1
|
Miao M, Bai SM, Huang YY, Zhang JW, Xu KL, Chen Y, Qian QT, Dong J, Nie HM, Mei J, Tong FD, Yu W. Histone acetyltransferase BmMOF inhibits the proliferation of the Bombyx mori nucleopolyhedrovirus by targeting Bmp53. Int J Biol Macromol 2025; 305:141186. [PMID: 39971070 DOI: 10.1016/j.ijbiomac.2025.141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) infection is a critical disease in silkworms (Bombyx mori), yet the molecular mechanism underlying the defense of Bombyx mori against BmNPV infection remains elusive. The histone acetyltransferase MOF plays a crucial role in cellular stress response and apoptosis. Nevertheless, its function in Bombyx mori is yet to be fully elucidated. Here, we demonstrated that BmMOF positively regulates the resistance of silkworm BmN cells to BmNPV by targeting a Bombyx mori homolog of the apoptosis-inducing factor Bmp53. Overexpression of BmMOF led to the suppression of BmNPV proliferation and the enhancement of cellular antiviral responses, conversely, RNA interference targeting BmMOF promoted viral proliferation, resulting in an opposite effect. Additionally, the application of the acetyltransferase inhibitor MG149 and the mutated BmMOF acetyltransferase active site K257R revealed that BmMOF is capable of acetylating H4K16 in BmN cells, and its acetylation function plays a crucial role in inhibiting virus proliferation. Further analyses showed that BmMOF interacted with Bmp53 and catalyzes its acetylation, thereby inducing the apoptosis-mediated antiviral immune response in BmN cells upon infection with BmNPV. These findings provided a new molecular target for antiviral immunity and information for comprehending the mechanism of host-virus interaction in silkworms.
Collapse
Affiliation(s)
- Meng Miao
- Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shi-Mei Bai
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yu-Yi Huang
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | - Kun-Ling Xu
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Chen
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi-Tao Qian
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jia Dong
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hao-Min Nie
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Mei
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fu-Dan Tong
- Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Yu
- Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Zhang C, Guo J. Cell cycle disorders in podocytes: an emerging and increasingly recognized phenomenon. Cell Death Discov 2025; 11:182. [PMID: 40246828 PMCID: PMC12006314 DOI: 10.1038/s41420-025-02486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Proteinuria is observed in various kidney diseases and is frequently associated with a compromised glomerular filtration barrier. Podocytes, as a crucial component of this barrier, play an essential role in preserving the kidney's normal filtration function. Podocytes are terminally differentiated cells that typically do not proliferate. However, certain harmful stimuli can trigger podocytes to re-enter the cell cycle. Due to its unique cytoskeletal structure, podocytes are unable to maintain the structure of the foot process and complete cell division at the same time, eventually form binucleated or multinucleated podocytes. Studies have found that podocytes re-entering the cell cycle are more susceptible to injury, and are prone to detachment from the basement membrane or apoptosis, which are accompanied by the widening of foot processes. This eventually leads to podocyte mitotic catastrophe and the development of proteinuria. Podocyte cell cycle disorders have previously been found mainly in focal segmental glomerulosclerosis and IgA nephropathy. In recent years, this phenomenon has been frequently identified in diabetic kidney disease and lupus nephritis. An expanding body of research has begun to investigate the mechanisms underlying podocyte cell cycle disorders, including cell cycle re-entry, cell cycle arrest, and mitotic catastrophe. This review consolidates the existing literature on podocyte cell cycle disorders in renal diseases and summarizes the molecules that trigger podocyte re-entry into the cell cycle, thereby providing new drug targets for mitigating podocyte damage. This is essential for alleviating podocyte injury, reducing proteinuria, and delaying the progression of kidney diseases.
Collapse
Affiliation(s)
- Chaojie Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Chen HR, Sun Y, Mittler G, Rumpf T, Shvedunova M, Grosschedl R, Akhtar A. MOF-mediated PRDX1 acetylation regulates inflammatory macrophage activation. Cell Rep 2024; 43:114682. [PMID: 39207899 DOI: 10.1016/j.celrep.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.
Collapse
Affiliation(s)
- Hui-Ru Chen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany; Albert-Ludwigs-University Freiburg, Faculty of Biology, Freiburg, Baden-Württemberg, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Tobias Rumpf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany.
| |
Collapse
|
4
|
Yokoyama A, Niida H, Kutateladze TG, Côté J. HBO1, a MYSTerious KAT and its links to cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195045. [PMID: 38851533 PMCID: PMC11330361 DOI: 10.1016/j.bbagrm.2024.195045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The histone acetyltransferase HBO1, also known as KAT7, is a major chromatin modifying enzyme responsible for H3 and H4 acetylation. It is found within two distinct tetrameric complexes, the JADE subunit-containing complex and BRPF subunit-containing complex. The HBO1-JADE complex acetylates lysine 5, 8 and 12 of histone H4, and the HBO1-BRPF complex acetylates lysine 14 of histone H3. HBO1 regulates gene transcription, DNA replication, DNA damage repair, and centromere function. It is involved in diverse signaling pathways and plays crucial roles in development and stem cell biology. Recent work has established a strong relationship of HBO1 with the histone methyltransferase MLL/KMT2A in acute myeloid leukemia. Here, we discuss functional and pathological links of HBO1 to cancer, highlighting the underlying mechanisms that may pave the way to the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan.
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, United States of America.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division-CHU de Québec-UL Research Center, Laval University Cancer Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
5
|
Bi S, Huang L, Chen Y, Hu Z, Li S, Wang Y, Huang B, Zhang L, Huang Y, Dai B, Du L, Tu Z, Wang Y, Xu D, Xu X, Sun W, Kzhyshkowska J, Wang H, Chen D, Wang F, Zhang S. KAT8-mediated H4K16ac is essential for sustaining trophoblast self-renewal and proliferation via regulating CDX2. Nat Commun 2024; 15:5602. [PMID: 38961108 PMCID: PMC11222414 DOI: 10.1038/s41467-024-49930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.
Collapse
Affiliation(s)
- Shilei Bi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Zhenhua Hu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shanze Li
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yifan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Baoying Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanyuan Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Beibei Dai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lili Du
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yijing Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Dan Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Xiaotong Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wen Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| | - Shuang Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
6
|
Wu X, Wang S, Guo Y, Zeng S. Overexpression of KAT8 induces a failure in early embryonic development in mice. Theriogenology 2024; 221:31-37. [PMID: 38537319 DOI: 10.1016/j.theriogenology.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
Embryo quality is strongly associated with subsequent embryonic developmental efficiency. However, the detailed function of lysine acetyltransferase 8 (KAT8) during early embryonic development in mice remains elusive. In this study, we reported that KAT8 played a pivotal role in the first cleavage of mouse embryos. Immunostaining results revealed that KAT8 predominantly accumulated in the nucleus throughout the entire embryonic developmental process. Kat8 overexpression (Kat8-OE) was correlated with early developmental potential of embryos to the blastocyst stage. We also found that Kat8-OE embryos showed spindle-assembly defects and chromosomal misalignment, and that Kat8-OE in embryos led to increased levels of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX by affecting the expression of critical genes related to mitochondrial respiratory chain and antioxidation pathways. Subsequently, cellular apoptosis was activated as confirmed by TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling) assay. Furthermore, we revealed that KAT8 was related to regulating the acetylation status of H4K16 in mouse embryos, and Kat8-OE induced the hyperacetylation of H4K16, which might be a key factor for the defective spindle/chromosome apparatus. Collectively, our data suggest that KAT8 constitutes an important regulator of spindle assembly and redox homeostasis during early embryonic development in mice.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Xie M, Zhou L, Li T, Lin Y, Zhang R, Zheng X, Zeng C, Zheng L, Zhong L, Huang X, Zou Y, Kang T, Wu Y. Targeting the KAT8/YEATS4 Axis Represses Tumor Growth and Increases Cisplatin Sensitivity in Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310146. [PMID: 38526153 PMCID: PMC11165526 DOI: 10.1002/advs.202310146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Indexed: 03/26/2024]
Abstract
Bladder cancer (BC) is one of the most common tumors characterized by a high rate of relapse and a lack of targeted therapy. Here, YEATS domain-containing protein 4 (YEATS4) is an essential gene for BC cell viability using CRISPR-Cas9 library screening is reported, and that HUWE1 is an E3 ligase responsible for YEATS4 ubiquitination and proteasomal degradation by the Protein Stability Regulators Screening Assay. KAT8-mediated acetylation of YEATS4 impaired its interaction with HUWE1 and consequently prevented its ubiquitination and degradation. The protein levels of YEATS4 and KAT8 are positively correlated and high levels of these two proteins are associated with poor overall survival in BC patients. Importantly, suppression of YEATS4 acetylation with the KAT8 inhibitor MG149 decreased YEATS4 acetylation, reduced cell viability, and sensitized BC cells to cisplatin treatment. The findings reveal a critical role of the KAT8/YEATS4 axis in both tumor growth and cisplatin sensitivity in BC cells, potentially generating a novel therapeutic strategy for BC patients.
Collapse
Affiliation(s)
- Miner Xie
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of HematologyGuangzhou First People's HospitalSouth China University of TechnologyGuangzhou510060P. R. China
| | - Liwen Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ting Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yujie Lin
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Xianchong Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Li Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Center of Digestive DiseaseScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107P. R. China
| | - Xiaodan Huang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yezi Zou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- School of MedicineShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
8
|
Yoo L, Mendoza D, Richard AJ, Stephens JM. KAT8 beyond Acetylation: A Survey of Its Epigenetic Regulation, Genetic Variability, and Implications for Human Health. Genes (Basel) 2024; 15:639. [PMID: 38790268 PMCID: PMC11121512 DOI: 10.3390/genes15050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Lysine acetyltransferase 8, also known as KAT8, is an enzyme involved in epigenetic regulation, primarily recognized for its ability to modulate histone acetylation. This review presents an overview of KAT8, emphasizing its biological functions, which impact many cellular processes and range from chromatin remodeling to genetic and epigenetic regulation. In many model systems, KAT8's acetylation of histone H4 lysine 16 (H4K16) is critical for chromatin structure modification, which influences gene expression, cell proliferation, differentiation, and apoptosis. Furthermore, this review summarizes the observed genetic variability within the KAT8 gene, underscoring the implications of various single nucleotide polymorphisms (SNPs) that affect its functional efficacy and are linked to diverse phenotypic outcomes, ranging from metabolic traits to neurological disorders. Advanced insights into the structural biology of KAT8 reveal its interaction with multiprotein assemblies, such as the male-specific lethal (MSL) and non-specific lethal (NSL) complexes, which regulate a wide range of transcriptional activities and developmental functions. Additionally, this review focuses on KAT8's roles in cellular homeostasis, stem cell identity, DNA damage repair, and immune response, highlighting its potential as a therapeutic target. The implications of KAT8 in health and disease, as evidenced by recent studies, affirm its importance in cellular physiology and human pathology.
Collapse
Affiliation(s)
- Lindsey Yoo
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical, Baton Rouge, LA 70808, USA; (L.Y.); (D.M.); (A.J.R.)
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
9
|
Qian P, Wang S, Zhang T, Wu J. Transcriptional Expression of Histone Acetyltransferases and Deacetylases During the Recovery of Acute Exercise in Mouse Hippocampus. J Mol Neurosci 2024; 74:34. [PMID: 38565829 DOI: 10.1007/s12031-024-02215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, β-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.
Collapse
Affiliation(s)
- Ping Qian
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Department of Internal Medicine, Affiliated Children Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
10
|
Liu TW, Zhao YM, Jin KY, Wang JX, Zhao XF. KAT8 is upregulated and recruited to the promoter of Atg8 by FOXO to induce H4 acetylation for autophagy under 20-hydroxyecdysone regulation. J Biol Chem 2024; 300:105704. [PMID: 38309506 PMCID: PMC10904276 DOI: 10.1016/j.jbc.2024.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024] Open
Abstract
Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.
Collapse
Affiliation(s)
- Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
11
|
Guhathakurta S, Erdogdu NU, Hoffmann JJ, Grzadzielewska I, Schendzielorz A, Seyfferth J, Mårtensson CU, Corrado M, Karoutas A, Warscheid B, Pfanner N, Becker T, Akhtar A. COX17 acetylation via MOF-KANSL complex promotes mitochondrial integrity and function. Nat Metab 2023; 5:1931-1952. [PMID: 37813994 PMCID: PMC10663164 DOI: 10.1038/s42255-023-00904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation. Loss of MOF-KANSL complex members leads to mitochondrial defects including fragmentation, reduced cristae density and impaired mitochondrial electron transport chain complex IV integrity in primary mouse embryonic fibroblasts. We demonstrate COX17, a complex IV assembly factor, as a bona fide acetylation target of MOF. Loss of COX17 or expression of its non-acetylatable mutant phenocopies the mitochondrial defects observed upon MOF depletion. The acetylation-mimetic COX17 rescues these defects and maintains complex IV activity even in the absence of MOF, suggesting an activatory role of mitochondrial electron transport chain protein acetylation. Fibroblasts from patients with MOF syndrome who have intellectual disability also revealed respiratory defects that could be restored by alternative oxidase, acetylation-mimetic COX17 or mitochondrially targeted MOF. Overall, our findings highlight the critical role of MOF-KANSL complex in mitochondrial physiology and provide new insights into MOF syndrome.
Collapse
Affiliation(s)
- Sukanya Guhathakurta
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niyazi Umut Erdogdu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliane J Hoffmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Iga Grzadzielewska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Adam Karoutas
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Tsang TH, Wiese M, Helmstädter M, Stehle T, Seyfferth J, Shvedunova M, Holz H, Walz G, Akhtar A. Transcriptional regulation by the NSL complex enables diversification of IFT functions in ciliated versus nonciliated cells. SCIENCE ADVANCES 2023; 9:eadh5598. [PMID: 37624894 PMCID: PMC10456878 DOI: 10.1126/sciadv.adh5598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.
Collapse
Affiliation(s)
- Tsz Hong Tsang
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Meike Wiese
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Thomas Stehle
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Herbert Holz
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
13
|
Liang F, Li X, Shen X, Yang R, Chen C. Expression profiles and functional prediction of histone acetyltransferases of the MYST family in kidney renal clear cell carcinoma. BMC Cancer 2023; 23:586. [PMID: 37365518 DOI: 10.1186/s12885-023-11076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) of the MYST family are associated with a variety of human cancers. However, the relationship between MYST HATs and their clinical significance in kidney renal clear cell carcinoma (KIRC) has not yet been evaluated. METHODS The bioinformatics method was used to investigate the expression patterns and prognostic value of MYST HATs. Western blot was used to detect the expression of MYST HATs in KIRC. RESULTS The expression levels of MYST HATs except KAT8 (KAT5, KAT6A, KAT6B, and KAT7) were significantly reduced in KIRC tissues compared to normal renal tissues, and the western blot results of the KIRC samples also confirmed the result. Reduced expression levels of MYST HATs except KAT8 were significantly associated with high tumor grade and advanced TNM stage in KIRC, and showed a significant association with an unfavorable prognosis in patients with KIRC. We also found that the expression levels of MYST HATs were closely related to each other. Subsequently, gene set enrichment analysis showed that the function of KAT5 was different from that of KAT6A, KAT6B and KAT7. The expression levels of KAT6A, KAT6B and KAT7 had significant positive correlations with cancer immune infiltrates such as B cells, CD4+ T cells and CD8+ T cells. CONCLUSIONS Our results indicated that MYST HATs, except KAT8, play a beneficial role in KIRC.
Collapse
Affiliation(s)
- Fan Liang
- School of Basic Medicine, Weifang Medical University, Weifang, 261000, Shandong, P.R. China
| | - Xiangke Li
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Xiaoman Shen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Runlei Yang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| | - Chuan Chen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| |
Collapse
|
14
|
Disrupting the phase separation of KAT8-IRF1 diminishes PD-L1 expression and promotes antitumor immunity. NATURE CANCER 2023; 4:382-400. [PMID: 36894639 PMCID: PMC10042735 DOI: 10.1038/s43018-023-00522-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023]
Abstract
Immunotherapies targeting the PD-1/PD-L1 axis have become first-line treatments in multiple cancers. However, only a limited subset of individuals achieves durable benefits because of the elusive mechanisms regulating PD-1/PD-L1. Here, we report that in cells exposed to interferon-γ (IFNγ), KAT8 undergoes phase separation with induced IRF1 and forms biomolecular condensates to upregulate PD-L1. Multivalency from both the specific and promiscuous interactions between IRF1 and KAT8 is required for condensate formation. KAT8-IRF1 condensation promotes IRF1 K78 acetylation and binding to the CD247 (PD-L1) promoter and further enriches the transcription apparatus to promote transcription of PD-L1 mRNA. Based on the mechanism of KAT8-IRF1 condensate formation, we identified the 2142-R8 blocking peptide, which disrupts KAT8-IRF1 condensate formation and consequently inhibits PD-L1 expression and enhances antitumor immunity in vitro and in vivo. Our findings reveal a key role of KAT8-IRF1 condensates in PD-L1 regulation and provide a competitive peptide to enhance antitumor immune responses.
Collapse
|
15
|
KAT8 acetylation-controlled lipolysis affects the invasive and migratory potential of colorectal cancer cells. Cell Death Dis 2023; 14:164. [PMID: 36849520 PMCID: PMC9970984 DOI: 10.1038/s41419-023-05582-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023]
Abstract
Epigenetic mechanisms involved in gene expression play an essential role in various cellular processes, including lipid metabolism. Lysine acetyltransferase 8 (KAT8), a histone acetyltransferase, has been reported to mediate de novo lipogenesis by acetylating fatty acid synthase. However, the effect of KAT8 on lipolysis is unclear. Here, we report a novel mechanism of KAT8 on lipolysis involving in its acetylation by general control non-repressed protein 5 (GCN5) and its deacetylation by Sirtuin 6 (SIRT6). KAT8 acetylation at K168/175 residues attenuates the binding activity of KAT8 and inhibits the recruitment of RNA pol II to the promoter region of the lipolysis-related genes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), subsequently down-regulating lipolysis to affect the invasive and migratory potential of colorectal cancer cells. Our findings uncover a novel mechanism that KAT8 acetylation-controlled lipolysis affects invasive and migratory potential in colorectal cancer cells.
Collapse
|
16
|
Nie Q, Huan X, Kang J, Yin J, Zhao J, Li Y, Zhang Z. MG149 Inhibits MOF-Mediated p53 Acetylation to Attenuate X-Ray Radiation-Induced Apoptosis in H9c2 Cells. Radiat Res 2022; 198:590-598. [PMID: 36481803 DOI: 10.1667/rade-22-00049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Cardiomyocyte apoptosis is involved in the pathogenesis of radiation-induced heart disease, but the underlying epigenetic mechanism remains elusive. We evaluated the potential mediating role of males absent on the first (MOF) in the association between epigenetic activation of p53 lysine 120 (p53K120) and X-ray radiation-induced apoptosis in H9c2 cells. H9c2 cells were pretreated for 24 h with the MOF inhibitor MG149 after 4 Gy irradiation, followed by assessment of cell proliferation, injury, and apoptosis. MOF expression was upregulated by X-ray radiation. MG149 suppressed the proliferation inhibition, reduction of mitochondrial membrane potential, ROS production, and cell apoptosis. MG149 may promote the survival of H9c2 cells via inhibition of MOF-mediated p53K120 acetylation in response to X-ray radiation-induced apoptosis. Our data indicates a MOF-associated epigenetic mechanism in H9c2 cells that promotes attenuation of X-ray radiation-induced injury.
Collapse
Affiliation(s)
- Qianwen Nie
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Xuan Huan
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jing Kang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiangyan Yin
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiahui Zhao
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - ZhengYi Zhang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| |
Collapse
|
17
|
Chen C, Liu J. Histone acetylation modifications: A potential targets for the diagnosis and treatment of papillary thyroid cancer. Front Oncol 2022; 12:1053618. [DOI: 10.3389/fonc.2022.1053618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
Thyroid cancer is a common malignancy of the endocrine system, with papillary thyroid cancer (PTC) being the most common type of pathology. The incidence of PTC is increasing every year. Histone acetylation modification is an important part of epigenetics, regulating histone acetylation levels through histone acetylases and histone deacetylases, which alters the proliferation and differentiation of PTC cells and affects the treatment and prognosis of PTC patients. Histone deacetylase inhibitors induce histone acetylation, resulting in the relaxation of chromatin structure and activation of gene transcription, thereby promoting differentiation, apoptosis, and growth arrest of PTC cells.
Collapse
|
18
|
Song H, Shen R, Liu X, Yang X, Xie K, Guo Z, Wang D. Histone post-translational modification and the DNA damage response. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
19
|
Mo H, Ren Q, Song D, Xu B, Zhou D, Hong X, Hou FF, Zhou L, Liu Y. CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling. Theranostics 2022; 12:767-781. [PMID: 34976212 PMCID: PMC8692909 DOI: 10.7150/thno.65948] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background: C-X-C chemokine receptor type 4 (CXCR4) plays a crucial role in mediating podocyte dysfunction, proteinuria and glomerulosclerosis. However, the underlying mechanism remains poorly understood. Here we studied the role of β-catenin in mediating CXCR4-triggered podocyte injury. Methods: Mouse models of proteinuric kidney diseases were used to assess CXCR4 and β-catenin expression. We utilized cultured podocytes and glomeruli to delineate the signal pathways involved. Conditional knockout mice with podocyte-specific deletion of CXCR4 were generated and used to corroborate a role of CXCR4/β-catenin in podocyte injury and proteinuria. Results: Both CXCR4 and β-catenin were induced and colocalized in the glomerular podocytes in several models of proteinuric kidney diseases. Activation of CXCR4 by its ligand SDF-1α stimulated β-catenin activation but did not affect the expression of Wnt ligands in vitro. Blockade of β-catenin signaling by ICG-001 preserved podocyte signature proteins and inhibited Snail1 and MMP-7 expression in vitro and ex vivo. Mechanistically, activation of CXCR4 by SDF-1α caused the formation of CXCR4/β-arrestin-1/Src signalosome in podocytes, which led to sequential phosphorylation of Src, EGFR, ERK1/2 and GSK-3β and ultimately β-catenin stabilization and activation. Silencing β-arrestin-1 abolished this cascade of events and inhibited β-catenin in response to CXCR4 stimulation. Podocyte-specific knockout of CXCR4 in mice abolished β-catenin activation, preserved podocyte integrity, reduced proteinuria and ameliorated glomerulosclerosis after Adriamycin injury. Conclusion: These results suggest that CXCR4 promotes podocyte dysfunction and proteinuria by assembling CXCR4/β-arrestin-1/Src signalosome, which triggers a cascade of signal events leading to β-catenin activation.
Collapse
MESH Headings
- Animals
- Cell Line
- Drug Delivery Systems
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Podocytes/metabolism
- Proteinuria/etiology
- Proteinuria/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Signal Transduction
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Hongyan Mo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Ren
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyan Song
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Zhang X, Liu H, Zhou JQ, Krick S, Barnes JW, Thannickal VJ, Sanders YY. Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice. Theranostics 2022; 12:530-541. [PMID: 34976199 PMCID: PMC8692895 DOI: 10.7150/thno.62760] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 11/05/2022] Open
Abstract
Histone H4 lysine16 acetylation (H4K16Ac) modulates chromatin structure by serving as a switch from a repressive to a transcriptionally active state. This euchromatin mark is associated with active transcription. In this study, we investigated the effects of H4K16Ac on the expression of pro-fibrotic genes in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and in an aging murine model of lung fibrosis. Methods: The lung tissues and fibroblasts from human IPF/non-IPF donors and from aged mice with/without bleomycin induced lung fibrosis were used in this study. The H4K16Ac levels were examined by immunohistochemistry or western blots. RNA silencing of H4K16Ac acetyltransferase Mof was used to reduce H4K16Ac levels in IPF fibroblasts. The effects of reduced H4K16Ac on pro-fibrotic gene expression were examined by western blots and real-time PCR. The association of H4K16Ac with these genes' promoter region were evaluated by ChIP assays. The gene expression profile in siRNA Mof transfected IPF cells were determined by RNA-Seq. The impact of H4K16Ac levels on lung fibrosis was evaluated in an aging murine model. Results: Aged mice with bleomycin induced lung fibrosis showed increased H4K16Ac levels. Human lung fibroblasts with siRNA Mof silencing demonstrated reduced H4K16Ac, and significantly down-regulated profibrotic genes, such as α-smooth muscle actin (α-SMA), collagen I, Nox4, and survivin. ChIP assays confirmed the associations of these pro-fibrotic genes' promoter region with H4K16Ac, while in siRNA Mof transfected cells the promoter/H4K16Ac associations were depleted. RNA-seq data demonstrated that Mof knockdown altered gene expression and cellular pathways, including cell damage and repair. In the aging mice model of persistent lung fibrosis, 18-month old mice given intra-nasal siRNA Mof from week 3 to 6 following bleomycin injury showed improved lung architecture, decreased total hydroxyproline content and lower levels of H4K16Ac. Conclusions: These results indicate a critical epigenetic regulatory role for histone H4K16Ac in the pathogenesis of pulmonary fibrosis, which will aid in the development of novel therapeutic strategies for age-related diseases such as IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
21
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
22
|
Mir US, Bhat A, Mushtaq A, Pandita S, Altaf M, Pandita TK. Role of histone acetyltransferases MOF and Tip60 in genome stability. DNA Repair (Amst) 2021; 107:103205. [PMID: 34399315 DOI: 10.1016/j.dnarep.2021.103205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
The accurate repair of DNA damage specifically the chromosomal double-strand breaks (DSBs) arising from exposure to physical or chemical agents, such as ionizing radiation (IR) and radiomimetic drugs is critical in maintaining genomic integrity. The DNA DSB response and repair is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes specifically histone modifications which impact cell-cycle checkpoints through enzymatic activities to repair the broken DNA ends. Various histone posttranslational modifications such as phosphorylation, acetylation, methylation and ubiquitylation have been shown to play a role in DNA damage repair. Recent studies have provided important insights into the role of histone-specific modifications in sensing DNA damage and facilitating the DNA repair. Histone modifications have been shown to determine the pathway choice for repair of DNA DSBs. This review will summarize the role of important histone acetyltransferases MOF and Tip60 mediated acetylation in repair of DNA DSBs in eukaryotic cells.
Collapse
Affiliation(s)
- Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, 181143, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Shruti Pandita
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India; Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Tej K Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Pessoa Rodrigues C, Chatterjee A, Wiese M, Stehle T, Szymanski W, Shvedunova M, Akhtar A. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice. Nat Commun 2021; 12:6212. [PMID: 34707105 PMCID: PMC8551339 DOI: 10.1038/s41467-021-26277-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Aindrila Chatterjee
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Meike Wiese
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Stehle
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Witold Szymanski
- Proteomics Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
24
|
Zuo Y, Wang C, Sun X, Hu C, Liu J, Hong X, Shen W, Nie J, Hou FF, Zhou L, Liu Y. Identification of matrix metalloproteinase-10 as a key mediator of podocyte injury and proteinuria. Kidney Int 2021; 100:837-849. [PMID: 34175352 DOI: 10.1016/j.kint.2021.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/06/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Podocyte injury or dysfunction plays an essential role in causing proteinuria and glomerulosclerosis in chronic kidney diseases. To search for new players involved in podocyte injury, we performed gene expression profiling in the glomeruli by RNA sequencing. This unbiased approach led us to discover matrix metalloproteinase-10 (MMP-10), a secreted zinc-dependent endopeptidase, as one of the most upregulated genes after glomerular injury. In animal models and patients with proteinuric chronic kidney diseases, MMP-10 was upregulated specifically in the podocytes of injured glomeruli. Patients with chronic kidney diseases also had elevated circulating levels of MMP-10, which correlated with the severity of kidney insufficiency. In transgenic mice with podocyte-specific expression of MMP-10, proteinuria was aggravated after injury induced by Adriamycin. This was accompanied by more severe podocytopathy and glomerulosclerotic lesions. In contrast, knockdown of MMP-10 in vivo protected mice from proteinuria, restored podocyte integrity and reduced kidney fibrosis. Interestingly, MMP-10 reduced podocyte tight junctional protein zonula occludens-1 (ZO-1) but did not affect its mRNA level. Incubation of purified ZO-1 with MMP-10 directly resulted in its proteolytic degradation in vitro, suggesting ZO-1 as a novel substrate of MMP-10. Thus, our findings illustrate that induction of MMP-10 could lead to podocyte injury by degrading ZO-1, thereby promoting proteinuria and glomerulosclerosis in chronic kidney diseases.
Collapse
Affiliation(s)
- Yangyang Zuo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cong Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengxiao Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jixing Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
25
|
Wang M, Liu H, Zhang X, Zhao W, Li D, Xu C, Wu Z, Xie F, Li X. Lack of Mof reduces acute liver injury by enhancing transcriptional activation of Igf1. J Cell Physiol 2021; 236:6559-6570. [PMID: 33634483 DOI: 10.1002/jcp.30332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Acute liver injury (ALI) is a rapid pathological process that may cause severe liver disease and may even be life-threatening. During ALI, the function of males absent on the first (MOF) has not yet been elucidated. In this study, we unveiled the expression pattern of MOF during carbon tetrachloride (CCl4 )-induced ALI and role of MOF in the regulation of liver regeneration. In the process of ALI, MOF is significantly overexpressed in the liver injury area. Knockdown of Mof attenuated CCl4 -induced ALI, and promoted liver cell proliferation, hepatic stellate cell activation and aggregation to the injured area, and liver fibrosis. Simultaneously, overexpression of Mof aggravated liver dysfunction caused by ALI. By directly binding to the promoter, MOF suppressed the transcriptional activation of Igf1. Knockdown of Mof promotes the expression of Igf1 and activates the Insulin-like growth factor 1 signaling pathway in the liver. Through this pathway, Knockdown of Mof reduces CCl4 -induced ALI and promotes liver regeneration. Our results provide the first demonstration for MOF contributing to ALI. Further understanding of the role of MOF in ALI may lead to new therapeutic strategies for ALI.
Collapse
Affiliation(s)
- Meng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
- Department of Cell and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Wenbo Zhao
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengpeng Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Zhen Wu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
26
|
Complex-dependent histone acetyltransferase activity of KAT8 determines its role in transcription and cellular homeostasis. Mol Cell 2021; 81:1749-1765.e8. [PMID: 33657400 DOI: 10.1016/j.molcel.2021.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.
Collapse
|
27
|
Li Y, Huang H, Zhu M, Bai H, Huang X. Roles of the MYST Family in the Pathogenesis of Alzheimer's Disease via Histone or Non-histone Acetylation. Aging Dis 2021; 12:132-142. [PMID: 33532133 PMCID: PMC7801277 DOI: 10.14336/ad.2020.0329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/29/2020] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a major cause of death among elderly individuals. The etiology of AD involves a combination of genetic, environmental, and lifestyle factors. A number of epigenetic alterations in AD have recently been reported; for example, studies have found an increase in histone acetylation in patients with AD and the protective function of histone deacetylase inhibitors. The histone acetylases in the MYST family are involved in a number of key nuclear processes, such as gene-specific transcriptional regulation, DNA replication, and DNA damage response. Therefore, it is not surprising that they contribute to epigenetic regulation as an intermediary between genetic and environmental factors. MYST proteins also exert acetylation activity on non-histone proteins that are closely associated with the pathogenesis of AD. In this review, we summarized the current understanding of the roles of MYST acetyltransferases in physiological functions and pathological processes related to AD. Additionally, using published RNA-seq, ChIP-seq, and ChIP-chip data, we identified enriched pathways to further evaluate the correlation between MYST and AD. The recent research described in this review supports the importance of epigenetic modifications and the MYST family in AD, providing a basis for future functional studies.
Collapse
Affiliation(s)
- Yuhong Li
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,2Yunnan Institute of Tropical Crops, Jinghong, China
| | - Hui Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Man Zhu
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Hua Bai
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,3College of Public Health, Kunming Medical University, Kunming, China
| | - Xiaowei Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
28
|
Ohnstad AE, Delgado JM, North BJ, Nasa I, Kettenbach AN, Schultz SW, Shoemaker CJ. Receptor-mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J 2020; 39:e104948. [PMID: 33226137 PMCID: PMC7737610 DOI: 10.15252/embj.2020104948] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagosome formation requires multiple autophagy-related (ATG) factors. However, we find that a subset of autophagy substrates remains robustly targeted to the lysosome in the absence of several core ATGs, including the LC3 lipidation machinery. To address this unexpected result, we performed genome-wide CRISPR screens identifying genes required for NBR1 flux in ATG7KO cells. We find that ATG7-independent autophagy still requires canonical ATG factors including FIP200. However, in the absence of LC3 lipidation, additional factors are required including TAX1BP1 and TBK1. TAX1BP1's ability to cluster FIP200 around NBR1 cargo and induce local autophagosome formation enforces cargo specificity and replaces the requirement for lipidated LC3. In support of this model, we define a ubiquitin-independent mode of TAX1BP1 recruitment to NBR1 puncta, highlighting that TAX1BP1 recruitment and clustering, rather than ubiquitin binding per se, is critical for function. Collectively, our data provide a mechanistic basis for reports of selective autophagy in cells lacking the lipidation machinery, wherein receptor-mediated clustering of upstream autophagy factors drives continued autophagosome formation.
Collapse
Affiliation(s)
- Amelia E Ohnstad
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| | - Jose M Delgado
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| | - Brian J North
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| | - Isha Nasa
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
- Norris Cotton Cancer CenterLebanonNHUSA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
- Norris Cotton Cancer CenterLebanonNHUSA
| | - Sebastian W Schultz
- Centre for Cancer Cell ReprogrammingFaculty of MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University HospitalOsloNorway
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverNHUSA
| |
Collapse
|
29
|
Li D, Yang Y, Chen B, Guo X, Gao S, Wang M, Duan M, Li X. MOF Regulates TNK2 Transcription Expression to Promote Cell Proliferation in Thyroid Cancer. Front Pharmacol 2020; 11:607605. [PMID: 33519470 PMCID: PMC7845732 DOI: 10.3389/fphar.2020.607605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
MOF is a well-known histone acetyltransferase to catalyze acetylation of histone H4 lysine 16 (K16), and it is relevant to diverse biological processes, such as gene transcription, cell cycle, early embryonic development and tumorigenesis. Here, we identify MOF as an oncogene in most thyroid cancer. It is found that expression level of MOF was significantly upregulated in most thyroid cancer tissue samples and cell lines. MOF-deficient in both BHP-10-3 and TT2609 cell lines inhibited cell proliferation by blocking the cell cycle in G1 phase and enhanced cell apoptosis. Mechanistically, MOF bound the TNK2 promoter to activate TNK2 transcription. Furthermore, the expression level of TNK2 was decreased with the histone acetyltransferase inhibitor. Besides, MOF promoted proliferation of thyroid cancer cells through increased phosphorylation of AKT, thus activating the PI3K/AKT pathway. Ultimately, our findings indicated that MOF played an oncogene role in development and progression of thyroid cancer and may be a potential novel target for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Danyang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Bo Chen
- Department of Thyroid Surgery, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Xinghong Guo
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Department of Endocrinology, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Shuang Gao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Meng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Mingxiao Duan
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
30
|
Epigenetic activation of the small GTPase TCL contributes to colorectal cancer cell migration and invasion. Oncogenesis 2020; 9:86. [PMID: 32999272 PMCID: PMC7528090 DOI: 10.1038/s41389-020-00269-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023] Open
Abstract
TC10-like (TCL) is a small GTPase that has been implicated in carcinogenesis. Elevated TCL expression has been observed in many different types of cancers although the underlying epigenetic mechanism is poorly understood. Here we report that TCL up-regulation was associated with high malignancy in both human colorectal cancer biopsy specimens and in cultured colorectal cancer cells. Hypoxia, a pro-metastatic stimulus, up-regulated TCL expression in HT-29 cells. Further studies revealed that myocardin-related transcription factor A (MRTF-A) promoted migration and invasion of HT-29 cells in a TCL-dependent manner. MRTF-A directly bound to the proximal TCL promoter in response to hypoxia to activate TCL transcription. Chromatin immunoprecipitation (ChIP) assay showed that hypoxia stimulation specifically enhanced acetylation of histone H4K16 surrounding the TCL promoter, which was abolished by MRTF-A depletion or inhibition. Mechanistically, MRTF-A interacted with and recruited the H4K16 acetyltransferase hMOF to the TCL promoter to cooperatively regulate TCL transcription. hMOF depletion or inhibition attenuated hypoxia-induced TCL expression and migration/invasion of HT-29 cells. In conclusion, our data identify a novel MRTF-A-hMOF-TCL axis that contributes to colorectal cancer metastasis.
Collapse
|
31
|
Singh M, Bacolla A, Chaudhary S, Hunt CR, Pandita S, Chauhan R, Gupta A, Tainer JA, Pandita TK. Histone Acetyltransferase MOF Orchestrates Outcomes at the Crossroad of Oncogenesis, DNA Damage Response, Proliferation, and Stem Cell Development. Mol Cell Biol 2020; 40:e00232-20. [PMID: 32661120 PMCID: PMC7459263 DOI: 10.1128/mcb.00232-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The DNA and protein complex known as chromatin is subject to posttranslational modifications (PTMs) that regulate cellular functions such that PTM dysregulation can lead to disease, including cancer. One critical PTM is acetylation/deacetylation, which is being investigated as a means to develop targeted cancer therapies. The histone acetyltransferase (HAT) family of proteins performs histone acetylation. In humans, MOF (hMOF), a member of the MYST family of HATs, acetylates histone H4 at lysine 16 (H4K16ac). MOF-mediated acetylation plays a critical role in the DNA damage response (DDR) and embryonic stem cell development. Functionally, MOF is found in two distinct complexes: NSL (nonspecific lethal) in humans and MSL (male-specific lethal) in flies. The NSL complex is also able to acetylate additional histone H4 sites. Dysregulation of MOF activity occurs in multiple cancers, including ovarian cancer, medulloblastoma, breast cancer, colorectal cancer, and lung cancer. Bioinformatics analysis of KAT8, the gene encoding hMOF, indicated that it is highly overexpressed in kidney tumors as part of a concerted gene coexpression program that can support high levels of chromosome segregation and cell proliferation. The linkage between MOF and tumor proliferation suggests that there are additional functions of MOF that remain to be discovered.
Collapse
Affiliation(s)
- Mayank Singh
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences Delhi, New Delhi, India
| | - Albino Bacolla
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Shilpi Chaudhary
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences Delhi, New Delhi, India
| | - Clayton R Hunt
- The Houston Methodist Research Institute, Houston, Texas, USA
| | - Shruti Pandita
- Department of Internal Medicine, Division of Hematology, Oncology and Cellular Therapy, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ravi Chauhan
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences Delhi, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences Delhi, New Delhi, India
| | - John A Tainer
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- The Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
32
|
Guo X, Li D, Song J, Yang Q, Wang M, Yang Y, Wang L, Hou X, Chen L, Li X. Mof regulates glucose level via altering different α-cell subset mass and intra-islet glucagon-like peptide-1, glucagon secretion. Metabolism 2020; 109:154290. [PMID: 32522488 DOI: 10.1016/j.metabol.2020.154290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Males absent on the first (Mof) is implicated in gene control of diverse biological processes, such as cell growth, differentiation, apoptosis and autophagy. However, the relationship between glucose regulation and Mof-mediated transcription events remains unexplored. We aimed to unravel the role of Mof in glucose regulation by using global and pancreatic α-cell-specific Mof-deficient mice in vivo and α-TC1-6 cell line in vitro. METHODS We used tamoxifen-induced temporal Mof-deficient mice first to show Mof regulate glucose homeostasis, islet cell proportions and hormone secretion. Then we used α-cell-specific Mof-deficient mice to clarify how α-cell subsets and β-cell mass were regulated and corresponding hormone level alterations. Ultimately, we used small interfering RNA (siRNA) to knockdown Mof in α-TC1-6 and unravel the mechanism regulating α-cell mass and glucagon secretion. RESULTS Mof was mainly expressed in α-cells. Global Mof deficiency led to lower glucose levels, attributed by decreased α/β-cell ratio and glucagon secretion. α-cell-specific Mof-deficient mice exhibited similar alterations, with more reduced prohormone convertase 2 (PC2)-positive α-cell mass, responsible for less glucagon, and enhanced prohormone convertase 1 (PC1/3)-positive α-cell mass, leading to more glucagon-like peptide-1 (GLP-1) secretion, thus increased β-cell mass and insulin secretion. In vitro, increased DNA damage, dysregulated autophagy, enhanced apoptosis and altered cell fate factors expressions upon Mof knockdown were observed. Genes and pathways linked to impaired glucagon secretion were uncovered through transcriptome sequencing. CONCLUSION Mof is a potential interventional target for glucose regulation, from the aspects of both α-cell subset mass and glucagon, intra-islet GLP-1 secretion. Upon Mof deficiency, Up-regulated PC1/3 but down-regulated PC2-positive α-cell mass, leads to more GLP-1 and insulin but less glucagon secretion, and contributed to lower glucose level.
Collapse
Affiliation(s)
- Xinghong Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China; Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China; Department of Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Qibing Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Meng Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Lingshu Wang
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, Shandong, China.
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
33
|
Poté N, Cros J, Laouirem S, Raffenne J, Negrão M, Albuquerque M, Bedossa P, Godinho Ferreira M, Ait Si Ali S, Fior R, Paradis V. The histone acetyltransferase hMOF promotes vascular invasion in hepatocellular carcinoma. Liver Int 2020; 40:956-967. [PMID: 31943753 DOI: 10.1111/liv.14381] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/27/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Vascular invasion is a major prognostic factor in hepatocellular carcinoma (HCC). We previously identified histone H4 acetylated at lysine 16 (H4K16ac), a histone modification involved in transcription activation, as a biomarker of microvascular invasion (mVI) in HCC. This study aimed to investigate the role of hMOF, the histone acetyltransferase responsible for H4K16 acetylation, in the process of vascular invasion in HCC. METHODS hMOF expression was assessed by RT-qPCR and immunohistochemistry in a retrospective series of HCC surgical samples, and correlated with the presence of mVI. The functional role of hMOF in HCC vascular invasion was investigated in vitro in HCC cell lines using siRNA, transcriptomic analysis and transwell invasion assay, and in vivo using a Zebrafish embryo xenograft model. RESULTS We found that hMOF was significantly upregulated at the protein level in HCC with mVI, compared with HCC without mVI (P < .01). Transcriptomic analysis showed that hMOF downregulation in HCC cell line lead to significant downregulation of key genes and pathways involved in vascular invasion. These results were confirmed by transwell invasion assay, where hMOF downregulation significantly reduced HCC cells invasion. Finally, hMOF downregulation significantly reduced tumour cell intravasation and metastasis in vivo. CONCLUSIONS Altogether, these results underpin a critical role for hMOF in vascular invasion in HCC, via transcription activation of key genes involved in this process. These data confirm the major role of epigenetic alterations in HCC progression, and pave the way for future therapies targeting hMOF in HCC.
Collapse
Affiliation(s)
- Nicolas Poté
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1149, Centre de recherche sur l'inflammation, Paris, France
| | - Jérôme Cros
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1149, Centre de recherche sur l'inflammation, Paris, France
| | - Samira Laouirem
- INSERM UMR 1149, Centre de recherche sur l'inflammation, Paris, France
| | - Jérôme Raffenne
- INSERM UMR 1149, Centre de recherche sur l'inflammation, Paris, France
| | - Magda Negrão
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Miguel Albuquerque
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Pierre Bedossa
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1149, Centre de recherche sur l'inflammation, Paris, France
| | - Miguel Godinho Ferreira
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal.,INSERM U1081 UMR7284 CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Slimane Ait Si Ali
- Centre Epigénétique et Destin Cellulaire, UMR7216, CNRS, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Valérie Paradis
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France.,Paris Diderot University, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1149, Centre de recherche sur l'inflammation, Paris, France
| |
Collapse
|
34
|
Urdinguio RG, Lopez V, Bayón GF, Diaz de la Guardia R, Sierra MI, García-Toraño E, Perez RF, García MG, Carella A, Pruneda PC, Prieto C, Dmitrijeva M, Santamarina P, Belmonte T, Mangas C, Diaconu E, Ferrero C, Tejedor JR, Fernandez-Morera JL, Bravo C, Bueno C, Sanjuan-Pla A, Rodriguez RM, Suarez-Alvarez B, López-Larrea C, Bernal T, Colado E, Balbín M, García-Suarez O, Chiara MD, Sáenz-de-Santa-María I, Rodríguez F, Pando-Sandoval A, Rodrigo L, Santos L, Salas A, Vallejo-Díaz J, C Carrera A, Rico D, Hernández-López I, Vayá A, Ricart JM, Seto E, Sima-Teruel N, Vaquero A, Valledor L, Cañal MJ, Pisano D, Graña-Castro O, Thomas T, Voss AK, Menéndez P, Villar-Garea A, Deutzmann R, Fernandez AF, Fraga MF. Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment. Nucleic Acids Res 2019; 47:5016-5037. [PMID: 30923829 PMCID: PMC6547425 DOI: 10.1093/nar/gkz195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain.,Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Virginia Lopez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain
| | - Gustavo F Bayón
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Rafael Diaz de la Guardia
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBER-ONC), Barcelona, Spain
| | - Marta I Sierra
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Estela García-Toraño
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Raúl F Perez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain.,Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - María G García
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain.,Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Antonella Carella
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain.,Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Patricia C Pruneda
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Cristina Prieto
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Marija Dmitrijeva
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Pablo Santamarina
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain.,Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Thalía Belmonte
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain.,Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Cristina Mangas
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Elena Diaconu
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Cecilia Ferrero
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Juan Luis Fernandez-Morera
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Cristina Bravo
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBER-ONC), Barcelona, Spain
| | - Alejandra Sanjuan-Pla
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, 46026, Spain
| | - Ramon M Rodriguez
- Translational Immunology Laboratory, Instituto de Investigación Sanitarias del Principado de Asturias (ISPA), Immunology Department, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology Laboratory, Instituto de Investigación Sanitarias del Principado de Asturias (ISPA), Immunology Department, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology Laboratory, Instituto de Investigación Sanitarias del Principado de Asturias (ISPA), Immunology Department, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Teresa Bernal
- Servicio de Hematología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Enrique Colado
- Servicio de Hematología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Milagros Balbín
- Service of Molecular Oncology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suarez
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - María Dolores Chiara
- Otorhinolaryngology Service, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, CIBERONC, Oviedo, Spain
| | - Inés Sáenz-de-Santa-María
- Otorhinolaryngology Service, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, CIBERONC, Oviedo, Spain
| | - Francisco Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Ana Pando-Sandoval
- Hospital Universitario Central de Asturias (HUCA), Instituto Nacional de Silicosis (INS), Área del Pulmón, Facultad de Medicina, Universidad de Oviedo, Avenida Roma s/n, Oviedo, Asturias 33011, Spain
| | - Luis Rodrigo
- Hospital Universitario Central de Asturias (HUCA), Gastroenterology Service, Facultad de Medicina, Universidad de Oviedo, Avenida de Roma s/n, Oviedo, Asturias 33011, Spain
| | - Laura Santos
- Fundación para la Investigación Biosanitaria de Asturias (FINBA). Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Avenida de Roma s/n, 33011 Oviedo. Asturias. España
| | - Ana Salas
- Cytometry Service, Servicios Científico-Técnicos (SCTs). Universidad de Oviedo, Oviedo, Spain
| | - Jesús Vallejo-Díaz
- Department of Immunology and Oncology, National Center for Biotechnology, CNB-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Ana C Carrera
- Department of Immunology and Oncology, National Center for Biotechnology, CNB-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, UK
| | | | - Amparo Vayá
- Hemorheology and Haemostasis Unit, Service of Clinical Pathology, La Fe University Hospital, Valencia, Spain
| | | | - Edward Seto
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037, USA
| | - Núria Sima-Teruel
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l'Hospitalet, 199-203, 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via de l'Hospitalet, 199-203, 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luis Valledor
- Plant Physiology Lab, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Maria Jesus Cañal
- Plant Physiology Lab, Department of Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - David Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBER-ONC), Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Villar-Garea
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, 93053 Regensburg, Germany
| | - Agustín F Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Spain
| |
Collapse
|
35
|
Dong Z, Zou J, Li J, Pang Y, Liu Y, Deng C, Chen F, Cui H. MYST1/KAT8 contributes to tumor progression by activating EGFR signaling in glioblastoma cells. Cancer Med 2019; 8:7793-7808. [PMID: 31691527 PMCID: PMC6912028 DOI: 10.1002/cam4.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
With short survival time, glioblastoma (GBM) is the most malignant tumor in the central nervous system. Recently, epigenetic enzymes play essential roles in the regulation of tumorigenesis and cancer development of GBM. However, little is known about MYST1/KAT8/MOF, a histone acetylation enzyme, in GBM. The present study shows that MYST1 promotes GBM progression through activating epidermal growth factor receptor (EGFR) signaling. MYST1 expression was increased in GBM and was negatively correlated with prognosis in patients with glioma and GBM. Knockdown of MYST1 reduced cell proliferation and BrdU incorporation in LN229, U87, and A172 GBM cells. Besides, MYST1 downregulation also induced cell cycle arrest at G2M phase, as well as the reduced expression of CDK1, Cyclin A, Cyclin B1, and increased expression of p21CIP1/Waf1. Meanwhile, Self‐renewal capability in vitro and tumorigenecity in vivo were also impaired after MYST1 knockdown. Importantly, MYST1 expression was lowly expressed in mesenchymal subtype of GBM and was positively correlated with EGFR expression in a cohort from The Cancer Genome Atlas. Western blot subsequently confirmed that phosphorylation and activation of p‐Try1068 of EGFR, p‐Ser473 of AKT and p‐Thr202/Tyr204 of Erk1/2 were also decreased by MYST1 knockdown. Consistent with the results above, overexpression of MYST1 promoted GBM growth and activated EGFR signaling in vitro and in vivo. In addition, erlotinib, a US Food and Drug Administration approved cancer drug which targets EGFR, was able to rescue MYST1‐promoted cell proliferation and EGFR signaling pathway. Furthermore, the transcription of EGF, an EFGR ligand, was shown to be positively regulated by MYST1 possibly via H4K16 acetylation. Our findings elucidate MYST1 as a tumor promoter in GBM and an EGFR activator, and may be a potential drug target for GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jiahua Zou
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Jifu Li
- College of Biotechnology, Southwest University, Chongqing, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
36
|
The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat Cell Biol 2019; 21:1248-1260. [PMID: 31576060 DOI: 10.1038/s41556-019-0397-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
Abstract
While nuclear lamina abnormalities are hallmarks of human diseases, their interplay with epigenetic regulators and precise epigenetic landscape remain poorly understood. Here, we show that loss of the lysine acetyltransferase MOF or its associated NSL-complex members KANSL2 or KANSL3 leads to a stochastic accumulation of nuclear abnormalities with genomic instability patterns including chromothripsis. SILAC-based MOF and KANSL2 acetylomes identified lamin A/C as an acetylation target of MOF. HDAC inhibition or acetylation-mimicking lamin A derivatives rescue nuclear abnormalities observed in MOF-deficient cells. Mechanistically, loss of lamin A/C acetylation resulted in its increased solubility, defective phosphorylation dynamics and impaired nuclear mechanostability. We found that nuclear abnormalities include EZH2-dependent histone H3 Lys 27 trimethylation and loss of nascent transcription. We term this altered epigenetic landscape "heterochromatin enrichment in nuclear abnormalities" (HENA). Collectively, the NSL-complex-dependent lamin A/C acetylation provides a mechanism that maintains nuclear architecture and genome integrity.
Collapse
|
37
|
Yu L, Yang G, Zhang X, Wang P, Weng X, Yang Y, Li Z, Fang M, Xu Y, Sun A, Ge J. Megakaryocytic Leukemia 1 Bridges Epigenetic Activation of NADPH Oxidase in Macrophages to Cardiac Ischemia-Reperfusion Injury. Circulation 2019; 138:2820-2836. [PMID: 30018168 DOI: 10.1161/circulationaha.118.035377] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (IR) injury. The underlying epigenetic mechanism remains elusive. METHODS We evaluated the potential role of megakaryocytic leukemia 1 (MKL1), as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. RESULTS Following IR injury, MKL1-deficient (knockout) mice exhibited smaller myocardial infarction along with improved heart function compared with wild-type littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of IR injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS in vivo and in vitro. In response to IR, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MϕcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and chromatin immunoprecipitation assay revealed that MKL1 directly bound to the promoters of NOX genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF (male absent on the first) to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hypoxia/reoxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG149 significantly downregulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to IR injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function after IR in mice. CONCLUSIONS Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to IR injury, and as such we have provided novel therapeutic targets in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Guang Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Peng Wang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Xinyu Weng
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Yuyu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (Y.Y.)
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| |
Collapse
|
38
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
39
|
Sheikh BN, Guhathakurta S, Akhtar A. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Rep 2019; 20:e47630. [PMID: 31267707 PMCID: PMC6607013 DOI: 10.15252/embr.201847630] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The functionality of chromatin is tightly regulated by post-translational modifications that modulate transcriptional output from target loci. Among the post-translational modifications of chromatin, reversible ε-lysine acetylation of histone proteins is prominent at transcriptionally active genes. Lysine acetylation is catalyzed by lysine acetyltransferases (KATs), which utilize the central cellular metabolite acetyl-CoA as their substrate. Among the KATs that mediate lysine acetylation, males absent on the first (MOF/KAT8) is particularly notable for its ability to acetylate histone 4 lysine 16 (H4K16ac), a modification that decompacts chromatin structure. MOF and its non-specific lethal (NSL) complex members have been shown to localize to gene promoters and enhancers in the nucleus, as well as to microtubules and mitochondria to regulate key cellular processes. Highlighting their importance, mutations or deregulation of NSL complex members has been reported in both human neurodevelopmental disorders and cancer. Based on insight gained from studies in human, mouse, and Drosophila model systems, this review discusses the role of NSL-mediated lysine acetylation in a myriad of cellular functions in both health and disease. Through these studies, the importance of the NSL complex in regulating core transcriptional and signaling networks required for normal development and cellular homeostasis is beginning to emerge.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| | - Sukanya Guhathakurta
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
- Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Asifa Akhtar
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| |
Collapse
|
40
|
Wu Y, Zeng K, Wang C, Wang S, Sun H, Liu W, Wang X, Niu J, Cong SY, Zhou X, Zhao Y. Histone acetyltransferase MOF is involved in suppression of endometrial cancer and maintenance of ERα stability. Biochem Biophys Res Commun 2018; 509:541-548. [PMID: 30598260 DOI: 10.1016/j.bbrc.2018.10.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 12/15/2022]
Abstract
Histone acetyltransferase MOF is involved in active transcription regulation through histone H4K16 acetylation. MOF is downexpressed in a number of human tumors, but biological function of MOF in endometrial cancer has not been fully defined. The estrogen receptor α (ERα) is a transcription factor that regulates estrogen-stimulated cell proliferation in hormone-responsive tumors. However, ERα expression is decreased in grade III ECa samples and high expression of ERα is associated with long disease-free survival in ECa. The molecular mechanism for these observations is still unclear. Here we demonstrate knockdown of MOF promotes ECa cell growth and proliferation in vitro and in vivo. Clinical evidence indicates that expression MOF is decreased and positively correlated with that of ERα in ECa tissues. Furthermore, MOF physically interacts with ERα and modulates ERα stability in ECa cells. In addition, MOF modulates expression of a subset of endogenous genes regulated by ERα. Taken together, our results define MOF as a potential tumor suppressor in ECa participates in maintenance of ERα protein stability and regulation of ERα action.
Collapse
Affiliation(s)
- Yi Wu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; Department of Pathogenic Biology, Shenyang Medical College, Shenyang, Liaoning, 110034, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Hongmiao Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Wensu Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Xiuxia Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jumin Niu
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning, 110011, China
| | - Shu-Yan Cong
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
| | - Xin Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
41
|
Basilicata MF, Bruel AL, Semplicio G, Valsecchi CIK, Aktaş T, Duffourd Y, Rumpf T, Morton J, Bache I, Szymanski WG, Gilissen C, Vanakker O, Õunap K, Mittler G, van der Burgt I, El Chehadeh S, Cho MT, Pfundt R, Tan TY, Kirchhoff M, Menten B, Vergult S, Lindstrom K, Reis A, Johnson DS, Fryer A, McKay V, Fisher RB, Thauvin-Robinet C, Francis D, Roscioli T, Pajusalu S, Radtke K, Ganesh J, Brunner HG, Wilson M, Faivre L, Kalscheuer VM, Thevenon J, Akhtar A. De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation. Nat Genet 2018; 50:1442-1451. [PMID: 30224647 PMCID: PMC7398719 DOI: 10.1038/s41588-018-0220-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
The etiological spectrum of ultra-rare developmental disorders remains to be fully defined. Chromatin regulatory mechanisms maintain cellular identity and function, where misregulation may lead to developmental defects. Here, we report pathogenic variations in MSL3, which encodes a member of the chromatin-associated male-specific lethal (MSL) complex responsible for bulk histone H4 lysine 16 acetylation (H4K16ac) in flies and mammals. These variants cause an X-linked syndrome affecting both sexes. Clinical features of the syndrome include global developmental delay, progressive gait disturbance, and recognizable facial dysmorphism. MSL3 mutations affect MSL complex assembly and activity, accompanied by a pronounced loss of H4K16ac levels in vivo. Patient-derived cells display global transcriptome alterations of pathways involved in morphogenesis and cell migration. Finally, we use histone deacetylase inhibitors to rebalance acetylation levels, alleviating some of the molecular and cellular phenotypes of patient cells. Taken together, we characterize a syndrome that allowed us to decipher the developmental importance of MSL3 in humans.
Collapse
Affiliation(s)
- M Felicia Basilicata
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Ange-Line Bruel
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Giuseppe Semplicio
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - Tuğçe Aktaş
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Tobias Rumpf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's Hospital NHS Foundation Trust, Birmingham, UK
| | - Iben Bache
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Witold G Szymanski
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Ineke van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Salima El Chehadeh
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
- Service de Génétique Médicale, Hôpital de Hautepierre, Strasbourg, France
| | | | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne Department of Paediatrics, Parkville, VIC, Australia
| | - Maria Kirchhoff
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Diana S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Alan Fryer
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Victoria McKay
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Richard B Fisher
- Northern Genetics Service, Teesside Genetics Unit, The James Cook University Hospital, Middlesbrough, UK
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - David Francis
- Cytogenetic Laboratory, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital and Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kelly Radtke
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Jaya Ganesh
- Division of Genetics, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Disciplines of Genetic Medicine and Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julien Thevenon
- Inserm UMR 1231 GAD, Genetics of Developmental disorders and Centre de Référence Maladies Rares Anomalies du Développement et syndromes malformatifs FHU TRANSLAD, Université de Bourgogne-Franche Comté, Dijon, France.
- CNRS UMR 5309, INSERM, U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes CHU Grenoble, Grenoble, France.
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
42
|
Facultative dosage compensation of developmental genes on autosomes in Drosophila and mouse embryonic stem cells. Nat Commun 2018; 9:3626. [PMID: 30194291 PMCID: PMC6128902 DOI: 10.1038/s41467-018-05642-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
Haploinsufficiency and aneuploidy are two phenomena, where gene dosage alterations cause severe defects ultimately resulting in developmental failures and disease. One remarkable exception is the X chromosome, where copy number differences between sexes are buffered by dosage compensation systems. In Drosophila, the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. The evolutionary origin and conservation of this process orchestrated by MSL2, the only male-specific protein within the fly MSLc, have remained unclear. Here, we report that MSL2, in addition to regulating the X chromosome, targets autosomal genes involved in patterning and morphogenesis. Precise regulation of these genes by MSL2 is required for proper development. This set of dosage-sensitive genes maintains such regulation during evolution, as MSL2 binds and similarly regulates mouse orthologues via Histone H4 lysine 16 acetylation. We propose that this gene-by-gene dosage compensation mechanism was co-opted during evolution for chromosome-wide regulation of the Drosophila male X. In Drosophila the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. Here the authors provide evidence that MSL2 also targets autosomal genes required for proper development and that MSL2 binds and similarly regulates mouse orthologues.
Collapse
|
43
|
Voss AK, Thomas T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. Bioessays 2018; 40:e1800078. [PMID: 30144132 DOI: 10.1002/bies.201800078] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Indexed: 01/08/2023]
Abstract
Histone acetylation has been recognized as an important post-translational modification of core nucleosomal histones that changes access to the chromatin to allow gene transcription, DNA replication, and repair. Histone acetyltransferases were initially identified as co-activators that link DNA-binding transcription factors to the general transcriptional machinery. Over the years, more chromatin-binding modes have been discovered suggesting direct interaction of histone acetyltransferases and their protein complex partners with histone proteins. While much progress has been made in characterizing histone acetyltransferase complexes biochemically, cell-free activity assay results are often at odds with in-cell histone acetyltransferase activities. In-cell studies suggest specific histone lysine targets, but broad recruitment modes, apparently not relying on specific DNA sequences, but on chromatin of a specific functional state. Here we review the evidence for general versus specific roles of individual nuclear lysine acetyltransferases in light of in vivo and in vitro data in the mammalian system.
Collapse
Affiliation(s)
- Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, 3 1G Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
| | - Tim Thomas
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
| |
Collapse
|
44
|
Liu L, Wu X, Xu H, Yu L, Zhang X, Li L, Jin J, Zhang T, Xu Y. Myocardin-related transcription factor A (MRTF-A) contributes to acute kidney injury by regulating macrophage ROS production. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3109-3121. [PMID: 29908908 DOI: 10.1016/j.bbadis.2018.05.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022]
Abstract
A host of pathogenic factors induce acute kidney injury (AKI) leading to insufficiencies of renal function. In the present study we evaluated the role of myocardin-related transcription factor A (MRTF-A) in the pathogenesis of AKI. We report that systemic deletion of MRTF-A or inhibition of MRTF-A activity with CCG-1423 significantly attenuated AKI in mice induced by either ischemia-reperfusion or LPS injection. Of note, MRTF-A deficiency or suppression resulted in diminished renal ROS production in AKI models with down-regulation of NAPDH oxdiase 1 (NOX1) and NOX4 expression. In cultured macrophages, MRTF-A promoted NOX1 transcription in response to either hypoxia-reoxygenation or LPS treatment. Interestingly, macrophage-specific MRTF-A deletion ameliorated AKI in mice. Mechanistic analyses revealed that MRTF-A played a role in regulating histone H4K16 acetylation surrounding the NOX gene promoters by interacting with the acetyltransferase MYST1. MYST1 depletion repressed NOX transcription in macrophages. Finally, administration of a MYST1 inhibitor MG149 alleviated AKI in mice. Therefore, we data illustrate a novel epigenetic pathway that controls ROS production in macrophages contributing to AKI. Targeting the MRTF-A-MYST1-NOX axis may yield novel therapeutic strategies to combat AKI.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Department of Anatomy and Histology, Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Renal Medicine, Jiangsu Remin Hospital affiliated to Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Bulut-Karslioglu A, Macrae TA, Oses-Prieto JA, Covarrubias S, Percharde M, Ku G, Diaz A, McManus MT, Burlingame AL, Ramalho-Santos M. The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output. Cell Stem Cell 2018; 22:369-383.e8. [PMID: 29499153 PMCID: PMC5836508 DOI: 10.1016/j.stem.2018.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
Abstract
A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.
Collapse
Affiliation(s)
- Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trisha A Macrae
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, Mass Spectrometry Facility, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sergio Covarrubias
- UCSF Diabetes Center, WM Keck Center for Noncoding RNAs, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gregory Ku
- UCSF Diabetes Center, WM Keck Center for Noncoding RNAs, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aaron Diaz
- Department of Neurological Surgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- UCSF Diabetes Center, WM Keck Center for Noncoding RNAs, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, Mass Spectrometry Facility, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
46
|
MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks. Mol Cell Biol 2018; 38:MCB.00484-17. [PMID: 29298824 DOI: 10.1128/mcb.00484-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/05/2017] [Indexed: 01/13/2023] Open
Abstract
The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response.
Collapse
|
47
|
Yang Y, Han X, He J, Guo X, Shaikh AS, Sun L, Gao S, Liang Y, Wang M, Li X. The histone acetyltransferase MOF is required for the cellular stress response. Sci Bull (Beijing) 2017; 62:1559-1561. [PMID: 36659471 DOI: 10.1016/j.scib.2017.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Yang Yang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China
| | - Xiaofei Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China
| | - Jing He
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China
| | - Xinghong Guo
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China
| | - Abdul Sami Shaikh
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuang Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China
| | - Yiran Liang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China
| | - Meng Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China
| | - Xiangzhi Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Cell and Neurobiology, Shandong University School of Basic Medicine, Jinan 250012, China.
| |
Collapse
|
48
|
Carr SM, Munro S, Sagum CA, Fedorov O, Bedford MT, La Thangue NB. Tudor-domain protein PHF20L1 reads lysine methylated retinoblastoma tumour suppressor protein. Cell Death Differ 2017; 24:2139-2149. [PMID: 28841214 PMCID: PMC5686351 DOI: 10.1038/cdd.2017.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022] Open
Abstract
The retinoblastoma tumour suppressor protein (pRb) classically functions to regulate early cell cycle progression where it acts to enforce a number of checkpoints in response to cellular stress and DNA damage. Methylation at lysine (K) 810, which occurs within a critical CDK phosphorylation site and antagonises a CDK-dependent phosphorylation event at the neighbouring S807 residue, acts to hold pRb in the hypo-phosphorylated growth-suppressing state. This is mediated in part by the recruitment of the reader protein 53BP1 to di-methylated K810, which allows pRb activity to be effectively integrated with the DNA damage response. Here, we report the surprising observation that an additional methylation-dependent interaction occurs at K810, but rather than the di-methyl mark, it is selective for the mono-methyl K810 mark. Binding of the mono-methyl PHF20L1 reader to methylated pRb occurs on E2F target genes, where it acts to mediate an additional level of control by recruiting the MOF acetyltransferase complex to E2F target genes. Significantly, we find that the interplay between PHF20L1 and mono-methyl pRb is important for maintaining the integrity of a pRb-dependent G1-S-phase checkpoint. Our results highlight the distinct roles that methyl-lysine readers have in regulating the biological activity of pRb.
Collapse
Affiliation(s)
- Simon M Carr
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Shonagh Munro
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Cari A Sagum
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX 77030, USA
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium Oxford, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Mark T Bedford
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX 77030, USA
| | - Nicholas B La Thangue
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
49
|
Mo H, Wu Q, Miao J, Luo C, Hong X, Wang Y, Tang L, Hou FF, Liu Y, Zhou L. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury. Antioxid Redox Signal 2017; 27:345-362. [PMID: 27960539 PMCID: PMC6435352 DOI: 10.1089/ars.2016.6758] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023]
Abstract
AIMS Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. RESULTS In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.
Collapse
Affiliation(s)
- Hongyan Mo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongping Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Moon JH, Lim S, Jo K, Lee S, Seo S, Kim S. PINTnet: construction of condition-specific pathway interaction network by computing shortest paths on weighted PPI. BMC SYSTEMS BIOLOGY 2017; 11:15. [PMID: 28361687 PMCID: PMC5374644 DOI: 10.1186/s12918-017-0387-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Identifying perturbed pathways in a given condition is crucial in understanding biological phenomena. In addition to identifying perturbed pathways individually, pathway analysis should consider interactions among pathways. Currently available pathway interaction prediction methods are based on the existence of overlapping genes between pathways, protein-protein interaction (PPI) or functional similarities. However, these approaches just consider the pathways as a set of genes, thus they do not take account of topological features. In addition, most of the existing approaches do not handle the explicit gene expression quantity information that is routinely measured by RNA-sequecing. Results To overcome these technical issues, we developed a new pathway interaction network construction method using PPI, closeness centrality and shortest paths. We tested our approach on three different high-throughput RNA-seq data sets: pregnant mice data to reveal the role of serotonin on beta cell mass, bone-metastatic breast cancer data and autoimmune thyroiditis data to study the role of IFN- α. Our approach successfully identified the pathways reported in the original papers. For the pathways that are not directly mentioned in the original papers, we were able to find evidences of pathway interactions by the literature search. Our method outperformed two existing approaches, overlapping gene-based approach (OGB) and protein-protein interaction-based approach (PB), in experiments with the three data sets. Conclusion Our results show that PINTnet successfully identified condition-specific perturbed pathways and the interactions between the pathways. We believe that our method will be very useful in characterizing biological mechanisms at the pathway level. PINTnet is available at http://biohealth.snu.ac.kr/software/PINTnet/.
Collapse
Affiliation(s)
- Ji Hwan Moon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sangsoo Lim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Kyuri Jo
- Department of Computer Science & Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- Department of Computer Science & Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seokjun Seo
- Department of Computer Science & Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,Department of Computer Science & Engineering, Seoul National University, Seoul, Republic of Korea. .,Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|