1
|
Liu T, Huang Y, Wang Y, Shen H. Disrupting the immune homeostasis: the emerging role of macrophage ferroptosis in autoimmune diseases. Int Immunopharmacol 2025; 157:114745. [PMID: 40319750 DOI: 10.1016/j.intimp.2025.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Autoimmune diseases are a class of chronic disorders characterized by the aberrant activation of the immune system, where macrophages play a central role in regulating immune responses during disease onset and progression. Ferroptosis, a form of iron-dependent programmed cell death, has recently attracted significant interest due to its involvement in various pathological conditions. In macrophages, ferroptosis not only compromises cell viability but also disrupts immune homeostasis by promoting pro-inflammatory responses and suppressing anti-inflammatory pathways, thereby intensifying inflammation and exacerbating disease severity. While substantial progress has been made in elucidating macrophage ferroptosis in atherosclerosis and oncology, its precise mechanistic role in autoimmune diseases remains largely unexplored. This review systematically summarizes the molecular mechanisms of macrophage ferroptosis and its regulatory effects on immune homeostasis, with particular emphasis on its role in autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), multiple sclerosis (MS), and systemic sclerosis (SSc). Furthermore, we discuss potential therapeutic targets related to macrophage ferroptosis in these conditions. By integrating current knowledge, this review aims to provide a theoretical framework and novel perspectives for developing innovative therapeutic strategies targeting autoimmune diseases.
Collapse
Affiliation(s)
- Tianfu Liu
- Department of Hepatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yichen Huang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yizhe Wang
- Department of Respiratory and Critical Care Medicine, The First People Hospital of Lanzhou, Lanzhou 730050, Gansu, China
| | - Haili Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China.
| |
Collapse
|
2
|
Singh M, Saini VP, Meena LL. Heat stress induces oxidative stress and weakens the immune system in catfish Clarias magur: Evidence from physiological, histological, and transcriptomic analyses. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110294. [PMID: 40154646 DOI: 10.1016/j.fsi.2025.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Climate change is unequivocal, causing a rise in the Earth's temperature, which ultimately impacts all ecosystems. However, aquatic ecosystems are most severely affected by rising temperatures resulting in huge losses to aquaculture industry. The present study investigated the oxidative stress, histopathological changes, and transcriptomic responses in a freshwater catfish Clarias magur subjected to acute heat stress. Fish were exposed to four different temperatures, i.e., 28, 30, 32, and 34 °C, for 96 h to assess their heat tolerance and adaptation behavior. Fish kept at 26 °C were considered the control group. Elevated levels of key antioxidative enzymes such as catalase, glutathione reductase, and superoxide dismutase, were recorded in vital organs (gills, kidney, liver, and rosette). High rates of lipid peroxidation were also observed in the gills, kidney, liver, and rosette. An analysis of the top 25 differentially expressed genes of the gill transcriptome revealed that 72 percent of the transcripts were represented by innate and adaptive immune response genes. Downregulation of BOLA class I and MHC class I molecules indicated impaired immunity whereas, upregulation of MHC class II beta chain and GTPase IMAP8 suggested a compensatory immune response. These findings were also supported by the observed histoarchitectural alterations, such as disintegration of the skin barrier, hepatic and nephrotic apoptosis, tissue hyperplasia, macrophage infiltration, and development of splenic granulomas. This study provides important insights into physiological and molecular mechanisms underlying acute heat stress responses. Understanding these mechanisms is important for developing mitigation strategies to improve the sustainability and resilience of commercially important catfish under continuously changing climatic conditions.
Collapse
Affiliation(s)
- Mamta Singh
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India.
| | - Ved Prakash Saini
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| | - Lakan Lal Meena
- College of Fisheries, Bihar Animal Sciences University, DKAC Campus, Kishanganj, Patna, Bihar, 855107, India
| |
Collapse
|
3
|
Madeira MM, Hage Z, Kokkosis AG, Nnah K, Guzman R, Schappell LE, Koliatsis D, Resutov E, Nadkarni NA, Rahme GJ, Tsirka SE. Oligodendroglia Are Primed for Antigen Presentation in Response to Chronic Stress-Induced Microglial-Derived Inflammation. Glia 2025; 73:1130-1147. [PMID: 39719686 PMCID: PMC12014386 DOI: 10.1002/glia.24661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024]
Abstract
Chronic stress is a major contributor to the development of major depressive disorder, one of the leading causes of disability worldwide. Using a model of repeated social defeat stress in mice, we and others have reported that neuroinflammation plays a dynamic role in the development of behavioral deficits consistent with social avoidance and impaired reward responses. Animals susceptible to the model also exhibit hypomyelination in the medial prefrontal cortex, indicative of changes in the differentiation pathway of cells of the oligodendroglial lineage (OLN). We computationally confirmed the presence of immune oligodendrocytes, a population of OLN cells, which express immune markers and myelination deficits. In the current study, we report that microglia are necessary to induce expression of antigen presentation markers (and other immune markers) on oligodendroglia. We further associate the appearance of these markers with changes in the OLN and confirm that microglial changes precede OLN changes. Using co-cultures of microglia and OLN, we show that under inflammatory conditions the processes of phagocytosis and expression of MHCII are linked, suggesting potential priming for antigen presentation by OLN cells. Our findings provide insights into the nature of these OLN cells with immune capabilities, their obligatory interaction with microglia, and identify them as a potential cellular contributor to the pathological manifestations of psychosocial stress.
Collapse
Affiliation(s)
- Miguel M. Madeira
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Zachary Hage
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Alexandros G. Kokkosis
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Kimberly Nnah
- Scholars in Biomedical Sciences Program
- Program in Neuroscience
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Ryan Guzman
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Laurel E. Schappell
- Molecular and Cellular Pharmacology Program
- Medical Scientist Training Program
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Neil A. Nadkarni
- Molecular and Cellular Pharmacology Program
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Gilbert J. Rahme
- Molecular and Cellular Pharmacology Program
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stella E. Tsirka
- Molecular and Cellular Pharmacology Program
- Scholars in Biomedical Sciences Program
- Program in Neuroscience
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Wang R, Xiao Z, Shi X, Ye F, Chen J, Dong M, Qiu H, Zhang Y, Shi J, Zhou M, Yang Q. Xiaoqinglong decoction combined with Yupingfeng powder alleviates combined allergic rhinitis and asthma syndrome by regulating the JAK2-STAT1-MHC II signaling pathway to suppress B lymphocyte activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119789. [PMID: 40228588 DOI: 10.1016/j.jep.2025.119789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoqinglong Decoction combined with Yupingfeng Powder (XQLDwYPFP) is widely used to treat allergic rhinitis and bronchial asthma in Traditional Chinese Medicine, while its efficacy and mechanisms in combined allergic rhinitis and asthma syndrome (CARAS) remain underexplored. AIM OF THE STUDY To elucidate the mechanisms and pharmacodynamic basis of XQLDwYPFP in CARAS treatment. MATERIALS AND METHODS A CARAS mouse model was established using ovalbumin (OVA). Airway allergic symptoms were assessed by recording nasal rubbing and sneezing frequencies. Serum OVA-sIgE levels were measured via ELISA. Histopathological changes were evaluated using HE, PAS, and C2R staining. Flow cytometry quantified Th cell subsets. Proteomics identified differential protein expression with GO and KEGG databases used for pathway enrichment analysis. Immunofluorescence assessed B lymphocyte activation, while Western blot and immunohistochemistry evaluated JAK1/JAK2-STAT1 pathway activation. Molecular docking validated the binding affinity of XQLDwYPFP components to JAK2 and STAT1. RESULTS XQLDwYPFP alleviated airway symptoms, reduced serum OVA-sIgE, and inhibited goblet cell hyperplasia and eosinophil infiltration in nasal and lung tissues. It decreased Th2 cell proportions and increased the Th1/Th2 ratio in lung and spleen tissues. Proteomics revealed that XQLDwYPFP suppresses CARAS by targeting the MHC II-mediated antigen presentation pathway. The formula reduced activated B lymphocytes and downregulated JAK2, p-JAK2, STAT1, and p-STAT1 expression in nasal and lung tissues. XQLDwYPFP representative components exhibited strong binding affinity to JAK2 and STAT1. CONCLUSIONS XQLDwYPFP alleviates type 2 inflammation in CARAS by regulating the JAK2-STAT1-MHC II pathway and inhibiting B lymphocyte-mediated antigen presentation. These findings provide novel pharmacological evidence supporting its clinical use for CARAS.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Zhenhao Xiao
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Xunqing Shi
- Maoming Hospital Affiliated to Guangzhou University of Chinese Medicine, Maoming, 525000, China.
| | - Fan Ye
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Junhai Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Min Dong
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Sun Yat-sen University Zhaoqing Hospital, Zhaoqing, 526000, China.
| | - Huijun Qiu
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Yana Zhang
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Jianbo Shi
- Department of Otorhinolaryngology Head and Neck Sugury, Guangdong Clifford Hospital, Guangzhou, 511495, China; Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Min Zhou
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| | - Qintai Yang
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China; Key Laboratory of Airway Inflammatory Disease Research and Innovative Technology Translation, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Choi J, Strickland A, Loo HQ, Dong W, Barbar L, Bloom AJ, Sasaki Y, Jin SC, DiAntonio A, Milbrandt J. Diverse cell types establish a pathogenic immune environment in peripheral neuropathy. J Neuroinflammation 2025; 22:138. [PMID: 40410792 PMCID: PMC12100903 DOI: 10.1186/s12974-025-03459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
Neuroinflammation plays a complex and context-dependent role in many neurodegenerative diseases. We identified a key pathogenic function of macrophages in a mouse model of a rare human congenital neuropathy in which SARM1, the central executioner of axon degeneration, is activated by hypomorphic mutations in the axon survival factor NMNAT2. Macrophage depletion blocked and reversed neuropathic phenotypes in this sarmopathy model, revealing SARM1-dependent neuroimmune mechanisms as key drivers of disease pathogenesis. In this study, we investigated the impact of chronic subacute SARM1 activation on the peripheral nerve milieu using single cell/nucleus RNA-sequencing (sc/snRNA-seq). Our analyses reveal an expansion of immune cells (macrophages and T lymphocytes) and repair Schwann cells, as well as significant transcriptional alterations to a wide range of nerve-resident cell types. Notably, endoneurial fibroblasts show increased expression of chemokines (Ccl9, Cxcl5) and complement components (C3, C4b, C6) in response to chronic SARM1 activation, indicating enhanced immune cell recruitment and immune response regulation by non-immune nerve-resident cells. Analysis of CD45+ immune cells in sciatic nerves revealed an expansion of an Il1b+ macrophage subpopulation with increased expression of markers associated with phagocytosis and T cell activation/proliferation. We also found a significant increase in T cells in sarmopathic nerves. Remarkably, T cell depletion rescued motor phenotypes in the sarmopathy model. These findings delineate the significant changes chronic SARM1 activation induces in peripheral nerves and highlights the potential of immunomodulatory therapies for SARM1-dependent peripheral neurodegenerative disease.
Collapse
Affiliation(s)
- Julie Choi
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hui Qi Loo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wendy Dong
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lilianne Barbar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Misganaw B, Pinto DN, Le TD, Pusateri A, Gautam A, Carney BC, Moffatt LT, Shupp JW, Hammamieh R. Distinct Transcriptome Signatures Associated With Mortality and Prolonged Recovery Following Burn Injury. J Burn Care Res 2025:iraf012. [PMID: 40397518 DOI: 10.1093/jbcr/iraf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/13/2025] [Accepted: 02/18/2025] [Indexed: 05/23/2025]
Abstract
A dysregulated immune response after severe burn injury is associated with detrimental short and long-term clinical outcomes. Key changes to gene expression within the first 24 h after burn injury have been identified, but longitudinal data is lacking. Therefore, this study aims to characterize gene expression during the first 3 weeks after burn injury and identify specific genes and pathways associated with distinct clinical outcomes. Patients presenting within 4 h of injury had blood RNA isolated for microarray gene expression at admission and set timepoints to 21 days. Inter- and intra-group comparisons were performed between 4 groups (G1 died within 7 days; G2 died after 7 days; G3 discharged after 7 days; and G4 discharged within 7 days). A total of 17 289 transcripts were quantified from 116 patients. At admission, there were 110, 80, and 31 differentially expressed genes in G1, G2, and G3, respectively, compared to G4, and were largely nonoverlapping. Longitudinal intra-group analyses also showed distinct group- and time-dependent patterns. Upregulation of genes and pathways related to the innate immune response and unfolded protein response predominated during early time points, while persistent upregulation of coagulation pathways and downregulation of immune-related pathways were identified days to weeks following injury. Overall, burn injury induces widespread transcriptomic responses, with larger and more sustained changes observed in patients with worse clinical outcomes. These gene expression signatures reveal underlying molecular mechanisms that occur immediately following injury and may have prognostic and diagnostic utility in the care of burn-injured patients.
Collapse
Affiliation(s)
- Burook Misganaw
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Culmen International, LLC, Alexandria, VA, United States
| | - Desiree N Pinto
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States
| | - Tuan D Le
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States
| | - Anthony Pusateri
- Naval Medical Research Unit San Antonio, JBSA-Fort Sam Houston, San Antonio, TX, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Culmen International, LLC, Alexandria, VA, United States
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States
- Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
7
|
Zhuang X, Li X, Li W, Xu X, Lin F, Liu Y, Chen C, Zhang X, Zhang P, Li C, Fu Q. Identification, Expression Profiling, Microbial Binding, and Agglutination Analyses of Two Cathepsin B Genes in Black Rockfish ( Sebastes schlegelii). Mar Drugs 2025; 23:213. [PMID: 40422803 DOI: 10.3390/md23050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/11/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
As a lysosomal cysteine protease of the papain subfamily, cathepsin B (CTSB) is characterized by its innate immune functions and hydrolytic activity. However, the functions of CTSB in the immune responses of teleosts remain to be clarified. In this study, two CTSB genes in S. schlegelii, SsCTSBa and SsCTSBb, were identified. Both SsCTSBa and SsCTSBb are composed of a 993 bp ORF encoding 330 amino acids. It was found in a phylogeny analysis that both genes form monophyletic clades with their orthologous counterparts of Honeycomb rockfish (Sebastes umbrosus). A synteny analysis indicated that the CTSB homologues were comparatively conserved during vertebrate evolution. Additionally, quantitative real-time PCR revealed the ubiquitous mRNA expression of SsCTSBa and SsCTSBb in all of the examined tissues, and substantially differential expression patterns could be observed following Aeromonas salmonicida infection. A subcellular localization analysis demonstrated that the distribution of SsCTSBa and SsCTSBb was mainly in the cytoplasm. Moreover, rSsCTSBa and rSsCTSBb showed strong binding to Poly(I:C) and exhibited diverse agglutination effects on different bacteria. Overall, these findings suggest that the CTSB genes in black rockfish might show essential functions in the host defense of teleosts against bacterial infections, providing valuable insights for further investigations into the immune mechanism of teleost CTSB.
Collapse
Affiliation(s)
- Xinghua Zhuang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenpeng Li
- Haidu College, Qingdao Agricultural University, Laiyang 265200, China
| | - Xuan Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengjun Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Yiying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chonghui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoxu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
8
|
Geetha D, Skaria T. Cathepsin S: A key drug target and signalling hub in immune system diseases. Int Immunopharmacol 2025; 155:114622. [PMID: 40220622 DOI: 10.1016/j.intimp.2025.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The lysosomal cysteine protease cathepsin S supports host defence by promoting the maturation of MHC class-II proteins. In contrast, increased cathepsin S activity mediates tissue destructive immune responses in autoimmune and inflammatory diseases. Therefore, cathepsin S is a key target in drug discovery programs. Here, we critically reviewed the specific mechanisms by which cathepsin S mediates autoimmune and hyperinflammatory responses to identify new targets for therapeutic immunomodulation. To this end, we performed literature review utilizing PubMed, drug database of US FDA, European Medicines Agency and the Drug-Gene Interaction Database. Cathepsin S destroys T cell epitopes and reduces endogenous antigen diversity, impairing negative selection of autoreactive T cells that could recognize these epitopes. Moreover, cathepsin S critically regulates inflammatory disease severity by generating proinflammatory molecules (PAR-1, PAR-2, IL-36γ, Fractalkine, Endostatin, Ephrin-B2), inactivating anti-inflammatory mediators (SLPI) and degrading molecules involved in antimicrobial and immunomodulatory responses (surfactant protein-A, LL-37, beta-defensins), inter-endothelial/-epithelial barrier function, gene repair and energy homeostasis. These pathways could be targeted by repositioning of existing drugs. These findings suggest that inhibiting cathepsin S or a specific downstream target of cathepsin S by repositioning of existing drugs could be a promising strategy for treating autoimmune and inflammatory diseases. Current cathepsin S inhibitors in clinical trials face challenges, highlighting the need for innovative inhibitors that function effectively in various cellular compartments with differing pH levels, without targeting the shared catalytic site of cysteine cathepsins.
Collapse
Affiliation(s)
- Durga Geetha
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
9
|
Li Z, Qin L, Xu X, Chen R, Zhang G, Wang B, Li B, Chu XM. Immune modulation: the key to combat SARS-CoV-2 induced myocardial injury. Front Immunol 2025; 16:1561946. [PMID: 40438117 PMCID: PMC12116346 DOI: 10.3389/fimmu.2025.1561946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the Coronavirus disease 2019 (COVID-19) pandemic, has posed significant healthcare challenges. In addition to respiratory complications, it has led to severe damage in other organs, particularly the cardiovascular system. Of which, myocardial injury is increasingly recognized as a most significant complication, contributing to the high mortality. Recent research indicates the pivotal role of immune dysregulation in mediating myocardial injury in patients infected with SARS-CoV-2. In this review, we provide a comprehensive analysis of the immune mechanisms involved in SARS-CoV-2-induced myocardial damage, focusing on the roles of key immune cells and molecules that contribute to this pathological process. Aiming at mitigating the myocardial injury of COVID-19, we review immune-based treatments under evaluation in preclinical and clinical trials. Along with talking about the similarities and differences in myocardial injury resulting from SARS-CoV-2, the Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV). This article provides a unique perspective on using past experiences to prevent myocardial injury in the face of ongoing virus mutations.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Banghui Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Xing J, Zhao X, Li X, Fang R, Sun M, Zhang Y, Song N. The recent advances in vaccine adjuvants. Front Immunol 2025; 16:1557415. [PMID: 40433383 PMCID: PMC12106398 DOI: 10.3389/fimmu.2025.1557415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Vaccine adjuvants, as key components in enhancing vaccine immunogenicity, play a vital role in modern vaccinology. This review systematically examines the historical evolution and mechanisms of vaccine adjuvants, with particular emphasis on innovative advancements in aluminum-based adjuvants, emulsion-based adjuvants, and nucleic acid adjuvants (e.g., CpG oligonucleotides). Specifically, aluminum adjuvants enhance immune responses through particle formation/antigen adsorption, inflammatory cascade activation, and T-cell stimulation. Emulsion adjuvants amplify immunogenicity via antigen depot effects and localized inflammation, while nucleic acid adjuvants like CpG oligonucleotides directly activate B cells and dendritic cells to promote Th1-type immune responses and memory T-cell generation. The article further explores the prospective applications of these novel adjuvants in combating emerging pathogens (including influenza and SARS-CoV-2), particularly highlighting their significance in improving vaccine potency and durability. Moreover, this review underscores the critical importance of adjuvant development in next-generation vaccine design and provides theoretical foundations for creating safer, effective adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
11
|
Kim MW, Kipnis J. Glymphatics and meningeal lymphatics unlock the brain-immune code. Immunity 2025; 58:1040-1051. [PMID: 40324376 DOI: 10.1016/j.immuni.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 05/07/2025]
Abstract
The central nervous system (CNS) was once perceived as entirely shielded from the immune system, protected behind the blood-brain barrier and thought to lack lymphatic drainage. However, recent evidence has challenged many dogmas in neuroimmunology. Indeed, by means of glymphatics, brain-derived "waste" from deep within the CNS mobilizes toward immunologically active brain borders, where meningeal lymphatic vessels are appropriately positioned to drain antigens from the brain to the periphery. Accordingly, the presentation of brain-derived self-peptides emerges at the brain's borders and drives T cell responses with suppressive properties, critical in allowing active immunosurveillance while limiting aberrant immune reactivity. Taking into consideration these concepts, we further discuss how inflammation, aging, and neurodegenerative diseases potentially reshape the repertoire of self-antigens and immune cells, disrupting the healthy dialogue between the CNS and immune system. Collectively, this evolving perspective unveils new therapeutic avenues for CNS pathologies.
Collapse
Affiliation(s)
- Min Woo Kim
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Horinouchi T, Nozu K, Iijima K. Genetic aspects of pediatric nephrotic syndrome and anti-nephrin antibodies. Clin Exp Nephrol 2025; 29:534-540. [PMID: 40085383 PMCID: PMC12049277 DOI: 10.1007/s10157-025-02645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Nephrotic syndrome is the most common glomerular disease in children, and various hypotheses regarding its etiology have been proposed, primarily focusing on immune-related mechanisms. Nephrotic syndrome can manifest as a monogenic disease caused by deleterious variants in genes such as NPHS1, which encodes nephrin. In steroid-sensitive nephrotic syndrome, HLA class II and immune-related genes have been identified as susceptibility genes. Moreover, NPHS1 is a susceptibility gene for steroid-sensitive nephrotic syndrome in patients from East Asian populations. Anti-nephrin antibodies have been identified as a significant factor in the pathogenesis of nephrotic syndrome. These discoveries have substantially advanced our understanding of nephrotic syndrome. However, the mechanisms underlying the production of anti-nephrin antibodies and their association with genetic backgrounds have remained unclear and warrant further investigation.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, Japan
- Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
13
|
Qin S, Na J, Yang Q, Tang J, Deng Y, Zhong L. Advances in dendritic cell-based therapeutic tumor vaccines. Mol Immunol 2025; 181:113-128. [PMID: 40120558 DOI: 10.1016/j.molimm.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Dendritic cell-based therapeutic tumor vaccines are an active immunotherapy that has been commonly tried in the clinic,traditional treatment modalities for malignant tumors, such as surgery, radiotherapy and chemotherapy, have the disadvantages of high recurrence rates and side effects. The dendritic cell vaccination destroys cells from tumors by means of the patient's own system of immunity, a very promising treatment. However, due to the suppression of the tumor immune microenvironment, the difficulty of screening for optimal specific antigens, and the high technical difficulty of vaccine production. Most tumor vaccines currently available in the clinic have failed to produce significant clinical therapeutic effects. In this review, the fundamentals of therapeutic dendritic cells vaccine therapy are briefly outlined, with a focus on the progress of therapeutic Dendritic cells vaccine research in the clinic and the initiatives undertaken to enhance dendritic cell vaccinations' anti-tumor effectiveness. It is believed that through the continuous exploration of novel therapeutic strategies, therapeutic dendritic cells vaccines can play a greater role in improving tumor treatment for tumor patients.
Collapse
Affiliation(s)
- Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jing Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Yamin Deng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
14
|
Shirahama S, Okunuki Y, Lee MY, Karg MM, Refaian N, Krasniqi D, Connor KM, Gregory-Ksander MS, Ksander BR. Preventing the antigen-presenting function of retinal microglia blocks autoimmune neuroinflammation by dendritic cell-primed CD4 + T cells. J Autoimmun 2025; 153:103417. [PMID: 40239533 DOI: 10.1016/j.jaut.2025.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Autoimmune uveitis is a major cause of blindness and experimental autoimmune uveitis (EAU) is mediated by interphotoreceptor retinoid-binding protein specific effector CD4+ T cells that infiltrate the retina. At least two MHC Class II (MHC II) antigen-presenting cell (APC) events are required for uveitis to develop. The first occurs in the secondary lymphoid organs when dendritic cells (DCs) activate and expand effector CD4+ T cells that enter the circulation and migrate systemically. The second APC event occurs when DC-primed effector CD4+ T cells infiltrate the retina and are restimulated by the relevant autoantigen. Importantly, if this second restimulation does not occur, then uveitis does not develop. However, it is still unclear which cell type(s) function as APCs within the retina. There are two candidate MHC II+ cell types-resident microglia and infiltrating DCs. We used the inducible Cre-lox approach to develop mouse strains in which MHC II was knocked out specifically on microglia using either the P2ry12 or Tmem119 gene to drive recombination. We also used Itgax (CD11c encoding gene) to drive recombination in DCs. Using this approach, we uncovered that the second APC event was mediated by MHC II+ microglia and not infiltrating MHC II+ DCs. Therefore, microglia are an important therapeutic target that can prevent and/or diminish uveitis even in the presence of circulating retinal autoantigen-specific effector CD4+ T cells.
Collapse
Affiliation(s)
- Shintaro Shirahama
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yoko Okunuki
- Angiogenesis Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - May Y Lee
- Angiogenesis Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Margarete M Karg
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nasrin Refaian
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Drenushe Krasniqi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kip M Connor
- Angiogenesis Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Meredith S Gregory-Ksander
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R Ksander
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, Massachusetts, USA; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Jia C, Wang H, Zhao J, Xia J, Zheng C. scSDNE: A semi-supervised method for inferring cell-cell interactions based on graph embedding. PLoS Comput Biol 2025; 21:e1013027. [PMID: 40333631 PMCID: PMC12072665 DOI: 10.1371/journal.pcbi.1013027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
As a fundamental characteristic of multicellular organisms, cell-cell communication is achieved through ligand-receptor (L-R) interactions, enabling the exchange of information and revealing the diversity of biological processes and cellular functions. To gain a comprehensive understanding of these complex interaction mechanisms, we constructed a manually curated L-R interaction database and developed a semi-supervised graph embedding model called scSDNE for inferring cell-cell interactions mediated by L-R interactions. scSDNE model utilizes the power of deep learning to map genes from interacting cells into a shared latent space, allowing for a nuanced representation of their relationships. Leveraging the prior information provided by database, scSDNE can infer significant L-R pairs involved in intercellular communication. Experiments on real single-cell RNA sequencing (scRNA-seq) datasets demonstrate that our method detects interactions with a high degree of reliability compared with other methods. More importantly, the model integrates gene regulation information within cells to enhance the accuracy and biological interpretability of the inferences. Our method provides a more comprehensive view of cell-cell interactions, offering new insights into complex intercellular communication.
Collapse
Affiliation(s)
- Chenchen Jia
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, China
| | - Haiyun Wang
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, China
| | - Junfeng Xia
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, China
- School of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Chunhou Zheng
- School of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
16
|
Beretta C, Dakhel A, Eltom K, Rosqvist F, Uzoni S, Mothes T, Fletcher JS, Risérus U, Sehlin D, Rostami J, Michno WP, Erlandsson A. Astrocytic lipid droplets contain MHCII and may act as cogs in the antigen presentation machinery. J Neuroinflammation 2025; 22:117. [PMID: 40275347 PMCID: PMC12023685 DOI: 10.1186/s12974-025-03452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025] Open
Abstract
Lipid droplets (LDs) are crucial for energy homeostasis, but are also involved in a wide spectrum of other cellular processes. Accumulating data identifies LDs as an important player in inflammation. However, the underlying mechanisms and the impact of LDs on neuroinflammation remain unclear. Here, we describe a novel function of LDs in human astrocytes, in the context of Alzheimer's disease (AD). Although, the overall lipid profile was unchanged in astrocytes with AD pathology, our data show a clear effect on LD metabolism and specific fatty acids involved in neuroinflammation. Importantly, we found astrocytes to be in close contact with infiltrating CD4 + T cells in the AD brain. Moreover, PLIN3 + LDs in astrocytes co-localize with major histocompatibility complex II (MHCII), indicating a role of LDs in adaptive immunity. Comprehensive analysis of human induced pluripotent stem cell (hiPSC)-derived astrocytes revealed that MHCII is in fact loaded within PLIN3 + LDs and forwarded to neighboring cells via tunneling nanotubes and secretion. Notably, the MHCII molecules are cleaved into its active form prior to packing, indicating an alternative route of MHCII shuttling through LDs, transporting functional immune complexes between cells. Quantification of PLIN3 + LDs in astrocytic cultures, human brain tissue and cerebral organoids indicates that AD pathology initially stimulates PLIN3 + LD formation, but in the long-run results in PLIN3 + LD consumption, which may have consequences on the astrocytes' MHCII distribution capacity. Taken together, our findings present a novel function of PLIN3 + LDs that can be of relevance for AD and other inflammatory conditions.
Collapse
Affiliation(s)
- Chiara Beretta
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Abdulkhalek Dakhel
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Khalid Eltom
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, BMC, Uppsala University, Uppsala, Sweden
- Department of Food Studies, Nutrition and Dietetics, BMC, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Simon Uzoni
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Tobias Mothes
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, BMC, Uppsala University, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Jinar Rostami
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Wojciech Piotr Michno
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, SE-752 37, Sweden.
| |
Collapse
|
17
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
18
|
Schumann U, Liu L, Aggio-Bruce R, Cioanca AV, Shariev A, Madigan MC, Valter K, Wen J, Natoli R. Spatial transcriptomics reveals regionally altered gene expression that drives retinal degeneration. Commun Biol 2025; 8:629. [PMID: 40251274 PMCID: PMC12008306 DOI: 10.1038/s42003-025-07887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 03/05/2025] [Indexed: 04/20/2025] Open
Abstract
Photoreceptor cell death is a hallmark of age-related macular degeneration. Environmental, lifestyle and genetic risk factors are known contributors to disease progression, whilst at the molecular level, oxidative stress and inflammation are central pathogenetic drivers. However, the spatial and cellular origins of these molecular mechanisms remain unclear. We used spatial transcriptomics to investigate the spatio-temporal gene expression changes in the adult mouse retina in response to photo-oxidative stress. We identify regionally distinct transcriptomes, with higher expression of immunity related genes in the superior retina. Exposure to stress induced expression of genes involved in inflammatory processes, innate immune responses, and cytokine production in a highly localised manner. A distinct region ~800 µm superior from the optic nerve head seems a key driver of these molecular changes. Further, we show highly localised early molecular changes in the superior mouse retina during retinal stress and identify novel genes drivers. We provide evidence of angiogenic changes in response to photo-oxidative stress and suggest additional angiogenic signalling pathways within the retina including VEGF, pleiotrophin and midkine. These new insights into retinal angiogenesis pave the way to identify novel drivers of retinal neovascularisation with an opportunity for therapeutic development.
Collapse
Affiliation(s)
- Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Save Sight Institute, The University of Sydney, Sydney, Australia.
| | - Lixinyu Liu
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Artur Shariev
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Michele C Madigan
- The Save Sight Institute, The University of Sydney, Sydney, Australia
- The School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Jiayu Wen
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), The Australian National University, Canberra, Australia.
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- The School of Medicine and Psychology, The Australian National University, Canberra, Australia
| |
Collapse
|
19
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
20
|
Salvador-Mira M, Gimenez-Moya P, Manso-Aznar A, Sánchez-Córdoba E, Sevilla-Diez MA, Chico V, Nombela I, Puente-Marin S, Roher N, Perez L, Dučić T, Benseny-Cases N, Perez-Berna AJ, Ortega-Villaizan MDM. Viral vaccines promote endoplasmic reticulum stress-induced unfolding protein response in teleost erythrocytes. Eur J Cell Biol 2025; 104:151490. [PMID: 40252498 DOI: 10.1016/j.ejcb.2025.151490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
Most available evidence points to a proviral role for endoplasmic reticulum (ER) stress, as many viruses exploit it to promote viral replication. In contrast, few studies have linked ER stress to the antiviral immune response, and even fewer to the vaccine-induced immune response. In this work, we demonstrated that ER stress is a key molecular link in the immune response of teleost erythrocytes or red blood cells (RBCs) under vaccine stimulation. Moreover, the unfolded protein response (UPRER) triggered by ER stress may work together with autophagy and related cellular mechanisms as part of a coordinated immune response in RBCs. We unveiled biochemical changes in the lipid-protein profile of vaccine-treated RBCs by synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-µFTIR) associated with the modulation of ER expansion, increased mitochondrial number, and vesicular structures detected by soft X-ray cryotomography (cryo-SXT). We found a positive correlation between both morphological and biochemical changes and the expression of genes related to UPRER, autophagy, mitochondrial stress, vesicle trafficking, and extracellular vesicle release. These processes in RBCs are ideal cellular targets for the development of more specific prophylactic tools with greater immunogenic capacity than currently available options.
Collapse
Affiliation(s)
- Maria Salvador-Mira
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Paula Gimenez-Moya
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Alba Manso-Aznar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ester Sánchez-Córdoba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Manuel A Sevilla-Diez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB) & Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Tanja Dučić
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Núria Benseny-Cases
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain.
| |
Collapse
|
21
|
Masum MHU, Mahdeen AA, Barua A. Revolutionizing Chikungunya Vaccines: mRNA Breakthroughs With Molecular and Immune Simulations. Bioinform Biol Insights 2025; 19:11779322251324859. [PMID: 40182080 PMCID: PMC11967231 DOI: 10.1177/11779322251324859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/14/2025] [Indexed: 04/05/2025] Open
Abstract
With the ability to cause massive epidemics that have consequences on millions of individuals globally, the Chikungunya virus (CHIKV) emerges as a severe menace. Developing an effective vaccine is urgent as no effective therapeutics are available for such viral infections. Therefore, we designed a novel mRNA vaccine against CHIKV with a combination of highly antigenic and potential MHC-I, MHC-II, and B-cell epitopes from the structural polyprotein. The vaccine demonstrated well-characterized physicochemical properties, indicating its solubility and potential functional stability within the body (GRAVY score of -0.639). Structural analyses of the vaccine revealed a well-stabilized secondary and tertiary structure (Ramachandran score of 82.8% and a Z-score of -4.17). Docking studies of the vaccine with TLR-2 (-1027.7 KJ/mol) and TLR-4 (-1212.4 KJ/mol) exhibited significant affinity with detailed hydrogen bond interactions. Molecular dynamics simulations highlighted distinct conformational dynamics among the vaccine, "vaccine-TLR-2" and "vaccine-TLR-4" complexes. The vaccine's ability to elicit both innate and adaptive immune responses, including the presence of memory B-cells and T-cells, persistent B-cell immunity for a year, and the activation of TH cells leading to the release of IFN-γ and IL-2, has significant implications for its potential effectiveness. The CHIKV vaccine developed in this study shows promise as a potential candidate for future vaccine production against CHIKV, suggesting its suitability for further clinical advancement, including in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Md. Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
22
|
Rengarajan M, Normand R, Tran H, Nieman LT, Arnold B, Calcaterra M, Xu KH, Richieri P, Rodriguez EE, Slowikowski K, Song Y, Tirard A, Stephen AE, Sadow PM, Parangi S, Daniels GH, Luster AD, Villani AC. Immune-parenchymal multicellular niches are shared across distinct thyroid autoimmune diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.646176. [PMID: 40236152 PMCID: PMC11996388 DOI: 10.1101/2025.03.30.646176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Thyroid hormone, produced in the thyroid gland, regulates metabolism, development, and cardiac function. The thyroid is susceptible to autoimmune attack by both cellular and humoral immunity exemplified by Hashimoto's thyroiditis (HT) and Graves' Disease (GD), respectively. In HT, immune-mediated destruction impairs thyroid hormone production, while in GD, stimulating autoantibodies promote over-production. Here, we generated a multi-modal atlas of 604,076 human thyroid and blood cells from HT, GD, and control patients. We found that, despite markedly different clinical presentations and distinct antigenic triggers, HT and GD exhibit convergent cellular dynamics resulting in a shared continuum of immune infiltration. Along this continuum, a key feature is a thyrocyte niche containing CD8 + T cells that may segregate pathogenic T cells from regions with preserved thyroid hormone production. These findings of a shared disease continuum characterized by spatially defined immune niches provide a new framework for understanding tissue homeostasis in human autoimmune disease.
Collapse
|
23
|
Wang S, Van KV, Zheng M, Chen WL, Ma YS. High antigen-presenting CAF levels correlate with reduced glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism in immune cells and poor prognosis in esophageal squamous cell carcinoma: Insights from bulk and single-cell transcriptome profiling. Int J Biol Macromol 2025; 301:140418. [PMID: 39889995 DOI: 10.1016/j.ijbiomac.2025.140418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/05/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
In esophageal squamous cell carcinoma (ESCC), the tumor microenvironment (TME) is characterized by a significant accumulation of cancer-associated fibroblasts (CAFs), which play a pivotal role in the host response against tumor cells. While fibroblasts are known to be crucial in the metabolic reprogramming of the TME, the specific metabolic alterations induced by these cells remain largely undefined. Utilizing single-cell RNA sequencing, we have identified a distinct subpopulation of antigen-presenting CAF (apCAF) within ESCC tumors. Our findings reveal that apCAF contribute to adverse patient outcomes by remodeling the tumor metabolic environment. Notably, apCAF modulate the glycosaminoglycan biosynthesis-heparan sulfate/heparin metabolism pathway in T cells, B cells, and macrophages. Disruption of this pathway may facilitate immune evasion by the tumor. These insights underscore the critical role of CAFs in shaping the metabolic landscape of the TME and lay the groundwork for developing therapeutic strategies aimed at enhancing anti-tumor immunity.
Collapse
Affiliation(s)
- Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Kelly Van Van
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Miaomiao Zheng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China
| | - Yu-Shui Ma
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032 China.
| |
Collapse
|
24
|
Kohlgruber AC, Dezfulian MH, Sie BM, Wang CI, Kula T, Laserson U, Larman HB, Elledge SJ. High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits. Nat Biotechnol 2025; 43:623-634. [PMID: 38956325 PMCID: PMC11994455 DOI: 10.1038/s41587-024-02248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/04/2024]
Abstract
Antigen discovery technologies have largely focused on major histocompatibility complex (MHC) class I-restricted human T cell receptors (TCRs), leaving methods for MHC class II-restricted and mouse TCR reactivities relatively undeveloped. Here we present TCR mapping of antigenic peptides (TCR-MAP), an antigen discovery method that uses a synthetic TCR-stimulated circuit in immortalized T cells to activate sortase-mediated tagging of engineered antigen-presenting cells (APCs) expressing processed peptides on MHCs. Live, tagged APCs can be directly purified for deconvolution by sequencing, enabling TCRs with unknown specificity to be queried against barcoded peptide libraries in a pooled screening context. TCR-MAP accurately captures self-reactivities or viral reactivities with high throughput and sensitivity for both MHC class I-restricted and class II-restricted TCRs. We elucidate problematic cross-reactivities of clinical TCRs targeting the cancer/testis melanoma-associated antigen A3 and discover targets of myocarditis-inciting autoreactive T cells in mice. TCR-MAP has the potential to accelerate T cell antigen discovery efforts in the context of cancer, infectious disease and autoimmunity.
Collapse
Affiliation(s)
- Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Brandon M Sie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
| | - Charlotte I Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Genetics, Harvard University Medical School, Boston, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard University Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
25
|
Ma K, Xu Y, Cheng H, Tang K, Ma J, Huang B. T cell-based cancer immunotherapy: opportunities and challenges. Sci Bull (Beijing) 2025:S2095-9273(25)00337-8. [PMID: 40221316 DOI: 10.1016/j.scib.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
T cells play a central role in the cancer immunity cycle. The therapeutic outcomes of T cell-based intervention strategies are determined by multiple factors at various stages of the cycle. Here, we summarize and discuss recent advances in T cell immunotherapy and potential barriers to it within the framework of the cancer immunity cycle, including T-cell recognition of tumor antigens for activation, T cell trafficking and infiltration into tumors, and killing of target cells. Moreover, we discuss the key factors influencing T cell differentiation and functionality, including TCR stimulation, costimulatory signals, cytokines, metabolic reprogramming, and mechanistic forces. We also highlight the key transcription factors dictating T cell differentiation and discuss how metabolic circuits and specific metabolites shape the epigenetic program of tumor-infiltrating T cells. We conclude that a better understanding of T cell fate decision will help design novel strategies to overcome the barriers to effective cancer immunity.
Collapse
Affiliation(s)
- Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Yingxi Xu
- Department of Oncology, University of Lausanne, Lausanne, 1015, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, 1066, Switzerland; National Key Laboratory of Blood Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 300070, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
26
|
Sipes J, Rayamajhi S, Bantis LE, Madan R, Mitra A, Puri RV, Rahman MM, Ahmmed F, Pathak HB, Godwin AK. Spatial transcriptomic profiling of the human fallopian tube epithelium reveals region-specific gene expression patterns. Commun Biol 2025; 8:520. [PMID: 40158048 PMCID: PMC11954873 DOI: 10.1038/s42003-025-07871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
The fallopian tube (FT) plays a crucial role in fertility, gynecological health, and high-grade serous ovarian cancer (HGSOC) development. Despite its importance, the spatial transcriptome of the FT's distinct anatomical regions (fimbria, infundibulum, ampulla, and isthmus) remains underexplored. Using the GeoMx Digital Spatial Profiler (DSP) and a targeted ~1800 gene panel, we analyze premenopausal FT epithelium, identifying region-specific gene expression patterns. Our analysis reveals upregulation of mature ciliated cell markers (FOXJ1, MLF1, SPA17, and CTSS) approaching the fimbria, elevated ROS and apoptosis-related transcripts (TXNIP, PRDX5, BAD, GAS1) in the distal FT, and a switch in cell-cell adhesion transcripts (CDH1, CDH3) along the distal-to-proximal axis. We also provide evidence that MHC-II transcripts in the FT are differentially regulated throughout the menstrual cycle, with lower expression in follicular phase. These results suggest spatially regulated expression of FT transcripts with implications for fertilization and early neoplastic changes contributing to HGSOC.
Collapse
Affiliation(s)
- Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS, 64111, USA
| | - Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Leonidas E Bantis
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amrita Mitra
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rajni V Puri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mohammod Mahmudur Rahman
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Foyez Ahmmed
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Statistics, Comilla University, Cumilla, 3506, Bangladesh
| | - Harsh B Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Bioengineering Program, The University of Kansas, Lawrence, KS, 64111, USA.
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
27
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
28
|
Chen Y, Wei X, Rui B, Du Y, Lei Z, Guo X, Wang C, Yuan D, Wang X, Li M, Hou B, Liu Y. Probiotic Fermentation of Astragalus membranaceus and Raphani Semen Ameliorates Cyclophosphamide-Induced Immunosuppression Through Intestinal Short-Chain Fatty Acid-Dependent or -Independent Regulation of B Cell Function. BIOLOGY 2025; 14:312. [PMID: 40136568 PMCID: PMC12077259 DOI: 10.3390/biology14030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Probiotic fermentation can promote the release of more effective components from traditional Chinese medicines (TCMs). Astragalus membranaceus (Fisch.) Bunge (A. membranaceus) and Raphani Semen are TCMs that have gained attention for their immunoenhancing activities. This study aimed to investigate the effects and underlying mechanisms of probiotic-fermented A. membranaceus and Raphani Semen (PROAS) in cyclophosphamide (CTX)-induced immunocompromised mice. Changes in the composition of A. membranaceus and Raphani Semen after fermentation by probiotic strains, including Bifidobacterium longum SD5219, Lactobacillus fermentum NCIMB5221, and Lactobacillus paracasei SD5219, were identified using high-performance liquid chromatography. The immunostimulatory effects and mechanisms of PROAS were evaluated in immunosuppressed mice 3 and 7 days after CTX treatment. Probiotic fermentation of TCMs resulted in changes in major bioactive components. PROAS supplementation effectively restored intestinal integrity in CTX-treated mice by upregulating the mRNA expression of the tight junction proteins. PROAS significantly ameliorated the reduction in the spleen index and number of B lymphocytes caused by CTX treatment and regulated the secretion of cytokines in serum and colon tissues. PROAS administration modulated gut microbial dysbiosis and short-chain fatty acid (SCFA) content in CTX-treated mice. These results suggest that PROAS enhances B lymphocyte function by increasing the regulation of intestinal microbiota to produce high levels of SCFA, repairs the intestinal barrier damage induced by CTX, and promotes intestinal mucosal immunity.
Collapse
Affiliation(s)
- Yang Chen
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| | - Xiaoqing Wei
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| | - Binqi Rui
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| | - Yutong Du
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| | - Zengjie Lei
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| | - Xiujie Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (X.G.); (C.W.)
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (X.G.); (C.W.)
| | - Donglin Yuan
- Department of Dermatology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China;
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| | - Binbin Hou
- Department of Dermatology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China;
| | - Yinhui Liu
- College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (Y.C.); (X.W.); (B.R.); (Y.D.); (Z.L.); (X.W.); (M.L.)
| |
Collapse
|
29
|
Zhang H, Xia M, Li H, Zeng X, Jia H, Zhang W, Zhou J. Implication of Immunobiological Function of Melanocytes in Dermatology. Clin Rev Allergy Immunol 2025; 68:30. [PMID: 40097884 DOI: 10.1007/s12016-025-09040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Melanocytes are essential for regulating pigmentation and providing photoprotection in human skin. Originating from neural crest cells, these cells migrate to the basal layer of the epidermis and hair follicles during embryogenesis. Melanosomes, the specialized, membrane-bound organelles are essential for melanin synthesis. Beyond their role in pigmentation, melanocytes exhibit complex immune functions, expressing a variety of immune-related markers and receptors, such as pattern recognition receptors (PRRs), major histocompatibility complex class II (MHC-II) molecules, CD40, intercellular adhesion molecule 1 (ICAM-1), and programmed death-ligand 1 (PD-L1). These receptors allow melanocytes to detect environmental signals and engage in the innate immune response. Furthermore, melanocytes release various immunomodulatory substances, including proinflammatory cytokines, chemokines, and damage-associated molecular patterns (DAMPs), contributing to immune regulation. The immune functions of melanocytes are significantly influenced by external factors such as ultraviolet radiation (UVR), the microbiome, and oxidative stress. In different skin diseases, these immune functions may vary. For example, vitiligo, a common hypopigmentary disorder, is primarily driven by an autoimmune response targeting melanocytes, giving rise to depigmentation and the appearance of white patches. In contrast, melanoma, a form of skin cancer that arises from melanocytes, is closely linked to UV exposure. This review highlights the diverse immunobiological functions of melanocytes and their implications in dermatology.
Collapse
Affiliation(s)
- Hejuan Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Maomei Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Xuesi Zeng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Hong Jia
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
30
|
Cardinale CJ, Liu Y, Kevadia A, Strong A, Watts VJ, Hakonarson H. The ulcerative colitis risk gene adenylyl cyclase 7 restrains the T-helper 2 phenotype and Class II antigen presentation. J Crohns Colitis 2025; 19:jjaf030. [PMID: 39957491 PMCID: PMC11920793 DOI: 10.1093/ecco-jcc/jjaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND AIMS Genome-wide association studies have shown that the most risk-conferring genetic polymorphism for ulcerative colitis (UC) outside the human leukocyte antigen locus is the amino acid substitution p.Asp439Glu in the adenylyl cyclase 7 gene (ADCY7). ADCY7 is the main isoform in the hematopoietic system and produces the second messenger cyclic AMP (cAMP) downstream of G protein-coupled receptor signaling. Our aim was to determine the contribution of this polymorphism to UC risk by analyzing its effect on ADCY7 function in cell-based assays. METHODS We characterized the p.Asp439Glu variant in cell lines using western blots, immunofluorescence, cAMP assay, and luciferase assay. We modeled this variant using siRNA knock-down in human primary CD4+ T cells and characterized them by RNA-seq, viability assay, flow cytometry, cAMP assay, and ELISA. RESULTS The p.Asp439Glu variant is deficient in protein expression but retains membrane localization. This results in a 40% reduction in cAMP synthesis and luciferase reporter expression. Knock-down of ADCY7 in T cells reduces the expression of ribosomal proteins and cAMP signaling proteins, while skewing cytokine production toward a T-helper 2 pattern and upregulating antigen presentation accompanied by increased surface expression of major histocompatibility complex Class II and CD86. CONCLUSIONS The UC risk-conferring variant, p.Asp439Glu, in ADCY7 reduces cyclic AMP signaling, leading to modifications in cytokine profile and antigen presentation. Medications that enhance cyclic AMP by direct activation of ADCY7 or by phosphodiesterase inhibition may be beneficial in this disease.
Collapse
Affiliation(s)
- Christopher J Cardinale
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Yichuan Liu
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Aayush Kevadia
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Alanna Strong
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
31
|
Farag A, Hendawy H, Emam MH, Hasegawa M, Mandour AS, Tanaka R. Stem Cell Therapies in Canine Cardiology: Comparative Efficacy, Emerging Trends, and Clinical Integration. Biomolecules 2025; 15:371. [PMID: 40149907 PMCID: PMC11940628 DOI: 10.3390/biom15030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in dogs, with limited options available for reversing myocardial damage. Stem cell therapies have shown significant potential for cardiac repair, owing to their immunomodulatory, antifibrotic, and regenerative properties. This review evaluates the therapeutic applications of mesenchymal stem cells (MSCs) derived from bone marrow, adipose tissue, and Wharton's jelly with a focus on their role in canine cardiology and their immunoregulatory properties. Preclinical studies have highlighted their efficacy in enhancing cardiac function, reducing fibrosis, and promoting angiogenesis. Various delivery methods, including intracoronary and intramyocardial injections, are assessed for their safety and efficacy. Challenges such as low cell retention, differentiation efficiency, and variability in therapeutic responses are also discussed. Emerging strategies, including genetic modifications and combination therapies, aim to enhance the efficacy of MSCs. Additionally, advances in delivery systems and regulatory frameworks are reviewed to support clinical translation. This comprehensive evaluation underscores the potential of stem cell therapies to revolutionize canine cardiovascular disease management while identifying critical areas for future research and clinical integration.
Collapse
Affiliation(s)
- Ahmed Farag
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud H. Emam
- Animal Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mizuki Hasegawa
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
32
|
Afeyan AB, Wu CJ, Oliveira G. Rapid parallel reconstruction and specificity screening of hundreds of T cell receptors. Nat Protoc 2025; 20:539-586. [PMID: 39516267 PMCID: PMC11896752 DOI: 10.1038/s41596-024-01061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
The ability to screen the reactivity of T cell receptors (TCRs) is essential to understanding how antigen-specific T cells drive productive or dysfunctional immune responses during infections, cancer and autoimmune diseases. Methods to profile large numbers of TCRs are critical for characterizing immune responses sustained by diverse T cell clones. Here we provide a medium-throughput approach to reconstruct dozens to hundreds of TCRs in parallel, which can be simultaneously screened against primary human tissues and broad curated panels of antigenic targets. Using Gibson assembly and miniaturized lentiviral transduction, individual TCRs are rapidly cloned and expressed in T cells; before screening, TCR cell lines undergo combinatorial labeling with dilutions of three fluorescent dyes, which allows retrieval of the identity of individual T cell effectors when they are organized and tested in pools using flow cytometry. Upon incubation with target cells, we measure the upregulation of CD137 on T cells as a readout of TCR activation. This approach is scalable and simultaneously captures the reactivity of pooled TCR cell lines, whose activation can be deconvoluted in real time, thus providing a path for screening the reactivity of dozens of TCRs against broad panels of synthetic antigens or against cellular targets, such as human tumor cells. We applied this pipeline to systematically deconvolute the antitumoral and antiviral reactivity and antigenic specificity of TCRs from human tumor-infiltrating lymphocytes. This protocol takes ~2 months, from experimental design to data analysis, and requires standard expertise in cloning, cell culture and flow cytometry.
Collapse
Affiliation(s)
- Alexander B Afeyan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
33
|
Kim J, Nam Y, Jeon D, Choi Y, Choi S, Hong CP, Kim S, Jung H, Park N, Sohn Y, Rim YA, Ju JH. Generation of hypoimmunogenic universal iPS cells through HLA-type gene knockout. Exp Mol Med 2025; 57:686-699. [PMID: 40087529 PMCID: PMC11958689 DOI: 10.1038/s12276-025-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/20/2024] [Accepted: 12/16/2024] [Indexed: 03/17/2025] Open
Abstract
Hypoimmunogenic universal induced pluripotent stemn (iPS) cells were generated through the targeted disruption of key genes, including human leukocyte antigen (HLA)-A, HLA-B and HLA-DR alpha (DRA), using the CRISPR-Cas9 system. This approach aimed to minimize immune recognition and enhance the potential of iPS cells for allogeneic therapy. Heterozygous iPS cells were used for guide RNA design and validation to facilitate the knockout (KO) of the HLA-A, HLA-B and HLA-DRA genes. The electroporation of iPS cells using the selected guide RNAs enabled the generation of triple-KO iPS cells, followed by single-cell cloning for clone selection. Clone A7, an iPS cell with targeted KOs of the HLA-A, HLA-B and HLA-DRA genes, was identified as the final candidate. Messenger RNA analysis revealed robust expression of pluripotency markers, such as octamer-binding transcription factor 4, sex-determining region Y box 2, Krüppel-like factor 4, Lin-28 homolog A and Nanog homeobox, while protein expression assays confirmed the presence of octamer-binding transcription factor 4, stage-specific embryonic antigen 4, Nanog homeobox and tumor rejection antigen 1-60. A karyotype examination revealed no anomalies, and three-germ layer differentiation assays confirmed the differentiation potential. After interferon gamma stimulation, the gene-corrected clone A7 lacked HLA-A, HLA-B and HLA-DR protein expression. Immunogenicity testing further confirmed the hypoimmunogenicity of clone A7, which was evidenced by the absence of proliferation in central memory T cells and effector memory T cells. In conclusion, clone A7, a triple-KO iPS cell clone that demonstrates immune evasion properties, retained its intrinsic iPS cell characteristics and exhibited no immunogenicity.
Collapse
Affiliation(s)
| | - Yoojun Nam
- YiPSCELL Inc., Seoul, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- YiPSCELL Inc., Seoul, Republic of Korea.
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Biomedicine and Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Brose L, Schäfer A, Franzke K, Cammann C, Seifert U, Pei G, Blome S, Knittler MR, Blohm U. Virulent African swine fever virus infection of porcine monocytes causes SLA I subversion due to loss of proper ER structure/function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae063. [PMID: 40073098 DOI: 10.1093/jimmun/vkae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025]
Abstract
African swine fever virus (ASFV) is a large DNA virus of the Asfarviridae family that causes a fatal hemorrhagic disease in domestic swine and wild boar. Infections with moderately virulent strains predominantly result in a milder clinical course and lower lethality. As target cells of ASFV, monocytes play a crucial role in triggering T-cell-mediated immune defense and ASF pathogenesis. We compared the effect of the highly virulent "Armenia2008" (ASFV-A) virus strain with that of the naturally attenuated "Estonia2014" (ASFV-E) on cellular immune activation in vivo and on primary monocytes ex vivo. Specifically, we asked whether antigen presentation of porcine monocytes is impaired upon ASFV-A infection. ASFV-A-infected monocytes are characterized by lower levels of swine leukocyte antigen (SLA) class I on the cell surface than ASFV-E-infected and uninfected monocytes. Despite stable steady-state SLA I mRNA/protein levels and expression of critical components of the antigen processing machinery, a marked decrease in maturation and reduced surface transport of SLA I were observed in ASFV-A-infected monocytes. The intracellular maturation block of SLA I was accompanied by a loss of functional rough ER structures and a pronounced formation of ER-associated aggresomes. This unsolved cellular stress resulted in a shutdown of overall host cell protein translation, mitochondrial dysfunction, and caspase-3-mediated apoptosis. In contrast, no such cellular subversion phenomenon was found in ASFV-E-infected monocytes. Our findings suggest that in domestic pigs infected with highly virulent ASFV-A, sequential subversion events occur in infected monocytes, likely leading to compromised T-cell activation and impaired downstream responses against ASFV.
Collapse
Affiliation(s)
- Luise Brose
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| | - Alexander Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Isle of Riems, Germany
| | - Kati Franzke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald-Isle of Riems, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Gang Pei
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald-Isle of Riems, Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| | - Ulrike Blohm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany
| |
Collapse
|
35
|
Hilliard BK, Prendergast JE, Smith MJ. Dia-B-Ties: B Cells in the Islet-Immune-Cell Interface in T1D. Biomolecules 2025; 15:332. [PMID: 40149868 PMCID: PMC11940010 DOI: 10.3390/biom15030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that affects an estimated 30 million people worldwide and results in a lifelong dependency of exogenous insulin treatments. While T1D is characterized by T-cell driven-destruction of the insulin-secreting β cells, B lymphocytes play a key role in the islet-immune interface. B cells are an essential intermediary between islet cells and other immune-cell populations. Through antigen presentation, cytokine secretion, and antibody production, B cells play a role in activating autoreactive islet-specific T cells, thus potentiating pancreatic inflammation in the early stages of T1D. Despite this, their role in disease development remains an understudied feature of T1D with significant therapeutic potential. Herein, we will discuss the current knowledge of the islet-immune-cell interface within T1D through the lens of B lymphocytes. We will also consider knowledge gaps that may be limiting further therapeutic opportunities.
Collapse
Affiliation(s)
- Brandon K. Hilliard
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica E. Prendergast
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Qin D, Phung Q, Wu P, Yin Z, Tam S, Tran P, ElSohly AM, Gober J, Hu Z, Zhou Z, Cohen S, He D, Bainbridge TW, Kemball CC, Zarzar J, Sreedhara A, Stephens N, Decalf J, Moussion C, Ye Z, Balazs M, Li Y. A single point mutation on FLT3L-Fc protein increases the risk of immunogenicity. Front Immunol 2025; 16:1519452. [PMID: 40018031 PMCID: PMC11865242 DOI: 10.3389/fimmu.2025.1519452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction As a crucial asset for human health and modern medicine, an increasing number of biotherapeutics are entering the clinic. However, due to their complexity, these drugs have a higher potential to be immunogenic, leading to the generation of anti-drug antibodies (ADAs). Clinically significant ADAs have an impact on pharmacokinetics (PK), pharmacodynamics (PD), effectiveness, and/or safety. Thus, it is crucial to understand, manage and minimize the immunogenicity potential during drug development, ideally starting from the molecule design stage. Methods In this study, we utilized various immunogenicity risk assessment methods, including in silico prediction, dendritic cell internalization, MHC-associated peptide proteomics, in vitro HLA peptide binding, and in vitro T cell proliferation, to assess the immunogenicity risk of FLT3L-Fc variants. Results We identified a single point mutation in the human FLT3L-Fc protein that introduced highly immunogenic T cell epitopes, leading to the induction of T cell responses and thereby increasing the immunogenicity risk in clinical settings. Consequently, the variant with this point mutation was removed from further consideration as a clinical candidate. Discussion This finding underscores the necessity for careful evaluation of mutations during the engineering of protein therapeutics. The integration of multiple immunogenicity risk assessment tools offers critical insights for informed decision-making in candidate sequence design and therapeutic lead selection.
Collapse
Affiliation(s)
- Dan Qin
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Qui Phung
- Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Wu
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Zhaojun Yin
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Sien Tam
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Peter Tran
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Adel M. ElSohly
- Protein Chemistry, Genentech Inc., South San Francisco, CA, United States
| | - Joshua Gober
- Protein Chemistry, Genentech Inc., South San Francisco, CA, United States
| | - Zicheng Hu
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Zhenru Zhou
- Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, CA, United States
| | - Sivan Cohen
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Dongping He
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | | | - Christopher C. Kemball
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Jonathan Zarzar
- Pharmaceutical Development, Genentech Inc., South San Francisco, CA, United States
| | - Alavattam Sreedhara
- Pharmaceutical Development, Genentech Inc., South San Francisco, CA, United States
| | - Nicole Stephens
- Analytical Development & Quality Control, Genentech Inc., South San Francisco, CA, United States
| | - Jérémie Decalf
- Cancer Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Christine Moussion
- Cancer Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Zhengmao Ye
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Mercedesz Balazs
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Yinyin Li
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
37
|
Ngantcha Tatchou E, Milcamps R, Oldenhove G, Lambrecht B, Ingrao F. Generation and characterization of chicken monocyte-derived dendritic cells. Front Immunol 2025; 16:1517697. [PMID: 39967657 PMCID: PMC11832469 DOI: 10.3389/fimmu.2025.1517697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Dendritic cells (DCs) play a crucial role in orchestrating immune responses by bridging innate and adaptive immunity. In vitro generation of DCs from mouse and human tissues such as bone marrow and peripheral blood monocytes, has been widely used to study their immunological functions. In chicken, DCs have mainly been derived from bone marrow cell cultures, with limited characterization from blood monocytes. Methods The present study takes advantage of newly available chicken immunological tools to further characterize chicken monocyte-derived dendritic cells (MoDCs), focusing on their phenotype, and functions, including antigen capture and T-cell stimulation, and response to live Newcastle disease virus (NDV) stimulation. Results Adherent chicken PBMCs were cultured with recombinant chicken granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), for 5 days, leading to the upregulation of putative CD11c and MHCII, markers of DC differentiation. Subsequent stimulation with lipopolysaccharide (LPS) or 24 h triggered phenotypic maturation of MoDCs, characterized by the increased surface expression of MHCII and co-stimulatory molecules CD80 and CD40, and elevated IL-12p40 secretion. This maturation reduced endocytic capacity but enhanced the allogenic stimulatory activity of the chicken MoDCs. Upon NDV stimulation for 6 h, MoDCs upregulated antiviral pathways, including retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2), alongside increased production of type I interferons (IFNs), and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), IL-1β, and IL-6. However, these responses were downregulated after 24 hours. Conclusion These findings provide a comprehensive characterization of chicken MoDCs and suggest their potential as a model for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Elie Ngantcha Tatchou
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Romane Milcamps
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
- Molecular Virology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Guillaume Oldenhove
- Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Fiona Ingrao
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
| |
Collapse
|
38
|
Szabo A, Akkouh I, Osete JR, de Assis DR, Kondratskaya E, Hughes T, Ueland T, Andreassen OA, Djurovic S. NLRP3 inflammasome mediates astroglial dysregulation of innate and adaptive immune responses in schizophrenia. Brain Behav Immun 2025; 124:144-156. [PMID: 39617069 DOI: 10.1016/j.bbi.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Mounting evidence indicates the involvement of neuroinflammation in the development of schizophrenia (SCZ), but the potential role of astroglia in this phenomenon remains poorly understood. We assessed the molecular and functional consequences of inflammasome activation using induced pluripotent stem cell (iPSC)-derived astrocytes generated from SCZ patients and healthy controls (CTRL). Screening protein levels in astrocytes at baseline identified lower expression of the NLRP3-ASC complex in SCZ, but increased Caspase-1 activity upon specific NLRP3 stimulation compared to CTRL. Using transcriptional profiling, we found corresponding downregulations of NLRP3 and ASC/PYCARD in both iPSC-derived astrocytes, and in a large (n = 429) brain postmortem case-control sample. Functional analyses following NLRP3 activation revealed an inflammatory phenotype characterized by elevated production of IL-1β/IL-18 and skewed priming of helper T lymphocytes (Th1/Th17) by SCZ astrocytes. This phenotype was rescued by specific inhibition of NLRP3 activation, demonstrating its dependence on the NLRP3 inflammasome. Taken together, SCZ iPSC-astrocytes display unique, NLRP3-dependent inflammatory characteristics that are manifested via various cellular functions, as well as via dysregulated innate and adaptive immune responses.
Collapse
Affiliation(s)
- Attila Szabo
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ibrahim Akkouh
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jordi Requena Osete
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Denis Reis de Assis
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Elena Kondratskaya
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Timothy Hughes
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
39
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
40
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2025; 9:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
41
|
Balakrishnan A, Winiarek G, Hołówka O, Godlewski J, Bronisz A. Unlocking the secrets of the immunopeptidome: MHC molecules, ncRNA peptides, and vesicles in immune response. Front Immunol 2025; 16:1540431. [PMID: 39944685 PMCID: PMC11814183 DOI: 10.3389/fimmu.2025.1540431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
The immunopeptidome, a diverse set of peptides presented by Major Histocompatibility Complex (MHC) molecules, is a critical component of immune recognition and response. This review article delves into the mechanisms of peptide presentation by MHC molecules, particularly emphasizing the roles of ncRNA-derived peptides and extracellular vesicles (EVs) in shaping the immunopeptidome landscape. We explore established and emerging insights into MHC molecule interactions with peptides, including the dynamics of peptide loading, transport, and the influence of cellular and genetic variations. The article highlights novel research on non-coding RNA (ncRNA)-derived peptides, which challenge conventional views of antigen processing and presentation and the role of EVs in transporting these peptides, thereby modulating immune responses at remote body sites. This novel research not only challenges conventional views but also opens up new avenues for understanding immune responses. Furthermore, we discuss the implications of these mechanisms in developing therapeutic strategies, particularly for cancer immunotherapy. By conducting a comprehensive analysis of current literature and advanced methodologies in immunopeptidomics, this review aims to deepen the understanding of the complex interplay between MHC peptide presentation and the immune system, offering new perspectives on potential diagnostic and therapeutic applications. Additionally, the interactions between ncRNA-derived peptides and EVs provide a mechanism for the enhanced surface presentation of these peptides and highlight a novel pathway for their systemic distribution, potentially altering immune surveillance and therapeutic landscapes.
Collapse
Affiliation(s)
- Arpita Balakrishnan
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- Translational Medicine Doctoral School, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Gabriela Winiarek
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Hołówka
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Godlewski
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Wang L, Zhang Y, Huang J, Wang S, Ji S, Wang S, Shi M, Zhang J, Shi Y, Luo Z, Jin Z, Jiang X, Li Q, Yang F, You J, Luo L. Vaccine Specifically for Immunocompromised Individuals against Superbugs. ACS NANO 2025; 19:3372-3391. [PMID: 39792029 DOI: 10.1021/acsnano.4c12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immunocompromised populations, including cancer patients, elderly individuals, and those with chronic diseases, are the primary targets of superbugs. Traditional vaccines are less effective due to insufficient or impaired immune cells. Inspired by the "vanguard" effect of neutrophils (NE) during natural infection, this project leverages the ability of NE to initiate the NETosis program to recruit monocytes and DC cells, designing vaccines that can rapidly recruit immune cells and enhance the immune response. The PLGA microsphere vaccine platform (MSV) with a high level of safety contains whole-bacterial antigens both internally and externally, providing initial and booster effects through programmed distribution and release of antigens after a single injection. Experimental data indicate that immunizing mice with a mixture of MSV and NE induces the formation of spontaneous gel-like neutrophil extracellular traps (NETs) at the inoculation site. These NETs recruit immune cells and prevent the diffusion of vaccine components, thereby reducing damage from bacterial toxins and enhancing vaccine biosafety. This strategy shows excellent efficacy against MRSA-induced infections in not only healthy but also immunocompromised mice.
Collapse
Affiliation(s)
- Litong Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yitao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Shuhan Ji
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Shenyu Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhaolei Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xindong Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Qingpo Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Fuchun Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P. R. China
| | - Jian You
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
- Jinhua Institute of Zhejiang University, 498, Jinhua, Zhejiang 321299, P. R. China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310000, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
- Jinhua Institute of Zhejiang University, 498, Jinhua, Zhejiang 321299, P. R. China
| |
Collapse
|
43
|
Bandola-Simon J, Ito Y, Wucherpfennig KW, Roche PA. Defective removal of invariant chain peptides from MHC class II suppresses tumor antigen presentation and promotes tumor growth. Cell Rep 2025; 44:115150. [PMID: 39752250 PMCID: PMC11886875 DOI: 10.1016/j.celrep.2024.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 02/01/2025] Open
Abstract
Tumor-draining lymph node dendritic cells (DCs) are poor stimulators of tumor antigen-specific CD4 T cells; however, the mechanism behind this defect is unclear. We now show that, in tumor-draining lymph node DCs, a large proportion of major histocompatibility complex class II (MHC-II) molecules retains the class II-associated invariant chain peptide (CLIP) fragment of the invariant chain bound to the MHC-II peptide binding groove due to reduced expression of the peptide editor H2-M and enhanced activity of the CLIP-generating proteinase cathepsin S. The net effect of this is that MHC-II molecules are unable to efficiently bind antigenic peptides. DCs in mice expressing a mutation in the invariant chain sequence that results in enhanced MHC-II-CLIP accumulation are poor stimulators of CD4 T cells and have diminished anti-tumor responses. Our data reveal a previously unknown mechanism of immune evasion in which enhanced expression of MHC-II-CLIP complexes on tumor-draining lymph node DCs limits MHC-II availability for tumor peptides.
Collapse
MESH Headings
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/genetics
- Animals
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigen Presentation/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Mice
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Mice, Inbred C57BL
- CD4-Positive T-Lymphocytes/immunology
- Peptides/metabolism
- Peptides/immunology
- Lymph Nodes/immunology
- Neoplasms/immunology
- Neoplasms/pathology
- Cell Line, Tumor
- Humans
Collapse
Affiliation(s)
- Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshinaga Ito
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Zhang C, Wang J, Dang P, Wei Y, Wang X, Brothwell J, Sun Y, Zhu H, So K, Liu J, Wang Y, Lu X, Spinola S, Zhang X, Cao S. A physics informed neural network approach to quantify antigen presentation activities at single cell level using omics data. RESEARCH SQUARE 2025:rs.3.rs-5629379. [PMID: 39877095 PMCID: PMC11774464 DOI: 10.21203/rs.3.rs-5629379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Antigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses. Here, we present PSAA (PINN-empowered Systems Biology Analysis of Antigen Presentation Activity), which is designed to estimate sample-wise MHC class I and class II antigen presentation activity using bulk, single-cell, and spatially resolved transcriptomics or proteomics data. By reconstructing MHC pathways and employing pathway flux estimation, PSAA offers a detailed, stepwise quantification of MHC pathway activity, enabling predictions of gene-specific impacts and their downstream effects on immune interactions. Benchmarked across diverse omics datasets and experimental validations, PSAA demonstrates a robust prediction accuracy and utility across various disease contexts. In conclusion, PSAA and its downstream functions provide a comprehensive framework for analyzing the dynamics of MHC antigen presentation using omics data. By linking antigen presentation to immune cell activity and clinical outcomes, PSAA both elucidates key mechanisms driving disease progression and uncovers potential therapeutic targets.
Collapse
Affiliation(s)
- Chi Zhang
- Indiana University School of Medicine
| | | | | | | | | | | | - Yifan Sun
- Indiana University School of Medicine
| | | | - Kaman So
- Indiana University School of Medicine
| | | | - Yijie Wang
- Computer Science Department, Indiana University
| | | | | | | | - Sha Cao
- Oregon Health & Science University
| |
Collapse
|
46
|
Kramer M, Mele F, Jovic S, Fernandez BM, Jarrossay D, Low JS, Sokollik C, Filipowicz Sinnreich M, Ferrari-Lacraz S, Mieli-Vergani G, Vergani D, Lanzavecchia A, Cassotta A, Terziroli Beretta-Piccoli B, Sallusto F. Clonal analysis of SepSecS-specific B and T cells in autoimmune hepatitis. J Clin Invest 2025; 135:e183776. [PMID: 39817450 PMCID: PMC11735102 DOI: 10.1172/jci183776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Autoimmune hepatitis (AIH) is a rare chronic inflammatory liver disease characterized by the presence of autoantibodies, including those targeting O-phosphoseryl-tRNA:selenocysteine-tRNA synthase (SepSecS), also known as soluble liver antigen (SLA). Anti-SepSecS antibodies have been associated with a more severe phenotype, suggesting a key role for the SepSecS autoantigen in AIH. To analyze the immune response to SepSecS in patients with AIH at the clonal level, we combined sensitive high-throughput screening assays with the isolation of monoclonal antibodies (mAbs) and T cell clones. The anti-SepSecS mAbs isolated were primarily IgG1, affinity-matured compared with their germline versions, and recognized at least 3 nonoverlapping epitopes. SepSecS-specific CD4+ T cell clones were found in patients with AIH who were anti-SLA-positive and anti-SLA-negative,and, to a lesser extent, in patients with non-AIH liver diseases and in healthy individuals. SepSecS-specific T cell clones from patients with AIH produced IFN-γ, IL-4, and IL-10, targeted multiple SepSecS epitopes, and, in one patient, were clonally expanded in both blood and liver biopsy. Finally, SepSecS-specific B cell clones, but not those of unrelated specificities, were able to present soluble SepSecS to specific T cells. Collectively, our study provides the first detailed analysis of B and T cell repertoires targeting SepSecS in patients with AIH, offering a rationale for improved targeted therapies.
Collapse
Affiliation(s)
- Michael Kramer
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | | | - David Jarrossay
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Jun Siong Low
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Christiane Sokollik
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Gastroenterology and Hepatology, Basel University Medical Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplant Immunology Unit & National Laboratory of Immunogenetics, Division of Nephrology, Department of Diagnostic, University Hospital Geneva, Geneva, Switzerland
| | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences & Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | | | - Antonino Cassotta
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Benedetta Terziroli Beretta-Piccoli
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Epatocentro Ticino, Lugano, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
47
|
Abdel Wadood N, Hollenhorst MI, Elhawy MI, Zhao N, Englisch C, Evers SB, Sabachvili M, Maxeiner S, Wyatt A, Herr C, Burkhart AK, Krause E, Yildiz D, Beckmann A, Kusumakshi S, Riethmacher D, Bischoff M, Iden S, Becker SL, Canning BJ, Flockerzi V, Gudermann T, Chubanov V, Bals R, Meier C, Boehm U, Krasteva-Christ G. Tracheal tuft cells release ATP and link innate to adaptive immunity in pneumonia. Nat Commun 2025; 16:584. [PMID: 39794305 PMCID: PMC11724094 DOI: 10.1038/s41467-025-55936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025] Open
Abstract
Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels. Taste signaling through the Trpm5 channel is essential for bacterial tuft cell activation and ATP release. We demonstrate that activated tuft cells recruit dendritic cells to the trachea and lung. ATP released by tuft cells initiates dendritic cell activation, phagocytosis and migration. Tuft cell stimulation also involves an adaptive immune response through recruitment of IL-17A secreting T helper cells. Collectively, the results provide a molecular framework defining tuft cell dependent regulation of both innate and adaptive immune responses in the airways to combat bacterial infection.
Collapse
Affiliation(s)
- Noran Abdel Wadood
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Monika I Hollenhorst
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | | | - Na Zhao
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Clara Englisch
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Saskia B Evers
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Mahana Sabachvili
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Ann-Kathrin Burkhart
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg, Germany
| | - Elmar Krause
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Daniela Yildiz
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Anja Beckmann
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Sandra Iden
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg, Germany
| | - Sören L Becker
- Institute for Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | | | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Robert Bals
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
- Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany.
| |
Collapse
|
48
|
Bu T, Yang Z, Zhao J, Gao Y, Li F, Yang R. Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach. Int J Mol Sci 2025; 26:379. [PMID: 39796233 PMCID: PMC11722184 DOI: 10.3390/ijms26010379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage. Furthermore, circRNA vaccines can elicit robust cellular and humoral immunity, indicating their potential for tumor vaccine development. However, certain challenges must be addressed to facilitate the widespread use of circRNA vaccines in both infectious disease prevention and tumor treatment. These challenges include the low efficiency of linear RNA circularization, the suboptimal targeting of delivery systems, and the assessment of potential side effects. This work aims to describe the characteristics and functions of circRNAs, elucidate the mechanism behind circRNA vaccines, and discuss their applications in the prevention of infectious diseases and the treatment of tumors, along with their potential future applications.
Collapse
Affiliation(s)
- Tian Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Ziyu Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Jian Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Yanmei Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| | - Faxiang Li
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410081, China
| | - Rong Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (T.B.); (Z.Y.); (J.Z.); (Y.G.)
| |
Collapse
|
49
|
Ghouli MR, Binder DK. Neuroglia in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:69-86. [PMID: 40148058 DOI: 10.1016/b978-0-443-19102-2.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Epilepsy is a group of neurologic diseases characterized by spontaneous, repetitive disruption to neuronal activity. Neurons have been at the core of epilepsy research efforts, and pharmacotherapies historically have been generated by targeting neuronal mechanisms. As a result, most currently available antiseizure drugs (ASDs) work to either decrease excitatory glutamatergic neurotransmission or to increase inhibitory GABAergic neurotransmission. However, ASDs may have undesirable side effects on cognition and also fail to control seizures in approximately 30% of epilepsy patients. In recent years, glia have surfaced as essential modulators of neuronal function in health and disease. The redirection of focus onto neuroglia provides new perspectives and opportunities to generate novel therapeutic targets that may treat refractory epilepsy and diminish the unwanted side effect profile of current treatments. In this chapter, we discuss the contribution of astroglia, oligodendroglia, and microglia to the genesis, development, and progression of epilepsy, and we highlight key enzymes, receptors, transporters, and channels that may be pursued as nonneuronal targets for novel ASDs.
Collapse
Affiliation(s)
- Manolia R Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States; Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
50
|
Liu S, Yang X, Zhao H, Zhao X, Fan K, Liu G, Li X, Du C, Liu J, Ma J. Cathepsin C exacerbates EAE by promoting the expansion of Tfh cells and the formation of TLSs in the CNS. Brain Behav Immun 2025; 123:123-142. [PMID: 39243987 DOI: 10.1016/j.bbi.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) mediated by CD4+ T helper (Th) cells, and characterized by immune cell infiltration, demyelination and neurodegeneration, with no definitive cure available. Thus, it is pivotal and imperative to acquire more profound comprehension of the underlying mechanisms implicated in MS. Dysregulated immune responses are widely believed to play a primary role in the pathogenesis of MS. Recently, a plethora of studies have demonstrated the involvement of T follicular helper (Tfh) cells and tertiary lymphoid-like structures (TLSs) in the pathogenesis and progression of MS. Cathepsin C (CatC) is a cysteine exopeptidase which is crucial for the activation of immune-cell-associated serine proteinases in many inflammatory diseases in peripheral system, such as rheumatoid arthritis and septicemia. We have previously demonstrated that CatC is involved in neuroinflammation and exacerbates demyelination in both cuprizone-induced and experimental autoimmune encephalomyelitis (EAE) mouse models. However, the underlying immunopathological mechanism remains elusive. In the present study, we established a recombinant myelin oligodendrocyte glycoprotein 35-55 peptide-induced EAE model using conditional CatC overexpression mice to investigate the effects of CatC on the alteration of CD4+ Th subsets, including Th1, Th2, Th17, Tfh and T regulatory cells. Our findings demonstrated that CatC particularly enhanced the population of Tfh cell in the brain, resulting in the earlier onset and more severe chronic syndrome of EAE. Furthermore, CatC promoted the formation of TLSs in the brain, leading to persistent neuroinflammation and exacerbating the severity of EAE in the chronic phase. Conversely, treatment with AZD7986, a specific inhibitor of CatC, effectively attenuated the syndrome of EAE and its effects caused by CatC both in vivo and in vitro. These findings provide a novel insight into the critical role of CatC in innate and adaptive immunity in EAE, and specific inhibitor of CatC, AZD7986, may contribute to potential therapeutic strategies for MS.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xiaohan Yang
- Department of Morphology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Henan Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xinnan Zhao
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Kai Fan
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Gang Liu
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Cong Du
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|