles have been developed to selectively deliver anticancer agents to tumor tissues, severe off-target side effects still persist due to unwanted systemic nanoparticle distribution, limiting the therapeutic outcome. Here, by elucidating a tumor-selective nanoparticle delivery mechanism occurring at the colorectal lumen-tumor interface, an alternative CRC-targeted delivery route is proposed, which enables highly tumor-selective delivery without systemic distribution, through direct drug delivery from the outside of the body (colorectal lumen) to tumors in the colorectum. Owing to the presence of accessible tumor-specific receptors such as CD44 at the colorectal lumen-tumor interface, but not at the colorectal lumen-normal tissue interface, colorectal luminal surface (CLS)-targeting ligand-functionalized nanoparticles selectively accumulate in CRC tissues without systemic distribution, resulting in successful local CRC therapy. The findings suggest that CLS-targeted lumen-to-tumor delivery can be a suitable strategy for highly CRC-specific drug delivery for precise local CRC therapy.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Dongmin Kwak
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunwoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Muneeb Ullah
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihyun Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, 46000, Pakistan
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Eunok Im
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
8
|
Ma C, Chen K, Li L, Jiang M, Zeng Z, Yin F, Yuan J, Jia Y, Zhang H. Epstein-Barr virus infection exacerbates ulcerative colitis by driving macrophage pyroptosis via the upregulation of glycolysis. PRECISION CLINICAL MEDICINE 2025; 8:pbaf002. [PMID: 40041420 PMCID: PMC11878796 DOI: 10.1093/pcmedi/pbaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
Background Epstein-Barr virus (EBV) infection is associated with clinical symptoms, treatment response, need for surgical intervention, and an enhanced likelihood of lymphoma among patients with ulcerative colitis (UC). However, existing studies have primarily concentrated on the epidemiological and clinical associations between EBV and UC, leaving the mechanisms by which EBV exacerbates colitis poorly understood. Methods Clinical specimens of UC patients with EBV infection and a mouse model of dextran sulfate sodium-induced colitis with concurrent murine γ-herpesvirus 68 (MHV-68) infection were utilized to investigate the relationship between EBV infection and macrophage pyroptosis. In vivo, adoptive transfer of MHV-68-induced macrophages and macrophage depletion were performed to elucidate the underlying mechanisms. In vitro, myeloid leukemia mononuclear cells of human (THP-1) and macrophages derived from mouse bone marrow (BMDMs) were stimulated with EBV and MHV-68, respectively, to assess macrophage pyroptosis and glycolysis. Results EBV-induced activation of macrophage pyroptosis was positively correlated with clinical disease activity in UC patients. Furthermore, MHV-68 infection activated pyroptosis by upregulating gasdermin D, NLRP3, interleukin-1β, and interleukin-18 in colonic tissues and peritoneal macrophages of mice with colitis. In vitro, EBV and MHV-68 also mediated activation of pyroptosis in human THP-1 cells and mouse BMDMs, respectively. Additionally, the adoptive transfer of MHV-68-induced BMDMs aggravated murine colitis, whereas macrophage depletion attenuated MHV-68-induced intestinal injury. Mechanistically, MHV-68 promoted macrophage pyroptosis by upregulating glycolysis, while the glycolysis inhibitor, 2-deoxy-D-glucose, blocked this process in vitro. Conclusion EBV infection exacerbates UC by driving macrophage pyroptosis through upregulation of glycolysis, indicating a potential therapeutic approach to mitigate EBV-induced intestinal inflammation.
Collapse
Affiliation(s)
- Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Yin
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yuan
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu 610213, China
| | - Yongbin Jia
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Gastroenterology, West China Tianfu Hospital, Sichuan University, Chengdu 610213, China
| |
Collapse
|
9
|
Zhang W, Van den Bossche W, Yagoubi H, Kambale EK, Wahni K, Saxena T, Guilbaud L, Moreels TG, Messens J, Beloqui A. Glepaglutide-Loaded Foam for the Induction of Mucosal Healing in the Treatment of Inflammatory Bowel Disease. Adv Healthc Mater 2025; 14:e2403497. [PMID: 39905897 PMCID: PMC11912111 DOI: 10.1002/adhm.202403497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Glucagon-like peptide 2 (GLP-2) stimulates intestinal growth, repairs mucosa, and enhances epithelial integrity but has a short half-life (7 min). Glepaglutide (GL), a GLP-2 analog with an extended half-life (50 h), is currently undergoing clinical trials for patients with short bowel syndrome. GL requires subcutaneous injection, which poses challenges for potential patient compliance. To address this challenge, GL was loaded into a rectal foam formulation using CO2 as a permeation enhancer to combine both the local and systemic effects of the GLP-2 analog. In a dextran sodium sulfate (DSS)-induced colitis model, the GL-loaded foam (GLF) significantly mitigated the severity of colitis. GLF facilitated mucosal healing, as evidenced by colonoscopy images, increased plasma markers of mucosal healing, and increased crypt depth. To evaluate GL absorption in the colon, fluorescein dextran 4K (FD 4K) was employed. The foam formulation improved macromolecule absorption in the colon, with fast recovery of enhanced permeation that dissipated after 4 h. This study highlights GLF as a promising formulation for GL administration, balancing systemic and local anti-inflammatory effects.
Collapse
Affiliation(s)
- Wunan Zhang
- UCLouvain, Université catholique de LouvainLouvain Drug Research InstituteAdvanced Drug Delivery and BiomaterialsBrussels1200Belgium
| | - William Van den Bossche
- UCLouvain, Université catholique de LouvainLouvain Drug Research InstituteAdvanced Drug Delivery and BiomaterialsBrussels1200Belgium
| | - Hafsa Yagoubi
- UCLouvain, Université catholique de LouvainLouvain Drug Research InstituteAdvanced Drug Delivery and BiomaterialsBrussels1200Belgium
| | - Espoir K Kambale
- UCLouvain, Université catholique de LouvainLouvain Drug Research InstituteAdvanced Drug Delivery and BiomaterialsBrussels1200Belgium
| | - Khadija Wahni
- VIB‐VUB Center for Structural BiologyBrussels1050Belgium
- Brussels Center for Redox BiologyBrussels1050Belgium
- Structural Biology BrusselsVrije Universiteit BrusselBrussels1050Belgium
| | - Tanya Saxena
- UCLouvain, Université catholique de LouvainLouvain Drug Research InstituteAdvanced Drug Delivery and BiomaterialsBrussels1200Belgium
| | - Léo Guilbaud
- UCLouvain, Université catholique de LouvainLouvain Drug Research InstituteAdvanced Drug Delivery and BiomaterialsBrussels1200Belgium
| | - Tom G. Moreels
- Institute of Experimental and Clinical ResearchLaboratory of Hepato‐GastroenterologyUCLouvain, Université Catholique de LouvainBrussels1200Belgium
- Cliniques universitaires Saint‐LucDepartment of Gastroenterology & HepatologyBrussels1200Belgium
| | - Joris Messens
- VIB‐VUB Center for Structural BiologyBrussels1050Belgium
- Brussels Center for Redox BiologyBrussels1050Belgium
- Structural Biology BrusselsVrije Universiteit BrusselBrussels1050Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de LouvainLouvain Drug Research InstituteAdvanced Drug Delivery and BiomaterialsBrussels1200Belgium
- WEL Research InstituteAvenue Pasteur, 6Wavre1300Belgium
| |
Collapse
|
10
|
Zheng H, Yu J, Gao L, Wang K, Xu Z, Zeng Z, Zheng K, Tang X, Tian X, Zhao Q, Zhao J, Wan H, Cao Z, Zhang K, Cheng J, Brosius J, Zhang H, Li W, Yan W, Shao Z, Luo F, Deng C. S1PR1-biased activation drives the resolution of endothelial dysfunction-associated inflammatory diseases by maintaining endothelial integrity. Nat Commun 2025; 16:1826. [PMID: 39979282 PMCID: PMC11842847 DOI: 10.1038/s41467-025-57124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
G protein-coupled sphingosine-1-phosphate receptor 1 (S1PR1), a drug target for inflammatory bowel disease (IBD), enables immune cells to egress from lymph nodes, but the treatment increases the risk of immunosuppression. The functional signaling pathway triggered by S1PR1 activation in endothelial cells and its therapeutic application remains unclear. Here, we showed that S1PR1 is highly expressed in endothelial cells of IBD patients and positively correlated with endothelial markers. Gi-biased agonist-SAR247799 activated S1PR1 and reversed pathology in male mouse and organoid IBD models by protecting the integrity of the endothelial barrier without affecting immune cell egress. Cryo-electron microscopy structure of S1PR1-Gi signaling complex bound to SAR247799 with a resolution of 3.47 Å revealed the recognition mode for the biased ligand. With the efficacy of SAR247799 in treating other endothelial dysfunction-associated inflammatory diseases, our study offers mechanistic insights into the Gi-biased S1PR1 agonist and represents a strategy for endothelial dysfunction-associated disease treatment.
Collapse
Affiliation(s)
- Huaping Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Yu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Luhua Gao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kexin Wang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Xu
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zeng
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Tang
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowen Tian
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongwei Cao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology and University Hospital, Macau, China
| | - Jingqiu Cheng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jürgen Brosius
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, Lab of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yan
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Zhenhua Shao
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Deng
- Department of Respiratory and Critical Care Medicine, Center for High Altitude Medicine, Institutes for Systems Genetics, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Matos ALSA, Ovens AJ, Jakobsen E, Iglesias-Gato D, Bech JM, Friis S, Bak LK, Madsen GI, Oakhill JS, Puustinen P, Moreira JMA. Salicylate-Elicited Activation of AMP-Activated Protein Kinase Directly Triggers Degradation of C-Myc in Colorectal Cancer Cells. Cells 2025; 14:294. [PMID: 39996767 PMCID: PMC11854256 DOI: 10.3390/cells14040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Aspirin has consistently shown preventive effects in some solid cancers, notably colorectal cancer. However, the precise molecular mechanisms underlying this positive effect have remained elusive. In this study, we used an azoxymethane-induced mouse model of colon carcinogenesis to identify aspirin-associated molecular alterations that could account for its cancer-preventive effect. Transcriptomic analysis of aspirin-treated mice showed a strong reduction in c-Myc protein levels and effects on the Myc-dependent transcriptional program in colonic cells. Proto-oncogene c-Myc cooperates with AMP-activated protein kinase (AMPK) to control cellular energetics. Here, we show that salicylate, the active metabolite of aspirin, reduces c-Myc protein expression levels through multiple mechanisms that are both AMPK dependent and independent. This effect is cell-type dependent and occurs at both the transcriptional and post-translational levels. Salicylate-induced AMPK activation leads to the phosphorylation of c-Myc at Thr400, as well as its destabilization and degradation. Our results reveal a complex, multilayered, negative effect of salicylate on c-Myc protein abundance and suggest that chronic depletion of c-Myc can counteract the neoplastic transformation of colorectal epithelium, underpinning the preventive effect of aspirin on colorectal cancer.
Collapse
Affiliation(s)
- Ana Laura S. A. Matos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil
| | - Ashley J. Ovens
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia (J.S.O.)
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Diego Iglesias-Gato
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jacob M. Bech
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Sino-Danish Center for Education and Research, Aarhus University, 8000 Aarhus, Denmark
| | - Stine Friis
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lasse Kristoffer Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
- Translational Research Center (TRACE), Copenhagen University Hospital-Rigshospitalet, 2600 Glostrup, Denmark
| | - Gunvor I. Madsen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia (J.S.O.)
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pietri Puustinen
- Cell Death and Metabolism, Danish Cancer Society Research Center (DCRC), 2100 Copenhagen, Denmark
| | - José M. A. Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
12
|
Nanì MF, Pagano E, De Cicco P, Lucariello G, Cattaneo F, Tropeano FP, Cicia D, Amico R, Raucci F, Ercolano G, Maione F, Rinaldi MM, Esposito F, Ammendola R, Luglio G, Capasso R, Makriyannis A, Petrosino S, Borrelli F, Romano B, Izzo AA. Pharmacological Inhibition of N-Acylethanolamine Acid Amidase (NAAA) Mitigates Intestinal Fibrosis Through Modulation of Macrophage Activity. J Crohns Colitis 2025; 19:jjae132. [PMID: 39211986 PMCID: PMC11836880 DOI: 10.1093/ecco-jcc/jjae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis, a frequent complication of inflammatory bowel disease, is characterized by stricture formation with no pharmacological treatment to date. N-acylethanolamine acid amidase (NAAA) is responsible for the hydrolysis of acylethanolamides (AEs, eg, palmitoylethanolamide and oleoylethanolamide). Here, we investigated NAAA and AE signaling in gut fibrosis. METHODS NAAA and AE signaling were evaluated in human intestinal specimens from patients with stenotic Crohn's disease (CD). Gut fibrosis was induced by 2,4,6-trinitrobenzenesulfonic acid, monitored by colonoscopy, and assessed by qRT-PCR, histological analyses, and confocal microscopy. Immune cells in mesenteric lymph nodes were analyzed by FACS. Colonic fibroblasts were cultured in conditioned media derived from polarized or non-polarized bone marrow-derived macrophages (BMDMs). IL-23 signaling was evaluated by qRT-PCR, ELISA, FACS, and western blot in BMDMs and in lamina propria CX3CR1+ cells. RESULTS In ileocolonic human CD strictures, increased transcript expression of NAAA was observed with a decrease in its substrates oleoylethanolamide and palmitoylethanolamide. NAAA inhibition reduced intestinal fibrosis in vivo, as indicated by a decrease in inflammatory parameters, collagen deposition, and fibrosis-related genes, including those involved in epithelial-to-mesenchymal transition. More in-depth studies revealed modulation of the immune response related to IL-23 following NAAA inhibition. The antifibrotic actions of NAAA inhibition are mediated by Mφ and M2 macrophages that indirectly affect fibroblast collagenogenesis. NAAA inhibitor AM9053 normalized IL-23 signaling in BMDMs and in lamina propria CX3CR1+ cells. CONCLUSIONS Our findings provide new insights into the pathophysiological mechanism of intestinal fibrosis and identify NAAA as a promising target for the development of therapeutic treatments to alleviate CD-related fibrosis.
Collapse
Affiliation(s)
- Maria Francesca Nanì
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesca Paola Tropeano
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rebecca Amico
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Michela Rinaldi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabiana Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gaetano Luglio
- Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Stefania Petrosino
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
- Epitech Group SpA, Saccolongo, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Ntafis V. A communication pipeline for in vivo imaging core facilities. Lab Anim 2025; 59:34-39. [PMID: 40025866 DOI: 10.1177/00236772241309759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
During the last years, the rapidly evolving imaging technologies have become valuable tools in in vivo research. Imaging modalities provide high resolution, real-time images and videos, offering the opportunity of longitudinal, quantitative, non-invasive/non-terminal monitoring of animal models. In parallel, in vivo imaging applications lead to animal reduction, by substituting phenotyping methods that require euthanasia. For in vivo imaging core facilities, effective communication is an essential tool that ensures that all teams involved are on the same page at all times. Successful communication is necessary at all stages and may be achieved via standardized procedures, which provide specifications and step-by-step instructions for all operations and activities. This article aims to provide a communication pipeline for imaging facilities operating with a full-service model, developed for 'Alexander Fleming' Animal Facilities, helping to achieve smooth operation and high-quality research.
Collapse
Affiliation(s)
- Vasileios Ntafis
- Institute of Fundamental Biomedical Research, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
- Animal House, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| |
Collapse
|
14
|
Tozzi M, Fiore A, Travaglione S, Marcon F, Rainaldi G, Germinario EAP, Laterza I, Donati S, Macchia D, Spada M, Leoni O, Quattrini MC, Pietraforte D, Tomasoni S, Torrigiani F, Verin R, Matarrese P, Gambardella L, Spadaro F, Carollo M, Pietrantoni A, Carlini F, Panebianco C, Pazienza V, Colella F, Lucchetti D, Sgambato A, Sistigu A, Moschella F, Guidotti M, Vincentini O, Maroccia Z, Biffoni M, De Angelis R, Bracci L, Fabbri A. E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration. J Exp Clin Cancer Res 2025; 44:29. [PMID: 39876002 PMCID: PMC11776187 DOI: 10.1186/s13046-024-03271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro. Despite this evidence, a definitive causal link between CNF1 and CRC was missing. Here we investigated whether CNF1 plays an active role in CRC onset by analyzing pro-carcinogenic key effects specifically induced by the toxin in vitro and in vivo. METHODS Viability assays, confocal microscopy of γH2AX and 53BP1 molecules and cytogenetic analysis were carried out to assess CNF1-induced genotoxicity on non-neoplastic intestinal epithelial cells. Caco-2 monolayers and 3D Caco-2 spheroids were used to evaluate permeability alterations specifically induced by CNF1, either in the presence or in the absence of inflammation. In vivo, an inflammatory bowel disease (IBD) model was exploited to evaluate the carcinogenic potential of CNF1. Immunohistochemistry and immunofluorescence stainings of formalin-fixed paraffin-embedded (FFPE) colon tissue were carried out as well as fecal microbiota composition analysis by 16 S rRNA gene sequencing. RESULTS CNF1 induces the release of reactive oxidizing species and chromosomal instability in non-neoplastic intestinal epithelial cells. In addition, CNF1 modifies intestinal permeability by directly altering tight junctions' distribution in 2D Caco-2 monolayers, and by hindering the differentiation of 3D Caco-2 spheroids with an irregular arrangement of these junctions. In vivo, repeated intrarectal administration of CNF1 induces the formation of dysplastic aberrant crypt foci (ACF), and produces the formation of colorectal adenomas in an IBD model. These effects are accompanied by the increased neutrophilic infiltration in colonic tissue, by a mixed pro-inflammatory and anti-inflammatory cytokine milieu, and by the pro-tumoral modulation of the fecal microbiota. CONCLUSIONS Taken together, our results support the hypothesis that the CNF1 toxin from E. coli plays an active role in colorectal carcinogenesis. Altogether, these findings not only add new knowledge to the contribution of bacterial toxins to CRC, but also pave the way to the implementation of current screening programs and preventive strategies.
Collapse
Affiliation(s)
- Michela Tozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Fiore
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Travaglione
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella Rainaldi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Ilenia Laterza
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Donati
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Omar Leoni
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Sofia Tomasoni
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Legnaro, PD, Italy
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Legnaro, PD, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Legnaro, PD, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Maria Carollo
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Francesca Carlini
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, FG, Italy
| | - Filomena Colella
- Multiplex Spatial Profiling Center, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Donatella Lucchetti
- Multiplex Spatial Profiling Center, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Sgambato
- Multiplex Spatial Profiling Center, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Sistigu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Federica Moschella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Guidotti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Olimpia Vincentini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Lattanzi G, Perillo F, Díaz-Basabe A, Caridi B, Amoroso C, Baeri A, Cirrincione E, Ghidini M, Galassi B, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Estrogen-related differences in antitumor immunity and gut microbiome contribute to sexual dimorphism of colorectal cancer. Oncoimmunology 2024; 13:2425125. [PMID: 39548749 PMCID: PMC11572150 DOI: 10.1080/2162402x.2024.2425125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease whose development and progression varies depending on tumor location, age of patients, infiltration of immune cells within cancer lesions, and the tumor microenvironment. These pathophysiological characteristics are additionally influenced by sex-related differences. The gut microbiome plays a role in initiation and progression of CRC, and shapes anti-tumor immune responses but how responsiveness of the immune system to the intestinal microbiota may contribute to sexual dimorphism of CRC is largely unknown. We studied survival, tumor-infiltrating immune cell populations and tumor-associated microbiome of a cohort of n = 184 male and female CRC patients through high-dimensional single-cell flow cytometry and 16S rRNA gene sequencing. We functionally tested the immune system-microbiome interactions in in-vivo and in-vitro models of the disease. High-dimensional single-cell flow cytometry showed that female patients are enriched by tumor-infiltrating invariant Natural Killer T (iNKT) cells but depleted by cytotoxic T lymphocytes. The enrichment of oral pathobionts and a reduction of β-glucuronidase activity are distinctive traits characterizing the gut microbiome of female patients affected by CRC. Functional assays using a collection of human primary iNKT cell lines demonstrated that the gut microbiota of female patients functionally impairs iNKT cell anti-tumor functions interfering with the granzyme-perforin cytotoxic pathway. Our results highlight a sex-dependent functional relationship between the gut microbiome, estrogen metabolism, and the decline of cytotoxic T cell responses, contributing to the sexual dimorphism observed in CRC patients with relevant implications for precision medicine and the design of targeted therapeutic approaches addressing sex bias in cancer.
Collapse
Affiliation(s)
- Georgia Lattanzi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruna Caridi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Elisa Cirrincione
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General & Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General & Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General & Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
16
|
Zhang X, Zuo L, Song X, Zhang W, Yang Z, Wang Z, Guo Y, Ge S, Wang L, Wang Y, Geng Z, Li J, Hu J. The mesenteric adipokine SFRP5 alleviated intestinal epithelial apoptosis improving barrier dysfunction in Crohn's disease. iScience 2024; 27:111517. [PMID: 39759008 PMCID: PMC11699250 DOI: 10.1016/j.isci.2024.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/21/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells. This study elucidates possible mechanisms by which mesenteric adipokines influence the progression of enteritis and provides a new theoretical basis for the treatment of CD via the mesenteric pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenjing Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Yibing Guo
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Sitang Ge
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
17
|
Ghosh S, Singh R, Goap TJ, Sunnapu O, Vanwinkle ZM, Li H, Nukavarapu SP, Dryden GW, Haribabu B, Vemula PK, Jala VR. Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis. J Nanobiotechnology 2024; 22:701. [PMID: 39533380 PMCID: PMC11558909 DOI: 10.1186/s12951-024-02990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Tanu Jain Goap
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Zachary M Vanwinkle
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Hong Li
- UofL-Brown Cancer Cancer, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Gerald W Dryden
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK campus, Bellary Road, Bangalore, 560065, Karnataka, India.
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Center for Microbiomics, Inflammation and Pathogenicity, UofL-Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
18
|
Li S, Chen L, Wu T, Wu J, Yang H, Ju Q, Liu Z, Chen W, Zhang D, Hao Y. Cell Membrane-Coated Nanotherapeutics for the Targeted Treatment of Acute and Chronic Colitis. Biomater Res 2024; 28:0102. [PMID: 39512421 PMCID: PMC11542430 DOI: 10.34133/bmr.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Integrin α4β1 and α4β7 are overexpressed in macrophages and leukocytes and play important roles in mediating cell homing and recruitment to inflammatory tissues. Herein, to enhance the targeting ability of nanotherapeutics for inflammatory bowel disease (IBD) treatment, cyclosporine A-loaded nanoparticles (CsA NPs) were coated with macrophage membranes (MM-CsA NPs) or leukocyte membranes (LM-CsA NPs). In vitro experiments demonstrated that the physicochemical properties of the nanotherapeutics (e.g., size, zeta potential, polymer dispersity index, and drug release profiles) did not obviously change after cell membrane coating. However, integrin α4β1 and α4β7 were expressed in MM-CsA NPs and LM-CsA NPs, respectively, which significantly inhibited normal macrophage phagocytosis and obviously increased uptake by proinflammatory macrophages and endothelial cells. In vivo experiments verified that cell membrane-coated nanotherapeutics have longer retention times in inflammatory intestinal tissues. Importantly, LM-CsA NPs significantly mitigated weight loss, alleviated colon shortening, decreased disease activity indices (DAIs), and promoted colon tissue repair in acute and chronic colitis model mice. Furthermore, LM-CsA NPs significantly decreased the expression of inflammatory factors such as TNF-α and IL-6 and increased the expression of gut barrier-related proteins such as E-cadherin, ZO-1, and occludin protein in colitis mice.
Collapse
Affiliation(s)
- Shan Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region 857000, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hong Yang
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Ju
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhicheng Liu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
19
|
Palenca I, Basili Franzin S, Zilli A, Seguella L, Troiani A, Pepi F, Vincenzi M, Giugliano G, Catapano V, Di Filippo I, Sarnelli G, Esposito G. N-palmitoyl-d-glucosamine limits mucosal damage and VEGF-mediated angiogenesis by PPARα-dependent suppression of pAkt/mTOR/HIF1α pathway and increase in PEA levels in AOM/DSS colorectal carcinoma in mice. Phytother Res 2024; 38:5350-5362. [PMID: 39235753 DOI: 10.1002/ptr.8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
Chronic intestinal inflammation and neo-angiogenesis are interconnected in colorectal carcinoma (CRC) pathogenesis. Molecules reducing inflammation and angiogenesis hold promise for CRC prevention and treatment. N-Palmitoyl-d-glucosamine (PGA), a natural glycolipid analog with anti-inflammatory properties, has shown efficacy against acute colitis. Micronized PGA (mPGA) formulations exhibit superior anti-inflammatory activity. This study investigates the in vivo anti-angiogenic and protective effects of mPGA in a mouse model of colitis-associated CRC induced by azoxymethane/dextran sodium sulfate (AOM/DSS). CRC was induced in C57BL/6J mice using intraperitoneal azoxymethane followed by three cycles of 2.5% dextran sodium sulfate (DSS) in drinking water. Mice were treated with mPGA (30-150 mg/kg) with or without the PPARα inhibitor MK886 (10 mg/kg). At Day 70 post-azoxymethane injection, mice underwent anesthetized endoscopic colon evaluation. Post-mortem analysis of tumorigenesis and angiogenesis was performed using histological, immunohistochemical, and immunoblotting techniques. mPGA improved disease progression and survival rates in a dose- and PPARα-dependent manner in AOM/DSS-exposed mice. It reduced polyp formation, decreased pro-angiogenic CD31, pro-proliferative Ki67, and pro-inflammatory TLR4 expression levels, and inhibited VEGF and MMP-9 secretion by disrupting the pAkt/mTOR/HIF1α pathway. mPGA increased colon PEA levels, restoring anti-tumoral PPARα and wtp53 protein expression. Given its lack of toxicity, mPGA shows potential as a nutritional intervention to counteract inflammation-related angiogenesis in CRC.
Collapse
Affiliation(s)
- Irene Palenca
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Aurora Zilli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giugliano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Viviana Catapano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Italia Di Filippo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Copeland SE, Snow SM, Wan J, Matkowskyj KA, Halberg RB, Weaver BA. MAD1 upregulation sensitizes to inflammation-mediated tumor formation. PLoS Genet 2024; 20:e1011437. [PMID: 39374311 PMCID: PMC11486420 DOI: 10.1371/journal.pgen.1011437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Mitotic Arrest Deficient 1 (gene name MAD1L1), an essential component of the mitotic spindle assembly checkpoint, is frequently overexpressed in colon cancer, which correlates with poor disease-free survival. MAD1 upregulation induces two phenotypes associated with tumor promotion in tissue culture cells-low rates of chromosomal instability (CIN) and destabilization of the tumor suppressor p53. Using CRISPR/Cas9 gene editing, we generated a novel mouse model by inserting a doxycycline (dox)-inducible promoter and HA tag into the endogenous mouse Mad1l1 gene, enabling inducible expression of HA-MAD1 following exposure to dox in the presence of the reverse tet transactivator (rtTA). A modest 2-fold overexpression of MAD1 in murine colon resulted in decreased p53 expression and increased mitotic defects consistent with CIN. After exposure to the colon-specific inflammatory agent dextran sulfate sodium (DSS), 31% of mice developed colon lesions, including a mucinous adenocarcinoma, while none formed in control animals. Lesion incidence was particularly high in male mice, 57% of which developed at least one hyperplastic polyp, adenoma or adenocarcinoma in the colon. Notably, mice expressing HA-MAD1 also developed lesions in tissues in which DSS is not expected to induce inflammation. These findings demonstrate that MAD1 upregulation is sufficient to promote colon tumorigenesis in the context of inflammation in immune-competent mice.
Collapse
Affiliation(s)
- Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Santina M. Snow
- Cancer Biology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristina A. Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
Erkert L, Gamez-Belmonte R, Kabisch M, Schödel L, Patankar JV, Gonzalez-Acera M, Mahapatro M, Bao LL, Plattner C, Kühl AA, Shen J, Serneels L, De Strooper B, Neurath MF, Wirtz S, Becker C. Alzheimer's disease-related presenilins are key to intestinal epithelial cell function and gut immune homoeostasis. Gut 2024; 73:1618-1631. [PMID: 38684238 DOI: 10.1136/gutjnl-2023-331622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Li-Li Bao
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Christina Plattner
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute@UCL, University College London, London, UK
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
22
|
Zhang W, McCartney F, Xu Y, Michalowski CB, Domingues I, Kambale EK, Moreels TG, Guilbaud L, Chen C, Marotti V, Brayden DJ, Beloqui A. An in situ bioadhesive foam as a large intestinal delivery platform for antibody fragment to treat inflammatory bowel disease. J Control Release 2024; 374:254-266. [PMID: 39151828 DOI: 10.1016/j.jconrel.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biologics have been widely used as injectables in the treatment of inflammatory bowel disease (IBD). Different local treatment attempts have been developed in recent years. However, maintaining systemic levels of biologics is still crucial for achieving colitis remission. An equilibrium between systemic and local concentrations of biologics is therefore essential for treatment of colitis. Current formulations struggle to create optimal balance between drug concentrations in plasma and the colonic wall. Addressing this challenge, we developed a rectally delivered in situ foam that generates CO2via a reaction between potassium bicarbonate (PB) and citric acid (CA) without the aid of an external device. An anti-TNF-α antibody fragment (Fab) was loaded into the foam formulation, which promoted prolonged colon retention and improved Fab distribution up to proximal colon following rectal administration to mice. In addition, we observed increased plasma Fab concentrations in mice receiving the rectal Fab foam compared to a Fab solution. In a non-everted rat gut ex vivo model, a single exposure to the CO2-containing foam improved macromolecule transepithelial flux across colonic tissue by over ten-fold. Foam efficacy for Fab was investigated in a range of colitis mouse models, from acute to chronic. This non-invasive formulation platform demonstrates potential to overcome existing limitations in delivering biologics to inflamed colonic tissue.
Collapse
Affiliation(s)
- Wunan Zhang
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Fiona McCartney
- University College Dublin School of Veterinary Medicine and Conway Institute, Belfield, Dublin D4, Ireland
| | - Yining Xu
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Cécilia Bohns Michalowski
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Espoir K Kambale
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Tom G Moreels
- UCLouvain, Université Catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, 1200 Brussels, Belgium
| | - Léo Guilbaud
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Valentina Marotti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - David J Brayden
- University College Dublin School of Veterinary Medicine and Conway Institute, Belfield, Dublin D4, Ireland
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
23
|
Schwarzfischer M, Ruoss TS, Niechcial A, Lee SS, Wawrzyniak M, Laimbacher A, Atrott K, Manzini R, Wilmink M, Linzmeier L, Morsy Y, Lang S, Rogler G, Kaegi R, Scharl M, Spalinger MR. Impact of Nanoplastic Particles on Macrophage Inflammation and Intestinal Health in a Mouse Model of Inflammatory Bowel Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1350. [PMID: 39195388 DOI: 10.3390/nano14161350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The increasing presence of plastics in the human diet is raising public concern about the potential risks posed by nanoplastic (NP) particles, which can emerge from the degradation of plastic debris. NP ingestion poses particular risks to individuals with inflammatory bowel disease (IBD), as compromised epithelial barriers may facilitate NP translocation. METHODS In vitro, bone-marrow-derived macrophages (BMDMs) were exposed to 25 nm polymethacrylate (PMMA) or 50 nm polystyrene (PS) particles to assess morphological changes and alterations in pro- and anti-inflammatory gene expression. In vivo, mice received PMMA NP particles for 6 months before acute dextran sodium sulfate (DSS) colitis was induced to investigate NP impacts on intestinal health and inflammation. RESULTS PMMA and PS NP exposure in BMDMs induced morphological changes indicative of a proinflammatory phenotype characterized by enlarged amoeboid cell shapes. It also triggered an inflammatory response, indicated by increased expression of proinflammatory cytokines such as Tnfa and Il6. Unexpectedly, long-term PMMA NP administration did not affect the intestinal epithelial barrier or exacerbate acute DSS-induced colitis in mice. Colonoscopy and histological analysis revealed no NP-related changes, suggesting adverse effects on intestinal health or inflammation. CONCLUSION Our findings from animal models offer some reassurance to IBD patients regarding the effects of NP ingestion. However, variations in lifestyle and dietary habits may lead to significantly higher plastic intake in certain individuals, raising concerns about potential long-term gastrointestinal effects of lifelong plastic consumption.
Collapse
Affiliation(s)
- Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Tano S Ruoss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Sung Sik Lee
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Andrea Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Marijn Wilmink
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Luise Linzmeier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ralf Kaegi
- Department Process Engineering, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
24
|
Li L, Sun H, Tan L, Guo H, He L, Chen J, Chen S, Liu D, Zhu M, OuYang Z. Miao sour soup alleviates DSS-induced colitis in mice: modulation of gut microbiota and intestinal barrier function. Food Funct 2024; 15:8370-8385. [PMID: 39023128 DOI: 10.1039/d4fo01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Miao sour soup (MSS), a daily fermented food in Guizhou, China, is rich in microorganisms with various beneficial activities, including anti-inflammatory and antioxidant activities. However, the therapeutic effects of MSS on IBD remain unexplored. This study aimed to investigate the protective effect of MSS against colitis in mice. In this study, we examined the microbial community structure of MSS by metagenomic sequencing and also explored the protective effect of MSS on DSS-induced colitis in mice. We investigated the effects of MSS on intestinal inflammatory response and intestinal barrier function in mice. Finally, the changes in intestinal flora were analyzed based on the 16S rRNA gene sequencing results. Significantly, the experiment result shows that MSS ameliorated the severity of DSS-induced disease in mice by mitigating colitis-associated weight loss, reducing the disease activity index of IBD, alleviating colonic hemorrhagic lesions, increasing colon length, and improving colonic tissue damage. Moreover, MSS preserved intestinal barrier integrity and restored intestinal epithelial function in mice. Additionally, MSS modulated the structure and composition of the intestinal flora. Furthermore, MSS downregulated pro-inflammatory factors and attenuated the NF-κB p65 expression, thereby mitigating the inflammatory response. These findings highlight the protective effect of MSS against DSS-induced colitis, providing substantial scientific support for potential applications of MSS as a functional food.
Collapse
Affiliation(s)
- Lincao Li
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Lunbo Tan
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Hui Guo
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Lisi He
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Jieyu Chen
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Shuting Chen
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Dong Liu
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Mingjun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| | - Zijun OuYang
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| |
Collapse
|
25
|
Menche C, Schuhwerk H, Armstark I, Gupta P, Fuchs K, van Roey R, Mosa MH, Hartebrodt A, Hajjaj Y, Clavel Ezquerra A, Selvaraju MK, Geppert CI, Bärthel S, Saur D, Greten FR, Brabletz S, Blumenthal DB, Weigert A, Brabletz T, Farin HF, Stemmler MP. ZEB1-mediated fibroblast polarization controls inflammation and sensitivity to immunotherapy in colorectal cancer. EMBO Rep 2024; 25:3406-3431. [PMID: 38937629 PMCID: PMC11315988 DOI: 10.1038/s44319-024-00186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.
Collapse
Affiliation(s)
- Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Clavel Ezquerra
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Manoj K Selvaraju
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- German Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
26
|
Shimshoni E, Solomonov I, Sagi I, Ghini V. Integrated Metabolomics and Proteomics of Symptomatic and Early Presymptomatic States of Colitis. J Proteome Res 2024; 23:1420-1432. [PMID: 38497760 DOI: 10.1021/acs.jproteome.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Colitis has a multifactorial pathogenesis with a strong cross-talk among microbiota, hypoxia, and tissue metabolism. Here, we aimed to characterize the molecular signature of the disease in symptomatic and presymptomatic stages of the inflammatory process at the tissue and fecal level. The study is based on two different murine models for colitis, and HR-MAS NMR on "intact" colon tissues and LC-MS/MS on colon tissue extracts were used to derive untargeted metabolomics and proteomics information, respectively. Solution NMR was used to derive metabolomic profiles of the fecal extracts. By combining metabolomic and proteomic analyses of the tissues, we found increased anaerobic glycolysis, accompanied by an altered citric acid cycle and oxidative phosphorylation in inflamed colons; these changes associate with inflammation-induced hypoxia taking place in colon tissues. Different colitis states were also characterized by significantly different metabolomic profiles of fecal extracts, attributable to both the dysbiosis characteristic of colitis as well as the dysregulated tissue metabolism. Strong and distinctive tissue and fecal metabolomic signatures can be detected before the onset of symptoms. Therefore, untargeted metabolomics of tissues and fecal extracts provides a comprehensive picture of the changes accompanying the disease onset already at preclinical stages, highlighting the diagnostic potential of global metabolomics for inflammatory diseases.
Collapse
Affiliation(s)
- Elee Shimshoni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Veronica Ghini
- Department of Chemistry, University of Florence, Sesto Fiorentino, Florence 50019, Italy
- Center of Magnetic Resonance (CERM), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
27
|
Stumme F, Steffens N, Steglich B, Mathies F, Nawrocki M, Sabihi M, Soukou-Wargalla S, Göke E, Kempski J, Fründt T, Weidemann S, Schramm C, Gagliani N, Huber S, Bedke T. A protective effect of inflammatory bowel disease on the severity of sclerosing cholangitis. Front Immunol 2024; 15:1307297. [PMID: 38510236 PMCID: PMC10950911 DOI: 10.3389/fimmu.2024.1307297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Background Primary sclerosing cholangitis (PSC) is a chronic liver disease marked by inflammation of the bile ducts and results in the development of strictures and fibrosis. A robust clinical correlation exists between PSC and inflammatory bowel disease (IBD). At present, published data are controversial, and it is yet unclear whether IBD drives or attenuates PSC. Methods Mdr2-deficient mice or DDC-fed mice were used as experimental models for sclerosing cholangitis. Additionally, colitis was induced in mice with experimental sclerosing cholangitis, either through infection with Citrobacter rodentium or by feeding with DSS. Lastly, fibrosis levels were determined through FibroScan analysis in people with PSC and PSC-IBD. Results Using two distinct experimental models of colitis and two models of sclerosing cholangitis, we found that colitis does not aggravate liver pathology, but rather reduces liver inflammation and liver fibrosis. Likewise, people with PSC-IBD have decreased liver fibrosis compared to those with PSC alone. Conclusions We found evidence that intestinal inflammation attenuates liver pathology. This study serves as a basis for further research on the pathogenesis of PSC and PSC-IBD, as well as the molecular mechanism responsible for the protective effect of IBD on PSC development. This study could lead to the discovery of novel therapeutic targets for PSC.
Collapse
Affiliation(s)
- Friederike Stumme
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niklas Steffens
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Babett Steglich
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Mathies
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shiwa Soukou-Wargalla
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emilia Göke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorben Fründt
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Center of Diagnostics, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Isermann T, Schneider KL, Wegwitz F, De Oliveira T, Conradi LC, Volk V, Feuerhake F, Papke B, Stintzing S, Mundt B, Kühnel F, Moll UM, Schulz-Heddergott R. Enhancement of colorectal cancer therapy through interruption of the HSF1-HSP90 axis by p53 activation or cell cycle inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581507. [PMID: 38464125 PMCID: PMC10925225 DOI: 10.1101/2024.02.22.581507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The stress-associated molecular chaperone system is an actionable target in cancer therapies. It is ubiquitously upregulated in cancer tissues and enables tumorigenicity by stabilizing hundreds of oncoproteins and disturbing the stoichiometry of protein complexes. Most inhibitors target the key component heat-shock protein 90 (HSP90). However, although classical HSP90 inhibitors are highly tumor-selective, they fail in phase 3 clinical oncology trials. These failures are at least partly due to an interference with a negative feedback loop by HSP90 inhibition, known as heat-shock response (HSR): in response to HSP90 inhibition there is compensatory synthesis of stress-inducible chaperones, mediated by the transcription factor heat-shock factor 1 (HSF1). We recently identified that wildtype p53 (p53) actively reduces the HSR by repressing HSF1 via a p21-CDK4/6-MAPK-HSF1 axis. Here we test the hypothesis that in HSP90-based therapies simultaneous p53 activation or direct cell cycle inhibition interrupts the deleterious HSF1-HSR axis and improves the efficiency of HSP90 inhibitors. Indeed, we find that the clinically relevant p53 activator Idasanutlin suppresses the HSF1-HSR activity in HSP90 inhibitor-based therapies. This combination synergistically reduces cell viability and accelerates cell death in p53-proficient colorectal cancer (CRC) cells, murine tumor-derived organoids and patient-derived organoids (PDOs). Mechanistically, upon combination therapy human CRC cells strongly upregulate p53-associated pathways, apoptosis, and inflammatory immune pathways. Likewise, in the chemical AOM/DSS CRC model in mice, dual HSF1-HSP90 inhibition strongly represses tumor growth and remodels immune cell composition, yet displays only minor toxicities in mice and normal mucosa-derived organoids. Importantly, inhibition of the cyclin dependent kinases 4 and 6 (CDK4/6) under HSP90 inhibition phenocopies synergistic repression of the HSR in p53-proficient CRC cells. Even more important, in p53-deficient (mutp53-harboring) CRC cells, an HSP90 inhibition in combination with CDK4/6 inhibitors similarly suppresses the HSF1-HSR system and reduces cancer growth. Likewise, p53-mutated PDOs strongly respond to dual HSF1-HSP90 pathway inhibition and thus, providing a strategy to target CRC independent of the p53 status. In sum, activating p53 (in p53-proficient cancer cells) or inhibiting CDK4/6 (independent of the p53 status) provide new options to improve the clinical outcome of HSP90-based therapies and to enhance colorectal cancer therapy.
Collapse
Affiliation(s)
- Tamara Isermann
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Charité – Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Germany
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Björn Papke
- Charité – Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Stintzing
- Charité – Universitätsmedizin Berlin, Department of Hematology, Oncology, and Cancer Immunology, Berlin, Germany
| | - Bettina Mundt
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ute M. Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | | |
Collapse
|
29
|
Tang X, Shang Y, Yang H, Song Y, Li S, Qin Y, Song J, Chen K, Liu Y, Zhang D, Chen L. Targeted delivery of Fc-fused PD-L1 for effective management of acute and chronic colitis. Nat Commun 2024; 15:1673. [PMID: 38396052 PMCID: PMC10891058 DOI: 10.1038/s41467-024-46025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The PD-1/PD-L1 pathway in mucosal immunity is currently actively explored and considered as a target for inflammatory bowel disease (IBD) treatment. However, systemic PD-L1 administration may cause unpredictable adverse effects due to immunosuppression. Here we show that reactive oxygen species (ROS)-responsive nanoparticles enhance the efficacy and safety of PD-L1 in a mouse colitis model. The nanoparticles control the accumulation and release of PD-L1 fused to Fc (PD-L1-Fc) at inflammatory sites in the colon. The nanotherapeutics shows superiority in alleviating inflammatory symptoms over systemic PD-L1-Fc administration and mitigates the adverse effects of PD-L1-Fc administration. The nanoparticles-formulated PD-L1-Fc affects production of proinflammatory and anti-inflammatory cytokines, attenuates the infiltration of macrophages, neutrophils, and dendritic cells, increases the frequencies of Treg, Th1 and Tfh cells, reshapes the gut microbiota composition; and increases short-chain fatty acid production. In summary, PD-L1-Fc-decorated nanoparticles may provide an effective and safe strategy for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Xudong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hong Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yalan Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shan Li
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yusi Qin
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingyi Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kang Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lei Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
30
|
Thoma OM, Naschberger E, Kubánková M, Larafa I, Kramer V, Menchicchi B, Merkel S, Britzen-Laurent N, Jefremow A, Grützmann R, Koop K, Neufert C, Atreya R, Guck J, Stürzl M, Neurath MF, Waldner MJ. p21 Prevents the Exhaustion of CD4 + T Cells Within the Antitumor Immune Response Against Colorectal Cancer. Gastroenterology 2024; 166:284-297.e11. [PMID: 37734420 DOI: 10.1053/j.gastro.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND & AIMS T cells are crucial for the antitumor response against colorectal cancer (CRC). T-cell reactivity to CRC is nevertheless limited by T-cell exhaustion. However, molecular mechanisms regulating T-cell exhaustion are only poorly understood. METHODS We investigated the functional role of cyclin-dependent kinase 1a (Cdkn1a or p21) in cluster of differentiation (CD) 4+ T cells using murine CRC models. Furthermore, we evaluated the expression of p21 in patients with stage I to IV CRC. In vitro coculture models were used to understand the effector function of p21-deficient CD4+ T cells. RESULTS We observed that the activation of cell cycle regulator p21 is crucial for CD4+ T-cell cytotoxic function and that p21 deficiency in type 1 helper T cells (Th1) leads to increased tumor growth in murine CRC. Similarly, low p21 expression in CD4+ T cells infiltrated into tumors of CRC patients is associated with reduced cancer-related survival. In mouse models of CRC, p21-deficient Th1 cells show signs of exhaustion, where an accumulation of effector/effector memory T cells and CD27/CD28 loss are predominant. Immune reconstitution of tumor-bearing Rag1-/- mice using ex vivo-treated p21-deficient T cells with palbociclib, an inhibitor of cyclin-dependent kinase 4/6, restored cytotoxic function and prevented exhaustion of p21-deficient CD4+ T cells as a possible concept for future immunotherapy of human disease. CONCLUSIONS Our data reveal the importance of p21 in controlling the cell cycle and preventing exhaustion of Th1 cells. Furthermore, we unveil the therapeutic potential of cyclin-dependent kinase inhibitors such as palbociclib to reduce T-cell exhaustion for future treatment of patients with colorectal cancer.
Collapse
Affiliation(s)
- Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| | - Elisabeth Naschberger
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Division of Molecular and Experimental Surgery, Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Imen Larafa
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Viktoria Kramer
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Bianca Menchicchi
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Susanne Merkel
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Jefremow
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Robert Grützmann
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Koop
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Division of Molecular and Experimental Surgery, Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Center for Immunotherapy, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Zhu L, Xie Z, Yang G, Zhou G, Li L, Zhang S. Stanniocalcin-1 Promotes PARP1-Dependent Cell Death via JNK Activation in Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304123. [PMID: 38088577 PMCID: PMC10837357 DOI: 10.1002/advs.202304123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Stanniocalcin-1 (STC1) is upregulated by inflammation and modulates oxidative stress-induced cell death. Herein, the function of STC1 in colitis and stress-induced parthanatos, a newly identified type of programmed necrotic cell death dependent on the activation of poly-ADP ribose polymerase-1 (PARP1) is investigated. Results show that STC1 expression is markedly increased in the inflamed colonic mucosa of Crohn's disease (CD) patients and chemically-induced mice colitis models. Evaluation of parthanatos severity and pro-inflammatory cytokine expression shows that intestinal-specific Stc1 knockout (Stc1INT-KO ) mice are resistant to dextran sulfate sodium (DSS)-induced colitis and exhibit lower disease severity. STC1-overexpressing cells show an increased degree of parthanatos and proinflammatory cytokine expression, whereas STC1-knockout cells show a decreased degree of parthanatos. Co-immunoprecipitation, mass spectrometry, and proteomic analyses indicate that STC1 interacts with PARP1, which activates the JNK pathway via PARP1-JNK interactions. Moreover, inhibition of PARP1 and JNK alleviates parthanatos and inflammatory injuries triggered by STC1 overexpression. Finally, following restoration of Stc1 and Parp1 expression by adeno-associated viruses, and overexpression of Stc1 and Parp1 aggravated DSS-induced colitis in Stc1INT-KO mice. In conclusion, STC1 mediates oxidative stress-associated parthanatos and aggravates inflammation via the STC1-PARP1-JNK interactions and subsequent JNK pathway activation in CD pathogenesis.
Collapse
Affiliation(s)
- Liguo Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Zhuo Xie
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Guang Yang
- Department of Minimally Invasive InterventionState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Gaoshi Zhou
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Li Li
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Shenghong Zhang
- Department of GastroenterologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080P. R. China
| |
Collapse
|
32
|
Hamley M, Leyk S, Casar C, Liebold I, Jawazneh AA, Lanzloth C, Böttcher M, Haas H, Richardt U, Rothlin CV, Jacobs T, Huber S, Adlung L, Pelczar P, Henao-Mejia J, Bosurgi L. Nmes1 is a novel regulator of mucosal response influencing intestinal healing potential. Eur J Immunol 2024; 54:e2350434. [PMID: 37971166 DOI: 10.1002/eji.202350434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
The initiation of tissue remodeling following damage is a critical step in preventing the development of immune-mediated diseases. Several factors contribute to mucosal healing, leading to innovative therapeutic approaches for managing intestinal disorders. However, uncovering alternative targets and gaining mechanistic insights are imperative to enhance therapy efficacy and broaden its applicability across different intestinal diseases. Here we demonstrate that Nmes1, encoding for Normal Mucosa of Esophagus-Specific gene 1, also known as Aa467197, is a novel regulator of mucosal healing. Nmes1 influences the macrophage response to the tissue remodeling cytokine IL-4 in vitro. In addition, using two murine models of intestinal damage, each characterized by a type 2-dominated environment with contrasting functions, the ablation of Nmes1 results in decreased intestinal regeneration during the recovery phase of colitis, while enhancing parasitic egg clearance and reducing fibrosis during the advanced stages of Schistosoma mansoni infection. These outcomes are associated with alterations in CX3CR1+ macrophages, cells known for their wound-healing potential in the inflamed colon, hence promising candidates for cell therapies. All in all, our data indicate Nmes1 as a novel contributor to mucosal healing, setting the basis for further investigation into its potential as a new target for the treatment of colon-associated inflammation.
Collapse
Affiliation(s)
- Madeleine Hamley
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Imke Liebold
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Amirah Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Clarissa Lanzloth
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marius Böttcher
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ulricke Richardt
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorenz Adlung
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jorge Henao-Mejia
- The Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Marotti V, Xu Y, Bohns Michalowski C, Zhang W, Domingues I, Ameraoui H, Moreels TG, Baatsen P, Van Hul M, Muccioli GG, Cani PD, Alhouayek M, Malfanti A, Beloqui A. A nanoparticle platform for combined mucosal healing and immunomodulation in inflammatory bowel disease treatment. Bioact Mater 2024; 32:206-221. [PMID: 37859689 PMCID: PMC10582360 DOI: 10.1016/j.bioactmat.2023.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Current treatments for inflammatory bowel disease (IBD) treatment consist of anti-inflammatory products. In this study, we sought to induce the physiological secretion of glucagon-like peptide 2, a peptide with intestinal growth-promoting activity, via nanoparticles while simultaneously providing with immunomodulation by tailoring the nanoparticle surface. To this end, we developed hybrid lipid hyaluronate-KPV conjugated nanoparticles loaded with teduglutide for combination therapy in IBD. The nanocarriers induced (or did not induce) immunosuppression depending on the presence (or absence) of a hyaluronan-KPV functionalization. This strategy holds promise as a nanoparticle platform for combined mucosal healing and immunomodulation in IBD treatment.
Collapse
Affiliation(s)
- Valentina Marotti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Yining Xu
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Cécilia Bohns Michalowski
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Wunan Zhang
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Hafsa Ameraoui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Tom G. Moreels
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, 1200 Brussels, Belgium
- Cliniques universitaires Saint-Luc, Department of Hepato-Gastroenterology, Brussels, Belgium
| | - Pieter Baatsen
- EM-platform, VIB Bio Imaging Core, KU Leuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, 1200 Brussels, Belgium
| | - Giulio G. Muccioli
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Patrice D. Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Group, 1200 Brussels, Belgium
- UCLouvain, Institute of Experimental and Clinical Research, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Mireille Alhouayek
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids, 1200 Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
34
|
Gurbatri CR, Radford GA, Vrbanac L, Im J, Thomas EM, Coker C, Taylor SR, Jang Y, Sivan A, Rhee K, Saleh AA, Chien T, Zandkarimi F, Lia I, Lannagan TRM, Wang T, Wright JA, Kobayashi H, Ng JQ, Lawrence M, Sammour T, Thomas M, Lewis M, Papanicolas L, Perry J, Fitzsimmons T, Kaazan P, Lim A, Stavropoulos AM, Gouskos DA, Marker J, Ostroff C, Rogers G, Arpaia N, Worthley DL, Woods SL, Danino T. Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia. Nat Commun 2024; 15:646. [PMID: 38245513 PMCID: PMC10799955 DOI: 10.1038/s41467-024-44776-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.
Collapse
Affiliation(s)
- Candice R Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Georgette A Radford
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Elaine M Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Samuel R Taylor
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - YoungUk Jang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ayelet Sivan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kyu Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anas A Saleh
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tiffany Chien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Ioana Lia
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Tamsin R M Lannagan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Tongtong Wang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Josephine A Wright
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Hiroki Kobayashi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jia Q Ng
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Matt Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Tarik Sammour
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Michelle Thomas
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Mark Lewis
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Lito Papanicolas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Joanne Perry
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Tracy Fitzsimmons
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Patricia Kaazan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Amanda Lim
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | | | - Dion A Gouskos
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Julie Marker
- Cancer Voices SA, Adelaide, South Australia, Australia
| | - Cheri Ostroff
- University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Geraint Rogers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10027, USA
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Spring Hill, 4000, Queensland, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10027, USA.
- Data Science Institute, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
35
|
Li M, Ding Y, Wei J, Dong Y, Wang J, Dai X, Yan J, Chu F, Zhang K, Meng F, Ma J, Zhong W, Wang B, Gao Y, Yang R, Liu X, Su X, Cao H. Gut microbiota metabolite indole-3-acetic acid maintains intestinal epithelial homeostasis through mucin sulfation. Gut Microbes 2024; 16:2377576. [PMID: 39068517 PMCID: PMC11285290 DOI: 10.1080/19490976.2024.2377576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.
Collapse
Affiliation(s)
- Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yue Dong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jing Yan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Feifei Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
36
|
Díaz-Basabe A, Lattanzi G, Perillo F, Amoroso C, Baeri A, Farini A, Torrente Y, Penna G, Rescigno M, Ghidini M, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes 2024; 16:2388801. [PMID: 39132842 PMCID: PMC11321422 DOI: 10.1080/19490976.2024.2388801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.
Collapse
Affiliation(s)
- Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
37
|
Palenca I, Seguella L, Zilli A, Basili Franzin S, Del Re A, Pepi F, Troiani A, Pesce M, Rurgo S, De Palma FDE, Luglio G, Tropeano FP, Sarnelli G, Esposito G. Intrarectal Administration of Adelmidrol plus Hyaluronic Acid Gel Ameliorates Experimental Colitis in Mice and Inhibits Pro-Inflammatory Response in Ex Vivo Cultured Biopsies Derived from Ulcerative Colitis-Affected Patients. Int J Mol Sci 2023; 25:165. [PMID: 38203336 PMCID: PMC10778920 DOI: 10.3390/ijms25010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Improving clinical outcomes and delaying disease recrudescence in Ulcerative Colitis (UC) patients is crucial for clinicians. In addition to traditional and new pharmacological therapies that utilize biological drugs, the development of medical devices that can ameliorate UC and facilitate the remission phase should not be overlooked. Drug-based therapy requires time to be personalized and to evaluate the benefit/risk ratio. However, the increasing number of diagnosed UC cases worldwide necessitates the exploration of new strategies to enhance clinical outcomes. By incorporating medical devices alongside pharmacological treatments, clinicians can provide additional support to UC patients, potentially improving their condition and slowing down the recurrence of symptoms. Chemically identified as an azelaic acid derivative and palmitoylethanolamide (PEA) analog, adelmidrol is a potent anti-inflammatory and antioxidant compound. In this study, we aimed to evaluate the effect of an intrarectal administration of 2% adelmidrol (Ade) and 0.1% hyaluronic acid (HA) gel formulation in both the acute and resolution phase of a mouse model of colitis induced via DNBS enema. We also investigated its activity in cultured human colon biopsies isolated from UC patients in the remission phase at follow-up when exposed in vitro to a cytomix challenge. Simultaneously, with its capacity to effectively alleviate chronic painful inflammatory cystitis when administered intravesically to urological patients such as Vessilen, the intrarectal administration of Ade/HA gel has shown remarkable potential in improving the course of colitis. This treatment approach has demonstrated a reduction in the histological damage score and an increase in the expression of ZO-1 and occludin tight junctions in both in vivo studies and human specimens. By acting independently on endogenous PEA levels and without any noticeable systemic absorption, the effectiveness of Ade/HA gel is reliant on a local antioxidant mechanism that functions as a "barrier effect" in the inflamed gut. Building on the findings of this preliminary study, we are confident that the Ade/HA gel medical device holds promise as a valuable adjunct in supporting traditional anti-UC therapies.
Collapse
Affiliation(s)
- Irene Palenca
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Aurora Zilli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Alessandro Del Re
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.P.); (A.T.)
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.P.); (A.T.)
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy;
| | - Gaetano Luglio
- Endoscopic Surgery Unit, Department of Medical and Surgical Gastrointestinal Disease, Federico II University of Naples, 80131 Naples, Italy; (G.L.); (F.P.T.)
| | - Francesca Paola Tropeano
- Endoscopic Surgery Unit, Department of Medical and Surgical Gastrointestinal Disease, Federico II University of Naples, 80131 Naples, Italy; (G.L.); (F.P.T.)
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| |
Collapse
|
38
|
Ebihara S, Urashima T, Amano W, Yamamura H, Konishi N. Macrophage polarization toward M1 phenotype in T cell transfer colitis model. BMC Gastroenterol 2023; 23:411. [PMID: 38012544 PMCID: PMC10680295 DOI: 10.1186/s12876-023-03054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND T cell transfer colitis model is often used to study the CD4+ T cell functions in the intestine. However, the specific roles of macrophages in colitis remain unclear. In this study, we aimed to evaluate the phenotype and functions of macrophages in the colonic lamina propria (LP) in a colitis model. METHODS Colitis was induced in scid mice via the adaptive transfer of CD4+CD45RBhi T cells. Then, flow cytometry was used to determine the number of macrophages in the colonic LP and expression of cytokines in macrophages at the onset of colitis. Moreover, M1/M2 macrophage markers were detected in the colonic LP during colitis development using high-dimensional single-cell data and gating-based analyses. Expression levels of M1 markers in macrophages isolated from the colonic LP were measured using quantitative reverse transcription-polymerase chain reaction. Additionally, macrophages were co-cultured with T cells isolated from the colon to assess colitogenic T cell activation. RESULTS Infiltration of macrophages into the colon increased with the development of colitis in the T cell transfer colitis model. M1/M2 macrophage markers were observed in this model, as observed in the colon of patients with inflammatory bowel disease (IBD). Moreover, number of M1 macrophages increased, whereas that of M2 macrophages decreased in the colonic LP during colitis development. M1 macrophages were identified as the main source of inflammatory cytokine production, and colitogenic T cells were activated via interactions with these macrophages. CONCLUSIONS Our findings revealed that macrophages polarized toward the M1 phenotype in LP during colitis development in the T cell transfer colitis model. Therefore, the colitis model is suitable for the evaluation of the efficacy of macrophage-targeted drugs in human IBD treatment. Furthermore, this model can be used to elucidate the in vivo functions of macrophages in the colon of patients with IBD.
Collapse
Affiliation(s)
- Shin Ebihara
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
| | - Toshiki Urashima
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Wataru Amano
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hideto Yamamura
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Noriko Konishi
- Biological/Pharmacological Research Laboratories, Takatsuki Research Center, Central Pharmaceutical Research Institute, Japan Tobacco, Inc, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
39
|
Zhou X, Gou K, Xu J, Jian L, Luo Y, Li C, Guan X, Qiu J, Zou J, Zhang Y, Zhong X, Zeng T, Zhou Y, Xiao Y, Yang X, Chen W, Gao P, Liu C, Zhou Y, Tao L, Liu X, Cen X, Chen Q, Sun Q, Luo Y, Zhao Y. Discovery and Optimization of Novel hDHODH Inhibitors for the Treatment of Inflammatory Bowel Disease. J Med Chem 2023; 66:14755-14786. [PMID: 37870434 DOI: 10.1021/acs.jmedchem.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
As a key rate-limiting enzyme in the de novo synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (hDHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1H-pyrazolo[3,4-b]pyridine scaffold was identified as an hDHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (w2), which was found to be the most promising and drug-like compound with potent inhibitory activity against hDHODH (IC50 = 173.4 nM). Compound w2 demonstrated acceptable pharmacokinetic characteristics and alleviated the severity of acute ulcerative colitis induced by dextran sulfate sodium in a dose-dependent manner. Notably, w2 exerted better therapeutic effects on ulcerative colitis than hDHODH inhibitor vidofludimus and Janus kinase (JAK) inhibitor tofacitinib. Taken together, w2 is a promising hDHODH inhibitor for the treatment of IBD and deserves to be developed as a preclinical candidate.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kun Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunan Jian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chungen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zhang
- School of Medicine, Tibet University, Lhasa 850000, China
| | - Xi Zhong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Zeng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhou Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Weijie Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingchen Liu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Youfu Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Feng Y, Yuan Q, Newsome RC, Robinson T, Bowman RL, Zuniga AN, Hall KN, Bernsten CM, Shabashvili DE, Krajcik KI, Gunaratne C, Zaroogian ZJ, Venugopal K, Casellas Roman HL, Levine RL, Chatila WK, Yaeger R, Riva A, Jobin C, Kopinke D, Avram D, Guryanova OA. Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. J Exp Med 2023; 220:e20230011. [PMID: 37615936 PMCID: PMC10450614 DOI: 10.1084/jem.20230011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined as clonal expansion of mutant hematopoietic stem cells absent diagnosis of a hematologic malignancy. Presence of CH in solid tumor patients, including colon cancer, correlates with shorter survival. We hypothesized that bone marrow-derived cells with heterozygous loss-of-function mutations of DNMT3A, the most common genetic alteration in CH, contribute to the pathogenesis of colon cancer. In a mouse model that combines colitis-associated colon cancer (CAC) with experimental CH driven by Dnmt3a+/Δ, we found higher tumor penetrance and increased tumor burden compared with controls. Histopathological analysis revealed accentuated colonic epithelium injury, dysplasia, and adenocarcinoma formation. Transcriptome profiling of colon tumors identified enrichment of gene signatures associated with carcinogenesis, including angiogenesis. Treatment with the angiogenesis inhibitor axitinib eliminated the colon tumor-promoting effect of experimental CH driven by Dnmt3a haploinsufficiency and rebalanced hematopoiesis. This study provides conceptually novel insights into non-tumor-cell-autonomous effects of hematopoietic alterations on colon carcinogenesis and identifies potential therapeutic strategies.
Collapse
Affiliation(s)
- Yang Feng
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Qingchen Yuan
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Rachel C. Newsome
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley N. Zuniga
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kendra N. Hall
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Cassandra M. Bernsten
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Daniil E. Shabashvili
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kathryn I. Krajcik
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Chamara Gunaratne
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Zachary J. Zaroogian
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Heidi L. Casellas Roman
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K. Chatila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Christian Jobin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
- Immunology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| |
Collapse
|
41
|
Niechcial A, Schwarzfischer M, Wawrzyniak M, Atrott K, Laimbacher A, Morsy Y, Katkeviciute E, Häfliger J, Westermann P, Akdis CA, Scharl M, Spalinger MR. Spermidine Ameliorates Colitis via Induction of Anti-Inflammatory Macrophages and Prevention of Intestinal Dysbiosis. J Crohns Colitis 2023; 17:1489-1503. [PMID: 36995738 PMCID: PMC10588784 DOI: 10.1093/ecco-jcc/jjad058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND AIMS Exacerbated immune activation, intestinal dysbiosis and a disrupted intestinal barrier are common features among inflammatory bowel disease [IBD] patients. The polyamine spermidine, which is naturally present in all living organisms, is an integral component of the human diet, and exerts beneficial effects in human diseases. Here, we investigated whether spermidine treatment ameliorates intestinal inflammation and offers therapeutic potential for IBD treatment. METHODS We assessed the effect of oral spermidine administration on colitis severity in the T cell transfer colitis model in Rag2-/- mice by endoscopy, histology and analysis of markers of molecular inflammation. The effects on the intestinal microbiome were determined by 16S rDNA sequencing of mouse faeces. The impact on intestinal barrier integrity was evaluated in co-cultures of patient-derived macrophages with intestinal epithelial cells. RESULTS Spermidine administration protected mice from intestinal inflammation in a dose-dependent manner. While T helper cell subsets remained unaffected, spermidine promoted anti-inflammatory macrophages and prevented the microbiome shift from Firmicutes and Bacteroides to Proteobacteria, maintaining a healthy gut microbiome. Consistent with spermidine as a potent activator of the anti-inflammatory molecule protein tyrosine phosphatase non-receptor type 2 [PTPN2], its colitis-protective effect was dependent on PTPN2 in intestinal epithelial cells and in myeloid cells. The loss of PTPN2 in epithelial and myeloid cells, but not in T cells, abrogated the barrier-protective, anti-inflammatory effect of spermidine and prevented the anti-inflammatory polarization of macrophages. CONCLUSION Spermidine reduces intestinal inflammation by promoting anti-inflammatory macrophages, maintaining a healthy microbiome and preserving epithelial barrier integrity in a PTPN2-dependent manner.
Collapse
Affiliation(s)
- Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Janine Häfliger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Yakou MH, Ghilas S, Tran K, Liao Y, Afshar-Sterle S, Kumari A, Schmid K, Dijkstra C, Inguanti C, Ostrouska S, Wilcox J, Smith M, Parathan P, Allam A, Xue HH, Belz GT, Mariadason JM, Behren A, Drummond GR, Ruscher R, Williams DS, Pal B, Shi W, Ernst M, Raghu D, Mielke LA. TCF-1 limits intraepithelial lymphocyte antitumor immunity in colorectal carcinoma. Sci Immunol 2023; 8:eadf2163. [PMID: 37801516 DOI: 10.1126/sciimmunol.adf2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/07/2023] [Indexed: 10/08/2023]
Abstract
Intraepithelial lymphocytes (IELs), including αβ and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.
Collapse
Affiliation(s)
- Marina H Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Sonia Ghilas
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kelly Tran
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Anita Kumari
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Kevin Schmid
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Christine Dijkstra
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Chantelle Inguanti
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Jordan Wilcox
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Maxine Smith
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Pavitha Parathan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, Faculty of Medicine, University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research; Department of Microbiology, Anatomy, Physiology and Pharmacology; and School of Agriculture, Biomedicine, and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Dinesh Raghu
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
43
|
Li S, Wu T, Wu J, Zhou J, Yang H, Chen L, Chen W, Zhang D. Cyclosporine A-Encapsulated pH/ROS Dual-Responsive Nanoformulations for the Targeted Treatment of Colitis in Mice. ACS Biomater Sci Eng 2023; 9:5737-5746. [PMID: 37733924 DOI: 10.1021/acsbiomaterials.3c01191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease (IBD) is a frequently occurring disease that seriously influences the patient's quality of life. To decrease adverse effects and improve efficacy of therapeutics, nanomedicines have been widely used to treat IBD. However, how to thoroughly release payloads under an inflammatory microenvironment and synergistic therapy of IBD need to be further investigated. To address this issue, cyclosporine A (CsA)-loaded, folic acid (FA)-modified, pH and reactive oxygen species (ROS) dual-responsive nanoparticles (FA-CsA NPs) were fabricated using pH/ROS-responsive material as carrier. The prepared FA-CsA NPs had spherical shape and uniform size distribution and could smartly release their payloads under acid and/or ROS microenvironment. In vitro experiments demonstrated that FA-CsA NPs can be effectively internalized by activated macrophages, and the internalized NPs could down-regulate the expression of proinflammatory cytokines compared to free drug or nontargeted NPs. In vivo experiments verified that FA-CsA NPs significantly accumulated at inflammatory colon tissues and the accumulated NPs obviously improved the symptoms of colitis in mice without obvious adverse effects. In conclusion, our results provided a candidate for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Shan Li
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiangling Zhou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hong Yang
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
44
|
Spalinger M, Schwarzfischer M, Niechcial A, Atrott K, Laimbacher A, Jirkof P, Scharl M. Evaluation of the effect of tramadol, paracetamol and metamizole on the severity of experimental colitis. Lab Anim 2023; 57:529-540. [PMID: 36960681 DOI: 10.1177/00236772231163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Application of dextran sodium sulfate (DSS) is often used to induce experimental colitis. Current state of the art is to refrain from the use of analgesics due to their possible interaction with the model. However, the use of analgesics would be beneficial to reduce the overall constraint imposed on the animals. Here, we analyzed the effect of the analgesics Dafalgan (paracetamol), Tramal (tramadol) and Novalgin (metamizole) on DSS-induced colitis. To study the effect of those analgesics in colitis mouse models, acute and chronic colitis was induced in female C57BL6 mice by DSS administration in the drinking water. Analgesics were added to the drinking water on days four to seven (acute colitis) or on days six to nine of each DSS cycle (chronic colitis). Tramadol and paracetamol had minor effects on colitis severity. Tramadol reduced water uptake and activity levels slightly, while mice receiving paracetamol presented with a better overall appearance. Metamizole, however, significantly reduced water uptake, resulting in pronounced weight loss. In conclusion, our experiments show that tramadol and paracetamol are viable options for the use in DSS-induced colitis models. However, paracetamol seems to be slightly more favorable since it promoted the overall wellbeing of the animals upon DSS administration without interfering with typical readouts of colitis severity.
Collapse
Affiliation(s)
- Marianne Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Andrea Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Paulin Jirkof
- Institute of Animal Welfare and 3R, University of Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
45
|
Hidalgo-García L, Ruiz-Malagon AJ, Huertas F, Rodríguez-Sojo MJ, Molina-Tijeras JA, Diez-Echave P, Becerra P, Mirón B, Morón R, Rodríguez-Nogales A, Gálvez J, Rodríguez-Cabezas ME, Anderson P. Administration of intestinal mesenchymal stromal cells reduces colitis-associated cancer in C57BL/6J mice modulating the immune response and gut dysbiosis. Pharmacol Res 2023; 195:106891. [PMID: 37586618 DOI: 10.1016/j.phrs.2023.106891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have a higher risk of developing colitis-associated colorectal cancer (CAC) with poor prognosis. IBD etiology remains undefined but involves environmental factors, genetic predisposition, microbiota imbalance (dysbiosis) and mucosal immune defects. Mesenchymal stromal cell (MSC) injections have shown good efficacy in reducing intestinal inflammation in animal and human studies. However, their effect on tumor growth in CAC and their capacity to restore gut dysbiosis are not clear. METHODS The outcome of systemic administrations of in vitro expanded human intestinal MSCs (iMSCs) on tumor growth in vivo was evaluated using the AOM/DSS model of CAC in C57BL/6J mice. Innate and adaptive immune responses in blood, mesenteric lymph nodes (MLNs) and colonic tissue were analyzed by flow cytometry. Intestinal microbiota composition was evaluated by 16S rRNA amplicon sequencing. RESULTS iMSCs significantly inhibited colitis and intestinal tumor development, reducing IL-6 and COX-2 expression, and IL-6/STAT3 and PI3K/Akt signaling. iMSCs decreased colonic immune cell infiltration, and partly restored intestinal monocyte homing and differentiation. iMSC administration increased the numbers of Tregs and IFN-γ+CD8+ T cells in the MLNs while decreasing the IL-4+Th2 response. It also ameliorated intestinal dysbiosis in CAC mice, increasing diversity and Bacillota/Bacteroidota ratio, as well as Akkermansia abundance, while reducing Alistipes and Turicibacter, genera associated with inflammation. CONCLUSION Administration of iMSCs protects against CAC, ameliorating colitis and partially reverting intestinal dysbiosis, supporting the use of MSCs for the treatment of IBD.
Collapse
Affiliation(s)
- Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Antonio Jesús Ruiz-Malagon
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Francisco Huertas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Benito Mirón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Cirugía, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica En Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), School of Pharmacy, University of Granada, 18071 Granada, Spain.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; Departamento de Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18016 Granada, Spain
| |
Collapse
|
46
|
Cooper RM, Wright JA, Ng JQ, Goyne JM, Suzuki N, Lee YK, Ichinose M, Radford G, Ryan FJ, Kumar S, Thomas EM, Vrbanac L, Knight R, Woods SL, Worthley DL, Hasty J. Engineered bacteria detect tumor DNA. Science 2023; 381:682-686. [PMID: 37561843 PMCID: PMC10852993 DOI: 10.1126/science.adf3974] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Synthetic biology has developed sophisticated cellular biosensors to detect and respond to human disease. However, biosensors have not yet been engineered to detect specific extracellular DNA sequences and mutations. Here, we engineered naturally competent Acinetobacter baylyi to detect donor DNA from the genomes of colorectal cancer (CRC) cells, organoids, and tumors. We characterized the functionality of the biosensors in vitro with coculture assays and then validated them in vivo with sensor bacteria delivered to mice harboring colorectal tumors. We observed horizontal gene transfer from the tumor to the sensor bacteria in our mouse model of CRC. This cellular assay for targeted, CRISPR-discriminated horizontal gene transfer (CATCH) enables the biodetection of specific cell-free DNA.
Collapse
Affiliation(s)
- Robert M. Cooper
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA, 92093
| | - Josephine A. Wright
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
| | - Jia Q. Ng
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Jarrad M. Goyne
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
| | - Nobumi Suzuki
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Young K. Lee
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Mari Ichinose
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Georgette Radford
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Feargal J. Ryan
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia, 5042
| | - Shalni Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093
| | - Elaine M. Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Rob Knight
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA, 92093
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, 92093
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093
| | - Susan L. Woods
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia, 5000
| | - Daniel L. Worthley
- Precision Cancer Medicine Theme, South Australia Health and Medical Research Institute, Adelaide, SA, Australia, 5000
- Colonoscopy Clinic, Brisbane, QLD, Australia, 4000
| | - Jeff Hasty
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA, 92093
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA, 92093
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
47
|
Liu Y, Ji Y, Jiang R, Fang C, Shi G, Cheng L, Zuo Y, Ye Y, Su X, Li J, Wang H, Wang Y, Lin Y, Dai L, Zhang S, Deng H. Reduced smooth muscle-fibroblasts transformation potentially decreases intestinal wound healing and colitis-associated cancer in ageing mice. Signal Transduct Target Ther 2023; 8:294. [PMID: 37553378 PMCID: PMC10409725 DOI: 10.1038/s41392-023-01554-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/24/2023] [Accepted: 06/24/2023] [Indexed: 08/10/2023] Open
Abstract
Cancer and impaired tissue wound healing with ageing are closely related to the quality of life of the elderly population. Given the increased incidence of cancer and the population ageing trend globally, it is very important to explore how ageing impairs tissue wound healing and spontaneous cancer. In a murine model of DSS-induced acute colitis and AOM/DSS-induced colitis-associated cancer (CAC), we found ageing significantly decreases intestinal wound healing and simultaneous CAC initiation, although ageing does not affect the incidence of AOM-induced, sporadic non-inflammatory CRC. Mechanistically, reduced fibroblasts were observed in the colitis microenvironment of ageing mice. Through conditional lineage tracing, an important source of fibroblasts potentially derived from intestinal smooth muscle cells (ISMCs) was identified orchestrating intestinal wound healing and CAC initiation in young mice. However, the number of transformed fibroblasts from ISMCs significantly decreased in ageing mice, accompanied by decreased intestinal wound healing and decreased CAC initiation. ISMCs-fibroblasts transformation in young mice and reduction of this transformation in ageing mice were also confirmed by ex-vivo intestinal muscular layer culture experiments. We further found that activation of YAP/TAZ in ISMCs is required for the transformation of ISMCs into fibroblasts. Meanwhile, the reduction of YAP/TAZ activation in ISMCs during intestinal wound healing was observed in ageing mice. Conditional knockdown of YAP/TAZ in ISMCs of young mice results in reduced fibroblasts in the colitis microenvironment, decreased intestinal wound healing and decreased CAC initiation, similar to the phenotype of ageing mice. In addition, the data from intestine samples derived from inflammatory bowel disease (IBD) patients show that activation of YAP/TAZ also occurs in ISMCs from these patients. Collectively, our work reveals an important role of the ageing stromal microenvironment in intestinal wound healing and CAC initiation. Furthermore, our work also identified a potential source of fibroblasts involved in colitis and CAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Ruiyi Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lin Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yinan Zuo
- Respiratory Microbiome Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yuan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Yi Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, The People's Republic of China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|
48
|
Ruiz-Malagón AJ, Hidalgo-García L, Rodríguez-Sojo MJ, Molina-Tijeras JA, García F, Diez-Echave P, Vezza T, Becerra P, Marchal JA, Redondo-Cerezo E, Hausmann M, Rogler G, Garrido-Mesa J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J. Tigecycline reduces tumorigenesis in colorectal cancer via inhibition of cell proliferation and modulation of immune response. Biomed Pharmacother 2023; 163:114760. [PMID: 37119741 DOI: 10.1016/j.biopha.2023.114760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND and Purpose: Colorectal cancer (CRC) is one of the cancers with the highest incidence in which APC gene mutations occur in almost 80% of patients. This mutation leads to β-catenin aberrant accumulation and an uncontrolled proliferation. Apoptosis evasion, changes in the immune response and microbiota composition are also events that arise in CRC. Tetracyclines are drugs with proven antibiotic and immunomodulatory properties that have shown cytotoxic activity against different tumor cell lines. EXPERIMENTAL APPROACH The effect of tigecycline was evaluated in vitro in HCT116 cells and in vivo in a colitis-associated colorectal cancer (CAC) murine model. 5-fluorouracil was assayed as positive control in both studies. KEY RESULTS Tigecycline showed an antiproliferative activity targeting the Wnt/β-catenin pathway and downregulating STAT3. Moreover, tigecycline induced apoptosis through extrinsic, intrinsic and endoplasmic reticulum pathways converging on an increase of CASP7 levels. Furthermore, tigecycline modulated the immune response in CAC, reducing the cancer-associated inflammation through downregulation of cytokines expression. Additionally, tigecycline favored the cytotoxic activity of cytotoxic T lymphocytes (CTLs), one of the main immune defenses against tumor cells. Lastly, the antibiotic reestablished the gut dysbiosis in CAC mice increasing the abundance of bacterial genera and species, such as Akkermansia and Parabacteroides distasonis, that act as protectors against tumor development. These findings resulted in a reduction of the number of tumors and an amelioration of the tumorigenesis process in CAC. CONCLUSION AND IMPLICATIONS Tigecycline exerts a beneficial effect against CRC supporting the use of this antibiotic for the treatment of this disease.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio Microbiología, Hospital Universitario Clínico San Cecilio, 18100 Granada, Spain; Ciber de Enfermedades Infecciosas, CiberInfecc, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - Eduardo Redondo-Cerezo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Aparato Digestivo. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - José Garrido-Mesa
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
49
|
Buehler A, Brown E, Paulus L, Eckstein M, Thoma O, Oraiopoulou M, Rother U, Hoerning A, Hartmann A, Neurath MF, Woelfle J, Friedrich O, Waldner MJ, Knieling F, Bohndiek SE, Regensburger AP. Transrectal Absorber Guide Raster-Scanning Optoacoustic Mesoscopy for Label-Free In Vivo Assessment of Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300564. [PMID: 37083262 PMCID: PMC10288266 DOI: 10.1002/advs.202300564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Optoacoustic imaging (OAI) enables microscale imaging of endogenous chromophores such as hemoglobin at significantly higher penetration depths compared to other optical imaging technologies. Raster-scanning optoacoustic mesoscopy (RSOM) has recently been shown to identify superficial microvascular changes associated with human skin pathologies. In animal models, the imaging depth afforded by RSOM can enable entirely new capabilities for noninvasive imaging of vascular structures in the gastrointestinal tract, but exact localization of intra-abdominal organs is still elusive. Herein the development and application of a novel transrectal absorber guide for RSOM (TAG-RSOM) is presented to enable accurate transabdominal localization and assessment of colonic vascular networks in vivo. The potential of TAG-RSOM is demonstrated through application during mild and severe acute colitis in mice. TAG-RSOM enables visualization of transmural vascular networks, with changes in colon wall thickness, blood volume, and OAI signal intensities corresponding to colitis-associated inflammatory changes. These findings suggest TAG-RSOM can provide a novel monitoring tool in preclinical IBD models, refining animal procedures and underlines the capabilities of such technologies to address inflammatory bowel diseases in humans.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Emma Brown
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Lars‐Philip Paulus
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus Eckstein
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oana‐Maria Thoma
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Mariam‐Eleni Oraiopoulou
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - André Hoerning
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Arndt Hartmann
- Institute of PathologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Maximilian J. Waldner
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91052ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E. Bohndiek
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
50
|
Lattanzi G, Strati F, Díaz-Basabe A, Perillo F, Amoroso C, Protti G, Rita Giuffrè M, Iachini L, Baeri A, Baldari L, Cassinotti E, Ghidini M, Galassi B, Lopez G, Noviello D, Porretti L, Trombetta E, Messuti E, Mazzarella L, Iezzi G, Nicassio F, Granucci F, Vecchi M, Caprioli F, Facciotti F. iNKT cell-neutrophil crosstalk promotes colorectal cancer pathogenesis. Mucosal Immunol 2023; 16:326-340. [PMID: 37004750 DOI: 10.1016/j.mucimm.2023.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.
Collapse
Affiliation(s)
- Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Iachini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ludovica Baldari
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Messuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giandomenica Iezzi
- Department of Visceral Surgery, EOC Translational Research Laboratory, Bellinzona, Switzerland
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|