1
|
Wanniarachchi HI, Schuetze R, Deng Y, Hamal KB, Pavlich CI, Tankoano PEO, Tamminga C, Hammers H, Kapur P, Bueno LMA, Rayas R, Wang T, Liu L, Trawick ML, Pinney KG, Mason RP. Evaluating Therapeutic Efficacy of the Vascular Disrupting Agent OXi8007 Against Kidney Cancer in Mice. Cancers (Basel) 2025; 17:771. [PMID: 40075618 PMCID: PMC11898701 DOI: 10.3390/cancers17050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
There has been much progress in treating kidney cancer, with several new drugs being approved over the last few years [...].
Collapse
Affiliation(s)
- Hashini I. Wanniarachchi
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Regan Schuetze
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Khagendra B. Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Cyprian I. Pavlich
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Pouguiniseli E. O. Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Caleb Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Hans Hammers
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8837, USA;
| | - Payal Kapur
- Department of Pathology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9234, USA;
| | - Lorena M. A. Bueno
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Ricardo Rayas
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Tianyuan Wang
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Li Liu
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA; (Y.D.); (K.B.H.); (C.I.P.); (P.E.O.T.); (C.T.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9058, USA; (H.I.W.); (R.S.); (L.M.A.B.); (R.R.); (T.W.)
| |
Collapse
|
2
|
Vairin R, Tamminga C, Shi Z, Borchardt C, Jambulapati J, Bai R, Wanniarachchi H, Bueno L, Hamel E, Mason RP, Trawick ML, Pinney KG. Design, Synthesis and Biological Evaluation of 2-Phenyl Indole Analogues of OXi8006 as Colchicine Site Inhibitors of Tubulin Polymerization and Vascular Disrupting Agents. Bioorg Med Chem 2025; 118:117981. [PMID: 39667146 PMCID: PMC11834100 DOI: 10.1016/j.bmc.2024.117981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Inhibitors of tubulin polymerization represent a promising therapeutic approach for the treatment of solid tumors. Molecules that bind to the colchicine site are of interest as they can function with a dual mechanism of action as both potent antiproliferative agents and tumor-selective vascular disrupting agents (VDAs). One such example is a 2-aryl-3-aroyl-indole molecule (OXi8006) from our laboratory that demonstrates potent inhibition of tubulin polymerization and strong antiproliferative activity (cytotoxicity) against a variety of human cancer cell lines. A water-soluble prodrug OXi8007, synthesized from OXi8006, demonstrates in vivo disruption of tumor-associated microvessels in several tumor types (mouse models). The molecular framework of OXi8006 inspired a series of fourteen new 2-aryl-3-aroyl-indole analogues that incorporated various functional group modifications on both the indole core and the aroyl ring. Electron withdrawing and donating groups at the mono-substituted 3' position and the di-substituted 3',5' positions were all accommodated while maintaining inhibition of tubulin polymerization (IC50 < 5 μM), with several analogues demonstrating activity comparable to OXi8006 and the benchmark natural product combretastatin A-4 (CA4). Preliminary structure-activity relationship (SAR) studies were further enhanced by molecular docking to predict possible colchicine site interactions. Two analogues (KGP366 and KGP369) previously synthesized in our laboratory were re-synthesized using a somewhat modified route to increase synthetic efficiency and were subsequently converted to their corresponding water-soluble phosphate prodrug salts to evaluate their efficacy as VDAs. Administration of the prodrug salt (KGP415) of KGP369 caused significant reduction in bioluminescence signal from an orthotopic kidney tumor (RENCA-luc) in BALB/c mice, indicative of VDA activity. Collectively, these new functionalized indole-based analogues have extended SAR knowledge related to the colchicine binding site, and the most biologically active analogues hold promise for continued development as pre-clinical candidates for cancer therapy.
Collapse
Affiliation(s)
- Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Caleb Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Zhe Shi
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Christian Borchardt
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Jayaram Jambulapati
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Hashini Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Lorena Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States.
| |
Collapse
|
3
|
Yang J, Butti R, Cohn S, Toffessi-Tcheuyap V, Mal A, Nguyen M, Stevens C, Christie A, Mishra A, Ma Y, Kim J, Abraham R, Kapur P, Hammer RE, Brugarolas J. Unconventional mechanism of action and resistance to rapalogs in renal cancer. Proc Natl Acad Sci U S A 2024; 121:e2310793121. [PMID: 38861592 PMCID: PMC11194491 DOI: 10.1073/pnas.2310793121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
mTORC1 is aberrantly activated in renal cell carcinoma (RCC) and is targeted by rapalogs. As for other targeted therapies, rapalogs clinical utility is limited by the development of resistance. Resistance often results from target mutation, but mTOR mutations are rarely found in RCC. As in humans, prolonged rapalog treatment of RCC tumorgrafts (TGs) led to resistance. Unexpectedly, explants from resistant tumors became sensitive both in culture and in subsequent transplants in mice. Notably, resistance developed despite persistent mTORC1 inhibition in tumor cells. In contrast, mTORC1 became reactivated in the tumor microenvironment (TME). To test the role of the TME, we engineered immunocompromised recipient mice with a resistance mTOR mutation (S2035T). Interestingly, TGs became resistant to rapalogs in mTORS2035T mice. Resistance occurred despite mTORC1 inhibition in tumor cells and could be induced by coculturing tumor cells with mutant fibroblasts. Thus, enforced mTORC1 activation in the TME is sufficient to confer resistance to rapalogs. These studies highlight the importance of mTORC1 inhibition in nontumor cells for rapalog antitumor activity and provide an explanation for the lack of mTOR resistance mutations in RCC patients.
Collapse
Affiliation(s)
- Juan Yang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Shannon Cohn
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX78723
| | - Vanina Toffessi-Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Arijit Mal
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Mylinh Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-8816
| | - Christina Stevens
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Yuanqing Ma
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX75390-8821
| | - Robert Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, San Diego, CA92121
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390-9234
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390-8816
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390-8852
| |
Collapse
|
4
|
Calhoon D, Sang L, Bezwada D, Kim N, Basu A, Hsu SC, Pimentel A, Brooks B, La K, Serrano AP, Cassidy DL, Cai L, Toffessi-Tcheuyap V, Margulis V, Cai F, Brugarolas J, Weiss RJ, DeBerardinis RJ, Birsoy K, Garcia-Bermudez J. Glycosaminoglycan-mediated lipoprotein uptake protects cancer cells from ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593939. [PMID: 38765991 PMCID: PMC11101130 DOI: 10.1101/2024.05.13.593939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lipids are essential for tumours because of their structural, energetic, and signaling roles. While many cancer cells upregulate lipid synthesis, growing evidence suggests that tumours simultaneously intensify the uptake of circulating lipids carried by lipoproteins. Which mechanisms promote the uptake of extracellular lipids, and how this pool of lipids contributes to cancer progression, are poorly understood. Here, using functional genetic screens, we find that lipoprotein uptake confers resistance to lipid peroxidation and ferroptotic cell death. Lipoprotein supplementation robustly inhibits ferroptosis across numerous cancer types. Mechanistically, cancer cells take up lipoproteins through a pathway dependent on sulfated glycosaminoglycans (GAGs) linked to cell-surface proteoglycans. Tumour GAGs are a major determinant of the uptake of both low and high density lipoproteins. Impairment of glycosaminoglycan synthesis or acute degradation of surface GAGs decreases the uptake of lipoproteins, sensitizes cells to ferroptosis and reduces tumour growth in mice. We also find that human clear cell renal cell carcinomas, a distinctively lipid-rich tumour type, display elevated levels of lipoprotein-derived antioxidants and the GAG chondroitin sulfate than non-malignant human kidney. Altogether, our work identifies lipoprotein uptake as an essential anti-ferroptotic mechanism for cancer cells to overcome lipid oxidative stress in vivo, and reveals GAG biosynthesis as an unexpected mediator of this process.
Collapse
Affiliation(s)
- Dylan Calhoon
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally to this work
| | - Lingjie Sang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally to this work
| | - Divya Bezwada
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathaniel Kim
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amrita Basu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sheng-Chieh Hsu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anastasia Pimentel
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey Brooks
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ana Paulina Serrano
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel L Cassidy
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern, Dallas, TX, USA
| | - Vanina Toffessi-Tcheuyap
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan J Weiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kivanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Javier Garcia-Bermudez
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Prakasam G, Mishra A, Christie A, Miyata J, Carrillo D, Tcheuyap VT, Ye H, Do QN, Wang Y, Reig Torras O, Butti R, Zhong H, Gagan J, Jones KB, Carroll TJ, Modrusan Z, Durinck S, Requena-Komuro MC, Williams NS, Pedrosa I, Wang T, Rakheja D, Kapur P, Brugarolas J. Comparative genomics incorporating translocation renal cell carcinoma mouse model reveals molecular mechanisms of tumorigenesis. J Clin Invest 2024; 134:e170559. [PMID: 38386415 PMCID: PMC10977987 DOI: 10.1172/jci170559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.
Collapse
Affiliation(s)
- Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
| | - Jeffrey Miyata
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Deyssy Carrillo
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hui Ye
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | - Hua Zhong
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey Gagan
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin B. Jones
- Department of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas J. Carroll
- Department of Molecular Biology and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing and
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Mai-Carmen Requena-Komuro
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| | | | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Radiology, and
- Advanced Imaging Research Center, and
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Peter O’ Donnell Jr. School of Public Health
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dinesh Rakheja
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
- Hematology-Oncology Division, Department of Internal Medicine
| |
Collapse
|
6
|
Hu L, Zhang Y, Guo L, Zhong H, Xie L, Zhou J, Liao C, Yao H, Fang J, Liu H, Zhang C, Zhang H, Zhu X, Luo M, von Kriegsheim A, Li B, Luo W, Zhang X, Chen X, Mendell JT, Xu L, Kapur P, Baldwin AS, Brugarolas J, Zhang Q. Kinome-wide siRNA screen identifies a DCLK2-TBK1 oncogenic signaling axis in clear cell renal cell carcinoma. Mol Cell 2024; 84:776-790.e5. [PMID: 38211588 PMCID: PMC10922811 DOI: 10.1016/j.molcel.2023.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/23/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024]
Abstract
TANK-binding kinase 1 (TBK1) is a potential therapeutic target in multiple cancers, including clear cell renal cell carcinoma (ccRCC). However, targeting TBK1 in clinical practice is challenging. One approach to overcome this challenge would be to identify an upstream TBK1 regulator that could be targeted therapeutically in cancer specifically. In this study, we perform a kinome-wide small interfering RNA (siRNA) screen and identify doublecortin-like kinase 2 (DCLK2) as a TBK1 regulator in ccRCC. DCLK2 binds to and directly phosphorylates TBK1 on Ser172. Depletion of DCLK2 inhibits anchorage-independent colony growth and kidney tumorigenesis in orthotopic xenograft models. Conversely, overexpression of DCLK2203, a short isoform that predominates in ccRCC, promotes ccRCC cell growth and tumorigenesis in vivo. Mechanistically, DCLK2203 elicits its oncogenic signaling via TBK1 phosphorylation and activation. Taken together, these results suggest that DCLK2 is a TBK1 activator and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hua Zhong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwei Yao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongyi Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maowu Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Bufan Li
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - James Brugarolas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Ren W, Deng Y, Ward JD, Vairin R, Bai R, Wanniarachchi HI, Hamal KB, Tankoano PE, Tamminga CS, Bueno LMA, Hamel E, Mason RP, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur J Med Chem 2024; 263:115794. [PMID: 37984295 PMCID: PMC11019941 DOI: 10.1016/j.ejmech.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023]
Abstract
The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Hashini I Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Caleb S Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Lorena M A Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| |
Collapse
|
8
|
Aslani S, Saad MI. Patient-Derived Xenograft Models in Cancer Research: Methodology, Applications, and Future Prospects. Methods Mol Biol 2024; 2806:9-18. [PMID: 38676792 DOI: 10.1007/978-1-0716-3858-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Patient-derived xenografts (PDXs) have emerged as a pivotal tool in translational cancer research, addressing limitations of traditional methods and facilitating improved therapeutic interventions. These models involve engrafting human primary malignant cells or tissues into immunodeficient mice, allowing for the investigation of cancer mechanobiology, validation of therapeutic targets, and preclinical assessment of treatment strategies. This chapter provides an overview of PDXs methodology and their applications in both basic cancer research and preclinical studies. Despite current limitations, ongoing advancements in humanized xenochimeric models and autologous immune cell engraftment hold promise for enhancing PDX model accuracy and relevance. As PDX models continue to refine and extend their applications, they are poised to play a pivotal role in shaping the future of translational cancer research.
Collapse
Affiliation(s)
- Saeed Aslani
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
9
|
Chong Y, Xu S, Liu T, Guo P, Wang X, He D, Zhu G. Curcumin Inhibits Vasculogenic Mimicry via Regulating ETS-1 in Renal Cell Carcinoma. Curr Cancer Drug Targets 2024; 24:1031-1046. [PMID: 38299401 DOI: 10.2174/0115680096277126240102060617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Metastatic renal cell carcinoma (RCC) poses a huge challenge once it has become resistant to targeted therapy. Vasculogenic mimicry (VM) is a novel blood supply system formed by tumor cells that can circumvent molecular targeted therapies. As one of the herbal remedies, curcumin has been demonstrated to play antineoplastic effects in many different types of human cancers; however, its function and mechanism of targeting VM in RCC remains unknown. OBJECTIVE Here, in the work, we explored the role of curcumin and its molecular mechanism in the regulation of VM formation in RCC. METHODS RNA-sequencing analysis, immunoblotting, and immunohistochemistry were used to detect E Twenty Six-1(ETS-1), vascular endothelial Cadherin (VE-Cadherin), and matrix metallopeptidase 9 (MMP9) expressions in RCC cells and tissues. RNA sequencing was used to screen the differential expressed genes. Plasmid transfections were used to transiently knock down or overexpress ETS-1. VM formation was determined by tube formation assay and animal experiments. CD31-PAS double staining was used to label the VM channels in patients and xenograft samples. RESULTS Our results demonstrated that VM was positively correlated with RCC grades and stages using clinical patient samples. Curcumin inhibited VM formation in dose and time-dependent manner in vitro. Using RNA-sequencing analysis, we discovered ETS-1 as a potential transcriptional factor regulating VM formation. Knocking down or overexpression of ETS-1 decreased or increased the VM formation, respectively and regulated the expression of VE-Cadherin and MMP9. Curcumin could inhibit VM formation by suppressing ETS-1, VE-Cadherin, and MMP9 expression both in vitro and in vivo. CONCLUSION Our finding might indicate that curcumin could inhibit VM by regulating ETS-1, VE-Cadherin, and MMP9 expression in RCC cell lines. Curcumin could be considered as a potential anti-cancer compound by inhibiting VM in RCC progression.
Collapse
MESH Headings
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Humans
- Curcumin/pharmacology
- Proto-Oncogene Protein c-ets-1/metabolism
- Proto-Oncogene Protein c-ets-1/genetics
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Animals
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Xenograft Model Antitumor Assays
- Mice, Nude
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Female
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 9/genetics
- Cadherins/metabolism
- Cadherins/genetics
- Cell Line, Tumor
- Mice, Inbred BALB C
- Cell Proliferation/drug effects
- Antigens, CD
Collapse
Affiliation(s)
- Yue Chong
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Oncology Research Laboratory, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
10
|
Wang J, McVicar A, Chen Y, Deng HW, Zhao Z, Chen W, Li YP. Atp6i deficient mouse model uncovers transforming growth factor-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation. Int J Oral Sci 2023; 15:35. [PMID: 37599332 PMCID: PMC10440342 DOI: 10.1038/s41368-023-00235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
The biomolecular mechanisms that regulate tooth root development and odontoblast differentiation are poorly understood. We found that Atp6i deficient mice (Atp6i-/-) arrested tooth root formation, indicated by truncated Hertwig's epithelial root sheath (HERS) progression. Furthermore, Atp6i deficiency significantly reduced the proliferation and differentiation of radicular odontogenic cells responsible for root formation. Atp6i-/- mice had largely decreased expression of odontoblast differentiation marker gene expression profiles (Col1a1, Nfic, Dspp, and Osx) in the alveolar bone. Atp6i-/- mice sample RNA-seq analysis results showed decreased expression levels of odontoblast markers. Additionally, there was a significant reduction in Smad2/3 activation, inhibiting transforming growth factor-β (TGF-β) signaling in Atp6i-/- odontoblasts. Through treating pulp precursor cells with Atp6i-/- or wild-type OC bone resorption-conditioned medium, we found the latter medium to promote odontoblast differentiation, as shown by increased odontoblast differentiation marker genes expression (Nfic, Dspp, Osx, and Runx2). This increased expression was significantly blocked by anti-TGF-β1 antibody neutralization, whereas odontoblast differentiation and Smad2/3 activation were significantly attenuated by Atp6i-/- OC conditioned medium. Importantly, ectopic TGF-β1 partially rescued root development and root dentin deposition of Atp6i-/- mice tooth germs were transplanted under mouse kidney capsules. Collectively, our novel data shows that the prevention of TGF-β1 release from the alveolar bone matrix due to OC dysfunction may lead to osteopetrosis-associated root formation via impaired radicular odontoblast differentiation. As such, this study uncovers TGF-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation and may contribute to future therapeutic approaches to tooth root regeneration.
Collapse
Affiliation(s)
- Jue Wang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
11
|
Bi Y, Li S, Tang H, Wang Q, Wang Q, Yang Y, Zhang X, Shu Z, Duan Z, Chen Y, Hong F. A novel xenograft model of human hepatocellular carcinoma in immunocompetent mice based on the microcarrier-6. Transpl Immunol 2023; 76:101738. [PMID: 36368468 DOI: 10.1016/j.trim.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/25/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that threaten human health; thus, the establishment of an animal model with clinical features similar to human hepatocellular carcinoma is of important practical significance. METHODS Taking advantage of the novel microcarrier-6, human HCC cells were injected into immunocompetent mice to establish a novel human HCC patient-derived xenograft (PDX) model. Primary HCC cells were isolated from fresh hepatocellular carcinoma tissues, which were subsequently co-cultured with microcarrier-6 to construct a three-dimensional tumor cell culture model in vitro. The HCC-microcarrier complex was implanted into mice by subcutaneous inoculation, and the tumor formation time, tumor formation rate, and pathological manifestation were recorded. Changes of immune parameters in mice were detected by flow cytometry. RESULTS The success rate was 60% (6/10) in the establishment of hepatocellular carcinoma PDX mouse model, and the total tumor formation rate of the tumor-forming model is 90-100%. H&E staining and immunohistochemical experiments indicate that the model well retained the characteristics of the primary tumor. Interestingly, M2 macrophages in tumor-bearing mice increased significantly, and the levels of CD4+ T cells were significantly reduced. CONCLUSIONS Through the application of the microcarrier-6 in immunocompetent mice, we successfully established a novel human HCC PDX model, which can be used to better study and further elucidate the occurrence and pathogenic mechanism of HCC, improve the predictability of toxicity and drug sensitivity in HCC.
Collapse
Affiliation(s)
- Yanzhen Bi
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, Shandong, PR China
| | - Shanshan Li
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Huixin Tang
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Quanquan Wang
- Department of Neurology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, PR China
| | - Quanyi Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Yonghong Yang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Xiaobei Zhang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Zhenfeng Shu
- Shanghai Meifeng Biotechnology Co., Ltd, Shanghai, PR China
| | - Zhongping Duan
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Yu Chen
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China.
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China.
| |
Collapse
|
12
|
Kaushik AK, Tarangelo A, Boroughs LK, Ragavan M, Zhang Y, Wu CY, Li X, Ahumada K, Chiang JC, Tcheuyap VT, Saatchi F, Do QN, Yong C, Rosales T, Stevens C, Rao AD, Faubert B, Pachnis P, Zacharias LG, Vu H, Cai F, Mathews TP, Genovese G, Slusher BS, Kapur P, Sun X, Merritt M, Brugarolas J, DeBerardinis RJ. In vivo characterization of glutamine metabolism identifies therapeutic targets in clear cell renal cell carcinoma. SCIENCE ADVANCES 2022; 8:eabp8293. [PMID: 36525494 PMCID: PMC9757752 DOI: 10.1126/sciadv.abp8293] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/16/2022] [Indexed: 05/05/2023]
Abstract
Targeting metabolic vulnerabilities has been proposed as a therapeutic strategy in renal cell carcinoma (RCC). Here, we analyzed the metabolism of patient-derived xenografts (tumorgrafts) from diverse subtypes of RCC. Tumorgrafts from VHL-mutant clear cell RCC (ccRCC) retained metabolic features of human ccRCC and engaged in oxidative and reductive glutamine metabolism. Genetic silencing of isocitrate dehydrogenase-1 or isocitrate dehydrogenase-2 impaired reductive labeling of tricarboxylic acid (TCA) cycle intermediates in vivo and suppressed growth of tumors generated from tumorgraft-derived cells. Glutaminase inhibition reduced the contribution of glutamine to the TCA cycle and resulted in modest suppression of tumorgraft growth. Infusions with [amide-15N]glutamine revealed persistent amidotransferase activity during glutaminase inhibition, and blocking these activities with the amidotransferase inhibitor JHU-083 also reduced tumor growth in both immunocompromised and immunocompetent mice. We conclude that ccRCC tumorgrafts catabolize glutamine via multiple pathways, perhaps explaining why it has been challenging to achieve therapeutic responses in patients by inhibiting glutaminase.
Collapse
Affiliation(s)
- Akash K. Kaushik
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amy Tarangelo
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsey K. Boroughs
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mukundan Ragavan
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yuanyuan Zhang
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiangyi Li
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristen Ahumada
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jui-Chung Chiang
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina T. Tcheuyap
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Faeze Saatchi
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quyen N. Do
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cissy Yong
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Tracy Rosales
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aparna D. Rao
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brandon Faubert
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Panayotis Pachnis
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lauren G. Zacharias
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu Vu
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P. Mathews
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara S. Slusher
- Department of Neurology and Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Payal Kapur
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Matthew Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - James Brugarolas
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
13
|
Ma Y, Joyce A, Brandenburg O, Saatchi F, Stevens C, Tcheuyap VT, Christie A, Do QN, Fatunde O, Macchiaroli A, Wong SC, Woolford L, Yousuf Q, Miyata J, Carrillo D, Onabolu O, McKenzie T, Mishra A, Hardy T, He W, Li D, Ivanishev A, Zhang Q, Pedrosa I, Kapur P, Schluep T, Kanner SB, Hamilton J, Brugarolas J. HIF2 Inactivation and Tumor Suppression with a Tumor-Directed RNA-Silencing Drug in Mice and Humans. Clin Cancer Res 2022; 28:5405-5418. [PMID: 36190432 PMCID: PMC9771962 DOI: 10.1158/1078-0432.ccr-22-0963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE HIF2α is a key driver of kidney cancer. Using a belzutifan analogue (PT2399), we previously showed in tumorgrafts (TG) that ∼50% of clear cell renal cell carcinomas (ccRCC) are HIF2α dependent. However, prolonged treatment induced resistance mutations, which we also identified in humans. Here, we evaluated a tumor-directed, systemically delivered, siRNA drug (siHIF2) active against wild-type and resistant-mutant HIF2α. EXPERIMENTAL DESIGN Using our credentialed TG platform, we performed pharmacokinetic and pharmacodynamic analyses evaluating uptake, HIF2α silencing, target gene inactivation, and antitumor activity. Orthogonal RNA-sequencing studies of siHIF2 and PT2399 were pursued to define the HIF2 transcriptome. Analyses were extended to a TG line generated from a study biopsy of a siHIF2 phase I clinical trial (NCT04169711) participant and the corresponding patient, an extensively pretreated individual with rapidly progressive ccRCC and paraneoplastic polycythemia likely evidencing a HIF2 dependency. RESULTS siHIF2 was taken up by ccRCC TGs, effectively depleted HIF2α, deactivated orthogonally defined effector pathways (including Myc and novel E2F pathways), downregulated cell cycle genes, and inhibited tumor growth. Effects on the study subject TG mimicked those in the patient, where HIF2α was silenced in tumor biopsies, circulating erythropoietin was downregulated, polycythemia was suppressed, and a partial response was induced. CONCLUSIONS To our knowledge, this is the first example of functional inactivation of an oncoprotein and tumor suppression with a systemic, tumor-directed, RNA-silencing drug. These studies provide a proof-of-principle of HIF2α inhibition by RNA-targeting drugs in ccRCC and establish a paradigm for tumor-directed RNA-based therapeutics in cancer.
Collapse
Affiliation(s)
- Yuanqing Ma
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Allison Joyce
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olivia Brandenburg
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Faeze Saatchi
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,O’Donnell School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Quyen N. Do
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oluwatomilade Fatunde
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyssa Macchiaroli
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - So C. Wong
- Arrowhead Pharmaceuticals, Pasadena, CA, USA
| | - Layton Woolford
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qurratulain Yousuf
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Miyata
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deyssy Carrillo
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oreoluwa Onabolu
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Akhilesh Mishra
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanner Hardy
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei He
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Li
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander Ivanishev
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Corresponding author James Brugarolas, M.D., Ph.D., University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8852, Phone: 214-648-4059,
| |
Collapse
|
14
|
Rong Z, Liu Z, Song J, Cao L, Yu Y, Qiu M, Hou Y. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Comput Biol Med 2022; 150:106085. [PMID: 36162197 DOI: 10.1016/j.compbiomed.2022.106085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/30/2022] [Accepted: 09/03/2022] [Indexed: 11/03/2022]
Abstract
The discovery of cancer subtypes based on unsupervised clustering helps in providing a precise diagnosis, guide treatment, and improve patients' prognoses. Instead of single-omics data, multi-omics data can improve the clustering performance because it obtains a comprehensive landscape for understanding biological systems and mechanisms. However, heterogeneous data from multiple sources raises high complexity and different kinds of noise, which are detrimental to the extraction of clustering information. We propose an end-to-end deep learning based method, called Multi-omics Clustering Variational Autoencoders (MCluster-VAEs), that can extract cluster-friendly representations on multi-omics data. First, a unified network architecture with an attention mechanism was developed for accurately modeling multi-omics data. Then, using a novel objective function built from the Variational Bayes technique, the model was trained to effectively obtain the posterior estimation of the clustering assignments. Compared with 12 other state-of-the-art multi-omics clustering methods, MCluster-VAEs achieved an outstanding performance on benchmark datasets from the TCGA database. On the Pan Cancer dataset, MCluster-VAEs achieved an adjusted Rand index of approximately 0.78 for cancer category recognition, an increase of more than 18% compared with other methods. Furthermore, a survival analysis and clinical parameter enrichment tests conducted on 10 cancer datasets demonstrated that MCluster-VAEs provides comparable and even better results than many common integrative approaches. These results demonstrate that MCluster-VAEs are a powerful new tool for dissecting complex multi-omics relationships and providing new insights for cancer subtype discovery.
Collapse
Affiliation(s)
- Zhiwei Rong
- Department of Biostatistics Beijing, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China
| | - Zhilin Liu
- Department of Biostatistics Beijing, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China
| | - Jiali Song
- Department of Biostatistics Beijing, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China
| | - Lei Cao
- Department of Epidemiology and Biostatistics Harbin, Harbin Medical University School of Public Health, Harbin, 150000, Heilongjiang, China
| | - Yipe Yu
- Department of Biostatistics Beijing, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China
| | - Mantang Qiu
- Department of Thoracic Surgery Beijing, Peking University People's Hospital, Beijing, 100000, China.
| | - Yan Hou
- Department of Biostatistics Beijing, Peking University School of Public Health, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China; Peking University Clinical Research Center, No. 38 Xueyuan Road, Haidian District, Beijing, 100000, China.
| |
Collapse
|
15
|
Valcarcel-Jimenez L, Rogerson C, Yong C, Schmidt C, Yang M, Cremades-Rodelgo M, Harle V, Offord V, Wong K, Mora A, Speed A, Caraffini V, Tran MGB, Maher ER, Stewart GD, Vanharanta S, Adams DJ, Frezza C. HIRA loss transforms FH-deficient cells. SCIENCE ADVANCES 2022; 8:eabq8297. [PMID: 36269833 PMCID: PMC9586478 DOI: 10.1126/sciadv.abq8297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/31/2022] [Indexed: 05/03/2023]
Abstract
Fumarate hydratase (FH) is a mitochondrial enzyme that catalyzes the reversible hydration of fumarate to malate in the tricarboxylic acid (TCA) cycle. Germline mutations of FH lead to hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a cancer syndrome characterized by a highly aggressive form of renal cancer. Although HLRCC tumors metastasize rapidly, FH-deficient mice develop premalignant cysts in the kidneys, rather than carcinomas. How Fh1-deficient cells overcome these tumor-suppressive events during transformation is unknown. Here, we perform a genome-wide CRISPR-Cas9 screen to identify genes that, when ablated, enhance the proliferation of Fh1-deficient cells. We found that the depletion of the histone cell cycle regulator (HIRA) enhances proliferation and invasion of Fh1-deficient cells in vitro and in vivo. Mechanistically, Hira loss activates MYC and its target genes, increasing nucleotide metabolism specifically in Fh1-deficient cells, independent of its histone chaperone activity. These results are instrumental for understanding mechanisms of tumorigenesis in HLRCC and the development of targeted treatments for patients.
Collapse
Affiliation(s)
- Lorea Valcarcel-Jimenez
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Connor Rogerson
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Cissy Yong
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christina Schmidt
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Ming Yang
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Monica Cremades-Rodelgo
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Victoria Harle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kim Wong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ariane Mora
- School of Chemistry and Molecular Biosciences, University of Queensland, Molecular Biosciences Building 76, St. Lucia, QLD 4072, Australia
| | - Alyson Speed
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Veronica Caraffini
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Maxine Gia Binh Tran
- UCL Division of Surgery and Interventional Science, Specialist Centre for Kidney Cancer, Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Eamonn R. Maher
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sakari Vanharanta
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- Translational Cancer Medicine Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Christian Frezza
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
- CECAD Research Centre, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| |
Collapse
|
16
|
Liu L, Schuetze R, Gerberich JL, Lopez R, Odutola SO, Tanpure RP, Charlton-Sevcik AK, Tidmore JK, Taylor EAS, Kapur P, Hammers H, Trawick ML, Pinney KG, Mason RP. Demonstrating Tumor Vascular Disrupting Activity of the Small-Molecule Dihydronaphthalene Tubulin-Binding Agent OXi6196 as a Potential Therapeutic for Cancer Treatment. Cancers (Basel) 2022; 14:4208. [PMID: 36077745 PMCID: PMC9454770 DOI: 10.3390/cancers14174208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The vascular disrupting activity of a promising tubulin-binding agent (OXi6196) was demonstrated in mice in MDA-MB-231 human breast tumor xenografts growing orthotopically in mammary fat pad and syngeneic RENCA kidney tumors growing orthotopically in the kidney. To enhance water solubility, OXi6196, was derivatized as its corresponding phosphate prodrug salt OXi6197, facilitating effective delivery. OXi6197 is stable in water, but rapidly releases OXi6196 in the presence of alkaline phosphatase. At low nanomolar concentrations OXi6196 caused G2/M cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and monolayers of rapidly growing HUVECs underwent concentration-dependent changes in their morphology. Loss of the microtubule structure and increased bundling of filamentous actin into stress fibers followed by cell collapse, rounding and blebbing was observed. OXi6196 (100 nM) disrupted capillary-like endothelial networks pre-established with HUVECs on Matrigel®. When prodrug OXi6197 was administered to mice bearing orthotopic MDA-MB-231-luc tumors, dynamic bioluminescence imaging (BLI) revealed dose-dependent vascular shutdown with >80% signal loss within 2 h at doses ≥30 mg/kg and >90% shutdown after 6 h for doses ≥35 mg/kg, which remained depressed by at least 70% after 24 h. Twice weekly treatment with prodrug OXi6197 (20 mg/kg) caused a significant tumor growth delay, but no overall survival benefit. Similar efficacy was observed for the first time in orthotopic RENCA-luc tumors, which showed massive hemorrhage and necrosis after 24 h. Twice weekly dosing with prodrug OXi6197 (35 mg/kg) caused tumor growth delay in most orthotopic RENCA tumors. Immunohistochemistry revealed extensive necrosis, though with surviving peripheral tissues. These results demonstrate effective vascular disruption at doses comparable to the most effective vascular-disrupting agents (VDAs) suggesting opportunities for further development.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ramona Lopez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Emily A.-S. Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Payal Kapur
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hans Hammers
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Zhou J, Simon JM, Liao C, Zhang C, Hu L, Zurlo G, Liu X, Fan C, Hepperla A, Jia L, Tcheuyap VT, Zhong H, Elias R, Ye J, Henne WM, Kapur P, Nijhawan D, Brugarolas J, Zhang Q. An oncogenic JMJD6-DGAT1 axis tunes the epigenetic regulation of lipid droplet formation in clear cell renal cell carcinoma. Mol Cell 2022; 82:3030-3044.e8. [PMID: 35764091 PMCID: PMC9391320 DOI: 10.1016/j.molcel.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Characterized by intracellular lipid droplet accumulation, clear cell renal cell carcinoma (ccRCC) is resistant to cytotoxic chemotherapy and is a lethal disease. Through an unbiased siRNA screen of 2-oxoglutarate (2-OG)-dependent enzymes, which play a critical role in tumorigenesis, we identified Jumonji domain-containing 6 (JMJD6) as an essential gene for ccRCC tumor development. The downregulation of JMJD6 abolished ccRCC colony formation in vitro and inhibited orthotopic tumor growth in vivo. Integrated ChIP-seq and RNA-seq analyses uncovered diacylglycerol O-acyltransferase 1 (DGAT1) as a critical JMJD6 effector. Mechanistically, JMJD6 interacted with RBM39 and co-occupied DGAT1 gene promoter with H3K4me3 to induce DGAT1 expression. JMJD6 silencing reduced DGAT1, leading to decreased lipid droplet formation and tumorigenesis. The pharmacological inhibition (or depletion) of DGAT1 inhibited lipid droplet formation in vitro and ccRCC tumorigenesis in vivo. Thus, the JMJD6-DGAT1 axis represents a potential new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giada Zurlo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Austin Hepperla
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Genetics, Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Liwei Jia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hua Zhong
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Elias
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Nijhawan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Shapiro DD, Virumbrales-Muñoz M, Beebe DJ, Abel EJ. Models of Renal Cell Carcinoma Used to Investigate Molecular Mechanisms and Develop New Therapeutics. Front Oncol 2022; 12:871252. [PMID: 35463327 PMCID: PMC9022005 DOI: 10.3389/fonc.2022.871252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Modeling renal cell carcinoma is critical to investigating tumor biology and therapeutic mechanisms. Multiple systems have been developed to represent critical components of the tumor and its surrounding microenvironment. Prominent in vitro models include traditional cell cultures, 3D organoid models, and microphysiological devices. In vivo models consist of murine patient derived xenografts or genetically engineered mice. Each system has unique advantages as well as limitations and researchers must thoroughly understand each model to properly investigate research questions. This review addresses common model systems for renal cell carcinoma and critically evaluates their performance and ability to measure tumor characteristics.
Collapse
Affiliation(s)
- Daniel D Shapiro
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Division of Urology, William S. Middleton Memorial Veterans Hospital, Madison, WI, United States
| | - Maria Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, United States
| | - E Jason Abel
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
19
|
Beserra AO, Estevan EC, Bezerra SM, Torrezan GT, Ikegami A, Dellê H, Cunha IW, Meira IT, Carraro DM, Lara PN, Zequi SC, Martins VR, Santos TG. Patient-Derived Renal Cell Carcinoma Xenografts Capture Tumor Genetic Profiles and Aggressive Behaviors. KIDNEY CANCER 2022. [DOI: 10.3233/kca-210011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Patient-derived xenografts (PDX) have emerged as one of the most promising model systems to study cancer biology and to develop new antineoplastic drugs. Renal cell carcinoma (RCC) represents up to 90% of all kidney tumors, exhibits aggressive behavior, and has a propensity for metastasis. At diagnosis, 30% of patients with RCC have metastases, while up to 50% of those with localized disease treated with curative protocols experience recurrence. OBJECTIVE: This study aimed to establish an RCC PDX platform to identify novel clinical and molecular biomarkers of recurrence risk in order to facilitate precision medicine. METHODS: Tumor samples were obtained from surgical specimens of 87 RCC patients; fragments were implanted in immunodeficient NOD/SCID/gamma (NSG) mice. Seventeen fragments were implanted subcutaneously in an initial group while a second group of 70 samples were implanted orthotopically in the subcapsular space. RESULTS: A total of 19 PDX developed only after orthotopic implantation, and included 15 cases of clear cell RCC subtype, 3 cases of papillary subtype, and one unclassifiable tumor. One PDX of clear cell RCC recapitulated the phenotype of vena caval tumor thrombus extension that had been diagnosed in the source patient. PDX characterization by immunohistochemistry and targeted sequencing indicated that all PDXs preserved RCC identity and major molecular alterations. Moreover, the capacity of tumor engraftment was a strong prognostic indicator for patients with locally advanced disease. CONCLUSION: Taken together, these results suggest that the orthotopic xenograft model of RCC represents a suitable tool to study RCC biology, identify biomarkers, and to test therapeutic candidates.
Collapse
Affiliation(s)
- Adriano O. Beserra
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Ethiene C. Estevan
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | | | - Giovana T. Torrezan
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Amanda Ikegami
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Humberto Dellê
- Graduate Program in Medicine, Universidade Nove de Julho, São Paulo – Brazil
| | - Isabela W. Cunha
- Institute of Pathology, Rede D’OR-São Luiz and D’Or Institute for Research and Education (IDOR), São Paulo – Brazil
| | - Isabella T. Meira
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Dirce M. Carraro
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Primo N. Lara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA – USA
| | - Stenio C. Zequi
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
- Reference Center of Urology, A.C. Camargo Cancer Center, São Paulo – Brazil
- LARCG -Latin American Renal Cancer Group
| | - Vilma R. Martins
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| | - Tiago G. Santos
- International Research Center, A.C. Camargo Cancer Center, São Paulo – Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo – Brazil
| |
Collapse
|
20
|
Elias R, Tcheuyap VT, Kaushik AK, Singla N, Gao M, Reig Torras O, Christie A, Mulgaonkar A, Woolford L, Stevens C, Kettimuthu KP, Pavia-Jimenez A, Boroughs LK, Joyce A, Dakanali M, Notgrass H, Margulis V, Cadeddu JA, Pedrosa I, Williams NS, Sun X, DeBerardinis RJ, Öz OK, Zhong H, Seshagiri S, Modrusan Z, Cantarel BL, Kapur P, Brugarolas J. A renal cell carcinoma tumorgraft platform to advance precision medicine. Cell Rep 2021; 37:110055. [PMID: 34818533 PMCID: PMC8762721 DOI: 10.1016/j.celrep.2021.110055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) encompasses a heterogenous group of tumors, but representative preclinical models are lacking. We previously showed that patient-derived tumorgraft (TG) models recapitulate the biology and treatment responsiveness. Through systematic orthotopic implantation of tumor samples from 926 ethnically diverse individuals into non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice, we generate a resource comprising 172 independently derived, stably engrafted TG lines from 148 individuals. TG lines are characterized histologically and genomically (whole-exome [n = 97] and RNA [n = 102] sequencing). The platform features a variety of histological and oncogenotypes, including TCGA clades further corroborated through orthogonal metabolomic analyses. We illustrate how it enables a deeper understanding of RCC biology; enables the development of tissue- and imaging-based molecular probes; and supports advances in drug development.
Collapse
Affiliation(s)
- Roy Elias
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Akash K Kaushik
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nirmish Singla
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Gao
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Biostatistics, Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditi Mulgaonkar
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Layton Woolford
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christina Stevens
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kavitha Priya Kettimuthu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrea Pavia-Jimenez
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lindsey K Boroughs
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Allison Joyce
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marianna Dakanali
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hollis Notgrass
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vitaly Margulis
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey A Cadeddu
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiankai Sun
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orhan K Öz
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Zhong
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Somasekar Seshagiri
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech, Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and NGS, Genentech, Inc., South San Francisco, CA, USA
| | - Brandi L Cantarel
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Determinants of renal cell carcinoma invasion and metastatic competence. Nat Commun 2021; 12:5760. [PMID: 34608135 PMCID: PMC8490399 DOI: 10.1038/s41467-021-25918-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Metastasis is the principal cause of cancer related deaths. Tumor invasion is essential for metastatic spread. However, determinants of invasion are poorly understood. We addressed this knowledge gap by leveraging a unique attribute of kidney cancer. Renal tumors invade into large vessels forming tumor thrombi (TT) that migrate extending sometimes into the heart. Over a decade, we prospectively enrolled 83 ethnically-diverse patients undergoing surgical resection for grossly invasive tumors at UT Southwestern Kidney Cancer Program. In this study, we perform comprehensive histological analyses, integrate multi-region genomic studies, generate in vivo models, and execute functional studies to define tumor invasion and metastatic competence. We find that invasion is not always associated with the most aggressive clone. Driven by immediate early genes, invasion appears to be an opportunistic trait attained by subclones with diverse oncogenomic status in geospatial proximity to vasculature. We show that not all invasive tumors metastasize and identify determinants of metastatic competency. TT associated with metastases are characterized by higher grade, mTOR activation and a particular immune contexture. Moreover, TT grade is a better predictor of metastasis than overall tumor grade, which may have implications for clinical practice.
Collapse
|
22
|
Guo Y, Wang H, Gerberich JL, Odutola SO, Charlton-Sevcik AK, Li M, Tanpure RP, Tidmore JK, Trawick ML, Pinney KG, Mason RP, Liu L. Imaging-Guided Evaluation of the Novel Small-Molecule Benzosuberene Tubulin-Binding Agent KGP265 as a Potential Therapeutic Agent for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13194769. [PMID: 34638255 PMCID: PMC8507561 DOI: 10.3390/cancers13194769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Vascular-disrupting agents promise significant therapeutic efficacy against solid tumors by selectively damaging tumor-associated vasculature. Dynamic BLI and oxygen-enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following administration of KGP265. BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h indicating vascular disruption, which continued over 24 h. Twice-weekly doses of KGP265 caused a significant growth delay in MDA-MB-231 human breast tumor xenografts and 4T1 syngeneic breast tumors growing orthotopically in mice. Abstract The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.
Collapse
Affiliation(s)
- Yihang Guo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha 410013, China
| | - Honghong Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Amanda K. Charlton-Sevcik
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Maoping Li
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| |
Collapse
|
23
|
Carter P, Schnell U, Chaney C, Tong B, Pan X, Ye J, Mernaugh G, Cotton JL, Margulis V, Mao J, Zent R, Evers BM, Kapur P, Carroll TJ. Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. J Clin Invest 2021; 131:e144108. [PMID: 34060480 DOI: 10.1172/jci144108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Phoebe Carter
- Department of Molecular Biology and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ulrike Schnell
- Department of Molecular Biology and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher Chaney
- Department of Molecular Biology and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Betty Tong
- Department of Molecular Biology and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xinchao Pan
- Department of Molecular Biology and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jianhua Ye
- Department of Molecular Biology and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Glenda Mernaugh
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bret M Evers
- Department of Pathology, and.,Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.Renal cell carcinoma (RCC) is the most common kidney cancer in humans. Misregulation of the Hippo/Warts pathway is frequently reported in RCC, suggesting a role in disease formation/progression. Paradoxically, misregulation of this pathway is also observed in non-tumorigenic kidney diseases, raising questions as to its specific role in RCC. Here, we show that ablation of the Warts kinases Lats1 and Lats2 in mature renal epithelia was sufficient to cause metastatic RCC in mice. Distinct tumors with sarcomatoid histology were present in mutant kidneys 3 months after genetic ablation. Tumor formation required the downstream effectors Yap and Taz, and treatment with verteporfin, a drug that inhibits Yap activity, could slow progression of the disease. Examination of human tissues showed that among histological subtypes of RCC, nuclear YAP was most commonly observed in sarcomatoid RCC. However, analysis of transcriptomic data from human RCC revealed a unique subset with a molecular signature that closely resembled the transcriptome of Lats, mutants. Together, these findings show that misregulation of the Warts pathway is sufficient to drive renal tumor formation in mice and suggest that human tumors with active YAP may represent a unique subset of RCCs that can be therapeutically targeted
| | - Payal Kapur
- Department of Urology.,Department of Pathology, and
| | - Thomas J Carroll
- Department of Molecular Biology and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Quinn CM, Porwal M, Meagher NS, Hettiaratchi A, Power C, Jonnaggadala J, McCullough S, Macmillan S, Tang K, Liauw W, Goldstein D, Zeps N, Crowe PJ. Moving with the Times: The Health Science Alliance (HSA) Biobank, Pathway to Sustainability. Biomark Insights 2021; 16:11772719211005745. [PMID: 35173407 PMCID: PMC8842439 DOI: 10.1177/11772719211005745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Human biobanks are recognised as vital components of translational research infrastructure. With the growth in personalised and precision medicine, and the associated expansion of biomarkers and novel therapeutics under development, it is critical that researchers can access a strong collection of patient biospecimens, annotated with clinical data. Biobanks globally are undertaking transformation of their operating models in response to changing research needs; transition from a ‘classic’ model representing a largely retrospective collection of pre-defined specimens to a more targeted, prospective collection model, although there remains a research need for both models to co-exist. Here we introduce the Health Science Alliance (HSA) Biobank, established in 2012 as a classic biobank, now transitioning to a hybrid operational model. Some of the past and current challenges encountered are discussed including clinical annotation, specimen utilisation and biobank sustainability, along with the measures the HSA Biobank is taking to address these challenges. We describe new directions being explored, going beyond traditional specimen collection into areas involving bioimages, microbiota and live cell culture. The HSA Biobank is working in collaboration with clinicians, pathologists and researchers, piloting a sustainable, robust platform with the potential to integrate future needs.
Collapse
Affiliation(s)
- Carmel M Quinn
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Mamta Porwal
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Nicola S Meagher
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Women’s and Children’s Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Anusha Hettiaratchi
- UNSW Biorepository, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Jitendra Jonnaggadala
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Population Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | | | - Stephanie Macmillan
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Katrina Tang
- NSW Health Pathology, South-East Sydney Local Health District, NSW, Australia
| | - Winston Liauw
- Cancer Care Clinic, St George Hospital, NSW, Australia
| | - David Goldstein
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Nikolajs Zeps
- Epworth Healthcare, VIC, Australia
- Eastern Clinical School, Monash University, Clayton, VIC, Australia
| | - Philip J Crowe
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Department of Surgery, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
25
|
ZRSR2 overexpression is a frequent and early event in castration-resistant prostate cancer development. Prostate Cancer Prostatic Dis 2021; 24:775-785. [PMID: 33568749 PMCID: PMC8384624 DOI: 10.1038/s41391-021-00322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/01/2020] [Accepted: 01/09/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) remains the leading systemic therapy for locally advanced and metastatic prostate cancers (PCa). While a majority of PCa patients initially respond to ADT, the durability of response is variable and most patients will eventually develop incurable castration-resistant prostate cancer (CRPC). Our research objective is to identify potential early driver genes responsible for CRPC development. METHODS We have developed a unique panel of hormone-naïve PCa (HNPC) patient-derived xenograft (PDX) models at the Living Tumor Laboratory. The PDXs provide a unique platform for driver gene discovery as they allow for the analysis of differentially expressed genes via transcriptomic profiling at various time points after mouse host castration. In the present study, we focused on genes with expression changes shortly after castration but before CRPC has fully developed. These are likely to be potential early drivers of CRPC development. Such genes were further validated for their clinical relevance using data from PCa patient databases. ZRSR2 was identified as a top gene candidate and selected for further functional studies. RESULTS ZRSR2 is significantly upregulated in our PDX models during the early phases of CRPC development after mouse host castration and remains consistently high in fully developed CRPC PDX models. Moreover, high ZRSR2 expression is also observed in clinical CRPC samples. Importantly, elevated ZRSR2 in PCa samples is correlated with poor patient treatment outcomes. ZRSR2 knockdown reduced PCa cell proliferation and delayed cell cycle progression at least partially through inhibition of the Cyclin D1 (CCND1) pathway. CONCLUSION Using our unique HNPC PDX models that develop into CRPC after host castration, we identified ZRSR2 as a potential early driver of CRPC development.
Collapse
|
26
|
Moserle L, Pons R, Martínez-Lozano M, Jiménez-Valerio GA, Vidal A, Suárez C, Trilla E, Jiménez J, de Torres I, Carles J, Senserrich J, Aguilar S, Palomero L, Amadori A, Casanovas O. Kidney cancer PDOXs reveal patient-specific pro-malignant effects of antiangiogenics and its molecular traits. EMBO Mol Med 2020; 12:e11889. [PMID: 33151035 PMCID: PMC7721359 DOI: 10.15252/emmm.201911889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
An open debate in antiangiogenic therapies is about their consequence on tumor invasiveness and metastasis, which is undoubtedly relevant for patients currently treated with antiangiogenics, such as renal cell carcinoma patients. To address, this we developed an extensive series of 27 patient biopsy‐derived orthotopic xenograft models (Ren‐PDOX) that represent inter‐patient heterogeneity. In specific tumors, antiangiogenics produced increased invasiveness and metastatic dissemination, while in others aggressiveness remained unchanged. Mechanistically, species‐discriminative RNA sequencing identified a tumor cell‐specific differential expression profile associated with tumor progression and aggressivity in TCGA RCC patients. Gene filtering using an invasion‐annotated patient series pinpointed two candidate genes, of which ALDH1A3 differentiated the pro‐invasive subtype of Ren‐PDOXs. Validation in an independent series of 15 antiangiogenic‐treated patients confirmed that pre‐treatment ALDH1A3 can significantly discriminate patients with pro‐aggressive response upon treatment. Overall, results confirm that effects of antiangiogenic drugs on tumor invasion and metastasis are heterogeneous and may profoundly affect the natural progression of tumors and promote malignancy. Furthermore, we identify a specific molecular biomarker that could be used to select patients that better benefit from treatment.
Collapse
Affiliation(s)
- Lidia Moserle
- Tumor Angiogenesis Group, ProCURE Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Roser Pons
- Tumor Angiogenesis Group, ProCURE Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Gabriela A Jiménez-Valerio
- Tumor Angiogenesis Group, ProCURE Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - August Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), CIBERONC, Barcelona, Spain
| | - Cristina Suárez
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Enrique Trilla
- Surgery Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - José Jiménez
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Inés de Torres
- Pathology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Joan Carles
- Medical Oncology Department, Vall d'Hebron Hospital, Barcelona, Spain
| | - Jordi Senserrich
- Tumor Angiogenesis Group, ProCURE Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Susana Aguilar
- Tumor Angiogenesis Group, ProCURE Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Luis Palomero
- ProCURE Program, Catalan Institute of Oncology. OncoBell Program, IDIBELL, Barcelona, Spain
| | - Alberto Amadori
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| |
Collapse
|
27
|
O’Kelly D, Guo Y, Mason RP. Evaluating online filtering algorithms to enhance dynamic multispectral optoacoustic tomography. PHOTOACOUSTICS 2020; 19:100184. [PMID: 32509522 PMCID: PMC7264082 DOI: 10.1016/j.pacs.2020.100184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) is an emerging imaging modality, which is able to capture data at high spatiotemporal resolution using rapid tuning of the excitation laser wavelength. However, owing to the necessity of imaging one wavelength at a time to the exclusion of others, forming a complete multispectral image requires multiple excitations over time, which may introduce aliasing due to underlying spectral dynamics or noise in the data. In order to mitigate this limitation, we have applied kinematic α and α β filters to multispectral time series, providing an estimate of the underlying multispectral image at every point in time throughout data acquisition. We demonstrate the efficacy of these methods in suppressing the inter-frame noise present in dynamic multispectral image time courses using a multispectral Shepp-Logan phantom and mice bearing distinct renal cell carcinoma tumors. The gains in signal to noise ratio provided by these filters enable higher-fidelity downstream analysis such as spectral unmixing and improved hypothesis testing in quantifying the onset of signal changes during an oxygen gas challenge.
Collapse
Affiliation(s)
- Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9058, USA
| | - Yihang Guo
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9058, USA
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9058, USA
| |
Collapse
|
28
|
Pukfukdee P, Banlunara W, Rutwaree T, Limcharoen B, Sawutdeechaikul P, Pattarakankul T, Sansureerungsikul T, Toprangkobsin P, Leelahavanichkul A, Panchaprateep R, Asawanonda P, Palaga T, Wanichwecharungruang S. Solid Composite Material for Delivering Viable Cells into Skin Tissues via Detachable Dissolvable Microneedles. ACS APPLIED BIO MATERIALS 2020; 3:4581-4589. [PMID: 35025457 DOI: 10.1021/acsabm.0c00498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Delivering cells to desired locations in the body is needed for disease treatments, tissue repairs, and various scientific investigations such as animal models for drug development. Here, we report the solid composite material that when embedded with viable cells, can temporarily keep cells alive. Using the material, we also show the fabrication of detachable dissolvable microneedles (DMNs) that can instantly deliver viable cells into skin tissue. B16-F10-murine-melanoma (B16-F10) and human-embryonic-kidney-293T (HEK293T) cells embedded in the solid matrix of the hyaluronic/polyvinylpyrolidone/maltose (HA/PVP/maltose) mixture show 50.6 ± 12.0 and 71.0 ± 5.96% survivals, respectively, when kept at 4 °C for 24 h. Detachable DMNs made of the HA/PVP/maltose mixture and loaded with B16-F10-cells were constructed, and the obtained DMN patches could detach the cell-loaded needles into the skin within 1 min of patch application. In vivo intradermal tumorgrafting mice with the DMNs containing 800 cells of B16-F10 developed tumors 10 times bigger in volume than tumors induced by hypodermic needle injection of suspension containing 100,000 cells. We anticipate this work to be a starting point for viable cell encapsulation in the solid matrix and viable cell delivery via DMNs.
Collapse
Affiliation(s)
- Puttikorn Pukfukdee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teeranut Rutwaree
- Mineed Technology, 141-145 Innovation Cluster 2, Thailand Science Park, Pathumthani 12120 Thailand
| | - Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Thitiporn Pattarakankul
- Center of Excellence in Advanced Materials and Bio-Interfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pattrawadee Toprangkobsin
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pravit Asawanonda
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
29
|
Liu Z, Ahn MHY, Kurokawa T, Ly A, Zhang G, Wang F, Yamada T, Sadagopan A, Cheng J, Ferrone CR, Liss AS, Honselmann KC, Wojtkiewicz GR, Ferrone S, Wang X. A fast, simple, and cost-effective method of expanding patient-derived xenograft mouse models of pancreatic ductal adenocarcinoma. J Transl Med 2020; 18:255. [PMID: 32580742 PMCID: PMC7315507 DOI: 10.1186/s12967-020-02414-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) mouse models of cancer have been recognized as better mouse models that recapitulate the characteristics of original malignancies including preserved tumor heterogeneity, lineage hierarchy, and tumor microenvironment. However, common challenges of PDX models are the significant time required for tumor expansion, reduced tumor take rates, and higher costs. Here, we describe a fast, simple, and cost-effective method of expanding PDX of pancreatic ductal adenocarcinoma (PDAC) in mice. METHODS We used two established frozen PDAC PDX tissues (derived from two different patients) and implanted them subcutaneously into SCID mice. After tissues reached 10-20 mm in diameter, we performed survival surgery on each mouse to harvest 90-95% of subcutaneous PDX (incomplete resection), allowing the remaining 5-10% of PDX to continue growing in the same mouse. RESULTS We expanded three consecutive passages (P1, P2, and P3) of PDX in the same mouse. Comparing the times required for in vivo expansion, P2 and P3 (expanded through incomplete resection) grew 26-60% faster than P1. Moreover, such expanded PDX tissues were successfully implanted orthotopically into mouse pancreases. Within 20 weeks using only 14 mice, we generated sufficient PDX tissue for future implantation of 200 mice. Our histology study confirmed that the morphologies of cancer cells and stromal structures were similar across all three passages of subcutaneous PDX and the orthotopic PDX and were reflective of the original patient tumors. CONCLUSIONS Taking advantage of incomplete resection of tumors associated with high local recurrence, we established a fast method of PDAC PDX expansion in mice.
Collapse
Affiliation(s)
- Zhenyang Liu
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Gastroenterology and Urology and of Medical Oncology, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Michael Ho-Young Ahn
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomohiro Kurokawa
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gong Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fuyou Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Teppei Yamada
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ananthan Sadagopan
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jane Cheng
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew S Liss
- Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kim C Honselmann
- Division of General and Gastrointestinal Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory R Wojtkiewicz
- Mouse Imaging Program, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Cytotoxic T Lymphocytes Regenerated from iPS Cells Have Therapeutic Efficacy in a Patient-Derived Xenograft Solid Tumor Model. iScience 2020; 23:100998. [PMID: 32259478 PMCID: PMC7188741 DOI: 10.1016/j.isci.2020.100998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Current adoptive T cell therapies conducted in an autologous setting are costly, time consuming, and depend on the quality of the patient's T cells. To address these issues, we developed a strategy in which cytotoxic T lymphocytes (CTLs) are regenerated from iPSCs that were originally derived from T cells and succeeded in regenerating CTLs specific for the WT1 antigen, which exhibited therapeutic efficacy in a xenograft model of leukemia. In this study, we extended our strategy to solid tumors. The regenerated WT1-specific CTLs had a strong therapeutic effect in orthotopic xenograft model using a renal cell carcinoma (RCC) cell line. To make our method more generally applicable, we developed an allogeneic approach by transducing HLA-haplotype homozygous iPSCs with WT1-specific TCR α/β genes that had been tested clinically. The regenerated CTLs antigen-specifically suppressed tumor growth in a patient-derived xenograft model of RCC, demonstrating the feasibility of our strategy against solid tumors. Patient-derived xenograft of renal cell carcinoma was used in a cell-therapy model Cytotoxic T lymphocytes (CTLs) that target WT1-antigen were used as effector cells CTLs produced from iPSCs transduced with WT1-TCR genes showed efficacy in the model The present results demonstrate the feasibility of our strategy against solid tumors
Collapse
|
31
|
Hu B, Li H, Guo W, Sun YF, Zhang X, Tang WG, Yang LX, Xu Y, Tang XY, Ding GH, Qiu SJ, Zhou J, Li YX, Fan J, Yang XR. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification. Int J Cancer 2020; 146:1606-1617. [PMID: 31310010 DOI: 10.1002/ijc.32564] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/13/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Using a method optimized in hepatocellular carcinoma (HCC), we established patient-derived xenograft (PDX) models with an increased take rate (42.2%) and demonstrated that FBS +10% dimethyl sulfoxide exhibited the highest tumor take rate efficacy. Among 254 HCC patients, 103 stably transplantable xenograft lines that could be serially passaged, cryopreserved and revived were established. These lines maintained the diversity of HCC and the essential features of the original specimens at the histological, transcriptome, proteomic and genomic levels. Tumor engraftment was associated with lack of encapsulation, poor tumor differentiation, large size and overexpression of cancer stem cell biomarkers, and was an independent predictor for overall survival and tumor recurrence after resection. To confirm the preclinical value of the PDX model in HCC treatment, several antitumor agents were tested in 16 selected PDX models. The results revealed a high degree of pharmacologic heterogeneity in the cohort, as well as heterogeneity to different agents in the same individual. The sorafenib responses observed between HCC patients and the corresponding PDXs were also consistent. After molecular characterization of the PDX models, we explored the predictive markers for sorafenib response and found that mitogen-activated protein kinase kinase kinase 1 (MAP3K1) might play an important role in sorafenib resistance and sorafenib response is impaired in patients with MAP3K1 downexpression. Our results indicated that PDX models could accurately reproduce patient tumors biology and could aid in the discovery of new treatments to advance in precision medicine.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Hong Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Wei Guo
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Xin Zhang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Wei-Guo Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Liu-Xiao Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Xiao-Yan Tang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Guo-Hui Ding
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
- Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yi-Xue Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
- Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 2020; 39:3413-3426. [PMID: 32123314 PMCID: PMC7194123 DOI: 10.1038/s41388-020-1234-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) comprises a diverse group of malignancies arising from the nephron. The most prevalent type, clear cell renal cell carcinoma (ccRCC), is characterized by genetic mutations in factors governing the hypoxia signaling pathway, resulting in metabolic dysregulation, heightened angiogenesis, intratumoral heterogeneity, and deleterious tumor microenvironmental (TME) crosstalk. Identification of specific genetic variances has led to therapeutic innovation and improved survival for patients with ccRCC. Current barriers to effective long-term therapeutic success highlight the need for continued drug development using improved modeling systems. ccRCC preclinical models can be grouped into three broad categories: cell line, mouse, and 3D models. Yet, the breadth of important unanswered questions in ccRCC research far exceeds the accessibility of model systems capable of carrying them out. Accordingly, we review the strengths, weaknesses, and therapeutic implications of each model system that are relied upon today.
Collapse
|
33
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
34
|
Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. Nat Commun 2020; 11:929. [PMID: 32066735 PMCID: PMC7026425 DOI: 10.1038/s41467-020-14700-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
Current treatments for clear cell renal cell cancer (ccRCC) are insufficient because two-thirds of patients with metastases progress within two years. Here we report the identification and characterization of a cancer stem cell (CSC) population in ccRCC. CSCs are quantitatively correlated with tumor aggressiveness and metastasis. Transcriptional profiling and single cell sequencing reveal that these CSCs exhibit an activation of WNT and NOTCH signaling. A significant obstacle to the development of rational treatments has been the discrepancy between model systems and the in vivo situation of patients. To address this, we use CSCs to establish non-adherent sphere cultures, 3D tumor organoids, and xenografts. Treatment with WNT and NOTCH inhibitors blocks the proliferation and self-renewal of CSCs in sphere cultures and organoids, and impairs tumor growth in patient-derived xenografts in mice. These findings suggest that our approach is a promising route towards the development of personalized treatments for individual patients. Cancer stem cells are thought to be largely resistant to treatment and can be responsible for tumour recurrence. Here, using renal cancer organoids, self-renewing sphere cultures and PDX from patients, the authors show that the proliferation of stem cells within organoids, PDX and spheres can be blocked by the concomitant inhibition of the NOTCH and WNT pathways.
Collapse
|
35
|
Tracey AT, Murray KS, Coleman JA, Kim K. Patient-Derived Xenograft Models in Urological Malignancies: Urothelial Cell Carcinoma and Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12020439. [PMID: 32069881 PMCID: PMC7072311 DOI: 10.3390/cancers12020439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
The engraftment of human tumor tissues into immunodeficient host mice to generate patient-derived xenograft (PDX) models has become increasingly utilized for many types of cancers. By capturing the unique genomic and molecular properties of the parental tumor, PDX models enable analysis of patient-specific clinical responses. PDX models are an important platform to address the contribution of inter-tumoral heterogeneity to therapeutic sensitivity, tumor evolution, and the mechanisms of treatment resistance. With the increasingly important role played by targeted therapies in urological malignancies, the establishment of representative PDX models can contribute to improved facilitation and adoption of precision medicine. In this review of the evolving role of the PDX in urothelial cancer and kidney cancer, we discuss the essential elements of successful graft development, effective translational application, and future directions for clinical models.
Collapse
Affiliation(s)
- Andrew T. Tracey
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Katie S. Murray
- Department of Surgery, Division of Urology, University of Missouri, Columbia, MO 65211, USA;
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.T.T.); (J.A.C.)
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence: ; Tel.: +1-646-422-4432
| |
Collapse
|
36
|
Cai Q, Christie A, Rajaram S, Zhou Q, Araj E, Chintalapati S, Cadeddu J, Margulis V, Pedrosa I, Rakheja D, McKay RM, Brugarolas J, Kapur P. Ontological analyses reveal clinically-significant clear cell renal cell carcinoma subtypes with convergent evolutionary trajectories into an aggressive type. EBioMedicine 2019; 51:102526. [PMID: 31859241 PMCID: PMC7000318 DOI: 10.1016/j.ebiom.2019.10.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a particularly challenging tumor type because of its extensive phenotypic variability as well as intra-tumoral heterogeneity (ITH). Clinically, this complexity has been reduced to a handful of pathological variables such as stage, grade and necrosis, but these variables fail to capture the breadth of the disease. How different phenotypes affect patient prognosis and influence therapeutic response is poorly understood. Extensive ITH illustrates remarkable plasticity, providing a framework to study tumor evolution. While multiregional genomic analyses have shown evolution from an ancient clone that acquires metastatic competency over time, these studies have been conducted agnostic to morphological cues and phenotypic plasticity. Methods We established a systematic ontology of ccRCC phenotypic variability by developing a multi-scale framework along three fundamental axes: tumor architecture, cytology and the microenvironment. We defined 33 parameters, which we comprehensively evaluated in 549 consecutive ccRCCs retrospectively. We systematically evaluated the impact of each parameter on patient outcomes, and assessed their contribution through multivariate analyses. We measured therapeutic impact in the context of anti-angiogenic therapies. We applied dimensionality reduction by t-distributed stochastic neighbor embedding (t-SNE) algorithms to tumor architectures for the study of tumor evolution superimposing tumor size and grade vectors. Evolutionary models were refined through empirical analyses of directed evolution of tumor intravascular extensions, and metastatic competency (as determined by tumor reconstitution in a heterologous host). Findings We discovered several novel ccRCC phenotypes, developed an integrated taxonomy, and identified features that improve current prognostic models. We identified a subset of ccRCCs refractory to anti-angiogenic therapies. We developed a model of tumor evolution, which revealed converging evolutionary trajectories into an aggressive type. Interpretation This work serves as a paradigm for deconvoluting tumor complexity and illustrates how morphological analyses can improve our understanding of ccRCC pleiotropy. We identified several subtypes associated with aggressive biology, and differential response to targeted therapies. By analyzing patterns of spatial and temporal co-occurrence, intravascular tumor extensions and metastatic competency, we were able to identify distinct trajectories of convergent phenotypic evolution.
Collapse
Affiliation(s)
- Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Satwik Rajaram
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Qinbo Zhou
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ellen Araj
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Suneetha Chintalapati
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jeffrey Cadeddu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Ivan Pedrosa
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Renee M McKay
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
37
|
Courtney KD, Ma Y, Diaz de Leon A, Christie A, Xie Z, Woolford L, Singla N, Joyce A, Hill H, Madhuranthakam AJ, Yuan Q, Xi Y, Zhang Y, Chang J, Fatunde O, Arriaga Y, Frankel AE, Kalva S, Zhang S, McKenzie T, Reig Torras O, Figlin RA, Rini BI, McKay RM, Kapur P, Wang T, Pedrosa I, Brugarolas J. HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2019; 26:793-803. [PMID: 31727677 DOI: 10.1158/1078-0432.ccr-19-1459] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/16/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The heterodimeric transcription factor HIF-2 is arguably the most important driver of clear cell renal cell carcinoma (ccRCC). Although considered undruggable, structural analyses at the University of Texas Southwestern Medical Center (UTSW, Dallas, TX) identified a vulnerability in the α subunit, which heterodimerizes with HIF1β, ultimately leading to the development of PT2385, a first-in-class inhibitor. PT2385 was safe and active in a first-in-human phase I clinical trial of patients with extensively pretreated ccRCC at UTSW and elsewhere. There were no dose-limiting toxicities, and disease control ≥4 months was achieved in 42% of patients. PATIENTS AND METHODS We conducted a prospective companion substudy involving a subset of patients enrolled in the phase I clinical trial at UTSW (n = 10), who were treated at the phase II dose or above, involving multiparametric MRI, blood draws, and serial biopsies for biochemical, whole exome, and RNA-sequencing studies. RESULTS PT2385 inhibited HIF-2 in nontumor tissues, as determined by a reduction in erythropoietin levels (a pharmacodynamic marker), in all but one patient, who had the lowest drug concentrations. PT2385 dissociated HIF-2 complexes in ccRCC metastases, and inhibited HIF-2 target gene expression. In contrast, HIF-1 complexes were unaffected. Prolonged PT2385 treatment resulted in the acquisition of resistance, and we identified a gatekeeper mutation (G323E) in HIF2α, which interferes with drug binding and precluded HIF-2 complex dissociation. In addition, we identified an acquired TP53 mutation elsewhere, suggesting a possible alternate mechanism of resistance. CONCLUSIONS These findings demonstrate a core dependency on HIF-2 in metastatic ccRCC and establish PT2385 as a highly specific HIF-2 inhibitor in humans. New approaches will be required to target mutant HIF-2 beyond PT2385 or the closely related PT2977 (MK-6482).
Collapse
Affiliation(s)
- Kevin D Courtney
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuanqing Ma
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alberto Diaz de Leon
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhiqun Xie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Layton Woolford
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nirmish Singla
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Allison Joyce
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haley Hill
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ananth J Madhuranthakam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qing Yuan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yue Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenny Chang
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Oluwatomilade Fatunde
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Arthur E Frankel
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sanjeeva Kalva
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Song Zhang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tiffani McKenzie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Oscar Reig Torras
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robert A Figlin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian I Rini
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Renée M McKay
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Hematology-Oncology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas. .,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
38
|
Kim J, Thompson B, Han S, Lotan Y, McDonald JG, Ye J. Uptake of HDL-cholesterol contributes to lipid accumulation in clear cell renal cell carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158525. [PMID: 31513923 DOI: 10.1016/j.bbalip.2019.158525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC), which accounts for the majority of kidney cancer, is known to accumulate excess cholesterol. However, the mechanism and functional significance of the lipid accumulation for development of the cancer remains obscure. In this study, we analyzed 42 primary ccRCC samples, and determined that cholesterol levels of ~ 70% of the tumors were at least two-fold higher than that of benign kidney tissues. Compared to tumors without cholesterol accumulation, those containing excess cholesterol expressed higher levels of scavenger receptor BI (SR-B1), a receptor for uptake of HDL-associated cholesterol, but not genes involved in cholesterol synthesis and uptake of LDL-associated cholesterol. To further determine the roles of sterol accumulation for cancer development, we implanted ccRCC from patients into mouse kidneys using a mouse ccRCC xenograft model. Feeding mice with probucol, a compound lowing HDL-cholesterol, markedly reduced levels of cholesterol in tumors containing excess cholesterol. This treatment, however, did not affect growth of these tumors. Our study suggests that cholesterol overaccumulation in ccRCC is the consequence of increased uptake of HDL-cholesterol as a result of SR-B1 overexpression, but the lipid accumulation by itself may not play a significant role in progression of the cancer.
Collapse
Affiliation(s)
- JungYeon Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bonne Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
A marker-independent lineage-tracing system to quantify clonal dynamics and stem cell functionality in cancer tissue. Nat Protoc 2019; 14:2648-2671. [PMID: 31420599 DOI: 10.1038/s41596-019-0194-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Lineage tracing is a powerful tool that can be used to uncover cell fates. Here, we describe a novel method for the quantitative analysis of clonal dynamics in grafted cancer tissues. The protocol involves the preparation and validation of cells for lineage tracing, establishment of grafts and label induction, analysis of clone-size distribution and fitting of the experimental data to a mathematical tumor growth model. In contrast to other lineage-tracing strategies, the method described here assesses stem cell functionality and infers tumor expansion dynamics independently of molecular markers such as putative cancer stem cell (CSC)-specific genes. The experimental system and analytical framework presented can be used to quantify clonal advantages that specific mutations provide, in both the absence and presence of (targeted) therapeutic agents. This protocol typically takes ~20 weeks to complete from cell line selection to inference of growth dynamics, depending on the grafted cancer growth rate.
Collapse
|
40
|
Vento J, Mulgaonkar A, Woolford L, Nham K, Christie A, Bagrodia A, de Leon AD, Hannan R, Bowman I, McKay RM, Kapur P, Hao G, Sun X, Brugarolas J. PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer 2019; 7:144. [PMID: 31155004 PMCID: PMC6545669 DOI: 10.1186/s40425-019-0607-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Background Programmed death-ligand 1 (PD-L1) expression in metastatic renal cell carcinoma (RCC) correlates with a worse prognosis, but whether it also predicts responsiveness to anti-PD-1/PD-L1 therapy remains unclear. Most studies of PD-L1 are limited by evaluation in primary rather than metastatic sites, and in biopsy samples, which may not be representative. These limitations may be overcome with immuno–positron emission tomography (iPET), an emerging tool allowing the detection of cell surface proteins with radiolabeled antibodies. Here, we report iPET studies of PD-L1 in a preclinical tumorgraft model of clear cell RCC (ccRCC) from a patient who had a favorable response to anti-PD-1 therapy. Case presentation A 49-year-old man underwent a cytoreductive nephrectomy in 2017 of a right kidney tumor invading into the adrenal gland that was metastatic to the lungs and a rib. Histological analyses revealed a ccRCC of ISUP grade 4 with extensive sarcomatoid features. IMDC risk group was poor. Within two hours of surgery, a tumor sample was implanted orthotopically into NOD/SCID mice. Consistent with an aggressive tumor, a renal mass was detected 18 days post-implantation. Histologically, the tumorgraft showed sarcomatoid differentiation and high levels of PD-L1, similar to the patient’s tumor. PD-L1 was evaluated in subsequently transplanted mice using iPET and the results were compared to control mice implanted with a PD-L1-negative tumor. We labeled atezolizumab, an anti-PD-L1 antibody with a mutant Fc, with zirconium-89. iPET revealed significantly higher 89Zr-atezolizumab uptake in index than control tumorgrafts. The patient was treated with high-dose IL2 initially, and subsequently with pazopanib, with rapidly progressive disease, but had a durable response with nivolumab. Conclusions To our knowledge, this is the first report of non-invasive detection of PD-L1 in renal cancer using molecular imaging. This study supports clinical evaluation of iPET to identify RCC patients with tumors deploying the PD-L1 checkpoint pathway who may be most likely to benefit from PD-1/PD-L1 disrupting drugs.
Collapse
Affiliation(s)
- Joseph Vento
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditi Mulgaonkar
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Layton Woolford
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kien Nham
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditya Bagrodia
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Diaz de Leon
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raquibul Hannan
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isaac Bowman
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Renee M McKay
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guiyang Hao
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiankai Sun
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Patel A, Cohen S, Moret R, Maresh G, Gobe GC, Li L. Patient-derived xenograft models to optimize kidney cancer therapies. Transl Androl Urol 2019; 8:S156-S165. [PMID: 31236333 DOI: 10.21037/tau.2018.11.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common solid neoplasm of the adult kidney and has a high potential for developing metastatic spread. Approximately 25-30% of RCC patients have metastatic disease at presentation, and 30-40% of patients develop metastases after the initial diagnosis. Advanced renal cancer is a deadly and difficult-to-treat cancer. The 5-year survival rate of patients with metastatic disease is less than 10%, partly because RCC metastases become resistant to current therapies. Pre-clinical models may help to identify the optimum therapeutic options for individual patients. Here we reviewed various mouse xenograft methods for RCC treatment screening especially patient-derived orthotopic xenograft models. Advantages and disadvantaged of some of the models are also discussed.
Collapse
Affiliation(s)
- Avi Patel
- UQ-Ochsner Clinical School, Institute for Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Sarah Cohen
- UQ-Ochsner Clinical School, Institute for Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ravan Moret
- UQ-Ochsner Clinical School, Institute for Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Grace Maresh
- UQ-Ochsner Clinical School, Institute for Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Glenda C Gobe
- UQ NHMRC CKD.QLD CRE, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,University of Queensland Princess Alexandra Hospital Kidney Disease Research Collaborative, Translational Research Institute, Brisbane, QLD, Australia
| | - Li Li
- UQ-Ochsner Clinical School, Institute for Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| |
Collapse
|
42
|
Yun EJ, Lin CJ, Dang A, Hernandez E, Guo J, Chen WM, Allison J, Kim N, Kapur P, Brugarolas J, Wu K, He D, Lai CH, Lin H, Saha D, Baek ST, Chen BPC, Hsieh JT. Downregulation of Human DAB2IP Gene Expression in Renal Cell Carcinoma Results in Resistance to Ionizing Radiation. Clin Cancer Res 2019; 25:4542-4551. [PMID: 31000589 DOI: 10.1158/1078-0432.ccr-18-3004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Renal cell carcinoma (RCC) is known to be highly radioresistant but the mechanisms associated with radioresistance have remained elusive. We found DOC-2/DAB2 interactive protein (DAB2IP) frequently downregulated in RCC, is associated with radioresistance. In this study, we investigated the underlying mechanism regulating radioresistance by DAB2IP and developed appropriate treatment. EXPERIMENTAL DESIGN Several RCC lines with or without DAB2IP expression were irradiated with ionizing radiation (IR) for determining their radiosensitivities based on colony formation assay. To investigate the underlying regulatory mechanism of DAB2IP, immunoprecipitation-mass spectrometry was performed to identify DAB2IP-interactive proteins. PARP-1 expression and enzymatic activity were determined using qRT-PCR, Western blot analysis, and ELISA. In vivo ubiquitination assay was used to test PARP-1 degradation. Furthermore, in vivo mice xenograft model and patient-derived xenograft (PDX) model were used to determine the effect of combination therapy to sensitizing tumors to IR. RESULTS We notice that DAB2IP-deficient RCC cells acquire IR-resistance. Mechanistically, DAB2IP can form a complex with PARP-1 and E3 ligases that is responsible for degrading PARP-1. Indeed, elevated PARP-1 levels are associated with the IR resistance in RCC cells. Furthermore, PARP-1 inhibitor can enhance the IR response of either RCC xenograft model or PDX model. CONCLUSIONS In this study, we unveil that loss of DAB2IP resulted in elevated PARP-1 protein is associated with IR-resistance in RCC. These results provide a new targeting strategy to improve the efficacy of radiotherapy of RCC.
Collapse
Affiliation(s)
- Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Republic of Korea
| | - Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jiaming Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei-Min Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joyce Allison
- Department of Internal Medicine and Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathan Kim
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Department of Internal Medicine and Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Seung Tae Baek
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Republic of Korea
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Graduate Institute of Cancer Biology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
43
|
Xu C, Li X, Liu P, Li M, Luo F. Patient-derived xenograft mouse models: A high fidelity tool for individualized medicine. Oncol Lett 2019; 17:3-10. [PMID: 30655732 PMCID: PMC6313209 DOI: 10.3892/ol.2018.9583] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Patient-derived xenograft (PDX) mouse models involve the direct transfer of fresh human tumor samples into immunodeficient mice following surgical resection or other medical operations. Gene expression in tumors may be maintained by serial passages of tumors from mouse to mouse. These models aid research into tumor biology and pharmacology without manual manipulation of cell cultures in vitro. and are widely used in individualized cancer therapy/translational medicine, drug development and coclinical trials. PDX models exhibit higher predictive values for clinical outcomes than cell line-derived xenograft models and genetically engineered mouse models. However, PDX models are associated with certain challenges in clinical application. The present study reviewed current collections of PDX models and assessed the challenges and future directions of this field.
Collapse
Affiliation(s)
- Cong Xu
- Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Xuelu Li
- Department of Breast Surgery and Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Pixu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Man Li
- Department of Breast Surgery and Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Fuwen Luo
- Department of Acute Abdomen Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
44
|
Ascierto PA, Brugarolas J, Buonaguro L, Butterfield LH, Carbone D, Daniele B, Ferris R, Fox BA, Galon J, Gridelli C, Kaufman HL, Klebanoff CA, Melero I, Nathan P, Paulos CM, Ruella M, Sullivan R, Zarour H, Puzanov I. Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017, Naples, Italy). J Immunother Cancer 2018; 6:69. [PMID: 29996914 PMCID: PMC6042369 DOI: 10.1186/s40425-018-0377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy represents the third important wave in the history of the systemic treatment of cancer after chemotherapy and targeted therapy and is now established as a potent and effective treatment option across several cancer types. The clinical success of anti-cytotoxic T-lymphocyte-associated antigen (CTLA)-4, first, and anti-programmed death (PD)-1/PD-ligand (L)1 agents in melanoma and other cancers a few years later, has encouraged increasing focus on the development of other immunotherapies (e.g. monoclonal antibodies with other immune targets, adoptive cell transfer, and vaccines), with over 3000 immuno-oncology trials ongoing, involving hundreds of research institutes across the globe. The potential use of these different immunotherapeutic options in various combinations with one another and with other treatment modalities is an area of particular promise. The third Immunotherapy Bridge meeting (29-30 November, 2017, Naples, Italy) focused on recent advances in immunotherapy across various cancer types and is summarised in this report.
Collapse
Affiliation(s)
- Paolo A. Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale, Napoli, Italy
| | - James Brugarolas
- Kidney Cancer Program, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas USA
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale, Napoli, Italy
| | - Lisa H. Butterfield
- UPCI Immunologic Monitoring and Cellular Products Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - David Carbone
- College of Medicine, James Thoracic Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio USA
| | - Bruno Daniele
- Department of Oncology, “G. Rummo” Hospital, Benevento, Italy
| | - Robert Ferris
- Division of Head and Neck Surgery, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - Bernard A. Fox
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center in the Earle A. Chiles Research Institute at Providence Cancer Center, Portland, Oregon USA
| | - Jérôme Galon
- National Institute of Health and Medical Research (INSERM), Paris, France
| | - Cesare Gridelli
- Unit of Medical Oncology, Hospital “San Giuseppe Moscati”, Avellino, Italy
| | - Howard L. Kaufman
- Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, New Brunswick, New Jersey USA
| | - Christopher A. Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Ignacio Melero
- Immunology and Immunotherapy Service, Clinica Universidad de Navarra, Pamplona, Navarra Spain
| | - Paul Nathan
- Mount Vernon Cancer Centre, Northwood, Middlesex UK
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania USA
| | - Ryan Sullivan
- Medicine Harvard Medical School and Haematology/Oncology Department, Massachusetts General Hospital, Boston, Massachusetts USA
| | - Hassane Zarour
- Melanoma Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania USA
| | - Igor Puzanov
- Early Phase Clinical Trials Program, Experimental Therapeutics Program, Melanoma Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York USA
| |
Collapse
|
45
|
Miller CP, Tsuchida C, Zheng Y, Himmelfarb J, Akilesh S. A 3D Human Renal Cell Carcinoma-on-a-Chip for the Study of Tumor Angiogenesis. Neoplasia 2018; 20:610-620. [PMID: 29747161 PMCID: PMC5994779 DOI: 10.1016/j.neo.2018.02.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 01/29/2023]
Abstract
Tractable human tissue-engineered 3D models of cancer that enable fine control of tumor growth, metabolism, and reciprocal interactions between different cell types in the tumor microenvironment promise to accelerate cancer research and pharmacologic testing. Progress to date mostly reflects the use of immortalized cancer cell lines, and progression to primary patient-derived tumor cells is needed to realize the full potential of these platforms. For the first time, we report endothelial sprouting induced by primary patient tumor cells in a 3D microfluidic system. Specifically, we have combined primary human clear cell renal cell carcinoma (ccRCC) cells from six independent donors with human endothelial cells in a vascularized, flow-directed, 3D culture system ("ccRCC-on-a-chip"). The upregulation of key angiogenic factors in primary human ccRCC cells, which exhibited unique patterns of donor variation, was further enhanced when they were cultured in 3D clusters. When embedded in the matrix surrounding engineered human vessels, these ccRCC tumor clusters drove potent endothelial cell sprouting under continuous flow, thus recapitulating the critical angiogenic signaling axis between human ccRCC cells and endothelial cells. Importantly, this phenotype was driven by a primary tumor cell-derived biochemical gradient of angiogenic growth factor accumulation that was subject to pharmacological blockade. Our novel 3D system represents a vascularized tumor model that is easy to image and quantify and is fully tunable in terms of input cells, perfusate, and matrices. We envision that this ccRCC-on-a-chip will be valuable for mechanistic studies, for studying tumor-vascular cell interactions, and for developing novel and personalized antitumor therapies.
Collapse
Affiliation(s)
- Chris P Miller
- Department of Medicine/Nephrology, University of Washington, 1959 NE Pacific Street, Box 356521, Health Sciences Building, BB-1271, Seattle, WA 98195; Kidney Research Institute, University of Washington, Box 359606, 325 Ninth Avenue, Seattle, WA 98104; Fred Hutchinson Cancer Research Center / University of Washington Cancer Consortium, 1100 Fairview Ave N, Seattle, WA 98109.
| | - Connor Tsuchida
- Department of Bioengineering, University of Washington, Box 355061, William H. Foege Building, 3720 15th Ave NE, Seattle, WA 98195.
| | - Ying Zheng
- Kidney Research Institute, University of Washington, Box 359606, 325 Ninth Avenue, Seattle, WA 98104; Fred Hutchinson Cancer Research Center / University of Washington Cancer Consortium, 1100 Fairview Ave N, Seattle, WA 98109; Department of Bioengineering, University of Washington, Box 355061, William H. Foege Building, 3720 15th Ave NE, Seattle, WA 98195; Institute for Stem Cell and Regenerative Medicine, University of Washington, Box 358056, 850 Republican Street Seattle, WA 98109.
| | - Jonathan Himmelfarb
- Department of Medicine/Nephrology, University of Washington, 1959 NE Pacific Street, Box 356521, Health Sciences Building, BB-1271, Seattle, WA 98195; Kidney Research Institute, University of Washington, Box 359606, 325 Ninth Avenue, Seattle, WA 98104.
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington, Box 359606, 325 Ninth Avenue, Seattle, WA 98104; Fred Hutchinson Cancer Research Center / University of Washington Cancer Consortium, 1100 Fairview Ave N, Seattle, WA 98109; Department of Pathology, University of Washington, Box 356100, 1959 NE Pacific Street, Seattle, WA 98195.
| |
Collapse
|
46
|
El-Hoss J, Jing D, Evans K, Toscan C, Xie J, Lee H, Taylor RA, Lawrence MG, Risbridger GP, MacKenzie KL, Sutton R, Lock RB. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts. Oncotarget 2018; 7:60475-60490. [PMID: 27528024 PMCID: PMC5312397 DOI: 10.18632/oncotarget.11125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 07/26/2016] [Indexed: 12/03/2022] Open
Abstract
Patient derived xenografts (PDXs) have become a vital, frequently used, component of anti-cancer drug development. PDXs can be serially passaged in vivo for years, and shared across laboratories. As a consequence, the potential for mis-identification and cross-contamination is possible, yet authentication of PDXs appears limited. We present a PDX Authentication System (PAS), by combining a commercially available OpenArray assay of single nucleotide polymorphisms (SNPs) with in-house R studio programs, to validate PDXs established in individual mice from acute lymphoblastic leukemia biopsies. The PAS is sufficiently robust to identify contamination at levels as low as 3%, similar to the gold standard of short tandem repeat (STR) profiling. We have surveyed a panel of PDXs established from 73 individual leukemia patients, and found that the PAS provided sufficient discriminatory power to identify each xenograft. The identified SNP-discrepant PDXs demonstrated distinct gene expression profiles, indicating a risk of contamination for PDXs at high passage number. The PAS also allows for the authentication of tumor cells with complex karyotypes from solid tumors including prostate cancer and Ewing's sarcoma. This study highlights the demands of authenticating PDXs for cancer research, and evaluates a reliable authentication platform that utilizes a commercially available and cost-effective system.
Collapse
Affiliation(s)
- Jad El-Hoss
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Duohui Jing
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Cara Toscan
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Hyunjoo Lee
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Renea A Taylor
- Prostate Research Group, Department of Physiology, Biomedicine Discovery Institute, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, VIC, Australia
| | - Mitchell G Lawrence
- Prostate Research Group, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, VIC, Australia
| | - Gail P Risbridger
- Prostate Research Group, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, VIC, Australia
| | - Karen L MacKenzie
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, Sydney, UNSW, Australia
| |
Collapse
|
47
|
Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 2017; 17:751-765. [PMID: 29077691 DOI: 10.1038/nrc.2017.92] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncology research in humans is limited to analytical and observational studies for obvious ethical reasons, with therapy-focused clinical trials being the one exception to this rule. Preclinical mouse tumour models therefore serve as an indispensable intermediate experimental model system bridging more reductionist in vitro research with human studies. Based on a systematic survey of preclinical mouse tumour studies published in eight scientific journals in 2016, this Analysis provides an overview of how contemporary preclinical mouse tumour biology research is pursued. It thereby identifies some of the most important challenges in this field and discusses potential ways in which preclinical mouse tumour models could be improved for better relevance, reproducibility and translatability.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Cancer Consortium, 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Dong Y, Manley BJ, Becerra MF, Redzematovic A, Casuscelli J, Tennenbaum DM, Reznik E, Han S, Benfante N, Chen YB, Arcila ME, Aras O, Voss MH, Feldman DR, Motzer RJ, Fabbri N, Healey JH, Boland PJ, Chawla M, Durack JC, Lee CH, Coleman JA, Russo P, Hakimi AA, Cheng EH, Hsieh JJ. Tumor Xenografts of Human Clear Cell Renal Cell Carcinoma But Not Corresponding Cell Lines Recapitulate Clinical Response to Sunitinib: Feasibility of Using Biopsy Samples. Eur Urol Focus 2017; 3:590-598. [PMID: 28753786 PMCID: PMC5608640 DOI: 10.1016/j.euf.2016.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/07/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parallel development of preclinical models that recapitulate treatment response observed in patients is central to the advancement of personalized medicine. OBJECTIVE To evaluate the use of biopsy specimens to develop patient-derived xenografts and the use of corresponding cell lines from renal cell carcinoma (RCC) tumors for the assessment of histopathology, genomics, and treatment response. DESIGN, SETTING, AND PARTICIPANTS A total of 74 tumor specimens from 66 patients with RCC were implanted into immunocompromised NOD-SCID IL2Rg-/- mice. Four cell lines generated from patients' specimens with clear cell pathology were used for comparative studies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Preclinical models were established and assessed. Engraftment rates were analyzed using chi-square testing. Analysis of variance (two-way analysis of variance) was conducted to assess tumor growth. RESULTS AND LIMITATIONS Overall, 33 RCC mouse xenograft models were generated with an overall engraftment rate of 45% (33 of 74). Tumor biopsies engrafted comparably with surgically resected tumors (58% vs 41%; p=0.3). Xenograft tumors and their original tumors showed high fidelity in regard to histology, mutation status, copy number change, and targeted therapy response. Engraftment rates from metastatic tumors were higher but not more significant than primary tumors (54% vs 34%; p=0.091). Our engraftment rate using metastases or biopsies was comparable with recent reports using resected primary tumors. In stark contrast to corresponding cell lines, all tested xenografts recapitulated patients' clinical response to sunitinib. CONCLUSIONS Patient-derived xenograft models can be effectively established from tumor biopsies. Preclinical xenograft models but not matched cell lines reflected clinical responses to sunitinib. PATIENT SUMMARY Matched patient-derived clear cell renal cell carcinoma xenografts and cell lines from responsive and refractory patients treated with sunitinib were established and evaluated for pharmacologic response to anti-vascular endothelial growth factor treatment. Both models accurately reflected the genetic characteristics of original tumors, but only xenografts recapitulated drug responses observed in patients. These models could serve as a powerful platform for precision medicine.
Collapse
Affiliation(s)
- Yiyu Dong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brandon J Manley
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria F Becerra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Almedina Redzematovic
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jozefina Casuscelli
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel M Tennenbaum
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Song Han
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Benfante
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E Arcila
- Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin H Voss
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren R Feldman
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicola Fabbri
- Orthopedics Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John H Healey
- Orthopedics Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Boland
- Orthopedics Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohit Chawla
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy C Durack
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James J Hsieh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
49
|
Miserocchi G, Mercatali L, Liverani C, De Vita A, Spadazzi C, Pieri F, Bongiovanni A, Recine F, Amadori D, Ibrahim T. Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med 2017; 15:229. [PMID: 29116016 PMCID: PMC5688825 DOI: 10.1186/s12967-017-1328-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
The use of patient-derived primary cell cultures in cancer preclinical assays has increased in recent years. The management of resected tumor tissue remains complex and a number of parameters must be respected to obtain complete sample digestion and optimal vitality yield. We provide an overview of the benefits of correct primary cell culture management using different preclinical methodologies, and describe the pros and cons of this model with respect to other kinds of samples. One important advantage is that the heterogeneity of the cell populations composing a primary culture partially reproduces the tumor microenvironment and crosstalk between malignant and healthy cells, neither of which is possible with cell lines. Moreover, the use of patient-derived specimens in innovative preclinical technologies, such as 3D systems or bioreactors, represents an important opportunity to improve the translational value of the results obtained. In vivo models could further our understanding of the crosstalk between tumor and other tissues as they enable us to observe the systemic and biological interactions of a complete organism. Although engineered mice are the most common model used in this setting, the zebrafish (Danio rerio) species has recently been recognized as an innovative experimental system. In fact, the transparent body and incomplete immune system of zebrafish embryos are especially useful for evaluating patient-derived tumor tissue interactions in healthy hosts. In conclusion, ex vivo systems represent an important tool for cancer research, but samples require correct manipulation to maximize their translational value.
Collapse
Affiliation(s)
- Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
50
|
Sharifnia T, Hong AL, Painter CA, Boehm JS. Emerging Opportunities for Target Discovery in Rare Cancers. Cell Chem Biol 2017; 24:1075-1091. [PMID: 28938087 PMCID: PMC5857178 DOI: 10.1016/j.chembiol.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Rare cancers pose unique challenges to research due to their low incidence. Barriers include a scarcity of tissue and experimental models to enable basic research and insufficient patient accrual for clinical studies. Consequently, an understanding of the genetic and cellular features of many rare cancer types and their associated vulnerabilities has been lacking. However, new opportunities are emerging to facilitate discovery of therapeutic targets in rare cancers. Online platforms are allowing patients with rare cancers to organize on an unprecedented scale, tumor genome sequencing is now routinely performed in research and clinical settings, and the efficiency of patient-derived model generation has improved. New CRISPR/Cas9 and small-molecule libraries permit cancer dependency discovery in a rapid and systematic fashion. In parallel, large-scale studies of common cancers now provide reference datasets to help interpret rare cancer profiling data. Together, these advances motivate consideration of new research frameworks to accelerate rare cancer target discovery.
Collapse
Affiliation(s)
- Tanaz Sharifnia
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew L Hong
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Jesse S Boehm
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|