1
|
Goncharov AP, Dicusari Elissaiou C, Ben Aharon Farzalla E, Akhvlediani G, Vashakidze N, Kharaishvili G. Signalling pathways in a nutshell: from pathogenesis to therapeutical implications in prostate cancer. Ann Med 2025; 57:2474175. [PMID: 40372974 DOI: 10.1080/07853890.2025.2474175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 05/17/2025] Open
Abstract
From tumorigenesis to the establishment of local or metastatic high-grade tumours, an integral part of the cellular lifespan relies on various signalling pathways. Particular pathways that allow cells to proliferate by creating a network of new blood vessels have been documented, whereas other pathways are primarily involved with a migration to distant body parts, partially through the process of epithelial-mesenchymal transition (EMT). This review will discuss the different signalling pathways, such as TGF-β, Cripto-1, Wnt pathways, Hedgehog, Notch and NF-κB pathways, and how they promote tumour initiation and progression by influencing diverse cellular processes and EMT in general and in benign and malignant prostate tumours. This review will discuss only the critical pathways. Therefore, many other types of signalling pathways which are related to prostate cancer will not be discussed. Possibilities for further investigation will be mentioned, as many underlying mechanisms involved in these pathways have potential as targets in future tumour therapy. This review will also introduce some novel clinical trials relating to the inhibition of signalling pathways and their clinical outcomes.
Collapse
Affiliation(s)
- Aviv Philip Goncharov
- Department of Clinical and Molecular Pathology, Palacky University, Olomouc, Czech Republic
- Department of Oncology, University Hospital, Olomouc, Czech Republic
| | | | | | - Giorgi Akhvlediani
- Faculty of Medicine, Georgian-American University, Tbilisi, Georgia
- American Hospital in Tbilisi, Tbilisi, Georgia
- Faculty of Medicine, University of Georgia, Tbilisi, Georgia
| | - Nino Vashakidze
- Department of Clinical and Molecular Pathology, Palacky University, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Human Morphology and Pathology, Medical Faculty, David Tvildiani Medical University, Tbilisi, Georgia
- Department of Clinical and Molecular Pathology, University Hospital, Olomouc, Czech Republic
| |
Collapse
|
2
|
Liang H, Wang Y, Li J, Zhang K. Crotonylation deficiency of S100A7 K49 promotes psoriatic keratinocyte proliferation through enhanced interaction with RAGE. Sci Rep 2025; 15:14678. [PMID: 40287453 PMCID: PMC12033245 DOI: 10.1038/s41598-025-96874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriasis is a chronic inflammatory dermatosis characterized by the hyperproliferative of keratinocytes. S100A7 plays a pivotal role in the pathogenesis of psoriasis. Lysine crotonylation of proteins is a newly identified modification that impacts diverse biological processes and its dysregulation has been implicated in autoimmune diseases. To investigate the profile of lysine crotonylation and its pathogenic role in psoriasis, we conducted a comparative analysis of crotonylation-modified proteins in psoriatic lesions versus healthy controls. Mutant keratinocytes with crotonylation deficiency of S100A7 were generated to explore its functional effects in psoriasis. Our omic analysis revealed a unique lysine crotonylation profile in psoriatic lesions, with a notable downregulation of crotonylation at lysine 49 (K49) of S100A7. In vitro studies demonstrated that S100A7-K49A crotonylation deficiency exhibited enhanced cell viability, augmented glycolytic metabolism, and upregulated expression of key metabolic enzymes. Furthermore, co-immunoprecipitation assays demonstrated that the K49 crotonylation-deficient form of S100A7 strengthens its interaction with RAGE, leading to enhanced phosphorylation of AKT and mTOR. Our findings suggest that S100A7 K49 crotonylation deficiency plays a pivotal role in promoting keratinocytes proliferation and metabolic reprogramming in psoriasis, and targeting abnormal S100A7 crotonylation as a potential therapeutic strategy for intervention in psoriasis-related pathologies.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital, No.5, Dong San Dao Xiang, Jiefang Road, Taiyuan, 030009, China.
| |
Collapse
|
3
|
Batista C, Cruz JVR, Siqueira M, Pesquero JB, Stipursky J, Mendes FDA. Kinin B 1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments. Pharmaceuticals (Basel) 2025; 18:591. [PMID: 40284027 PMCID: PMC12030169 DOI: 10.3390/ph18040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain.
Collapse
Affiliation(s)
- Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - João Victor Roza Cruz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.B.); (J.V.R.C.); (M.S.); (J.S.)
| |
Collapse
|
4
|
Huang B, Yuan Q, Sun J, Wang C, Yang D. Thymidine phosphorylase in nucleotide metabolism: physiological functions and its implications in tumorigenesis and anti-cancer therapy. Front Immunol 2025; 16:1561560. [PMID: 40303404 PMCID: PMC12037492 DOI: 10.3389/fimmu.2025.1561560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Thymidine phosphorylase (TYMP), a protein found in both prokaryotic and eukaryotic cells, is encoded by a gene located in the q13 region of chromosome 22. With a relative molecular mass of 55,000, TYMP exists as a homodimer. Recent research has increasingly illuminated the diverse functions of TYMP. It is known to facilitate platelet activation, osteoclast differentiation, and angiogenesis. Mutations in the TYMP gene are linked to mitochondrial neurogastrointestinal encephalomyopathy. Beyond its physiological roles, TYMP contributes significantly to tumor growth and cancer progression, where it promotes angiogenesis, modulates epigenetic genes, inhibits apoptosis, and acts as a critical enzyme in the nucleoside metabolic rescue pathway. Moreover, TYMP holds substantial implications in cancer treatment and prognosis. Given its involvement in cancer progression, TYMP inhibitors may prove valuable in inhibiting tumor growth and metastasis. Interestingly, while TYMP can drive tumor growth, certain concentrations of TYMP also enhance the cytotoxic effects of chemotherapy drugs such as 5-fluorouracil (5-FU). Although challenges exist-such as the potential disruption of normal physiological functions when inhibiting TYMP-the protein remains a promising target for cancer treatment. Ongoing research on TYMP could deepen our understanding of human physiology and the pathogenesis of cancer and open new avenues for therapeutic interventions. This article provides a comprehensive review of TYMP's structure, physiological functions, and its role in tumorigenesis and anti-tumor therapy.
Collapse
Affiliation(s)
- Bo Huang
- Liaoning Cancer Hospital & Institute, Shenyang, China
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiaao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chao Wang
- Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Dong Yang
- Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
5
|
Kennedy AE, Barczewski AH, Arnoldy CR, Pennington JP, Tiernan KA, Hidalgo MB, Reilly CC, Wongsri T, Ragusa MJ, Grigoryan G, Mierke DF, Pellegrini M. The structure of a NEMO construct engineered for screening reveals novel determinants of inhibition. Structure 2025; 33:691-704.e6. [PMID: 39909030 PMCID: PMC11972163 DOI: 10.1016/j.str.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
NEMO is an essential component in the activation of the canonical nuclear factor κB (NF-κB) pathway and exerts its function by recruiting the IκB kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NF-κB mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the design and characterization of novel engineered constructs of the IKK-binding domain of NEMO, programmed to render this difficult protein domain amenable to NMR measurements and crystallization, while preserving its biological function. ZipNEMO binds IKKβ with nanomolar affinity, is amenable to heteronuclear nuclear magnetic resonance (NMR) techniques and structure determination by X-ray crystallography. We show that NMR spectra of zipNEMO allow to detect inhibitor binding in solution and resonance assignment. The crystal structure of zipNEMO reveals a novel ligand binding motif and the adaptability of the binding pocket and inspired the design of new peptide inhibitors.
Collapse
Affiliation(s)
- Amy E Kennedy
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | - Kelly A Tiernan
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | | | | | - Tanyawan Wongsri
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Dale F Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
6
|
Zhang W, Zhang X, Wang K, Liu Z, Zhang L, Liu S, He K, Wang H, Wang J, Wang Y, Wang Y, Yang Y, Wu H. Single-nucleus transcriptome profiling provides insights into the pathophysiology of adhesive arachnoiditis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167655. [PMID: 39755217 DOI: 10.1016/j.bbadis.2024.167655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA. From six arachnoid membrane samples, a total of 52,886 cells met the quality control standards for analysis. The main cell populations identified with specific gene markers were as follows: fibroblasts, glial cells, microglial cells, endothelial cells, mural cells, plasma cells, and T cells. Downstream analysis of fibroblasts, glial cells, and microglial cells was performed. Notably, fibroblast subsets 1 and 3 demonstrated a strong association with AA. Among them, subcluster 3 demonstrated elevated expression of genes COL1A1, COL3A1, and FN1, indicative of enhanced Wnt/β-catenin and extracellular matrix (ECM) synthesis pathways. Subcluster 3 was predicted to progressively transform into subcluster 1. In subcluster 1, there was a significant upregulation of genes such as BMP and ALPL, signaling enhanced activation of calcification-related pathways. This was highly relevant to end-stage arachnoid ossification formation. After being activated, microglial cells transformed into inflammatory disease-associated microglial cells and continued to express high levels of chemokines CCL2, CCL4, IL-1β, and other inflammatory factors NAMPT, INPP5D and NLRP3. This might be the main reason why AA recurrence is frequently observed in patients. These insights enhance our understanding of the pathological progression of AA and may contribute to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiangyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shaocheng Liu
- Beijing Mentougou District Hospital, Beijing 102300, China
| | - Kun He
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - He Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Junyi Wang
- Beijing Science and Technology Innovation Group, Beijing 100101, China
| | - Yaobin Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yutian Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuhua Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
7
|
Li J, Dang SM, Sengupta S, Schurmann P, Dost AFM, Moye AL, Trovero MF, Ahmed S, Paschini M, Bhetariya PJ, Bronson R, Ho Sui SJ, Kim CF. Organoid modeling reveals the tumorigenic potential of the alveolar progenitor cell state. EMBO J 2025; 44:1804-1828. [PMID: 39930268 PMCID: PMC11914084 DOI: 10.1038/s44318-025-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
Cancers display cellular, genetic and epigenetic heterogeneity, complicating disease modeling. Multiple cell states defined by gene expression have been described in lung adenocarcinoma (LUAD). However, the functional contributions of cell state and the regulatory programs that control chromatin and gene expression in the early stages of tumor initiation are not well understood. Using single-cell RNA and ATAC sequencing in Kras/p53-driven tumor organoids, we identified two major cellular states: one more closely resembling alveolar type 2 (AT2) cells (SPC-high), and the other with epithelial-mesenchymal-transition (EMT)-associated gene expression (Hmga2-high). Each state exhibited distinct transcription factor networks, with SPC-high cells associated with TFs regulating AT2 fate and Hmga2-high cells enriched in Wnt- and NFκB-related TFs. CD44 was identified as a marker for the Hmga2-high state, enabling functional comparison of the two populations. Organoid assays and orthotopic transplantation revealed that SPC-high, CD44-negative cells exhibited higher tumorigenic potential within the lung microenvironment. These findings highlight the utility of organoids in understanding chromatin regulation in early tumorigenesis and identifying novel early-stage therapeutic targets in Kras-driven LUAD.
Collapse
Affiliation(s)
- Jingyun Li
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Susanna M Dang
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shreoshi Sengupta
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Schurmann
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Antonella F M Dost
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Aaron L Moye
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria F Trovero
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sidrah Ahmed
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Margherita Paschini
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Preetida J Bhetariya
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Roderick Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, 02115, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Carla F Kim
- Stem Cell Program, Divisions of Hematology/Oncology and Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Rodent Histopathology Core, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
8
|
Li F, Zhang Y, Li J, Jiang R, Ci S. NUP98-p65 complex regulates DNA repair to maintain glioblastoma stem cells. FASEB J 2025; 39:e70401. [PMID: 39960447 DOI: 10.1096/fj.202403256r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 05/09/2025]
Abstract
The nuclear pore complex (NPC) is an evolutionarily conserved structure that maintains the traffic between the nucleus and cytoplasm. Here, we profiled the expression of nucleoporins (NUPs) in glioblastoma stem cells (GSCs) and found that NUP98 promoted GSC maintenance and therapeutic resistance. GSCs preferentially expressed NUP98, which is essential for GSC tumorigenesis in vitro and in vivo. RNA sequencing demonstrated that NUP98 regulated the expression of key DNA damage and repair pathways. NUP98 formed a complex with transcription factor p65 to directly activate genes involved in homologous repair. Attenuation of NUP98 or p65 expression induced unrepaired intrinsic DNA damage and sensitized GSC to ionizing radiation. Clinically, overexpression of NUP98 informs poor clinical outcome among glioblastoma (GBM) patients. Collectively, our results demonstrate that NUP98-p65 represents a novel node in the regulation of DNA repair, suggesting a therapeutic strategy with potential clinical benefits for GBM patients.
Collapse
Affiliation(s)
- Feifei Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ying Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jiahui Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Ranran Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Shusheng Ci
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
10
|
Ebrahim NAA, Soliman SMA. Advanced Biomaterials and Biomedical Devices for Studying Tumor-Associated Fibroblasts: Current Trends, Innovations, and Future Prospects. BIOMEDICAL MATERIALS & DEVICES 2025. [DOI: 10.1007/s44174-025-00287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 04/23/2025]
|
11
|
Rauf A, Olatunde A, Akram Z, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Khalid A, Khalil AA, Islam MR, Thiruvengadam R, Kim S, Thiruvengadam M. The Role of Pomegranate ( Punica granatum) in Cancer Prevention and Treatment: Modulating Signaling Pathways From Inflammation to Metastasis. Food Sci Nutr 2025; 13:e4674. [PMID: 39898127 PMCID: PMC11782917 DOI: 10.1002/fsn3.4674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 02/04/2025] Open
Abstract
Punica granatum, commonly known as pomegranate, is a traditional medicinal agent owing to its antiquity. The scientific literature has shown that pomegranate extracts exhibit favorable modulation of diverse signaling pathways. These pathways encompass those implicated in inflammation, angiogenesis, hyperproliferation, cellular transformation, tumorigenesis initiation, and ultimately, a reduction in advanced metastasis and tumorigenesis. Pomegranate extracts in this context can be attributed to their high polyphenol content, which has been observed to possess inhibitory properties toward specific signaling pathways associated with cancer. As a formidable pathology, cancer is the most significant cause of death worldwide after cardiovascular disease. The annual incidence of cancer-related mortality has increased progressively. Modifying one's dietary patterns, engaging in regular physical exercise, and maintaining an optimal body mass index are three straightforward measures that an individual may undertake to mitigate their susceptibility to cancer. Incorporating diverse vegetables and fruits into one's dietary regimen exhibits promising potential for preventing a minimum of 20% cancer incidence and approximately 200,000 cancer-related mortalities annually. Vegetables and fruits contain high levels of minerals and phytochemicals, which help alleviate and prevent the harmful effects of cancer. These substances are safe and exhibit minimal toxicity in biological systems. Furthermore, they exhibit antioxidant properties and have garnered extensive approval for their use as nutritional supplements. Pomegranates are used in ancient cultures to prevent and treat various diseases. Extensive research on pomegranate extract, fruit, oil, and juice has revealed promising findings regarding their potential anti-proliferative, anti-tumorigenic, and anti-inflammatory properties through the modification of various signaling pathways related to cancer, thus demonstrating their potential as drugs to prevent and treat cancer. Emerging research indicates that pomegranate can potentially prevent and treat different cancers, including prostate, bladder, breast, skin, lung, and colon cancer.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Ahmed Olatunde
- Department of Medical BiochemistryAbubakar Tafawa Balewa UniversityBauchiNigeria
| | - Zuneera Akram
- Department of Pharmacology, Faculty of Pharmaceutical SciencesBaqai Medical UniversityKarachiPakistan
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityAl‐Medinah, Al‐MonawaraSaudi Arabia
| | - Abdullah S. M. Aljohani
- Department of Medical Biosciences, College of Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraydahSaudi Arabia
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahorePunjabPakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahorePunjabPakistan
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS)Saveetha UniversityChennaiIndia
| | - Seung‐Hyun Kim
- Department of Crop Science, College of Sanghuh Life ScienceKonkuk UniversitySeoulRepublic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life ScienceKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
12
|
Wang W, He L, Lin T, Xiang F, Wu Y, Zhou F, He Y. Homoharringtonine: mechanisms, clinical applications and research progress. Front Oncol 2025; 15:1522273. [PMID: 39949739 PMCID: PMC11821653 DOI: 10.3389/fonc.2025.1522273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Homoharringtonine is a natural alkaloid with significant pharmacological potential that has demonstrated promising efficacy in the treatment of hematological malignancies in recent years. This article systematically reviews the pharmacological mechanisms of Homoharringtonine, focusing on its key roles in inducing apoptosis, inhibiting cell cycle progression, and reducing cell migration and invasion. Additionally, HHT exhibits multiple biological activities, including immunomodulation, antiviral effects, and anti-fibrotic properties, with recent studies also revealing its potential neuroprotective functions. In clinical trials, Homoharringtonine has demonstrated promising efficacy in the treatment of hematological malignancies, particularly in various types such as acute myeloid leukemia and chronic myeloid leukemia. Despite the significant antitumor effects observed in clinical applications, its low bioavailability and potential side effects remain major challenges that limit its widespread use. This article details the latest research advancements aimed at enhancing the bioavailability of Homoharringtonine, including various drug delivery systems such as nanoparticles and liposomes, as well as chemical modification strategies. These approaches not only improve HHT's bioavailability in vivo but also enhance its targeting ability while reducing toxicity to normal cells. Furthermore, the combination of HHT with other drugs presents broader prospects for clinical treatment. By exploring the diverse pharmacological activities of Homoharringtonine in depth, this article aims to provide a foundation for developing novel therapeutic approaches based on natural products, thereby advancing HHT's application research in cancer treatment and other fields.
Collapse
Affiliation(s)
- Wen Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Lan He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Lin
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fulan Xiang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Yibin Wu
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Fangliang Zhou
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Liu D, Liu L, Che X, Wu G. Discovery of paradoxical genes: reevaluating the prognostic impact of overexpressed genes in cancer. Front Cell Dev Biol 2025; 13:1525345. [PMID: 39911323 PMCID: PMC11794808 DOI: 10.3389/fcell.2025.1525345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oncogenes are typically overexpressed in tumor tissues and often linked to poor prognosis. However, recent advancements in bioinformatics have revealed that many highly expressed genes in tumors are associated with better patient outcomes. These genes, which act as tumor suppressors, are referred to as "paradoxical genes." Analyzing The Cancer Genome Atlas (TCGA) confirmed the widespread presence of paradoxical genes, and KEGG analysis revealed their role in regulating tumor metabolism. Mechanistically, discrepancies between gene and protein expression-affected by pre- and post-transcriptional modifications-may drive this phenomenon. Mechanisms like upstream open reading frames and alternative splicing contribute to these inconsistencies. Many paradoxical genes modulate the tumor immune microenvironment, exerting tumor-suppressive effects. Further analysis shows that the stage- and tumor-specific expression of these genes, along with their environmental sensitivity, influence their dual roles in various signaling pathways. These findings highlight the importance of paradoxical genes in resisting tumor progression and maintaining cellular homeostasis, offering new avenues for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiangyu Che
- *Correspondence: Guangzhen Wu, ; Xiangyu Che,
| | | |
Collapse
|
14
|
Li M, Tong W, Dai C, Lu G, Jin D, Deng F. Downregulation of the immunoproteasome subunit PSMB8 attenuates sepsis-associated acute kidney injury through the NF-κB pathway. Immunobiology 2025; 230:152862. [PMID: 39733737 DOI: 10.1016/j.imbio.2024.152862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation. The model of S-AKI induced by LPS (10 mg/kg) was assessed by histological examination. ELISA and Real-time PCR were used to detect the levels of inflammatory cytokines in the renal cortex. The role of shPSMB8 in LPS-induced apoptosis was detected by flow cytometry. Finally, western blot was performed to assess the NF-κB signaling pathway related proteins, and the nuclear translocation of NF-kB P65 was detected by immunofluorescence microscopy. PSMB8 knockdown substantially protected against renal injury by reducing blood urea nitrogen and creatinine levels and ameliorating inflammation. PSMB8 knockdown inhibited renal expression of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and COX-2 to improve inflammatory response. Mechanistic studies demonstrated that downregulation of PSMB8 blocked LPS-induced S-AKI phosphorylation and nuclear translocation of NF-κB P65. Collectively, our results suggest that inhibition of PSMB8 significantly contributes to S-AKI via regulation of NF-κB. These findings reveal the pathogenic role of PSMB8 in AKI and suggest a novel therapeutic target for the condition.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Wenjia Tong
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China
| | - Chao Dai
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Danqun Jin
- Department of Pediatric Intensive Care Unit, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China.
| | - Fang Deng
- Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China.
| |
Collapse
|
15
|
Liao AQ, Wen J, Wei JC, Xu BB, Jin N, Lin HY, Qin XY. Syntheses, crystal structures of copper (II)-based complexes of sulfonamide derivatives and their anticancer effects through the synergistic effect of anti-angiogenesis, anti-inflammation, pro-apoptosis and cuproptosis. Eur J Med Chem 2024; 280:116954. [PMID: 39406115 DOI: 10.1016/j.ejmech.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Three novel copper(II)-based complexes Cu-1, Cu-2, and Cu-3 containing sulfamethoxazole or sulfamethazine ligand were obtained, and their single structures were characterized. Both Cu-1 and Cu-3 show a broad spectrum of cytotoxicity than Cu-2, and Cu-1 is more cytotoxic than Cu-3. What's interesting is that Cu-1 can exhibit obvious inhibitory effect on the growth of human triple-negative breast cancer in vivo and vitro through anti-proliferative, anti-angiogenic, anti-inflammatory, pro-apoptotic and cuproptotic synergistic effects. Though Cu-3 shows no significant cytotoxicity against MDA-MB-231 cells, it can significantly inhibit the growth of SKOV3 cells in vitro by down-regulating the expression of some key proteins in the VEGF/VEGFR2 signaling pathway and the expression of some pro-inflammatory cytokines, and by disrupting the balance of intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Juan Wen
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, 541001, China
| | - Jing-Chen Wei
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
16
|
Zhang Q, Zhou X, Zhang W, Wang X, Dou S, Zhao L, El‐Habta R, Zhou Q, Backman LJ, Danielson P. Corneal strain influences keratocyte proliferation and migration through upregulation of ALDH3A1 expression. FASEB J 2024; 38:e70236. [PMID: 39652089 PMCID: PMC11627209 DOI: 10.1096/fj.202401392r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Keratocytes are the primary resident cells in the corneal stroma. They play an essential role in maintaining corneal physiological function. Studying the factors that affect the phenotype and behavior of keratocytes offers meaningful perspectives for improving the understanding and treatment of corneal injuries. In this study, 3% strain was applied to human keratocytes using the Flexcell® Tension Systems. Real-time quantitative PCR (RT-qPCR) and western blot were used to investigate the influence of strain on the expression of intracellular aldehyde dehydrogenase 3A1 (ALDH3A1). ALDH3A1 knockdown was achieved using double-stranded RNA-mediated interference (RNAi). Immunofluorescence (IF) staining was employed to observe the impact of changes in ALDH3A1 expression on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation. Keratocyte proliferation and migration were assessed by bromodeoxyuridine (BrdU) assay and scratch wound healing assay, respectively. Mouse injury models and single-cell RNA sequencing of keratocytes from keratoconus patients were used to assess how strain influenced ALDH3A1 in vivo. Our results demonstrate that 3% strain suppresses keratocyte proliferation and increases ALDH3A1. Increased ALDH3A1 inhibits NF-κB nuclear translocation, a key step in the activation of the NF-κB signaling pathway. Conversely, ALDH3A1 knockdown promotes NF-κB nuclear translocation, ultimately enhancing keratocyte proliferation and migration. Elevated ALDH3A1 levels were also observed in mouse injury models with increased corneal strain and keratoconus patients. These findings provide valuable insights for further research into the role of corneal strain and its connection to corneal injury repair.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Xin Zhou
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Wei Zhang
- School of MedicineSoutheast UniversityNanjingChina
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Leilei Zhao
- Medical CollegeQingdao UniversityQingdaoChina
| | - Roine El‐Habta
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Ludvig J. Backman
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
- Department of Community Medicine and Rehabilitation, Section of PhysiotherapyUmeå UniversityUmeåSweden
| | - Patrik Danielson
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
- Department of Clinical Sciences, OphthalmologyUmeå UniversityUmeåSweden
| |
Collapse
|
17
|
Liu J, Wei Z, Meng L, Wu L, Liu F, Sang M, Zhao L, Gu L, Shan B. CircJPH1 regulates the NF-κB/HERC5 axis to promote the malignant progression of esophageal squamous cell carcinoma through binding to XRCC6. Cell Signal 2024; 124:111403. [PMID: 39255925 DOI: 10.1016/j.cellsig.2024.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and malignant cancer with an unknown pathogenesis and a poor prognosis; therefore, the identification of effective biomarkers and targets is crucial for its diagnosis and treatment. Circular (circ)RNAs are prominent functional biomarkers and therapeutic targets in various diseases, particularly cancer, due to their widespread expression and regulatory mechanisms. Our study aimed to investigate the therapeutic potential of circRNA for ESCC. We identified Hsa_circ_0137111 for the first time as one of the most significantly up-regulated genes in ESCC sequencing and named it circJPH1. The results of the present study demonstrated an enhanced expression of circJPH1 in ESCC tissues. Moreover, circJPH1-knockdown could significantly inhibit the proliferation, migration, and invasion of ESCC cells, while its overexpression promoted these characteristics. In addition, circJPH1 promoted ESCC cell tumor growth in vivo. For the first time, mass spectrometry and RNA pull-down analysis revealed the interaction of X-ray repair cross-complementary 6 (XRCC6) protein with circJPH1, thereby promoting its nuclear translocation. Consequently, the nuclear factor kappa-B (NF-κB) signaling pathway was activated, leading to an up-regulation of HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5), thereby promoting ESCC progression. In summary, the present study elucidated the regulatory impact of circJPH1 on ESCC progression in vitro and in vivo, thereby indicating its potential role in ESCC treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Zishuan Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Lingjiao Meng
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Lixia Wu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Meixiang Sang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Lina Gu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China.
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China.
| |
Collapse
|
18
|
Sabrie Z, Temiz-Resitoglu M, Kalkan T, Kilic B, Tunctan B, Malik KU, Sahan-Firat S. Protection by selective mTORC2 inhibition of Zymosan-induced hypotension and systemic inflammation mediated via IKKα/IκB-α/NF-κB activation. Prostaglandins Other Lipid Mediat 2024; 175:106918. [PMID: 39461547 DOI: 10.1016/j.prostaglandins.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Non-septic shock is a serious condition leading to multiple organ dysfunction. Although targeting the mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway exerts potent anti-inflammatory activity, little is known about mTORC2's contribution to non-septic shock. Thus, our research aims to investigate mTORC2's contribution and associated changes of IκB kinase (IKKα)/inhibitor κB (IκB-α)/nuclear factor-ĸB (NF-κB) pathway on Zymosan (ZYM)-induced non-septic rat model using the novel mTORC2 selective inhibitor JR-AB2-011. Rats were given saline (4 ml/kg), dimethylsulfoxide (DMSO) (4 ml/kg), ZYM (500 mg/kg), and (or) JR-AB2-011 (1 mg/kg). Mean arterial pressure (MAP) and heart rate (HR) of rats were recorded. JR-AB2-011 reversed both ZYM-induced reduction in MAP and increase in HR. Protein expression and/or phosphorylation of rictor, protein kinase B (Akt), IκB-α, IKKα, NF-κB p65, inducible nitric oxide synthase (iNOS), nitrotyrosine, cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, besides prostaglandin (PG) E2 levels were measured. The enhanced expression of the proteins mentioned above has been inhibited by JR-AB2-011. These data suggest mTORC2's promising role in ZYM-induced hypotension and systemic inflammation mediated via IKKα/IκB-α/NF-κB pathway.
Collapse
Affiliation(s)
- Zainab Sabrie
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Taskin Kalkan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Banu Kilic
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| |
Collapse
|
19
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Xuan R, Hu T, Cai L, Zhao B, Han E, Xia Z. CARD16 restores tumorigenesis and restraints apoptosis in glioma cells Via FOXO1/TRAIL axis. Cell Death Dis 2024; 15:804. [PMID: 39516471 PMCID: PMC11549220 DOI: 10.1038/s41419-024-07196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
A hallmark of glioma cells, particularly glioblastoma multiforme (GBM) cells, is their resistance to apoptosis. Accumulating evidences has demonstrated that CARD16, a caspase recruitment domain (CARD) only protein, enhances both anti-apoptotic and tumorigenic properties. Nevertheless, there is a limited understanding of the expression and functional role of CARD16 in glioma. This study seeks to investigate, through in silico analysis and clinical specimens, the role of CARD16 as a potential tumor promoter in glioma. Functional assays and molecular studies revealed that CARD16 promotes tumorigenesis and suppresses apoptosis in glioma cells. Moreover, knockdown of CARD16 enhances the expression of the FOXO1/TRAIL axis in GBM cells. Additionally, FOXO1 downregulation in CARD16 knockdown GBM cells restores proliferation and reduces apoptosis. Further investigation demonstrated that elevated P21 expression inhibits CDK2-mediated FOXO1 phosphorylation and ubiquitination in CARD16-knockdown GBM cells. Collectively, these findings suggest that CARD16 is a tumor-promoting molecular in glioma via downregulating FOXO1/TRAIL axis, and suppressing TRAIL-induced apoptosis. The CARD16 gene presents significant potential for prognostic prediction and advances in innovative apoptotic therapeutics.
Collapse
Affiliation(s)
- Ruoheng Xuan
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyu Hu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingshan Cai
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Beichuan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Erqiao Han
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhibo Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
21
|
Yu X, Pu H, Voss M. Overview of anti-inflammatory diets and their promising effects on non-communicable diseases. Br J Nutr 2024; 132:898-918. [PMID: 39411832 PMCID: PMC11576095 DOI: 10.1017/s0007114524001405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 11/20/2024]
Abstract
An anti-inflammatory diet is characterised by incorporating foods with potential anti-inflammatory properties, including fruits, vegetables, whole grains, nuts, legumes, spices, herbs and plant-based protein. Concurrently, pro-inflammatory red and processed meat, refined carbohydrates and saturated fats are limited. This article explores the effects of an anti-inflammatory diet on non-communicable diseases (NCD), concentrating on the underlying mechanisms that connect systemic chronic inflammation, dietary choices and disease outcomes. Chronic inflammation is a pivotal contributor to the initiation and progression of NCD. This review provides an overview of the intricate pathways through which chronic inflammation influences the pathogenesis of conditions including obesity, type II diabetes mellitus, CVD, autoinflammatory diseases, cancer and cognitive disorders. Through a comprehensive synthesis of existing research, we aim to identify some bioactive compounds present in foods deemed anti-inflammatory, explore their capacity to modulate inflammatory pathways and, consequently, to prevent or manage NCD. The findings demonstrated herein contribute to an understanding of the interplay between nutrition, inflammation and chronic diseases, paving a way for future dietary recommendations and research regarding preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu610106, People’s Republic of China
| | - Haomou Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Margaret Voss
- Department of Nutrition and Food Studies, Falk College, Syracuse University, Syracuse, NY13244, USA
| |
Collapse
|
22
|
Han Z, Xu L, Wang A, Wang B, Liu Q, Liu H, Liu Q, Gang Z, Yu S, Mu L, Weng C, Lin Z, Hu L. UBE2S facilitates glioblastoma progression through activation of the NF-κB pathway via attenuating K11-linked ubiquitination of AKIP1. Int J Biol Macromol 2024; 278:134426. [PMID: 39098687 DOI: 10.1016/j.ijbiomac.2024.134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Rapid proliferation is a hallmark of glioblastoma multiforme (GBM) and a major contributor to its recurrence. Aberrant ubiquitination has been implicated in various diseases, including cancer. In our preliminary studies, we identified Ubiquitin-conjugating enzyme E2S (UBE2S) as a potential glioma biomarker, exhibiting close associations with glioma grade and protein phosphatase 1, regulatory subunit 105 (Ki67) expression levels. However, the underlying molecular mechanisms remained elusive. NF-κB is an important signaling pathway that promotes GBM proliferation. Direct intervention targeting NF-κB has not yielded the expected results, prompting the exploration of new molecules for regulating NF-κB as a new direction. METHODS This study employed methods including yeast two-hybrid and immunoprecipitation to uncover the interaction between UBE2S and A kinase interacting protein 1 (AKIP1). Laser confocal microscopy was used to observe the localization of UBE2S and AKIP1. Dual luciferase reporter genes were utilized to observe the activation of NF-κB. RESULTS Our findings demonstrate that UBE2S deficiency significantly impedes GBM progression, both in vitro and in vivo. Mechanistically, UBE2S plays a crucial role in recruiting Ubiquitin Specific Peptidase 15 (USP15), facilitating the removal of K11-linked ubiquitination on AKIP1. This action enhances AKIP1 stability within the GBM context. The resulting increase in AKIP1 levels further augments nuclear factor kappa-B (NF-κB) transcriptional activity, leading to the upregulation of downstream genes regulated by the NF-κB pathway, thereby promoting GBM progression. CONCLUSIONS In summary, our findings reveal the role of the UBE2S/AKIP1-NF-κB axis in regulating GBM progression and provide novel evidence supporting UBE2S as a potential drug target for GBM.
Collapse
Affiliation(s)
- Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Aowen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoju Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinfang Liu
- Department of Neuroscience, Yale University School of Medicine, New Haven, America
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenbo Gang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengkun Yu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Hwang B, Kim J, Park S, Chung HJ, Kim H, Choi YH, Kim WJ, Myung SC, Jeong TB, Kim KM, Jung JC, Lee MW, Kim JW, Moon SK. Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/Androgen Receptor Axis-Mediated Signaling. World J Mens Health 2024; 42:830-841. [PMID: 38606866 PMCID: PMC11439794 DOI: 10.5534/wjmh.230200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo. MATERIALS AND METHODS The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model. RESULTS Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels. CONCLUSIONS These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
Collapse
Affiliation(s)
- Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Jongyeob Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Solbi Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Hyun Joo Chung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, Korea
| | | | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae-Bin Jeong
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Kyung-Mi Kim
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Jae-Chul Jung
- Life Science Research Institute, Novarex Co., Ltd., Cheongju, Korea
| | - Min-Won Lee
- Laboratory of Pharmacognosy and Natural Product Derived Medicine, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jin Wook Kim
- Department of Medical Informatics, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Urology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Korea
- Molecular Biodesign Research Center, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Vásquez Martínez IP, Pérez-Campos E, Pérez-Campos Mayoral L, Cruz Luis HI, Pina Canseco MDS, Zenteno E, Bazán Salinas IL, Martínez Cruz M, Pérez-Campos Mayoral E, Hernández-Huerta MT. O-GlcNAcylation: Crosstalk between Hemostasis, Inflammation, and Cancer. Int J Mol Sci 2024; 25:9896. [PMID: 39337387 PMCID: PMC11432004 DOI: 10.3390/ijms25189896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc, O-GlcNAcylation) is a post-translational modification of serine/threonine residues of proteins. Alterations in O-GlcNAcylation have been implicated in several types of cancer, regulation of tumor progression, inflammation, and thrombosis through its interaction with signaling pathways. We aim to explore the relationship between O-GlcNAcylation and hemostasis, inflammation, and cancer, which could serve as potential prognostic tools or clinical predictions for cancer patients' healthcare and as an approach to combat cancer. We found that cancer is characterized by high glucose demand and consumption, a chronic inflammatory state, a state of hypercoagulability, and platelet hyperaggregability that favors thrombosis; the latter is a major cause of death in these patients. Furthermore, we review transcription factors and pathways associated with O-GlcNAcylation, thrombosis, inflammation, and cancer, such as the PI3K/Akt/c-Myc pathway, the nuclear factor kappa B pathway, and the PI3K/AKT/mTOR pathway. We also review infectious agents associated with cancer and chronic inflammation and potential inhibitors of cancer cell development. We conclude that it is necessary to approach both the diagnosis and treatment of cancer as a network in which multiple signaling pathways are integrated, and to search for a combination of potential drugs that regulate this signaling network.
Collapse
Affiliation(s)
- Itzel Patricia Vásquez Martínez
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Eduardo Pérez-Campos
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico; (E.P.-C.); (M.M.C.)
| | - Laura Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Holanda Isabel Cruz Luis
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - María del Socorro Pina Canseco
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Edgar Zenteno
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Irma Leticia Bazán Salinas
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- National Institute of Technology of Mexico, Technological Institute of Oaxaca, Oaxaca 68033, Mexico; (E.P.-C.); (M.M.C.)
| | - Eduardo Pérez-Campos Mayoral
- UNAM-UABJO Faculty of Medicine Research Center, Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68020, Mexico; (I.P.V.M.); (L.P.-C.M.); (H.I.C.L.); (M.d.S.P.C.); (I.L.B.S.); (E.P.-C.M.)
| | - María Teresa Hernández-Huerta
- National Council of Humanities, Sciences and Technologies (CONAHCYT), Faculty of Medicine and Surgery, Autonomous University “Benito Juarez” of Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
25
|
Khan I, Kamal A, Akhtar S. Diabetes Driven Oncogenesis and Anticancer Potential of Repurposed Antidiabetic Drug: A Systemic Review. Cell Biochem Biophys 2024; 82:1907-1929. [PMID: 38954353 DOI: 10.1007/s12013-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Diabetes and cancer are two prevalent disorders, pose significant public health challenges and contribute substantially to global mortality rates, with solely 10 million reported cancer-related deaths in 2020. This review explores the pathological association between diabetes and diverse cancer progressions, examining molecular mechanisms and potential therapeutic intersections. From altered metabolic landscapes to dysregulated signaling pathways, the intricate links are delineated, offering a comprehensive understanding of diabetes as a modulator of tumorigenesis. Cancer cells develop drug resistance through mechanisms like enhanced drug efflux, genetic mutations, and altered drug metabolism, allowing them to survive despite chemotherapeutic agent. Glucose emerges as a pivotal player in diabetes progression, and serving as a crucial energy source for cancer cells, supporting their biosynthetic needs and adaptation to diverse microenvironments. Glycation, a non-enzymatic process that produces advanced glycation end products (AGEs), has been linked to the etiology of cancer and has been shown in a number of tumor forms, such as leiomyosarcomas, adenocarcinomas, and squamous cell carcinomas. Furthermore, in aggressive and metastatic breast cancer, the receptor for AGEs (RAGE) is increased, which may increase the malignancy of the tumor. Reprogramming glucose metabolism manifests as hallmark cancer features, including accelerated cell proliferation, angiogenesis, metastasis, and evasion of apoptosis. This manuscript encapsulates the dual narrative of diabetes as a driver of cancer progression and the potential of repurposed antidiabetic drugs as formidable countermeasures. The amalgamation of mechanistic understanding and clinical trial outcomes establishes a robust foundation for further translational research and therapeutic advancements in the dynamic intersection of diabetes and cancer.
Collapse
Affiliation(s)
- Iqra Khan
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Aisha Kamal
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India.
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| |
Collapse
|
26
|
Chen Z, Lang G, Xu X, Liang X, Han Y, Han Y. The role of NF-kappaB in the inflammatory processes related to dental caries, pulpitis, apical periodontitis, and periodontitis-a narrative review. PeerJ 2024; 12:e17953. [PMID: 39221277 PMCID: PMC11366231 DOI: 10.7717/peerj.17953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Tooth-related inflammatory disorders, including caries, pulpitis, apical periodontitis (AP), and periodontitis (PD), are primarily caused by resident oral microorganisms. Although these dental inflammatory conditions are typically not life-threatening, neglecting them can result in significant complications and greatly reduce an individual's quality of life. Nuclear factor κB (NF-κB), a family formed by various combinations of Rel proteins, is extensively involved in inflammatory diseases and even cancer. This study reviews recent data on NF-κB signaling and its role in dental pulp stem cells (DPSCs), dental pulp fibroblasts (DPFs), odontoblasts, human periodontal ligament cells (hPDLCs), and various experimental animal models. The findings indicate that NF-κB signaling is abnormally activated in caries, pulpitis, AP, and PD, leading to changes in related cellular differentiation. Under specific conditions, NF-κB signaling occasionally interacts with other signaling pathways, affecting inflammation, bone metabolism, and tissue regeneration processes. In summary, data collected over recent years confirm the central role of NF-κB in dental inflammatory diseases, potentially providing new insights for drug development targeting NF-κB signaling pathways in the treatment of these conditions. Keywords: NF-κB, dental caries, pulpitis, apical periodontitis, periodontitis.
Collapse
Affiliation(s)
- Zhonglan Chen
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Guangping Lang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Xi Xu
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Xinghua Liang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Yalin Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Yingying Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| |
Collapse
|
27
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
28
|
Meng W, Takeuchi Y, Ward JP, Sultan H, Arthur CD, Mardis ER, Artyomov MN, Lichti CF, Schreiber RD. Improvement of Tumor Neoantigen Detection by High-Field Asymmetric Waveform Ion Mobility Mass Spectrometry. Cancer Immunol Res 2024; 12:988-1006. [PMID: 38768391 PMCID: PMC11456315 DOI: 10.1158/2326-6066.cir-23-0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Cancer neoantigens have been shown to elicit cancer-specific T-cell responses and have garnered much attention for their roles in both spontaneous and therapeutically induced antitumor responses. Mass spectrometry (MS) profiling of tumor immunopeptidomes has been used, in part, to identify MHC-bound mutant neoantigen ligands. However, under standard conditions, MS-based detection of such rare but clinically relevant neoantigens is relatively insensitive, requiring 300 million cells or more. Here, to quantitatively define the minimum detectable amounts of therapeutically relevant MHC-I and MHC-II neoantigen peptides, we analyzed different dilutions of immunopeptidomes isolated from the well-characterized T3 mouse methylcholanthrene (MCA)-induced cell line by MS. Using either data-dependent acquisition or parallel reaction monitoring (PRM), we established the minimum amount of material required to detect the major T3 neoantigens in the presence or absence of high field asymmetric waveform ion mobility spectrometry (FAIMS). This analysis yielded a 14-fold enhancement of sensitivity in detecting the major T3 MHC-I neoantigen (mLama4) with FAIMS-PRM compared with PRM without FAIMS, allowing ex vivo detection of this neoantigen from an individual 100 mg T3 tumor. These findings were then extended to two other independent MCA-sarcoma lines (1956 and F244). This study demonstrates that FAIMS substantially increases the sensitivity of MS-based characterization of validated neoantigens from tumors.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Yoshiko Takeuchi
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Jeffrey P. Ward
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Hussein Sultan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Cora D. Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43215, U.S.A
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| |
Collapse
|
29
|
Yan Z, Yue J, Zhang Y, Hou Z, Li D, Yang Y, Li X, Idris A, Li H, Li S, Xie J, Feng R. Pseudorabies virus VHS protein abrogates interferon responses by blocking NF-κB and IRF3 nuclear translocation. Virol Sin 2024; 39:587-599. [PMID: 38823782 PMCID: PMC11401465 DOI: 10.1016/j.virs.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Herpesviruses antagonize host antiviral responses through a myriad of molecular strategies culminating in the death of the host cells. Pseudorabies virus (PRV) is a significant veterinary pathogen in pigs, causing neurological sequalae that ultimately lead to the animal's demise. PRV is known to trigger apoptotic cell death during the late stages of infection. The virion host shutdown protein (VHS) encoded by UL41 plays a crucial role in the PRV infection process. In this study, we demonstrate that UL41 inhibits PRV-induced activation of inflammatory cytokine and negatively regulates the cGAS-STING-mediated antiviral activity by targeting IRF3, thereby inhibiting the translocation and phosphorylation of IRF3. Notably, mutating the conserved amino acid sites (E192, D194, and D195) in the RNase domain of UL41 or knocking down UL41 inhibits the immune evasion of PRV, suggesting that UL41 may play a crucial role in PRV's evasion of the host immune response during infection. These results enhance our understanding of how PRV structural proteins assist the virus in evading the host immune response.
Collapse
Affiliation(s)
- Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiayu Yue
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yaxin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhengyang Hou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4702, Australia
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China.
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
30
|
Hosseini H, Abbasi A, Sabahi S, Akrami S, Yousefi-Avarvand A. Assessing the Potential Biological Activities of Postbiotics Derived from Saccharomyces cerevisiae: An In Vitro Study. Probiotics Antimicrob Proteins 2024; 16:1348-1364. [PMID: 37402072 DOI: 10.1007/s12602-023-10117-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
A new biotherapeutic strategy involves the use of microbial bioactive substances (postbiotics) that exhibit optimum compatibility and intimate contact with the immune system of the host. This study was aimed at investigating the potential biological activities of postbiotics derived from Saccharomyces cerevisiae (PTCC 5269) (PSC) under in vitro circumstances. Based on the outcomes, the synthesized PSC possessing a high level of phenolic (102.46 ± 0.25 mg GAE/g) and flavonoid (19.87 ± 75.32 mg QE/g) content demonstrated significant radical scavenging activity (87.34 ± 0.56%); antibacterial action towards Listeria monocytogenes, Streptococcus mutans, Salmonella typhi, and Escherichia coli (in order of effectiveness) in both in vitro and food models (whole milk and ground meat); probiotics' growth-promoting activity in the fermentation medium; α-glucosidase enzyme-inhibiting and cholesterol-lowering properties in a concentration- and pH-dependent manner; reduction in the cell viability (with the significant IC50 values of 34.27 and 23.58 μg/mL after 24 and 48 h, respectively); suppressed the initial (G0/G1) phase of the cell's division; induced apoptosis; and increased the expression of PTEN gene, while the IkB, RelA, and Bcl-XL genes indicated diminished expression in treated SW480 cancer cells. These multiple health-promoting functions of PSC can be extended to medical, biomedical, and food scopes, as novel biotherapeutic approaches, in order to design efficient and optimized functional food formulations or/and supplementary medications to use as adjuvant agents for preventing or/and treating chronic/acute disorders.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabahi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arshid Yousefi-Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Fu DF, Chen B. The relationship between the systemic immune inflammation index and the nonalcoholic fatty liver disease in American adolescents. BMC Gastroenterol 2024; 24:233. [PMID: 39044158 PMCID: PMC11267776 DOI: 10.1186/s12876-024-03324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a growing health crisis in the general population of the United States (U.S.), but the relationship between systemic immune-inflammation (SII) index and NAFLD is not known. METHODS We collected data from the National Health and Nutrition Examination Survey 2017-2018. Next, propensity score matching (PSM), collinearity analysis, restricted cubic spline (RCS) plot, logistic regression, quantile regression analysis, subgroup analysis, mediation analysis, and population attributable fraction were used to explore the association of the SII with risk of NAFLD. RESULTS A total of 665 participants including the 532 Non-NAFLD and 133 NAFLD were enrolled for further analysis after PSM analysis. The RCS results indicated that there was a linear relationship between the SII and controlled attenuation parameter (p for nonlinear = 0.468), the relationship also existed after adjustment for covariates (p for nonlinear = 0.769). The logistic regression results indicated that a high SII level was an independent risk factor for NAFLD (OR = 3.505, 95% CI: 1.092-11.249, P < 0.05). The quantile regression indicated that at higher quantiles (0.90, and 0.95) the SII was significantly associated with NAFLD (p < 0.05). Mediation analysis indicated that alanine aminotransferase (ALT), triglycerides, and blood urea nitrogen (BUN) were partially contribute to the relationship between SII and NAFLD. The population attributable fractions indicated that 23.19% (95% CI: 8.22%, 38.17%) of NAFLD cases could be attributed to SII corresponding to 133 NAFLD cases. CONCLUSION There was a positive linear relationship between the SII and the risk of NAFLD. The ALT, triglycerides, and BUN had a partial mediating effect on the relationship between the SII and NAFLD.
Collapse
Affiliation(s)
- Dong-Fang Fu
- Department of Ultrasound, Hangzhou Xiaoshan First People's Hospital, No.199, Shixin South Road, Xiaoshan District, Hangzhou, Zhejiang, 311201, China
| | - Bin Chen
- Department of Ultrasound, Hangzhou Xiaoshan First People's Hospital, No.199, Shixin South Road, Xiaoshan District, Hangzhou, Zhejiang, 311201, China.
| |
Collapse
|
32
|
Yan L, Shi J, Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov Oncol 2024; 15:294. [PMID: 39031216 PMCID: PMC11265098 DOI: 10.1007/s12672-024-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yan
- Medical Department, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jia Shi
- Department of Obstetrics and Gynecology, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jiazuo Zhu
- Department of Oncology, Xuancheng City Central Hospital, No. 117 Tong Road, Xuancheng, Anhui, China.
| |
Collapse
|
33
|
Xu H, Chen F, Liu Z, Gao R, He J, Li F, Li N, Mu X, Liu T, Wang Y, Chen X. B(a)P induces ovarian granulosa cell apoptosis via TRAF2-NFκB-Caspase1 axis during early pregnancy. ENVIRONMENTAL RESEARCH 2024; 252:118865. [PMID: 38583661 DOI: 10.1016/j.envres.2024.118865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.
Collapse
Affiliation(s)
- Hanting Xu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangyuan Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhihao Liu
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Nanyan Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400039, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Taihang Liu
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
34
|
Darwish M, El Hajj R, Khayat L, Alaaeddine N. Stem Cell Secretions as a Potential Therapeutic Agent for Autism Spectrum Disorder: A Narrative Review. Stem Cell Rev Rep 2024; 20:1252-1272. [PMID: 38630359 DOI: 10.1007/s12015-024-10724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 07/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by impaired social interaction and restricted repetitive behaviors or interests. The rising prevalence of ASD diagnosis has triggered a surge in research into investigating the underlying neuropathological processes and finding new therapeutic approaches. ASD is characterized by neuroinflammation and dysregulation of neuro-immune cross-talk, which suggests that stem cell treatment might be a potential therapeutic approach. The beneficial and restorative effects of stem cells are mainly due to their paracrine activity, in which stem cells generate and release extracellular vesicles such as exosomes and distinct secreted non-vesicle soluble proteins, including, growth factors, chemokines, cytokines, and immunomodulatory molecules referred to as the Secretome. In this paper, we reviewed the existing research exploring the therapeutic potential of stem cell secretome focusing on their role in addressing ASD pathology. Furthermore, we proposed a comprehensive mechanism of action for stem cell secretions, encompassing the broader secretome as well as the specific contribution of exosomes, in alleviating ASD neuropathology. Across the reviewed studies, exosomes and secreted soluble factors of the transplanted stem cell demonstrate a potential efficacy in ameliorating autistic-like behaviors. The proposed mechanism of action involves the modulation of signaling pathways implicated in neuroinflammation, angiogenesis, cellular apoptosis, and immunomodulation.
Collapse
Affiliation(s)
- Mariam Darwish
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | | | | | - Nada Alaaeddine
- Dean of Health Sciences, Modern University for Business & Science, Beirut, Lebanon.
| |
Collapse
|
35
|
Kim H, Jeong S, Kim SW, Kim HJ, Kim DY, Yook TH, Yang G. Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials. J Pharmacopuncture 2024; 27:59-69. [PMID: 38948310 PMCID: PMC11194518 DOI: 10.3831/kpi.2024.27.2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 07/02/2024] Open
Abstract
This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Soohyun Jeong
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Sung Wook Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Hyung-Jin Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Dae Yong Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Tae Han Yook
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Gabsik Yang
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| |
Collapse
|
36
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
37
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
38
|
Nam OH, Kim JH, Kang SW, Chae YK, Jih MK, You HH, Koh JT, Kim Y. Ginsenoside Rb1 alleviates lipopolysaccharide-induced inflammation in human dental pulp cells via the PI3K/Akt, NF-κB, and MAPK signalling pathways. Int Endod J 2024; 57:759-768. [PMID: 38436525 DOI: 10.1111/iej.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
AIM Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.
Collapse
Affiliation(s)
- Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee Universtiy Medical Center, Seoul, Korea
| | - Jae-Hwan Kim
- Department of Pediatric Dentistry, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Si Won Kang
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yong Kwon Chae
- Department of Pediatric Dentistry, Kyung Hee University College of Dentistry, Kyung Hee Universtiy Medical Center, Seoul, Korea
| | - Myeong-Kwan Jih
- Department of Pediatric Dentistry, School of Dentistry, Chosun University, Gwangju, Korea
| | - Hyekyoung Hannah You
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, Hard-tissue Biointerface Research Center, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
39
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
40
|
Sadeghi M, Mestivier D, Sobhani I. Contribution of pks+ Escherichia coli ( E. coli) to Colon Carcinogenesis. Microorganisms 2024; 12:1111. [PMID: 38930493 PMCID: PMC11205849 DOI: 10.3390/microorganisms12061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Denis Mestivier
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Iradj Sobhani
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
41
|
Xu BB, Jin N, Liu JC, Liao AQ, Lin HY, Qin XY. Arene-Arene Coupled Disulfamethazines (or Sulfadiazine)-Phenanthroline-Metal(II) Complexes were Synthesized by In Situ Reactions and Inhibited the Growth and Development of Triple-Negative Breast Cancer through the Synergistic Effect of Antiangiogenesis, Anti-Inflammation, Pro-Apoptosis, and Cuproptosis. J Med Chem 2024; 67:7088-7111. [PMID: 38634624 DOI: 10.1021/acs.jmedchem.3c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The novel metal(II)-based complexes HA-Cu, HA-Co, and HA-Ni with phenanthroline, sulfamethazine, and aromatic-aromatic coupled disulfamethazines as ligands were synthesized and characterized. HA-Cu, HA-Co, and HA-Ni all showed a broad spectrum of cytotoxicity and antiangiogenesis. HA-Cu was superior to HA-Co and HA-Ni, and even superior to DDP, showing significant inhibitory effect on the growth and development of tripe-negative breast cancer in vivo and in vitro. HA-Cu exhibited observable synergistic effects of antiproliferation, antiangiogenesis, anti-inflammatory, pro-apoptosis, and cuproptosis to effectively inhibited tumor survival and development. The molecular mechanism was confirmed that HA-Cu could downregulate the expression of key proteins in the VEGF/VEGFR2 signaling pathway and the expression of inflammatory cytokines, enhance the advantage of pro-apoptotic protein Bax, and enforce cuproptosis by weakening the expression of FDX1 and enhancing the expression of HSP70. Our research will provide a theoretical and practical reference for the development of metal-sulfamethazine and its derivatives as chemotherapy drugs for cancer treatment.
Collapse
Affiliation(s)
- Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ji-Cheng Liu
- Nanning Institute for Food and Drug Control, Nanning, Guangxi 530007, China
| | - Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
42
|
Meuten TK, Dean GA, Thamm DH. Review: The PI3K-AKT-mTOR signal transduction pathway in canine cancer. Vet Pathol 2024; 61:339-356. [PMID: 37905509 DOI: 10.1177/03009858231207021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tumors in dogs and humans share many similar molecular and genetic features, incentivizing a better understanding of canine neoplasms not only for the purpose of treating companion animals, but also to facilitate research of spontaneously developing tumors with similar biologic behavior and treatment approaches in an immunologically competent animal model. Multiple tumor types of both species have similar dysregulation of signal transduction through phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB; AKT), and mechanistic target of rapamycin (mTOR), collectively known as the PI3K-AKT-mTOR pathway. This review aims to delineate the pertinent aspects of the PI3K-AKT-mTOR signaling pathway in health and in tumor development. It will then present a synopsis of current understanding of PI3K-AKT-mTOR signaling in important canine cancers and advancements in targeted inhibitors of this pathway.
Collapse
|
43
|
Xu B, Cai X, Cai G, Huang G. SIRT7: A potential prognostic marker and therapeutic target in gallbladder cancer. Pathol Res Pract 2024; 256:155233. [PMID: 38452583 DOI: 10.1016/j.prp.2024.155233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy with limited treatment options and poor prognosis. In this study, we aimed to investigate the role of SIRT7, a member of the sirtuin family, in GBC and its potential as a prognostic marker and therapeutic target. Through immunohistochemistry analysis of GBC tissue samples, we observed elevated levels of SIRT7, which were correlated with worse clinicopathological parameters and shorter overall survival in GBC patients. Additionally, through cellular and animal experiments, we have discovered that interfering with SIRT7 can effectively suppress the proliferation, migration, and invasive capabilities of GBC cells. Conversely, overexpressing SIRT7 yields the opposite outcome. Furthermore, interference with SIRT7 triggers cell cycle arrest and enhances apoptosis in GBC cells. Mechanistically, we found that SIRT7 inhibition led to reduced activation of the NF-κB signaling pathway, suggesting its involvement in modulating GBC cell behavior. Our findings shed light on the oncogenic role of SIRT7 in GBC and highlight its potential as a promising prognostic marker and therapeutic target. Further research is warranted to explore the therapeutic implications of targeting SIRT7 in GBC treatment.
Collapse
Affiliation(s)
- Bo Xu
- Department of Hepato-pancreato-biliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaojing Cai
- Department of Pharmacy, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guohao Cai
- Department of Anorectal Surgery, Hainan General Hospital, Haikou, China
| | - Guoyu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China; Division of General Thoracic Surgery, Michael E. DeBakey Department of General Surgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
44
|
Bao M, Li S, Zhu Y, Dong X, Wang R, Jing F. CHL1 inhibits cell proliferation, migration and invasion by regulating the NF‑κB signaling pathway in colorectal cancer. Exp Ther Med 2024; 27:165. [PMID: 38476898 PMCID: PMC10928997 DOI: 10.3892/etm.2024.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/26/2023] [Indexed: 03/14/2024] Open
Abstract
Cell adhesion molecule close homolog of L1 (CHL1) is implicated in tumorigenesis of various malignancies. However, its role and underlying molecular mechanisms in colorectal cancer (CRC) remain unclear. The present study aimed to evaluate the specific biological functions and mechanisms of CHL1, in order to provide a theoretical basis for the use of CHL1 as a biological target in CRC. CHL1 expression was originally determined in CRC cell lines. Subsequently, CHL1 overexpression was induced by plasmid transfection in HT29 and SW480 cells, and cell proliferation, migration and invasion were evaluated using the Cell Counting Kit-8, clone formation, organoids formation and Transwell assays. Immunofluorescence and western blotting were performed to assess the protein expression of E-cadherin or N-cadherin. Differentially expressed genes (DEGs) were further evaluated using RNA-sequencing (RNA-seq) in HT29 and SW480 cells following CHL1 overexpression and functional enrichment analysis. Western blotting was performed to validate the expression of proteins related to the nuclear factor κB (NF-κB) signaling pathway. The TNMplot online database revealed the significant downregulation of CHL1 in CRC tissues. The results indicated that exogenous CHL1 overexpression significantly inhibited the proliferative, organoid-forming, migratory and invasive abilities of HT29 and SW480 cells, and increased E-cadherin protein expression. Additionally, CHL1 overexpression reduced xenograft tumor growth in vivo. RNA-seq and functional analysis revealed that DEGs in CHL1 overexpressing cells were mainly enriched in the NF-κB signaling pathway. The expression of p-p65 and p-p65/p65 ratio were significantly reduced in HT29 and SW480 cells, following CHL1 overexpression. Additionally, the inhibitory effects of CHL1 overexpression on CRC cell proliferation, organoid formation, migration and invasion were partially counteracted following the overexpression of p65 expression. Overall, the present study demonstrates that CHL1 inhibits CRC cell growth, migration and invasion through the inactivation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ming Bao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shenglong Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu Zhu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoyu Dong
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ran Wang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fangyan Jing
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
45
|
Liu Y, Yang J, Weng D, Xie Y. A1CF Binding to the p65 Interaction Site on NKRF Decreased IFN-β Expression and p65 Phosphorylation (Ser536) in Renal Carcinoma Cells. Int J Mol Sci 2024; 25:3576. [PMID: 38612387 PMCID: PMC11011687 DOI: 10.3390/ijms25073576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Apobec-1 complementation factor (A1CF) functions as an RNA-binding cofactor for APO-BEC1-mediated C-to-U conversion during RNA editing and as a hepatocyte-specific regulator in the alternative pre-mRNA splicing of metabolic enzymes. Its role in RNA editing has not been clearly established. Western blot, co-immunoprecipitation (Co-IP), immunofluorescence (IF), methyl thiazolyl tetrazolium (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to examine the role of A1CF beyond RNA editing in renal carcinoma cells. We demonstrated that A1CF interacts with NKRF, independent of RNA and DNA, without affecting its expression or nuclear translocation; however, it modulates p65(Ser536) phosphorylation and IFN-β levels. Truncation of A1CF or deletion on NKRF revealed that the RRM1 domain of A1CF and the p65 binding motif of NKRF are required for their interaction. Deletion of RRM1 on A1CF abrogates NKRF binding, and the decrease in IFN-β expression and p65(Ser536) phosphorylation was induced by A1CF. Moreover, full-length A1CF, but not an RRM1 deletion mutant, promoted cell proliferation in renal carcinoma cells. Perturbation of A1CF levels in renal carcinoma cells altered anchorage-independent growth and tumor progression in nude mice. Moreover, p65(Ser536) phosphorylation and IFN-β expression were lower, but ki67 was higher in A1CF-overexpressing tumor tissues of a xenograft mouse model. Notably, primary and metastatic samples from renal cancer patients exhibited high A1CF expression, low p65(Ser536) phosphorylation, and decreased IFN-β levels in renal carcinoma tissues compared with the corresponding paracancerous tissues. Our results indicate that A1CF-decreased p65(Ser536) phosphorylation and IFN-β levels may be caused by A1CF competitive binding to the p65-combined site on NKRF and demonstrate the direct binding of A1CF independent of RNA or DNA in signal pathway regulation and tumor promotion in renal carcinoma cells.
Collapse
Affiliation(s)
| | | | | | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (J.Y.); (D.W.)
| |
Collapse
|
46
|
Kingsley MK, Rao GK, Bhat BV. Effectiveness of Narciclasine in Suppressing the Inflammatory Response in Sepsis: Molecular Docking and In Silico Studies. Bioinform Biol Insights 2024; 18:11779322241233436. [PMID: 38495740 PMCID: PMC10943728 DOI: 10.1177/11779322241233436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Narciclasine is an alkaloid belonging to the Amaryllidaceae family which has been reported to have many beneficial properties. Especially its anticancer properties have been widely reported. Here, we have focused on its potential use in suppressing the inflammatory response in sepsis using in silico methods. Lipopolysaccharide (LPS) is an endotoxin which is present in the outer membrane of gram-negative bacteria and is a crucial player in the pathogenesis of gram-negative sepsis. Activation of toll-like receptor 4 (TLR4) signaling by LPS is an important event in the pathogenesis of gram-negative sepsis. This initiates a downstream signaling pathway comprising of several adaptor proteins such as toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), myeloid differentiation primary response protein 88 (MyD88), interleukin-1 receptor-associated kinase (IRAK)-1, IRAK-4, interferon regulatory factor 3 (IRF-3), tumor necrosis factor receptor-associated factor 6 (TRAF-6) leading to nuclear factor kappa B (NF-κβ) activation resulting in elevated production of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6. S100 calcium binding proteins A8/A9 (S100A8/A9) have been found to be an agonist of TLR4, and it amplifies the inflammatory response in sepsis. Molecular docking studies of narciclasine with target proteins associated with the LPS-TLR4 pathway showed that it has good binding affinity and stable interactions with the targets studied. Molecular dynamics (MD) simulation studies over 100 ns showed that most of the ligand-target complexes were stable. The structures of all the targets except TRAF-6 were retrieved from the Protein Data Bank (PDB) database. Homology modeling was done to predict the 3-dimensional structure of TRAF-6. MD simulation of narciclasine-TRAF-6 complex showed that the structure is stable. Metapocket was used for active site prediction in the target proteins. Toxicity analysis by admetSAR revealed that narciclasine was readily biodegradable and exhibited minimum toxicity. These results indicate that narciclasine has effective anti-inflammatory properties which could be useful in suppressing the inflammatory response in sepsis.
Collapse
Affiliation(s)
- Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
- Department of Pulmonary Medicine, Christian Medical College, Vellore, India
| | - Gurugubelli Krishna Rao
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
- Department of Biochemistry, Andhra Medical College, Visakhapatnam, India
| | - Ballambattu Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
- Aarupadai Veedu Medical College & Hospital, Vinayaka Mission Research Foundation-DU, Puducherry, India
| |
Collapse
|
47
|
Li D, Hu A. LINC-PINT suppresses breast cancer cell proliferation and migration via MEIS2/PPP3CC/NF-κB pathway by sponging miR-576-5p. Am J Med Sci 2024; 367:201-211. [PMID: 37660994 DOI: 10.1016/j.amjms.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/13/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Breast cancer (BCa) is the most frequent malignant tumor in women. Long non-coding RNAs (lncRNAs) have been acknowledged to exert critical regulating functions in various cancers. Long intergenic non-protein coding RNA, p53 induced transcript (LINC-PINT) has been reported to be a chemosensitizer and a tumor suppressor in BCa. However, its downstream molecular mechanism contributing to its tumor-suppressing role remains to be explored in BCa. METHODS LINC-PINT expression in BCa tissues and cells was measured using quantitative real-time polymerase chain reaction (RT-qPCR). The proliferation of transfected BCa cells was examined by counting kit-8 (CCK-8) and EdU assay. The migrating ability of indicate BCa cells was assessed by wound healing assays. Bioinformatics analysis and mechanism experiments such as RNA immunoprecipitation (RIP), RNA pull down assay, and luciferase reporter assay, were applied to demonstrate the downstream targets of LINC-PINT. RESULTS LINC-PINT was downregulated in BCa tissues and cell lines. Overexpression of LINC-PINT suppressed BCa cell proliferation and migration. LINC-PINT could interact with miR-576-5p to upregulate Meis homeobox 2 (MEIS2) that positively regulated protein phosphatase 3 catalytic subunit gamma (PPP3CC) by inactivating the nuclear factor-κB (NF-κB) pathway. CONCLUSIONS These findings elucidated the anti-tumor role of LINC-PINT in BCa via the miR-576-5p/MEIS2/PPP3CC/NF-κB axis, which suggested that LINC-PINT might serve as a potential therapeutic target for BCa.
Collapse
Affiliation(s)
- Daohong Li
- Department of Pathology, Henan Provincial People's Hospital, Jinshui District, Zhengzhou, Henan, China
| | - Aixia Hu
- Department of Pathology, Henan Provincial People's Hospital, Jinshui District, Zhengzhou, Henan, China.
| |
Collapse
|
48
|
Sultana N, Elford HL, Faridi JS. Targeting the Cell Cycle, RRM2 and NF-κB for the Treatment of Breast Cancers. Cancers (Basel) 2024; 16:975. [PMID: 38473336 DOI: 10.3390/cancers16050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
A hallmark of cancer is the dysregulation of the cell cycle. The CDK4/6 inhibitor palbociclib is approved for treating advanced estrogen-receptor-positive breast cancer, but its success is limited by the development of acquired resistance owing to long-term therapy despite promising clinical outcomes. This situation necessitates the development of potential combination strategies. Here, we report that didox, an inhibitor of ribonucleotide reductase in combination with palbociclib, can overcome palbociclib resistance in ER-positive and ER-negative breast cancers. This study shows didox downregulates an element of the cell cycle checkpoint, cyclin D1, accompanied by a reduction in NF-κB activity in vitro and tumor growth inhibition of palbociclib-resistant ER positive breast cancer tumor growth in vivo. Furthermore, didox induces cell cycle arrest at G1 as well as reduces ROS generated by on-target effects of palbociclib on the cell cycle. Our current study also reports that the CCND1 and RRM2 upregulation associated with palbociclib-resistant breast cancers decreases upon ribonucleotide reductase inhibition. Our data present a novel and promising biomarker-driven combination therapeutic approach for the treatment of ER-positive and ER-negative breast cancers that involves the inhibition of the CDK4/6-cyclinD1/pRb cell cycle axis that merits further clinical investigation in human models.
Collapse
Affiliation(s)
- Nahid Sultana
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | | | - Jesika S Faridi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
49
|
Kim R, Kin T, Beck WT. Impact of Complex Apoptotic Signaling Pathways on Cancer Cell Sensitivity to Therapy. Cancers (Basel) 2024; 16:984. [PMID: 38473345 DOI: 10.3390/cancers16050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types. The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the c-Jun/activator protein 1 (AP-1)/p53 signaling pathway leading to apoptotic death is altered. Cancer cells treated with anticancer drugs undergo c-Jun/AP-1-mediated apoptotic death and are involved in c-Jun N-terminal kinase activation and growth arrest- and DNA damage-inducible gene 153 (Gadd153)/CCAAT/enhancer-binding protein homologous protein pathway induction, regardless of the p53 genotype. Gadd153 induction is associated with mitochondrial membrane permeabilization after anticancer drug treatment and involves a coupled endoplasmic reticulum stress response. The induction of apoptosis by anticancer drugs is mediated by the intrinsic pathway (cytochrome c, Cyt c) and subsequent activation of the caspase cascade via proapoptotic genes (e.g., Bax and Bcl-xS) and their interactions. Anticancer drug-induced apoptosis involves caspase-dependent and caspase-independent pathways and occurs via intrinsic and extrinsic pathways. The targeting of antiapoptotic genes such as Bcl-2 enhances anticancer drug efficacy. The modulation of apoptotic signaling by Bcl-xS transduction increases the sensitivity of multidrug resistance-related protein-overexpressing epidermoid carcinoma cells to anticancer drugs. The significance of autophagy in cancer therapy remains to be elucidated. In this review, we summarize current knowledge of cancer cell death-related signaling pathways and their alterations during anticancer drug treatment and discuss potential strategies to enhance treatment efficacy.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
| | - Takanori Kin
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - William T Beck
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
50
|
Ke D, Xu H, Han J, Dai H, Wang X, Luo J, Yu Y, Xu J. Curcumin suppresses RANKL-induced osteoclast precursor autophagy in osteoclastogenesis by inhibiting RANK signaling and downstream JNK-BCL2-Beclin1 pathway. Biomed J 2024; 47:100605. [PMID: 37179010 PMCID: PMC10839592 DOI: 10.1016/j.bj.2023.100605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Curcumin ameliorates bone loss by inhibiting osteoclastogenesis. Curcumin inhibits RANKL-promoted autophagy in osteoclast precursors (OCPs), which mediates its anti-osteoclastogenic effect. But the role of RANKL signaling in curcumin-regulated OCP autophagy is unknown. This study aimed to explore the relationship between curcumin, RANKL signaling, and OCP autophagy during osteoclastogenesis. METHODS We investigated the role of curcumin in RANKL-related molecular signaling in OCPs, and identified the significance of RANK-TRAF6 signaling in curcumin-treated osteoclastogenesis and OCP autophagy using flow sorting and lentiviral transduction. Tg-hRANKL mice were used to observe the in vivo effects of curcumin on RANKL-regulated bone loss, osteoclastogenesis, and OCP autophagy. The significance of JNK-BCL2-Beclin1 pathway in curcumin-regulated OCP autophagy with RANKL was explored via rescue assays and BCL2 phosphorylation detection. RESULTS Curcumin inhibited RANKL-related molecular signaling in OCPs, and repressed osteoclast differentiation and autophagy in sorted RANK+ OCPs but did not affect those of RANK- OCPs. Curcumin-inhibited osteoclast differentiation and OCP autophagy were recovered by TRAF6 overexpression. But curcumin lost these effects under TRAF6 knockdown. Furthermore, curcumin prevented the decrease in bone mass and the increase in trabecular osteoclast formation and autophagy in RANK+ OCPs in Tg-hRANKL mice. Additionally, curcumin-inhibited OCP autophagy with RANKL was reversed by JNK activator anisomycin and TAT-Beclin1 overexpressing Beclin1. Curcumin inhibited BCL2 phosphorylation at Ser70 and enhanced protein interaction between BCL2 and Beclin1 in OCPs. CONCLUSIONS Curcumin suppresses RANKL-promoted OCP autophagy by inhibiting signaling pathway downstream of RANKL, contributing to its anti-osteoclastogenic effect. Moreover, JNK-BCL2-Beclin1 pathway plays an important role in curcumin-regulated OCP autophagy.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Haoying Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Junyong Han
- Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Hanhao Dai
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinwen Wang
- Department of Orthopedics, Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Jun Luo
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yunlong Yu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| | - Jie Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|