1
|
Khan G, Hussain MS, Ahmad S, Alam N, Ali MS, Alam P. Metabolomics as a tool for understanding and treating triple-negative breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04234-4. [PMID: 40314763 DOI: 10.1007/s00210-025-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous variant of breast cancer distinguished by a lack of targeted therapies, posing significant challenges in diagnosis and treatment. Metabolomics, the comprehensive study of small compounds in biological systems, has been identified as an instrument for revealing the metabolic underpinnings of TNBC. This review highlights recent advancements in metabolomic approaches, such as mass spectrometry and nuclear magnetic resonance, which have identified metabolic vulnerabilities, resistance mechanisms, and potential therapeutic targets. Key findings include alterations in fatty acid, amino acid, and glutathione metabolism, along with hypoxia-driven metabolic reprogramming that contributes to disease progression. The combination of metabolomics with multi-omics techniques, supported by advanced computational methods such as machine learning, offers a pathway to overcome challenges in data standardization and biological complexity. Emerging strategies, including the use of artificial intelligence and multidimensional omics approaches, are paving the way for personalized medicine by enabling the discovery of novel biomarkers and targeted therapies. Despite these advances, significant hurdles remain, including the need for robust data standardization, validation of findings in diverse patient cohorts, and seamless integration with clinical workflows. By addressing these challenges, metabolomics has the potential to revolutionize TNBC management, offering tools for early detection, precision therapy, and improved patient outcomes. This review underscores the importance of interdisciplinary collaboration to translate metabolomic insights into actionable clinical applications.
Collapse
Affiliation(s)
- Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand, 248007, India.
| | - Sarfaraz Ahmad
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Żak MM, Zangi L. Clinical development of therapeutic mRNA applications. Mol Ther 2025:S1525-0016(25)00208-4. [PMID: 40143545 DOI: 10.1016/j.ymthe.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
mRNA therapeutics are emerging as a transformative approach in modern medicine, providing innovative, highly adaptable solutions for a wide range of diseases, from viral infections to cancer. Since the approval of the first mRNA therapeutic-the coronavirus disease 2019 vaccines in 2021-we have identified more than 70 current clinical trials utilizing mRNA for various diseases. We propose classifying mRNA therapeutics into four main categories: vaccines, protein replacement therapies, antibodies, and mRNA-based cell and gene therapies. Each category can be further divided into subcategories. Vaccines include those targeting viral antigens, bacterial or parasitic antigens, general and individualized cancer antigens, and self-antigens. Protein replacement therapies include maintenance therapeutics designed to treat genetic disorders and interventional therapeutics, where delivering therapeutic proteins could improve patient outcomes, such as vascular endothelial growth factor A for ischemic heart disease or proinflammatory cytokines in cancer. Therapeutic antibodies are based on mRNA sequences encoding the heavy and light chains of clinically relevant antibodies, enabling patient cells to produce them directly, bypassing the costly and complex process of manufacturing protein-ready antibodies. Another category of mRNA-based therapeutics encompasses cell and gene therapies, including CRISPR with mRNA-mediated delivery of Cas9 and the in vivo generation of cells expressing CAR through mRNA. We discuss examples of mRNA therapeutics currently in clinical trials within each category, providing a comprehensive overview of the field's progress and highlighting key advancements as of the end of 2024.
Collapse
Affiliation(s)
- Magdalena M Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
Li A, Zheng X, Liu D, Huang R, Ge H, Cheng L, Zhang M, Cheng H. Physical Activity and Depression in Breast Cancer Patients: Mechanisms and Therapeutic Potential. Curr Oncol 2025; 32:77. [PMID: 39996878 PMCID: PMC11854877 DOI: 10.3390/curroncol32020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is a significant traumatic experience that often leads to chronic stress and mental health challenges. Research has consistently shown that physical activity-especially exercise-can alleviate depressive symptoms; however, the specific biological mechanisms underlying these antidepressant effects remain unclear. In this review, we comprehensively summarize the biological mechanisms of depression and the antidepressant mechanisms of physical activity and explore the biological processes through which exercise exerts its antidepressant effects in breast cancer patients. We focus on the impact of physical activity on inflammation, the endocrine system, glutamate, and other aspects, all of which play crucial roles in the pathophysiology of depression. Moreover, we discuss the heterogeneity of depression in breast cancer patients and the complex interactions between its underlying mechanisms. Additionally, we propose that a deeper understanding of these mechanisms in the breast cancer population can guide the design and implementation of exercise-based interventions that maximize the antidepressant benefits of physical activity. Finally, we summarize the current research and propose future research directions.
Collapse
Affiliation(s)
- Anlong Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xinyi Zheng
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Dajie Liu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Runze Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Han Ge
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Ling Cheng
- Department of Oncology, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China;
| | - Mingjun Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (A.L.); (D.L.); (R.H.); (H.G.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, China;
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| |
Collapse
|
4
|
Serrano García L, Jávega B, Llombart Cussac A, Gión M, Pérez-García JM, Cortés J, Fernández-Murga ML. Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review. Front Immunol 2024; 15:1513421. [PMID: 39735530 PMCID: PMC11671371 DOI: 10.3389/fimmu.2024.1513421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality. Standard treatment for TNBC primarily relies on cytotoxic agents, such as taxanes, anthracyclines, and platinum compounds for both early and advanced stages of the disease. Several targeted therapies, including bevacizumab and sunitinib, have failed to demonstrate significant clinical benefit in TNBC. The emergence of immune checkpoint inhibitors (ICI) has revolutionized cancer treatment. By stimulating the immune system, ICIs induce a durable anti-tumor response across various solid tumors. TNBC is a particularly promising target for treatment with ICIs due to the higher levels of tumor-infiltrating lymphocytes (TIL), increased PD-L1 expression, and higher mutational burden, which generates tumor-specific neoantigens that activate immune cells. ICIs administered as monotherapy in advanced TNBC yields only a modest response; however, response rates significantly improve when ICIs are combined with cytotoxic agents, particularly in tumors expressing PD-L1. Pembrolizumab is approved for use in both early and advanced TNBC in combination with standard chemotherapy. However, more research is needed to identify more potent biomarkers, and to better elucidate the synergism of ICIs with other targeted agents. In this review, we explore the challenges of immunotherapy in TNBC, examining the mechanisms of tumor progression mediated by immune cells within the tumor microenvironment, and the signaling pathways involved in both primary and acquired resistance. Finally, we provide a comprehensive overview of ongoing clinical trials underway to investigate novel immune-targeted therapies for TNBC.
Collapse
Affiliation(s)
- Lucía Serrano García
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Beatriz Jávega
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Antonio Llombart Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Grupo Oncología Traslacional, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-Centro de Estudios Universitarios (CEU), Alfara del Patriarca, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
| | - María Gión
- Medical Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - María Leonor Fernández-Murga
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
5
|
Girithar HN, Krishnamurthy S, Carroll L, Guller A, Bilgin AA, Gluch L, Guillemin GJ, Ahn SB, Heng B. Breast cancer metastasis progression is associated with elevated activity of kynurenine monooxygenase and kynureninase. Br J Cancer 2024; 131:1881-1892. [PMID: 39558063 PMCID: PMC11628561 DOI: 10.1038/s41416-024-02889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
INTRODUCTION Metastasis remains the major cause of death in breast cancer (BrCa) and lacks specific treatment strategies. The kynurenine pathway (KP) has been suggested as a key mechanism facilitating progression of BrCa. While KP activity has been explored in primary BrCa, its role in metastasis remains unclear. To better understand this, we examined changes in the KP of BrCa with no metastasis compared to BCa that produced local or distant metastases. Given that the cancer cell secretome plays a role in metastasis, we also investigated the relationship between changes in KP activity and serum proteins of patients with local or distant metastases. METHODS To investigate changes in the KP in BrCa, with and without metastasis, we quantified KP metabolites in blood sera collected from patients with stage 1 BrCa (n = 34), BrCa with local metastases (n = 46), BrCa with distant metastases (n = 20) and healthy controls (n = 39). The serum protein profile of the BrCa patients with local or distant metastasis was determined before correlation analyses were carried out to examine the relationship between changes in the KP and cancer serum proteins using SPSS. RESULTS We found that the KP was elevated in BrCa patients with local and distant metastasis compared to healthy controls and stage 1 BrCa patients. The activity of kynurenine monooxygenase (KMO) and kynureninase (KYNU) A was positively associated with disease stage and was higher compared to healthy controls. Proteome analysis in patients with local or distant metastasis revealed the dysregulation of 14 proteins, 9 of which were up-regulated and 5 down-regulated at the distant metastasis stage. Importantly, three of these proteins have not been previously linked to BrCa metastasis. In the correlation studies between the KP profile, cancer serum proteins and metastasis status, KYNU A had the greatest number of significant associations with cancer serum protein, followed by KMO. CONCLUSION Our findings reveal that the KP was regulated differently at various stages of BrCa and was more dysregulated in patients with local or distant metastasis. These KP activity changes showed a significant association with cancer serum proteins in BrCa patients with local or distant metastasis, highlighting the potential role of KP in BrCa metastasis.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Luke Carroll
- Australian Proteome Analysis Facility, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Anna Guller
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Computational Neurosurgery (CNS) Laboratory, Macquarie Medicine School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Sydney, Australia
| | - Ayse A Bilgin
- Faculty of Sciences and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Yohannes M, Desalegn Z, Bauer M, Stückrath K, Anberbir E, Bekuretsion Y, Assefa M, Wakuma T, Worku Y, Santos PSC, Taylor L, Adissie A, Wickenhauser C, Massa C, Vetter M, Kantelhardt EJ, Seliger B, Abebe T. Immune landscape of the tumour microenvironment in Ethiopian breast cancer patients. Breast Cancer Res 2024; 26:162. [PMID: 39587630 PMCID: PMC11587711 DOI: 10.1186/s13058-024-01916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The clinical management of breast cancer (BC) is mainly based on the assessment of receptor expression by tumour cells. However, there is still an unmet need for novel biomarkers important for prognosis and therapy. The tumour immune microenvironment (TIME) is thought to play a key role in prognosis and therapy selection, therefore this study aimed to describe the TIME in Ethiopian BC patients. METHODS RNA was isolated from formalin-fixed paraffin-embedded (FFPE) tissue from 82 women with BC. Expression of PAM50 and 54 immune genes was analysed using the Nanostring platform and differentially expressed genes (DEGs) were determined using ROSALIND®. The abundance of different cell populations was estimated using Nanostring's cell type profiling module, while tumour infiltrating lymphocytes (TILs) were analysed using haematoxylin and eosin (H&E) staining. In addition, the PIK3CA gene was genotyped for three hotspot mutations using qPCR. Kaplan-Meier survival analysis and log-rank test were performed to compare the prognostic relevance of immune subgroups. RESULTS Four discrete immune phenotypes (IP1-4) were identified through hierarchical clustering of immune gene expression data. These IPs were characterized by DEGs associated with both immune activation and inhibition as well as variations in the extent of immune infiltration. However, there were no significant differences regarding PIK3CA mutations between the IPs. A downregulation of immune suppressive and activating genes and the lowest number of infiltrating immune cells were found in IP2, which was associated with luminal tumours. In contrast, IP4 displayed an active TME chracterized by an upregulation of cytotoxic genes and the highest density of immune cell infiltrations, independent of the specific intrinsic subtype. IP1 and IP3 exhibited intermediate characteristics. The IPs had a prognostic relevance and patients with an active TME had improved overall survival compared to IPs with a significant downregulation of the majority of immune genes. CONCLUSION Immune gene expression profiling identified four distinct immune contextures of the TME with unique gene expression patterns and immune infiltration. The classification into distinct immune subgroups may provide important information regarding prognosis and the selection of patients undergoing conventional treatments or immunotherapies.
Collapse
Affiliation(s)
- Meron Yohannes
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Zelalem Desalegn
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Marcus Bauer
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Pathology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Endale Anberbir
- Department of Surgery, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mathewos Assefa
- Department of Oncology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Yasin Worku
- School of Medicine, Wollo University, Wollo, Ethiopia
| | - Pablo S C Santos
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Lesley Taylor
- City of Hope National Medical Center, Duarte, CA, USA
| | - Adamu Adissie
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- School of Public Health, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Vetter
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Eva Johanna Kantelhardt
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- University Clinic and Polyclinic for Gynecology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Medical School Theodor Fontane, Faculty of Health Research Institute for Translational Immunology, Brandenburg an der Havel, Germany
| | - Tamrat Abebe
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia.
- Global and Planetary Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
7
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Sarangi P. Role of indoleamine 2, 3-dioxygenase 1 in immunosuppression of breast cancer. CANCER PATHOGENESIS AND THERAPY 2024; 2:246-255. [PMID: 39371092 PMCID: PMC11447360 DOI: 10.1016/j.cpt.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Breast cancer (BC) contributes greatly to global cancer incidence and is the main cause of cancer-related deaths among women globally. It is a complex disease characterized by numerous subtypes with distinct clinical manifestations. Immune checkpoint inhibitors (ICIs) are not effective in all patients and have been associated with tumor resistance and immunosuppression. Because amino acid (AA)-catabolizing enzymes have been shown to regulate immunosuppressive effects, this review investigated the immunosuppressive roles of indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme, which is overexpressed in various metastatic tumors. It promotes immunomodulatory effects by depleting Trp in the regional microenvironment. This leads to a reduction in the number of immunogenic immune cells, such as effector T and natural killer (NK) cells, and an increase in tolerogenic immune cells, such as regulatory T (Treg) cells. The BC tumor microenvironment (TME) establishes a supportive niche where cancer cells can interact with immune cells and neighboring endothelial cells and is thus a feasible target for cancer therapy. In many immunological contexts, IDO1 regulates immune control by causing regional metabolic changes in the TME and tissue environment, which may further affect the maturation of systemic immunological tolerance. In the development of effective treatment targets and approaches, it is essential to understand the immunomodulatory effects exerted by AA-catabolizing enzymes, such as IDO1, on the components of the TME.
Collapse
Affiliation(s)
- Pratyasha Sarangi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
9
|
Khajuria A, Alajangi HK, Sharma A, Kaur H, Sharma P, Negi S, Kumari L, Trivedi M, Yadav AK, Kumar R, Raghuvanshi RS, Kaur IP, Tyagi RK, Jaiswal PK, Lim YB, Barnwal RP, Singh G. Theranostics: aptamer-assisted carbon nanotubes as MRI contrast and photothermal agent for breast cancer therapy. DISCOVER NANO 2024; 19:145. [PMID: 39256285 PMCID: PMC11387581 DOI: 10.1186/s11671-024-04095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
Breast cancer is one of the leading causes of death among women globally, making its diagnosis and treatment challenging. The use of nanotechnology for cancer diagnosis and treatment is an emerging area of research. To address this issue, multiwalled carbon nanotubes (MWCNTs) were ligand exchanged with butyric acid (BA) to gain hydrophilic character. The successful functionalization was confirmed by FTIR spectroscopy. Surface morphology changes were observed using SEM, while TEM confirmed the structural integrity of the MWCNTs after functionalization. Particle size, zeta potential, and UV spectroscopy were also performed to further characterize the nanoparticles. The breast cancer aptamer specific to Mucin-1 (MUC-1) was then conjugated with the functionalized MWCNTs. These MWCNTs successfully targeted breast cancer cells (MDA-MB-231) as examined by cellular uptake studies and exhibited a reduction in cancer-induced inflammation, as evidenced by gene transcription (qPCR) and protein expression (immunoblotting) levels. Immunoblot and confocal-based immunofluorescence assay (IFA) indicated the ability of CNTs to induce photothermal cell death of MDA-MB-231 cells. Upon imaging, cancer cells were effectively visualized due to the MWCNTs' ability to act as magnetic resonance imaging (MRI) contrast agents. Additionally, MWCNTs demonstrated photothermal capabilities to eliminate bound cancer cells. Collectively, our findings pave the way for developing aptamer-labeled MWCNTs as viable "theranostic alternatives" for breast cancer treatment.
Collapse
Affiliation(s)
- Akhil Khajuria
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Hema K Alajangi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Harinder Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Prakriti Sharma
- Division of Cell Biology and Imunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Sushmita Negi
- Division of Cell Biology and Imunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Manisha Trivedi
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Government of India, Ghaziabad, 201002, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Robin Kumar
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Government of India, Ghaziabad, 201002, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Government of India, Ghaziabad, 201002, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Imunology, Biomedical Parasitology and Translational-Immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, 160036, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX, 77843, USA
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
10
|
Schöniger S, Degner S, Schandelmaier C, Aupperle-Lellbach H, Zhang Q, Schildhaus HU. Immunohistochemical Detection of Indoleamine 2,3-Dioxygenase in Spontaneous Mammary Carcinomas of 96 Pet Rabbits. Animals (Basel) 2024; 14:2060. [PMID: 39061522 PMCID: PMC11274320 DOI: 10.3390/ani14142060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
For mammary carcinomas in pet rabbits, prognostic biomarkers are poorly defined, and treatment is limited to surgical excision. Additional treatment options are needed for rabbit patients for which surgery is not a suitable option. In human breast cancer, the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) represents a prognostic biomarker and possible therapeutic target. This retrospective immunohistochemical study examined IDO1 in 96 pet rabbit mammary carcinomas with known mitotic count, hormone receptor status, and percentage of stromal tumor infiltrating lymphocytes (TILs). Tumors were obtained from 96 pet rabbits with an average of 5.5 years. All rabbits with reported sex (n = 88) were female or female-spayed. Of the carcinomas, 94% expressed IDO1, and 86% had sparse TILs consistent with cold tumors. Statistically significant correlations existed between a higher percentage of IDO1-positive tumor cells, lower mitotic counts, and increased estrogen receptor expression. The threshold for significance was IDO1 staining in >10% of tumor cells. These results lead to the assumption that IDO1 expression contributes to tumorigenesis and may represent a prognostic biomarker and possible therapeutic target also in pet rabbit mammary carcinomas. They also support the value of rabbits for breast cancer research.
Collapse
Affiliation(s)
- Sandra Schöniger
- Discovery Life Sciences Biomarker Services GmbH, Germaniastrasse 7, 34119 Kassel, Germany;
| | - Sophie Degner
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany
| | - Claudia Schandelmaier
- Laboklin GmbH & Co. KG, Laboratory for Clinical Diagnostics, 97688 Bad Kissingen, Germany; (C.S.); (H.A.-L.)
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Laboratory for Clinical Diagnostics, 97688 Bad Kissingen, Germany; (C.S.); (H.A.-L.)
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstrasse 18, 81675 Munich, Germany
| | - Qian Zhang
- Institute of Anatomy, Experimental Neurobiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Hans-Ulrich Schildhaus
- Discovery Life Sciences Biomarker Services GmbH, Germaniastrasse 7, 34119 Kassel, Germany;
| |
Collapse
|
11
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
12
|
Aldahlawi A, Basingab F, Alrahimi J, Zaher K, Pushparaj PN, Hassan MA, Al-Sakkaf K. Herpesvirus entry mediator as a potential biomarker in breast cancer compared with conventional cytotoxic T‑lymphocyte‑associated antigen 4. Biomed Rep 2023; 19:56. [PMID: 37560313 PMCID: PMC10407466 DOI: 10.3892/br.2023.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/17/2023] [Indexed: 08/11/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, with 2.3 million cases recorded in 2020. Despite improvements in cancer treatment, patients with BC still succumb to the disease, due to regional and distant metastases when diagnosed at later stages. Several immune checkpoint inhibitors have been approved for BC treatment, based on their expression and role in maintaining immunosurveillance against tumors. The present study aimed to evaluate the expression of 12 immune checkpoints in patients with BC, and assess their role as diagnostic and therapeutic markers. Expression levels were measured using reverse transcription-quantitative polymerase chain reaction. Among the 12 immune markers, herpesvirus entry mediator (HVEM) was found to be significantly upregulated in patients with malignant BC compared to non-malignant controls, with a relative fold change (FC) of 1.46 and P=0.012. A similar finding was observed for cytotoxic T-lymphocyte-associated antigen 4 (CTLA4; FC=1.47 and P=0.035). In addition, receiver operating characteristic curve analysis revealed that HVEM expression allowed significant differentiation between groups, with an area under the curve of 0.74 (P=0.013). Upregulation in both HVEM and CTLA4 was revealed to be significantly associated with the human epidermal growth factor receptor-2 (HER2)-enriched phenotype (FC=3.53, P=0.009 and FC=5.98, P=0.002, respectively), while only HVEM was significantly associated with the triple-negative phenotype (FC=2.07, P=0.016). Furthermore, HVEM was significantly higher in patients with grade III tumors (FC=1.88, P=0.025) and negative vascular invasion (FC=1.67, P=0.046) compared with non-malignant controls. Serum protein levels were assessed by multiplex immunoassay, and a significant increase in HVEM was detected in patients with malignant BC compared with that in non-malignant controls (P=0.035). These data indicated that HVEM may serve as a potential biomarker and target for immunotherapy, especially for certain types of BC.
Collapse
Affiliation(s)
- Alia Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kawther Zaher
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammed A. Hassan
- Department of Medical Basic Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla 50511, Republic of Yemen
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kaltoom Al-Sakkaf
- Immunology Unit, King Fahad for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Kaproń B, Czarnomysy R, Radomska D, Bielawski K, Plech T. Thiosemicarbazide Derivatives Targeting Human TopoIIα and IDO-1 as Small-Molecule Drug Candidates for Breast Cancer Treatment. Int J Mol Sci 2023; 24:ijms24065812. [PMID: 36982886 PMCID: PMC10051798 DOI: 10.3390/ijms24065812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In 2020, breast cancer became the most frequently diagnosed type of cancer, with nearly 2.3 million new cases diagnosed. However, with early diagnosis and proper treatment, breast cancer has a good prognosis. Here, we investigated the effect of thiosemicarbazide derivatives, previously identified as dual inhibitors targeting topoisomerase IIα and indoleamine-2,3-dioxygenase 1 (IDO 1), on two distinct types of breast cancer cells (MCF-7 and MDA-MB-231). The investigated compounds (1-3) selectively suppressed the growth of breast cancer cells and promoted apoptosis via caspase-8- and caspase-9-related pathways. Moreover, these compounds caused S-phase cell cycle arrest and dose-dependently inhibited the activity of ATP-binding cassette transporters (MDR1, MRP1/2 and BCRP) in MCF-7 and MDA-MB-231 cells. Additionally, following incubation with compound 1, an increased number of autophagic cells within both types of the investigated breast cancer cells was observed. During preliminary testing of ADME-Tox properties, the possible hemolytic activities of compounds 1-3 and their effects on specific cytochrome P450 enzymes were evaluated.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Białystok, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
14
|
Zhou H, Jia W, Lu L, Han R. MicroRNAs with Multiple Targets of Immune Checkpoints, as a Potential Sensitizer for Immune Checkpoint Inhibitors in Breast Cancer Treatment. Cancers (Basel) 2023; 15:824. [PMID: 36765782 PMCID: PMC9913694 DOI: 10.3390/cancers15030824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the most common cancer type and the leading cause of cancer-associated mortality in women worldwide. In recent years, immune checkpoint inhibitors (ICIs) have made significant progress in the treatment of breast cancer, yet there are still a considerable number of patients who are unable to gain lasting and ideal clinical benefits by immunotherapy alone, which leads to the development of a combination regimen as a novel research hotspot. Furthermore, one miRNA can target several checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade (ICB), which means that the miRNA therapy has been considered to increase the efficiency of ICIs. In this review, we summarized potential miRNA therapeutics candidates which can affect multiple targets of immune checkpoints in breast cancer with more therapeutic potential, and the obstacles to applying miRNA therapeutically through the analyses of the resources available from a drug target perspective. We also included the content of "too many targets for miRNA effect" (TMTME), combined with applying TargetScan database, to discuss adverse events. This review aims to ignite enthusiasm to explore the application of miRNAs with multiple targets of immune checkpoint molecules, in combination with ICIs for treating breast cancer.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200437, China
| | - Wentao Jia
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
- School of Medicine, Center for Biomedical Data Science, New Haven, CT 06520-8034, USA
- Yale Cancer Center, Yale University, New Haven, CT 06520-8034, USA
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520-8034, USA
| |
Collapse
|
15
|
Moon Y, Jeon SI, Shim MK, Kim K. Cancer-Specific Delivery of Proteolysis-Targeting Chimeras (PROTACs) and Their Application to Cancer Immunotherapy. Pharmaceutics 2023; 15:411. [PMID: 36839734 PMCID: PMC9965039 DOI: 10.3390/pharmaceutics15020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) are rapidly emerging as a potential therapeutic strategy for cancer therapy by inducing the degradation of tumor-overexpressing oncogenic proteins. They can specifically catalyze the degradation of target oncogenic proteins by recruiting E3 ligases and utilizing the ubiquitin-proteasome pathway. Since their mode of action is universal, irreversible, recyclable, long-lasting, and applicable to 'undruggable' proteins, PROTACs are gradually replacing the role of conventional small molecular inhibitors. Moreover, their application areas are being expanded to cancer immunotherapy as various types of oncogenic proteins that are involved in immunosuppressive tumor microenvironments. However, poor water solubility and low cell permeability considerably restrict the pharmacokinetic (PK) property, which necessitates the use of appropriate delivery systems for cancer immunotherapy. In this review, the general characteristics, developmental status, and PK of PROTACs are first briefly covered. Next, recent studies on the application of various types of passive or active targeting delivery systems for PROTACs are introduced, and their effects on the PK and tumor-targeting ability of PROTACs are described. Finally, recent drug delivery systems of PROTACs for cancer immunotherapy are summarized. The adoption of an adequate delivery system for PROTAC is expected to accelerate the clinical translation of PROTACs, as well as improve its efficacy for cancer therapy.
Collapse
Affiliation(s)
- Yujeong Moon
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea
| | - Man Kyu Shim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea
| |
Collapse
|
16
|
Benito-Lopez JJ, Marroquin-Muciño M, Perez-Medina M, Chavez-Dominguez R, Aguilar-Cazares D, Galicia-Velasco M, Lopez-Gonzalez JS. Partners in crime: The feedback loop between metabolic reprogramming and immune checkpoints in the tumor microenvironment. Front Oncol 2023; 12:1101503. [PMID: 36713558 PMCID: PMC9879362 DOI: 10.3389/fonc.2022.1101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
The tumor microenvironment (TME) is a complex and constantly changing cellular system composed of heterogeneous populations of tumor cells and non-transformed stromal cells, such as stem cells, fibroblasts, endothelial cells, pericytes, adipocytes, and innate and adaptive immune cells. Tumor, stromal, and immune cells consume available nutrients to sustain their proliferation and effector functions and, as a result of their metabolism, produce a wide array of by-products that gradually alter the composition of the milieu. The resulting depletion of essential nutrients and enrichment of by-products work together with other features of the hostile TME to inhibit the antitumor functions of immune cells and skew their phenotype to promote tumor progression. This review briefly describes the participation of the innate and adaptive immune cells in recognizing and eliminating tumor cells and how the gradual metabolic changes in the TME alter their antitumor functions. In addition, we discuss the overexpression of the immune checkpoints and their ligands as a result of nutrient deprivation and by-products accumulation, as well as the amplification of the metabolic alterations induced by the immune checkpoints, which creates an immunosuppressive feedback loop in the TME. Finally, the combination of metabolic and immune checkpoint inhibitors as a potential strategy to treat cancer and enhance the outcome of patients is highlighted.
Collapse
Affiliation(s)
- Jesus J Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
17
|
Poonia S, Goel A, Chawla S, Bhattacharya N, Rai P, Lee YF, Yap YS, West J, Bhagat AA, Tayal J, Mehta A, Ahuja G, Majumdar A, Ramalingam N, Sengupta D. Marker-free characterization of full-length transcriptomes of single live circulating tumor cells. Genome Res 2023; 33:80-95. [PMID: 36414416 PMCID: PMC9977151 DOI: 10.1101/gr.276600.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
The identification and characterization of circulating tumor cells (CTCs) are important for gaining insights into the biology of metastatic cancers, monitoring disease progression, and medical management of the disease. The limiting factor in the enrichment of purified CTC populations is their sparse availability, heterogeneity, and altered phenotypes relative to the primary tumor. Intensive research both at the technical and molecular fronts led to the development of assays that ease CTC detection and identification from peripheral blood. Most CTC detection methods based on single-cell RNA sequencing (scRNA-seq) use a mix of size selection, marker-based white blood cell (WBC) depletion, and antibodies targeting tumor-associated antigens. However, the majority of these methods either miss out on atypical CTCs or suffer from WBC contamination. We present unCTC, an R package for unbiased identification and characterization of CTCs from single-cell transcriptomic data. unCTC features many standard and novel computational and statistical modules for various analyses. These include a novel method of scRNA-seq clustering, named deep dictionary learning using k-means clustering cost (DDLK), expression-based copy number variation (CNV) inference, and combinatorial, marker-based verification of the malignant phenotypes. DDLK enables robust segregation of CTCs and WBCs in the pathway space, as opposed to the gene expression space. We validated the utility of unCTC on scRNA-seq profiles of breast CTCs from six patients, captured and profiled using an integrated ClearCell FX and Polaris workflow that works by the principles of size-based separation of CTCs and marker-based WBC depletion.
Collapse
Affiliation(s)
- Sarita Poonia
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Anurag Goel
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Computer Science and Engineering, Delhi Technological University, New Delhi 110042, India
| | - Smriti Chawla
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Namrata Bhattacharya
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Priyadarshini Rai
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Yi Fang Lee
- Biolidics Limited, Singapore 118257, Singapore
| | - Yoon Sim Yap
- National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Jay West
- Fluidigm Corporation, South San Francisco, California 94080, USA
| | | | - Juhi Tayal
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre-Delhi (RGCIRC-Delhi), New Delhi 110085, India
| | - Anurag Mehta
- Department of Laboratory Services and Molecular Diagnostics, Rajiv Gandhi Cancer Institute and Research Centre-Delhi (RGCIRC-Delhi), New Delhi 110085, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | - Angshul Majumdar
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Electronics & Communications Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| | | | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
- Centre for Artificial Intelligence, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi 110020, India
| |
Collapse
|
18
|
Liu S, Li J, Gu L, Wu K, Xing H. Nanoparticles for Chemoimmunotherapy Against Triple-Negative Breast Cancer. Int J Nanomedicine 2022; 17:5209-5227. [PMID: 36388877 PMCID: PMC9651025 DOI: 10.2147/ijn.s388075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits high recurrence and mortality rates because of the lack of effective treatment targets. Surgery and traditional chemotherapy are the primary treatment options. Immunotherapy shows high potential for treating various cancers but exhibits limited efficacy against TNBC as a monotherapy. Chemoimmunotherapy has broad prospects for applications for cancer treatment conferred through the synergistic immunomodulatory and anti-tumor effects of chemotherapy and immunotherapeutic strategies. However, improving the efficacy of synergistic therapy and reducing the side effects of multiple drugs remain to be the main challenges in chemoimmunotherapy against TNBC. Nanocarriers can target both cancer and immune cells, promote drug accumulation, and show minimal toxicity, making them ideal delivery systems for chemotherapeutic and immunotherapeutic agents. In this review, we introduce the immunomodulatory effects of chemotherapy and combined mechanisms of chemoimmunotherapy, followed by a summary of nanoparticle-mediated chemoimmunotherapeutic strategies used for treating TNBC. This up-to-date synthesis of relevant findings in the field merits contemplation, while considering avenues of investigation to enable advances in the field.
Collapse
Affiliation(s)
- Siyan Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lin Gu
- Breast Surgery, Jilin Province Tumor Hospital, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
19
|
A phthalocyanine-based photosensitizer for effectively combating triple negative breast cancer with enhanced photodynamic anticancer activity and immune response. Eur J Med Chem 2022; 241:114644. [PMID: 35939997 DOI: 10.1016/j.ejmech.2022.114644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/01/2023]
Abstract
Although photodynamic therapy (PDT) has attracted great interest, the photosensitizers in clinical had weak inhibition on metastasis and invasion of cancers. Additionally the immune response induced by PDT was insufficient to eradicate cancer. Herein, indoximod, an inhibitor of indoleamine 2,3-dioxygenase (IDO), is introduced to concatenate with zinc phthalocyanines (ZnPc) for effectively overcoming above inadequacy. Due to indoximod moiety, photosensitizer 1-MT-Pc can obtain enhanced intracellular uptake and high reactive oxygen species (ROS) generation. More impressively, 1-MT-Pc can achieve remarkable photocytotoxicity towards TNBC cells and negligible damage to normal cells. Meanwhile, 1-MT-Pc effectively inhibits metastasis and invasion of TNBC cells. Importantly, 1-MT-Pc exhibit elevated inhibitory effect on 4T1 tumor by enhanced PDT and immunotherapy.
Collapse
|
20
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
21
|
Xia Y, Yang R, Zhu J, Wang H, Li Y, Fan J, Fu C. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front Bioeng Biotechnol 2022; 10:890257. [PMID: 36394039 PMCID: PMC9643844 DOI: 10.3389/fbioe.2022.890257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in cancer treatment, metastatic cancer is still the main cause of death in cancer patients. At present, the treatment of metastatic cancer is limited to palliative care. The abscopal effect is a rare phenomenon in which shrinkage of metastatic tumors occurs simultaneously with the shrinkage of a tumor receiving localized treatment, such as local radiotherapy or immunotherapy. Immunotherapy shows promise for cancer treatment, but it also leads to consequences such as low responsiveness and immune-related adverse events. As a promising target-based approach, intravenous or intratumoral injection of nanomaterials provides new opportunities for improving cancer immunotherapy. Chemically modified nanomaterials may be able to trigger the abscopal effect by regulating immune cells. This review discusses the use of nanomaterials in killing metastatic tumor cells through the regulation of immune cells and the prospects of such nanomaterials for clinical use.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
22
|
Alkhayyal N, Elemam NM, Hussein A, Magdub S, Jundi M, Maghazachi AA, Talaat IM, Bendardaf R. Expression of immune checkpoints (PD-L1 and IDO) and tumour-infiltrating lymphocytes in breast cancer. Heliyon 2022; 8:e10482. [PMID: 36097493 PMCID: PMC9463383 DOI: 10.1016/j.heliyon.2022.e10482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/16/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Breast cancer (BC) has become the most common cancer globally in 2020 as well as in the United Arab Emirates. The breast tumor microenvironment is composed of various immune cell types, including lymphocytes. Tumour-infiltrating lymphocytes (TILs) play a crucial role in tumor eradication and progression. Further, immune checkpoint markers such as programmed death receptor ligand 1 (PD-L1) and indoleamine-2,3-dioxygenase (IDO) have been associated with tumor evasion from the immune system. In this study, we aimed to explore the status of TILs, PD-L1 and IDO as well as to investigate their association with the clinicopathological parameters. MATERIALS AND METHODS A total of 59 patients diagnosed with primary infiltrating BC were selected, after which tissue sections were stained to identify TILs along with immunohistochemical staining of PD-L1 and IDO. Moreover, in-silico tools were used to assess the expression of PD-L1, IDO and CD3ε in various molecular subtypes of BC. RESULTS It was found that the percentage of TILs correlated with estrogen receptor (ER) and progesterone receptor (PR) expression. This was supported by the finding that most of the triple-negative breast cancer (TNBC) cases belonged to the group with a high percentage of TILs (h-TILs). Similarly, the expression of PD-L1 and IDO was correlated with the ER and PR, whereas TNBC cases showed a high expression of PD-L1 and IDO. This goes in line with the in-silico findings where the TNBC group showed the highest expression of PD-L1 and IDO as well as the T cell marker CD3ε. CONCLUSION This study highlighted a possible link between the immunosuppressive markers PD-L1 and IDO with TILs density in the BC microenvironment.
Collapse
Affiliation(s)
- Noura Alkhayyal
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Noha M. Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Amal Hussein
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sulaman Magdub
- Department of Pathology, Tawam Hospital, Alain, United Arab Emirates
| | - Majd Jundi
- University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman M. Talaat
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Riyad Bendardaf
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
23
|
Immunotherapy and immunoengineering for breast cancer; a comprehensive insight into CAR-T cell therapy advancements, challenges and prospects. Cell Oncol (Dordr) 2022; 45:755-777. [PMID: 35943716 DOI: 10.1007/s13402-022-00700-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly prevalent solid cancer with a high-rise infiltration of immune cells, turning it into a significant candidate for tumor-specific immunotherapies. Chimeric antigen receptor (CAR)-T cells are emerging as immunotherapeutic tools with genetically engineered receptors to efficiently recognize and attack tumor cells that express specific target antigens. Technological advancements in CAR design have provided five generations of CAR-T cells applicable to a wide range of cancer patients while boosting CAR-T cell therapy safety. However, CAR-T cell therapy is ineffective against breast cancer because of the loss of specified antigens, the immunosuppressive nature of the tumor and CAR-T cell-induced toxicities. Next-generation CAR-T cells actively pass through the tumor vascular barriers, persist for extended periods and disrupt the tumor microenvironment (TME) to block immune escape. CONCLUSION CAR-T cell therapy embodies advanced immunotherapy for BC, but further pre-clinical and clinical assessments are recommended to achieve maximized efficiency and safety.
Collapse
|
24
|
The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112756. [PMID: 35681736 PMCID: PMC9179436 DOI: 10.3390/cancers14112756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that metabolizes an essential amino acid tryptophan (Trp) into kynurenine (Kyn), and it promotes the occurrence of immunosuppressive effects by regulating the consumption of Trp and the accumulation of Kyn in the tumor microenvironment (TME). Recent studies have shown that the main cellular components of TME interact with each other through this pathway to promote the formation of tumor immunosuppressive microenvironment. Here, we review the role of the immunosuppression mechanisms mediated by the IDO1 pathway in tumor growth. We discuss obstacles encountered in using IDO1 as a new tumor immunotherapy target, as well as the current clinical research progress.
Collapse
|
25
|
Du L, He H, Xiao Z, Xiao H, An Y, Zhong H, Lin M, Meng X, Han S, Shuai X. GSH-Responsive Metal-Organic Framework for Intratumoral Release of NO and IDO Inhibitor to Enhance Antitumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107732. [PMID: 35218310 DOI: 10.1002/smll.202107732] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Immunotherapy brings great benefits for tumor therapy in clinical treatments but encounters the severe challenge of low response rate mainly because of the immunosuppressive tumor microenvironment. Multifunctional nanoplatforms integrating effective drug delivery and medical imaging offer tremendous potential for cancer treatment, which may play a critical role in combinational immunotherapy to overcome the immunosuppressive microenvironment for efficient tumor therapy. Here, a nanodrug (BMS-SNAP-MOF) is prepared using glutathione (GSH)-sensitive metal-organic framework (MOF) to encapsulate an immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) inhibitor BMS-986205, and the nitric oxide (NO) donor s-nitrosothiol groups. The high T1 relaxivity allows magnetic resonance imaging to monitor nanodrug distribution in vivo. After the nanodrug accumulation in tumor tissue via the EPR effect and subsequent internalization into tumor cells, the enriched GSH therein triggers cascade reactions with MOF, which disassembles the nanodrug to rapidly release the IDO-inhibitory BMS-986205 and produces abundant NO. Consequently, the IDO inhibitor and NO synergistically modulate the immunosuppressive tumor microenvironment with increase CD8+ T cells and reduce Treg cells to result in highly effective immunotherapy. In an animal study, treatment using this theranostic nanodrug achieves obvious regressions of both primary and distant 4T1 tumors, highlighting its application potential in advanced tumor immunotherapy.
Collapse
Affiliation(s)
- Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haozhe He
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Department of pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yongcheng An
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
26
|
HLA-G and Other Immune Checkpoint Molecules as Targets for Novel Combined Immunotherapies. Int J Mol Sci 2022; 23:ijms23062925. [PMID: 35328349 PMCID: PMC8948858 DOI: 10.3390/ijms23062925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
HLA-G is an HLA-class Ib molecule that is involved in the establishment of tolerance at the maternal/fetal interface during pregnancy. The expression of HLA-G is highly restricted in adults, but the de novo expression of this molecule may be observed in different hematological and solid tumors and is related to cancer progression. Indeed, tumor cells expressing high levels of HLA-G are able to suppress anti-tumor responses, thus escaping from the control of the immune system. HLA-G has been proposed as an immune checkpoint (IC) molecule due to its crucial role in tumor progression, immune escape, and metastatic spread. We here review data available in the literature in which the interaction between HLA-G and other IC molecules is reported, in particular PD-1, CTLA-4, and TIM-3, but also IDO and TIGIT. Clinical trials using monoclonal antibodies against HLA-G and other IC are currently ongoing with cancer patients where antibodies and inhibitors of PD-1 and CTLA-4 showed encouraging results. With this background, we may envisage that combined therapies using antibodies targeting HLA-G and another IC may be successful for clinical purposes. Indeed, such immunotherapeutic protocols may achieve a better rescue of effective anti-tumor immune response, thus improving the clinical outcome of patients.
Collapse
|
27
|
When breaks get hot: inflammatory signaling in BRCA1/2-mutant cancers. Trends Cancer 2022; 8:174-189. [PMID: 35000881 DOI: 10.1016/j.trecan.2021.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Genomic instability and inflammation are intricately connected hallmark features of cancer. DNA repair defects due to BRCA1/2 mutation instigate immune signaling through the cGAS/STING pathway. The subsequent inflammatory signaling provides both tumor-suppressive as well as tumor-promoting traits. To prevent clearance by the immune system, genomically instable cancer cells need to adapt to escape immune surveillance. Currently, it is unclear how genomically unstable cancers, including BRCA1/2-mutant tumors, are rewired to escape immune clearance. Here, we summarize the mechanisms by which genomic instability triggers inflammatory signaling and describe adaptive mechanisms by which cancer cells can 'fly under the radar' of the immune system. Additionally, we discuss how therapeutic activation of the immune system may improve treatment of genomically instable cancers.
Collapse
|
28
|
Eskiler G, Bilir C, Bilir F. The cytotoxic effects of indoleamine 2, 3-dioxygenase inhibitors on triple negative breast cancer cells upon tumor necrosis factor α stimulation. J Cancer Res Ther 2022; 19:S74-S80. [PMID: 37147986 DOI: 10.4103/jcrt.jcrt_2365_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Context Overexpressed indoleamine 2,3-dioxygenase (IDO) has been observed in many types of cancer and plays an essential role in the tumor microenvironment through immune cells function. Aims In our study, the therapeutic potentials of two different IDO inhibitors (Epacadostat [EPA] and 1-methyl-L-tryptophan [L-1MT]) in triple-negative breast cancer (TNBC) cells were assessed with and without tumor necrosis factor-α (TNF-α) stimulation. Materials and Methods The anticancer activity of EPA and L-1MT alone and in combination with TNF-α was analyzed by WST-1, annexin V, cell cycle analysis, and acridine orange/ethidium bromide staining. In addition, the relationship between IDO1 and programmed death-ligand 1 (PD-L1) expressions in TNBC cells upon treatment with IDO inhibitors was evaluated by reverse transcription-polymerase chain reaction analysis. Statistical Analysis Used SPSS 22.0 was conducted for statistical analysis. The one-way analysis of variance with Tukey's multiple comparison test was performed for multiple groups. Independent (unpaired) t -test was used for the comparison of two groups. Results EPA and L-1MT alone significantly suppressed the TNBC cell viability through the induction of apoptotic cell death and G0/G1 arrest (P < 0.05). TNF-α alone induced the overexpression of IDO1 and PD-L1 in TNBC cells compared with MCF-10A control cells. However, IDO inhibitors significantly inhibited overexpressed IDO1 mRNA levels. Furthermore, EPA alone and co-treated with TNF-α suppressed the mRNA level of PD-L1 in TNBC cells. Therefore, TNF-α stimulation enhanced the therapeutic effects of IDO inhibitors on TNBC. Conclusions Our findings showed that the efficacy of IDO inhibitors was mediated by pro-inflammatory cytokine. However, different molecular signaling pathways are associated with pro-inflammatory cytokines production, and the expression of IDO1 and PD-L1 calls for further investigations.
Collapse
|
29
|
Therapeutic Potential of Thymoquinone in Triple-Negative Breast Cancer Prevention and Progression through the Modulation of the Tumor Microenvironment. Nutrients 2021; 14:nu14010079. [PMID: 35010954 PMCID: PMC8746460 DOI: 10.3390/nu14010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.
Collapse
|
30
|
Li Z, Sun G, Sun G, Cheng Y, Wu L, Wang Q, Lv C, Zhou Y, Xia Y, Tang W. Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Front Oncol 2021; 11:771335. [PMID: 34869005 PMCID: PMC8635629 DOI: 10.3389/fonc.2021.771335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The occurrence and development of cancer are closely related to the immune escape of tumor cells and immune tolerance. Unlike previous surgical, chemotherapy, radiotherapy and targeted therapy, tumor immunotherapy is a therapeutic strategy that uses various means to stimulate and enhance the immune function of the body, and ultimately achieves the goal of controlling tumor cells.With the in-depth understanding of tumor immune escape mechanism and tumor microenvironment, and the in-depth study of tumor immunotherapy, immune checkpoint inhibitors represented by Programmed Death 1/Programmed cell Death-Ligand 1(PD-1/PD-L1) inhibitors are becoming increasingly significant in cancer medication treatment. employ a variety of ways to avoid detection by the immune system, a single strategy is not more effective in overcoming tumor immune evasion and metastasis. Combining different immune agents or other drugs can effectively address situations where immunotherapy is not efficacious, thereby increasing the chances of success and alternative access to alternative immunotherapy. Immune combination therapies for cancer have become a hot topic in cancer treatment today. In this paper, several combination therapeutic modalities of PD1/PD-L1 inhibitors are systematically reviewed. Finally, an analysis and outlook are provided in the context of the recent advances in combination therapy with PD1/PD-L1 inhibitors and the pressing issues in this field.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yichan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
32
|
Carter JM, Polley MYC, Leon-Ferre RA, Sinnwell J, Thompson KJ, Wang X, Ma Y, Zahrieh D, Kachergus JM, Solanki M, Boughey JC, Liu MC, Ingle JN, Kalari KR, Couch FJ, Thompson EA, Goetz MP. Characteristics and Spatially Defined Immune (micro)landscapes of Early-stage PD-L1-positive Triple-negative Breast Cancer. Clin Cancer Res 2021; 27:5628-5637. [PMID: 34108182 PMCID: PMC8808363 DOI: 10.1158/1078-0432.ccr-21-0343] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Programmed death ligand 1 [PD-(L)1]-targeted therapies have shown modest survival benefit in triple-negative breast cancer (TNBC). PD-L1+ microenvironments in TNBC are not well characterized and may inform combinatorial immune therapies. Herein, we characterized clinicopathologic features, RNA-based immune signatures, and spatially defined protein-based tumor-immune microenvironments (TIME) in early-stage PD-L1+ and PD-L1- TNBC. EXPERIMENTAL DESIGN From a large cohort of chemotherapy-naïve TNBC, clinicopathologic features, deconvoluted RNA immune signatures, and intraepithelial and stromal TIME (Nanostring GeoMX) were identified in subsets of PD-L1+ and PD-L1- TNBC, as defined by FDA-approved PD-L1 companion assays. RESULTS 228 of 499 (46%) TNBC were PD-L1+ (SP142: ≥1% immune cells-positive). Using PD-L1 22C3, 46% had combined positive score (CPS) ≥ 1 and 16% had CPS ≥10. PD-L1+ TNBC were higher grade with higher tumor-infiltrating lymphocytes (TIL; P < 0.05). PD-L1 was not associated with improved survival following adjustment for TILs and other variables. RNA profiles of PD-L1+ TNBC had increased dendritic cell, macrophage, and T/B cell subset features; and decreased myeloid-derived suppressor cells. PD-L1+ stromal and intraepithelial TIMEs were highly enriched in IDO-1, HLA-DR, CD40, and CD163 compared with PD-L1-TIME, with spatially specific alterations in CTLA-4, Stimulator of Interferon Genes (STING), and fibronectin. Macrophage- and antigen presentation-related proteins correlated most strongly with PD-L1 protein. CONCLUSIONS In this early-stage TNBC cohort, nearly 50% were PD-L1+ (SP142 companion assay) while 16% were PD-L1+ with the 22C3 companion assay. PD-L1+ TNBC had specific myeloid-derived and lymphoid features. Spatially defined PD-L1+ TIME were enriched in several clinically actionable immune proteins. These data may inform future studies on combinatorial immunotherapies for patients with PD-L1+ TNBC.See related commentary by Symmans, p. 5446.
Collapse
Affiliation(s)
- Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| | - Mei-Yin C Polley
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | - Jason Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Yaohua Ma
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - David Zahrieh
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - Malvika Solanki
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Minetta C Liu
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
33
|
Hashemzadeh N, Dolatkhah M, Aghanejad A, Barzegar-Jalali M, Omidi Y, Adibkia K, Barar J. Folate receptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine (Lond) 2021; 16:2137-2154. [PMID: 34530630 DOI: 10.2217/nnm-2021-0176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: The efficiency of mesoporous silica magnetic nanoparticles (MSMNP) as a targeted drug-delivery system was investigated. Methods: The superparamagnetic iron oxide nanoparticles (NP) were synthesized, coated with mesoporous silica and conjugated with polyethylene glycol and methotrexate. Next, 1-methyl-D-tryptophan was loaded into the prepared nanosystems (NS). They were characterized using transmission electron microscopy, scanning electron microscopy, dynamic light scattering, vibrating sample magnetometer, x-ray powder diffraction, Fourier transform-infrared spectroscopy and the Brunauer-Emmett-Teller method and their biological impacts on breast cancer cells were evaluated. Results: The prepared NSs displayed suitable properties and showed enhanced internalization by folate-receptor-expressing cells, exerting efficient cytotoxicity, which was further enhanced by the near-infrared radiation irradiation. Conclusion: On the basis of our findings, the engineered NS is a promising multifunctional nanomedicine/theranostic for solid tumors.
Collapse
Affiliation(s)
- Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Mitra Dolatkhah
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Barzegar-Jalali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 516664-14766, Iran
| |
Collapse
|
34
|
Kotecki N, Vuagnat P, O'Neil BH, Jalal S, Rottey S, Prenen H, Benhadji KA, Xia M, Szpurka AM, Saha A, Wallin J, Suriyapperuma S, Galvao VR, Geeganage S, Doman TN, Gandhi L, Xu X, Bendell J. A Phase I Study of an IDO-1 Inhibitor (LY3381916) as Monotherapy and in Combination With an Anti-PD-L1 Antibody (LY3300054) in Patients With Advanced Cancer. J Immunother 2021; 44:264-275. [PMID: 33928928 DOI: 10.1097/cji.0000000000000368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/03/2021] [Indexed: 01/12/2023]
Abstract
LY3381916 is an orally available, highly selective, potent inhibitor of indoleamine 2,3-dioxygenase 1. This study explored the safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor activity of LY3381916 monotherapy and in combination with a programmed death-ligand 1 (PD-L1) inhibitor (LY3300054) in patients with advanced solid tumors. During dose escalation, patients received escalating doses of LY3381916 at 60-600 mg once daily (qd) and 240 mg twice daily in monotherapy (n=21) and in combination with PD-L1 inhibitor at 700 mg every 2 weeks (n=21). A modified toxicity probability interval method was used to guide dose escalation. Dose-limiting toxicities occurred in 3 patients; 1 at LY3381916 240 mg twice daily (alanine aminotransferase/aspartate aminotransferase increase and systemic inflammatory response syndrome) and 2 at LY3381916 240 mg qd in combination with PD-L1 inhibitor (fatigue and immune-related hepatitis). LY3381916, at the recommended phase II dose, 240 mg qd, in combination with PD-L1 inhibitor, produced maximal inhibition of indoleamine 2,3-dioxygenase 1 activity in plasma and tumor tissue, and led to an increase of CD8 T cells in tumor tissue. In the combination dose expansion cohorts, 14 triple-negative breast cancer and 4 non-small cell lung cancer patients were enrolled. Treatment-related liver toxicity (grade ≥2 alanine aminotransferase/aspartate aminotransferase increase or immune-related hepatitis) was the most prominent adverse event in triple-negative breast cancer patients (n=5, 35.7%). Best response was stable disease. These preliminary data suggest an alternative dose level of LY3381916 is needed for the combination with PD-L1 inhibitor. The combination clinical activity was limited in this study.
Collapse
Affiliation(s)
| | - Perrine Vuagnat
- Drug Development Department (DITEP), Gustave Roussy Institute, Villejuif, France
| | - Bert H O'Neil
- Department of Hematology-Oncology, Indiana University Simon Comprehensive Cancer Center
- Eli Lilly and Company
| | - Shadia Jalal
- Indiana University School of Medicine, Indianapolis, IN
| | | | - Hans Prenen
- University Hospital Antwerp, Edegem, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | - Johanna Bendell
- Sarah Cannon Research Institute Tennessee Oncology, Nashville, TN
| |
Collapse
|
35
|
Xu F, Zhao H, Li J, Jiang H. Mucin-type sialyl-Tn antigen is associated with PD-L1 expression and predicts poor clinical prognosis in breast cancer. Gland Surg 2021; 10:2159-2169. [PMID: 34422587 DOI: 10.21037/gs-21-83] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/21/2021] [Indexed: 11/06/2022]
Abstract
Background A recent study showed that mucin-type sialylated O-linked glycans could induce the increased expression of PD-L1 via binding to Siglec receptors. However, the relationship between the expression of the mucin-type sialyl-Tn antigen (sTn) and PD-L1 remains unclear in breast cancer (BC). Therefore, we investigate the clinicopathological and prognostic effects of sTn expression and its relationship with PD-L1 expression in BC tissues. Methods We retrospectively analyzed the clinical data of 380 invasive BC patients between January 2011 and January 2014. The last follow-up time was January 31, 2019 with a median follow-up of 62 months. The expression of the sTn antigen and PD-L1 in 380 tumor specimens was assessed by immunohistochemistry. Correlations between sTn/PD-L1 expression and clinicopathological features and prognoses were analyzed. Results In BC tissues, the positive expression rate of PD-L1 (20.5%) was much lower than that of sTn (41.8%). Pearson's contingency analysis showed that sTn and PD-L1 expression in tumor tissues demonstrated a high correlation (P<0.001). High sTn expression was associated with negative ER expression (P<0.001), positive HER-2 status (P<0.001), advanced tumor stage (P<0.001), high density of CD8+ tumor-infiltrating lymphocytes (TILs) (P=0.028), and positive lymph node metastasis (P=0.002). Moreover, patients with concomitant high expression of both markers had the highest risk of relapse (P<0.001) and mortality (P<0.001). The multivariate Cox regression model revealed that positive sTn expression (HRos: 1.941, 95% CI: 1.168, 3.223, Pos=0.028; HRpfs: 1.739, 95% CI: 1.063, 2.847, Ppfs=0.010) and positive PD-L1 expression (HRos: 1.912, 95% CI: 1.138, 3.212, Pos=0.017; HRpfs: 1.863, 95% CI: 1.116, 3.110, Ppfs=0.014) were independent indicators for poor overall survival (OS) and progression-free survival (PFS), respectively. Conclusions BC patients who expressed both sTn and PD-L1 had poorer survival. Therefore, combinational therapy with dual blockade might benefit BC patients with sTn(+)/PD-L1(+) expression, which requires further examination in future clinical trials.
Collapse
Affiliation(s)
- Feng Xu
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Beijing, China
| | - Hongying Zhao
- Department of Pathology, Beijing Chao-Yang Hospital, Beijing, China
| | - Jie Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Beijing, China
| | - Hongchuan Jiang
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
36
|
Llinàs-Arias P, Íñiguez-Muñoz S, McCann K, Voorwerk L, Orozco JIJ, Ensenyat-Mendez M, Sesé B, DiNome ML, Marzese DM. Epigenetic Regulation of Immunotherapy Response in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:4139. [PMID: 34439290 PMCID: PMC8394958 DOI: 10.3390/cancers13164139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined by the absence of estrogen receptor and progesterone receptor and human epidermal growth factor receptor 2 (HER2) overexpression. This malignancy, representing 15-20% of breast cancers, is a clinical challenge due to the lack of targeted treatments, higher intrinsic aggressiveness, and worse outcomes than other breast cancer subtypes. Immune checkpoint inhibitors have shown promising efficacy for early-stage and advanced TNBC, but this seems limited to a subgroup of patients. Understanding the underlying mechanisms that determine immunotherapy efficiency is essential to identifying which TNBC patients will respond to immunotherapy-based treatments and help to develop new therapeutic strategies. Emerging evidence supports that epigenetic alterations, including aberrant chromatin architecture conformation and the modulation of gene regulatory elements, are critical mechanisms for immune escape. These alterations are particularly interesting since they can be reverted through the inhibition of epigenetic regulators. For that reason, several recent studies suggest that the combination of epigenetic drugs and immunotherapeutic agents can boost anticancer immune responses. In this review, we focused on the contribution of epigenetics to the crosstalk between immune and cancer cells, its relevance on immunotherapy response in TNBC, and the potential benefits of combined treatments.
Collapse
Affiliation(s)
- Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain; (P.L.-A.); (S.Í.-M.); (M.E.-M.); (B.S.)
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain; (P.L.-A.); (S.Í.-M.); (M.E.-M.); (B.S.)
| | - Kelly McCann
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Leonie Voorwerk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
| | - Javier I. J. Orozco
- Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA;
| | - Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain; (P.L.-A.); (S.Í.-M.); (M.E.-M.); (B.S.)
| | - Borja Sesé
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain; (P.L.-A.); (S.Í.-M.); (M.E.-M.); (B.S.)
| | - Maggie L. DiNome
- Department of Surgery, David Geffen School of Medicine, University California Los Angeles (UCLA), Los Angeles, CA 90024, USA;
| | - Diego M. Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain; (P.L.-A.); (S.Í.-M.); (M.E.-M.); (B.S.)
| |
Collapse
|
37
|
Asghar K, Farooq A, Zulfiqar B, Loya A. Review of 10 years of research on breast cancer patients: Focus on indoleamine 2,3-dioxygenase. World J Clin Oncol 2021; 12:429-436. [PMID: 34189067 PMCID: PMC8223715 DOI: 10.5306/wjco.v12.i6.429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/30/2020] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic manipulation of the immune system in cancer has been an extensive area of research in the field of oncoimmunology. Immunosuppression regulates antitumour immune responses. An immunosuppressive enzyme, indoleamine 2,3-dioxygenase (IDO) mediates tumour immune escape in various malignancies including breast cancer. IDO upregulation in breast cancer cells may lead to the recruitment of regulatory T (T-regs) cells into the tumour microenvironment, thus inhibiting local immune responses and promoting metastasis. Immunosuppression induced by myeloid derived suppressor cells activated in an IDO-dependent manner may enhance the possibility of immune evasion in breast cancer. IDO overexpression has independent prognostic significance in a subtype of breast cancer of emerging interest, basal-like breast carcinoma. IDO inhibitors as adjuvant therapeutic agents may have clinical implications in breast cancer. This review proposes future prospects of IDO not only as a therapeutic target but also as a valuable prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Kashif Asghar
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore 54000, Pakistan
| | - Asim Farooq
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore 54000, Pakistan
| | - Bilal Zulfiqar
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore 54000, Pakistan
| |
Collapse
|
38
|
Davey MG, Ryan ÉJ, Davey MS, Lowery AJ, Miller N, Kerin MJ. Clinicopathological and prognostic significance of programmed cell death ligand 1 expression in patients diagnosed with breast cancer: meta-analysis. Br J Surg 2021; 108:622-631. [PMID: 33963374 PMCID: PMC10364926 DOI: 10.1093/bjs/znab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Uncertainty exists regarding the clinical relevance of programmed cell death ligand 1 (PD-L1) expression in breast cancer. METHODS A systematic review was performed in accordance with PRISMA guidelines. Observational studies that compared high versus low expression of PD-L1 on breast cancer cells were identified. Log hazard ratios (HRs) for disease-free and overall survival and their standard errors were calculated from Kaplan-Meier curves or Cox regression analyses, and pooled using the inverse-variance method. Dichotomous variables were pooled as odds ratios (ORs) using the Mantel-Haenszel method. RESULTS Sixty-five studies with 19 870 patients were included; 14 404 patients were classified as having low and 4975 high PD-L1 expression. High PD-L1 was associated with achieving a pathological complete response following neoadjuvant chemotherapy (OR 3.30, 95 per cent confidence interval 1.19 to 9.16; P < 0.01; I2 = 85 per cent). Low PD-L1 expression was associated with human epidermal growth factor receptor 2 (OR 3.98, 1.81 to 8.75; P < 0.001; I2 = 96 per cent) and luminal (OR 14.93, 6.46 to 34.51; P < 0.001; I2 = 99 per cent) breast cancer subtypes. Those with low PD-L1 had favourable overall survival rates (HR 1.30, 1.05 to 1.61; P = 0.02; I2 = 85 per cent). CONCLUSION Breast cancers with high PD-L1 expression are associated with aggressive clinicopathological and immunohistochemical characteristics and are more likely to achieve a pathological complete response following neoadjuvant chemotherapy. These breast cancers are, however, associated with worse overall survival outcomes.
Collapse
Affiliation(s)
- M G Davey
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| | - É J Ryan
- Department of Surgery, Galway University Hospitals, Galway, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M S Davey
- Department of Surgery, Galway University Hospitals, Galway, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - A J Lowery
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| | - N Miller
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| | - M J Kerin
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
- Department of Surgery, Galway University Hospitals, Galway, Ireland
| |
Collapse
|
39
|
Baram T, Erlichman N, Dadiani M, Balint-Lahat N, Pavlovski A, Meshel T, Morzaev-Sulzbach D, Gal-Yam EN, Barshack I, Ben-Baruch A. Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells 2021; 10:cells10061429. [PMID: 34201054 PMCID: PMC8229590 DOI: 10.3390/cells10061429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is primarily treated via chemotherapy; in parallel, efforts are made to introduce immunotherapies into TNBC treatment. CD4+ TNFR2+ lymphocytes were reported as Tregs that contribute to tumor progression. However, our published study indicated that TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs) were associated with improved survival in TNBC patient tumors. Based on our analyses of the contents of CD4+ and CD8+ TILs in TNBC patient tumors, in the current study, we determined the impact of chemotherapy on CD4+ and CD8+ TIL subsets in TNBC mouse tumors. We found that chemotherapy led to (1) a reduction in CD4+ TNFR2+ FOXP3+ TILs, indicating that chemotherapy decreased the content of CD4+ TNFR2+ Tregs, and (2) an elevation in CD8+ TNFR2+ and CD8+ TNFR2+ PD-1+ TILs; high levels of these two subsets were significantly associated with reduced tumor growth. In spleens of tumor-bearing mice, chemotherapy down-regulated CD4+ TNFR2+ FOXP3+ cells but the subset of CD8+ TNFR2+ PD-1+ was not present prior to chemotherapy and was not increased by the treatment. Thus, our data suggest that chemotherapy promotes the proportion of protective CD8+ TNFR2+ TILs and that, unlike other cancer types, therapeutic strategies directed against TNFR2 may be detrimental in TNBC.
Collapse
Affiliation(s)
- Tamir Baram
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Nofar Erlichman
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Maya Dadiani
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Nora Balint-Lahat
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Anya Pavlovski
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
| | - Tsipi Meshel
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
| | - Dana Morzaev-Sulzbach
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Einav Nili Gal-Yam
- Sheba Medical Center, Breast Oncology Institute, Ramat Gan 5211401, Israel; (M.D.); (D.M.-S.); (E.N.G.-Y.)
| | - Iris Barshack
- Sheba Medical Center, Pathology Institute, Ramat Gan 5211401, Israel; (N.B.-L.); (A.P.); (I.B.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978-01, Israel
| | - Adit Ben-Baruch
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978-01, Israel; (T.B.); (N.E.); (T.M.)
- Correspondence: ; Tel.: +972-3-6407933 or +972-3-6405491; Fax: +972-3-6422046
| |
Collapse
|
40
|
Lynch KT, Gradecki SE, Kwak M, Meneveau MO, Wages NA, Gru AA, Slingluff CL. IDO1 Expression in Melanoma Metastases Is Low and Associated With Improved Overall Survival. Am J Surg Pathol 2021; 45:787-795. [PMID: 33208630 PMCID: PMC8102301 DOI: 10.1097/pas.0000000000001622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indoleamine 2-3 dioxygenase 1 (IDO1) expression may contribute to immunologic escape by melanoma metastases. However, a recent clinical trial failed to identify any clinical benefits of IDO1 inhibition in patients with unresectable metastatic melanoma, and prior characterizations of IDO1 expression have predominately studied primary lesions and local metastases, generating uncertainty regarding IDO1 expression in distant metastases. We hypothesized that IDO1 expression in such lesions would be low and correlated with decreased overall survival (OS). Metastases from patients (n=96) with stage IIIb to IV melanoma underwent tissue microarray construction and immunohistochemical staining for IDO1. Th1-related gene expression was determined quantitatively. Associations between OS and IDO1 expression were assessed with multivariate models. Of 96 metastatic lesions, 28% were IDOpos, and 85% exhibited IDO1 expression in <10% of tumor cells. IDOpos lesions were associated with improved OS (28.9 vs. 10.5 mo, P=0.02) and expression of Th1-related genes. OS was not associated with IDO1 expression in a multivariate analysis of all patients; however, IDO1 expression (hazard ratio=0.25, P=0.01) and intratumoral CD8+ T-cell density (hazard ratio=0.99, P<0.01) were correlated with OS in patients who underwent metastasectomy with curative-intent. IDOpos metastases were less likely to recur after metastasectomy (54% vs. 16%, P=0.01). IDO1 expression was low in melanoma metastases and correlated with OS after metastasectomy with curative-intent. Intratumoral CD8+ T cells and Th1-related genes were correlated with IDO1 expression, as was tumor recurrence. These suggest that IDO1 expression may be a marker of immunologic tumor control, and may inform participant selection in future trials of IDO1 inhibitors.
Collapse
Affiliation(s)
- Kevin T. Lynch
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Sarah E. Gradecki
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Minyoung Kwak
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Max O. Meneveau
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Nolan A. Wages
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Alejandro A. Gru
- Department of Pathology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
41
|
Lin DJ, Ng JCK, Huang L, Robinson M, O'Hara J, Wilson JA, Mellor AL. The immunotherapeutic role of indoleamine 2,3-dioxygenase in head and neck squamous cell carcinoma: A systematic review. Clin Otolaryngol 2021; 46:919-934. [PMID: 34053179 PMCID: PMC8600953 DOI: 10.1111/coa.13794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/31/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Novel cancer immunotherapy seeks to harness the body's own immune system and tip the balance in favour of antitumour activity. The intracellular enzyme indoleamine 2,3-dioxygenase (IDO) is a critical regulator of the tumour microenvironment (TME) via tryptophan metabolism. The potential immunotherapeutic role of IDO in head and neck squamous cell carcinoma (HNSCC) requires further exploration. We aim to assess the evidence on IDO in HNSCC. METHODS A systematic review of literature and clinical trials databases. RESULTS We included 40 studies: seven involved cell lines: eight assessed tumour immunohistochemistry: ten measured IDO gene transcription: 15 reported on clinical trials. Increased cell line IDO expression was postulated to adversely affect tumour metabolism and apoptosis. Immunohistochemical IDO expression correlated with worse survival. Gene transcription studies associated IDO with positive PD-L1 and human papillomavirus (HPV) status. Phase I/II clinical trials showed (a) overall response (34%-55%) and disease control rates (62%-70%) for IDO1 inhibitor in combination with a PD-1 inhibitor, (b) similar safety profiles when both are used in combination therapy compared to each as monotherapies and (c) IDO gene expression as a predictive biomarker for response to PD-L1 therapy. CONCLUSIONS IDO expression is increased in the TME of HNSCC, which correlates with poor prognosis. However, the exact mechanism of IDO-driven immune modulation in the TME is an enigma. Future translational studies should map IDO activity during HNSCC treatment and elucidate its precise role in the TME, such research will underpin the development of clinical trials establishing the efficacy of IDO inhibitors in HNSCC.
Collapse
Affiliation(s)
- Daniel J Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| | - James C K Ng
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Max Robinson
- Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK
| | - James O'Hara
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK.,Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Janet A Wilson
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK.,Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew L Mellor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
Dusenbery AC, Maniaci JL, Hillerson ND, Dill EA, Bullock TN, Mills AM. MHC Class I Loss in Triple-negative Breast Cancer: A Potential Barrier to PD-1/PD-L1 Checkpoint Inhibitors. Am J Surg Pathol 2021; 45:701-707. [PMID: 33739790 DOI: 10.1097/pas.0000000000001653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Suppression of the immune system is intimately linked to the development and progression of malignancy, and immune modulating treatment options have shown promise in a variety of tumor types, including some triple-negative breast cancers (TNBC). The most dramatic therapeutic success has been seen with immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and its ligand, PD-L1. Difficulty remains, however, in appropriate patient selection for treatment, as many PD-L1-positive cancers fail to show durable responses to PD-1/PD-L1 inhibition. Checkpoint inhibitor targeting of the adaptive immune response relies on the presence of major histocompatibility complex (MHC) class I molecules on the tumor cell surface for tumor antigen presentation. MHC class I loss has been previously described in breast cancer and represents a putative mechanism of immunotherapeutic resistance in this tumor type. One hundred seventeen invasive primary breast carcinomas with a range of histologic subtypes were evaluated on tissue microarrays containing formalin-fixed paraffin-embedded tissue. Loss of MHC class I expression was common among breast cancers, with greater than half of cases demonstrating either subclonal or diffuse loss. Fifty-nine percent of TNBC demonstrated loss of MHC class I, including 46% of those meeting the Food and Drug Administration-approved threshold of 1% for tumor-associated immune cell PD-L1 expression. MHC class I loss was particularly common in the apocrine subtype of TNBC (78%). MHC class I's employment as a predictive biomarker should be considered, as its loss may represent a barrier to successful enhancement of the antitumor adaptive immune response by PD-1/PD-L1 inhibition.
Collapse
Affiliation(s)
| | | | | | - Erik A Dill
- University of Virginia Department of Pathology
| | | | | |
Collapse
|
43
|
Anurag M, Zhu M, Huang C, Vasaikar S, Wang J, Hoog J, Burugu S, Gao D, Suman V, Zhang XH, Zhang B, Nielsen T, Ellis MJ. Immune Checkpoint Profiles in Luminal B Breast Cancer (Alliance). J Natl Cancer Inst 2021; 112:737-746. [PMID: 31665365 DOI: 10.1093/jnci/djz213] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike estrogen receptor (ER)-negative breast cancer, ER-positive breast cancer outcome is less influenced by lymphocyte content, indicating the presence of immune tolerance mechanisms that may be specific to this disease subset. METHODS A supervised analysis of microarray data from the ACOSOG Z1031 (Alliance) neoadjuvant aromatase inhibitor (AI) trial identified upregulated genes in Luminal (Lum) B breast cancers that correlated with AI-resistant tumor proliferation (percentage of Ki67-positive cancer nuclei, Pearson r > 0.4) (33 cases Ki67 > 10% on AI) vs LumB breast cancers that were more AI sensitive (33 cases Ki67 < 10% on AI). Overrepresentation analysis was performed using WebGestalt. All statistical tests were two-sided. RESULTS Thirty candidate genes positively correlated (r ≥ 0.4) with AI-resistant proliferation in LumB and were upregulated greater than twofold. Gene ontologies identified that the targetable immune checkpoint (IC) components IDO1, LAG3, and PD1 were overrepresented resistance candidates (P ≤ .001). High IDO1 mRNA was associated with poor prognosis in LumB disease (Molecular Taxonomy of Breast Cancer International Consortium, hazard ratio = 1.43, 95% confidence interval = 1.04 to 1.98, P = .03). IDO1 also statistically significantly correlated with STAT1 at protein level in LumB disease (Pearson r = 0.74). As a composite immune tolerance signature, expression of IFN-γ/STAT1 pathway components was associated with higher baseline Ki67, lower estrogen, and progesterone receptor mRNA levels and worse disease-specific survival (P = .002). In a tissue microarray analysis, IDO1 was observed in stromal cells and tumor-associated macrophages, with a higher incidence in LumB cases. Furthermore, IDO1 expression was associated with a macrophage mRNA signature (M1 by CIBERSORT Pearson r = 0.62 ) and by tissue microarray analysis. CONCLUSIONS Targetable IC components are upregulated in the majority of endocrine therapy-resistant LumB cases. Our findings provide rationale for IC inhibition in poor-outcome ER-positive breast cancer.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antineoplastic Agents, Hormonal/therapeutic use
- Aromatase Inhibitors/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Cell Proliferation/physiology
- Drug Resistance, Neoplasm
- Female
- Humans
- Immune Tolerance
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-gamma/metabolism
- Letrozole/therapeutic use
- Prognosis
- Programmed Cell Death 1 Receptor/biosynthesis
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- Tissue Array Analysis
- Transcriptome
- Up-Regulation
- Lymphocyte Activation Gene 3 Protein
Collapse
|
44
|
Cocco C, Morandi F, Airoldi I. Immune Checkpoints in Pediatric Solid Tumors: Targetable Pathways for Advanced Therapeutic Purposes. Cells 2021; 10:927. [PMID: 33920505 PMCID: PMC8074115 DOI: 10.3390/cells10040927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) represents a complex network between tumor cells and a variety of components including immune, stromal and vascular endothelial cells as well as the extracellular matrix. A wide panel of signals and interactions here take place, resulting in a bi-directional modulation of cellular functions. Many stimuli, on one hand, induce tumor growth and the spread of metastatic cells and, on the other hand, contribute to the establishment of an immunosuppressive environment. The latter feature is achieved by soothing immune effector cells, mainly cytotoxic T lymphocytes and B and NK cells, and/or through expansion of regulatory cell populations, including regulatory T and B cells, tumor-associated macrophages and myeloid-derived suppressor cells. In this context, immune checkpoints (IC) are key players in the control of T cell activation and anti-cancer activities, leading to the inhibition of tumor cell lysis and of pro-inflammatory cytokine production. Thus, these pathways represent promising targets for the development of effective and innovative therapies both in adults and children. Here, we address the role of different cell populations homing the TME and of well-known and recently characterized IC in the context of pediatric solid tumors. We also discuss preclinical and clinical data available using IC inhibitors alone, in combination with each other or administered with standard therapies.
Collapse
Affiliation(s)
| | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy; (C.C.); (F.M.)
| |
Collapse
|
45
|
Tabana Y, Okoye IS, Siraki A, Elahi S, Barakat KH. Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Front Oncol 2021; 11:628138. [PMID: 33747948 PMCID: PMC7973280 DOI: 10.3389/fonc.2021.628138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The burden of breast cancer is imposing a huge global problem. Drug discovery research and novel approaches to treat breast cancer have been carried out extensively over the last decades. Although immune checkpoint inhibitors are showing promising preclinical and clinical results in treating breast cancer, they are facing multiple limitations. From an immunological perspective, a recent report highlighted breast cancer as an "inflamed tumor" with an immunosuppressive microenvironment. Consequently, researchers have been focusing on identifying novel immunological targets that can tune up the tumor immune microenvironment. In this context, several novel non-classical immune targets have been targeted to determine their ability to uncouple immunoregulatory pathways at play in the tumor microenvironment. This article will highlight strategies designed to increase the immunogenicity of the breast tumor microenvironment. It also addresses the latest studies on targets which can enhance immune responses to breast cancer and discusses examples of preclinical and clinical trial landscapes that utilize these targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Isobel S. Okoye
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
46
|
Zhou C, Zhang Y, Yan R, Huang L, Mellor AL, Yang Y, Chen X, Wei W, Wu X, Yu L, Liang L, Zhang D, Wu S, Wang W. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ 2021; 28:715-729. [PMID: 32929219 PMCID: PMC7862304 DOI: 10.1038/s41418-020-00618-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical response to immunotherapy is closely associated with the immunosuppressive tumour microenvironment (TME), and influenced by the dynamic interaction between tumour cells and lymphatic endothelial cells (LECs). Here, we show that high levels of miR-142-5p positively correlate with indoleamine 2,3-dioxygenase (IDO) expression in tumour-associated lymphatic vessels in advanced cervical squamous cell carcinoma (CSCC). The miR-142-5p is transferred by CSCC-secreted exosomes into LECs to exhaust CD8+ T cells via the up-regulation of lymphatic IDO expression, which was abrogated by an IDO inhibitor. Mechanistically, miR-142-5p directly down-regulates lymphatic AT-rich interactive domain-containing protein 2 (ARID2) expression, inhibits DNA methyltransferase 1 (DNMT1) recruitment to interferon (IFN)-γ promoter, and enhances IFN-γ transcription by suppressing promoter methylation, thereby leading to elevated IDO activity. Furthermore, increased serum exosomal miR-142-5p levels and the consequent IDO activity positively correlate with CSCC progression. In conclusion, exosomes secreted by CSCC cells deliver miR-142-5p to LECs and induce IDO expression via ARID2-DNMT1-IFN-γ signalling to suppress and exhaust CD8+ T cells. Our study suggests that LECs act as an integral component of the immune checkpoint(s) in the TME and may serve as a potential new target for CSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yanmei Zhang
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruiming Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Andrew L Mellor
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaojing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenfei Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiangguang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Luojiao Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Dan Zhang
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
47
|
Ala M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 2021; 896:173921. [PMID: 33529725 DOI: 10.1016/j.ejphar.2021.173921] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Treatment of cancers has always been a challenge for physicians. Typically, several groups of anti-cancer medications are needed for effective management of an invasive and metastatic cancer. Recently, therapeutic potentiation of immune system markedly improved treatment of cancers. Kynurenine pathway has an interwoven correlation with immune system. Kynurenine promotes T Reg (regulatory) differentiation, which leads to increased production of anti-inflammatory cytokines and suppression of cytotoxic activity of T cells. Overactivation of kynurenine pathway in cancers provides an immunologically susceptible microenvironment for mutant cells to survive and invade surrounding tissues. Interestingly, kynurenine pathway vigorously interacts with other molecular pathways involved in tumorigenesis. For instance, kynurenine pathway interacts with phospoinosisitide-3 kinase (PI3K), extracellular signal-regulated kinase (ERK), Wnt/β-catenin, P53, bridging integrator 1 (BIN-1), cyclooxygenase 2 (COX-2), cyclin-dependent kinase (CDK) and collagen type XII α1 chain (COL12A1). Overactivation of kynurenine pathway, particularly overactivation of indoleamine 2,3-dioxygenase (IDO) predicts poor prognosis of several cancers such as gastrointestinal cancers, gynecological cancers, hematologic malignancies, breast cancer, lung cancer, glioma, melanoma, prostate cancer and pancreatic cancer. Furthermore, kynurenine increases the invasion, metastasis and chemoresistance of cancer cells. Recently, IDO inhibitors entered clinical trials and successfully passed their safety tests and showed promising therapeutic efficacy for cancers such as melanoma, brain cancer, renal cell carcinoma, prostate cancer and pancreatic cancer. However, a phase III trial of epacadostat, an IDO inhibitor, could not increase the efficacy of treatment with pembrolizumab for melanoma. In this review the expanding knowledge towards kynurenine pathway and its application in each cancer is discussed separately.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
48
|
Grobben Y, de Man J, van Doornmalen AM, Muller M, Willemsen-Seegers N, Vu-Pham D, Mulder WR, Prinsen MBW, de Wit J, Sterrenburg JG, van Cauter F, den Ouden JE, van Altena AM, Massuger LF, Uitdehaag JCM, Buijsman RC, Zaman GJR. Targeting Indoleamine 2,3-Dioxygenase in Cancer Models Using the Novel Small Molecule Inhibitor NTRC 3883-0. Front Immunol 2021; 11:609490. [PMID: 33584686 PMCID: PMC7876453 DOI: 10.3389/fimmu.2020.609490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO1) is a key regulator of immune suppression by catalyzing the oxidation of L-tryptophan. IDO1 expression has been related to poor prognosis in several cancers and to resistance to checkpoint immunotherapies. We describe the characterization of a novel small molecule IDO1 inhibitor, NTRC 3883-0, in a panel of biochemical and cell-based assays, and various cancer models. NTRC 3883-0 released the inhibitory effect of IDO1 on CD8-positive T cell proliferation in co-cultures of IDO1-overexpressing cells with healthy donor lymphocytes, demonstrating its immune modulatory activity. In a syngeneic mouse model using IDO1-overexpressing B16F10 melanoma cells, NTRC 3883-0 effectively counteracted the IDO1-induced modulation of L-tryptophan and L-kynurenine levels, demonstrating its in vivo target modulation. Finally, we studied the expression and activity of IDO1 in primary cell cultures established from the malignant ascites of ovarian cancer patients. In these cultures, IDO1 expression was induced upon stimulation with IFNγ, and its activity could be inhibited by NTRC 3883-0. Based on these results, we propose the use of ascites cell-based functional assays for future patient stratification. Our results are discussed in light of the recent discontinuation of clinical trials of more advanced IDO1 inhibitors and the reconsideration of IDO1 as a valid drug target.
Collapse
Affiliation(s)
- Yvonne Grobben
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Michelle Muller
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Diep Vu-Pham
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | | | - Joeri de Wit
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Freek van Cauter
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Judith E. den Ouden
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anne M. van Altena
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
49
|
Ebokaiwe AP, Njoya EM, Sheng Y, Zhang Z, Li S, Zhou Z, Qiang Z, Peng T, Hussein AA, Zhang G, Lu X, Li L, Wang F. Salinomycin promotes T-cell proliferation by inhibiting the expression and enzymatic activity of immunosuppressive indoleamine-2,3-dioxygenase in human breast cancer cells. Toxicol Appl Pharmacol 2020; 404:115203. [PMID: 32822738 DOI: 10.1016/j.taap.2020.115203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/25/2023]
Abstract
Indoleamine 2,3 dioxygenase (IDO) is upregulated in many tumor types, including breast cancer, and plays a reputable role in promoting tumor immune tolerance. The importance of the immunosuppressive mechanism of IDO by suppressing T-cell function has garnered profound interest in the development of clinical IDO inhibitors. Herein, we established a screening method with cervical HeLa cells to induce IDO expression using interferon-γ (IFN-γ). After screening our chemical library, we found that salinomycin potently inhibited IFN-γ-stimulated kynurenine synthesis with IC50 values of 3.36-4.66 μM in both human cervical and breast cancer cells. Salinomycin lowered the IDO1 and IDO2 expression with no impact on the expression of tryptophan-2,3-dioxygenase. Interestingly, salinomycin potently repressed the IDO1 enzymatic activity by directly targeting the proteins in cells. Molecular docking revealed an alignment that favors nucleophilic attack of salinomycin in the catalytic domain of IDO1. Activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway by IFN-γ was significantly suppressed by salinomycin, via inhibiting the Jak1, Jak2, and STAT1/3 phosphorylation. Moreover, it inhibited IFN-γ-induced activation of the nuclear factor (NF)-κB pathway by inhibiting IκB degradation and NF-κB phosphorylation without affecting BIN1 expression. Furthermore, salinomycin significantly restored the proliferation of T cells co-cultured with IFN-γ-treated breast cancer cells and potentiated antitumor activity of cisplatin in vivo. These findings suggest that salinomycin suppresses kynurenine synthesis by inhibiting the catalytic activity of IDO1 and its expression by inhibiting the JAK/STAT and NF-κB pathways. Salinomycin warrants further investigation as a novel dual-functional IDO inhibitor for cancer immunotherapy.
Collapse
Affiliation(s)
- Azubuike Peter Ebokaiwe
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University Ndufu Alike-, Ikwo, Nigeria
| | - Emmanuel Mfotie Njoya
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O Box 812, Yaoundé, Cameroon
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhonghui Zhang
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhe Qiang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Bellville 7537, Western Cape, South Africa
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lin Li
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
50
|
Kaboli PJ, Zhang L, Xiang S, Shen J, Li M, Zhao Y, Wu X, Zhao Q, Zhang H, Lin L, Yin J, Wu Y, Wan L, Yi T, Li X, Cho CH, Li J, Xiao Z, Wen Q. Molecular Markers of Regulatory T Cells in Cancer Immunotherapy with Special Focus on Acute Myeloid Leukemia (AML) - A Systematic Review. Curr Med Chem 2020; 27:4673-4698. [PMID: 31584362 DOI: 10.2174/0929867326666191004164041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
The next-generation immunotherapy can only be effective if researchers have an in-depth understanding of the function and regulation of Treg cells in antitumor immunity combined with the discovery of new immunity targets. This can enhance clinical efficacy of future and novel therapies and reduces any adverse reactions arising from the latter. This review discusses tumor treatment strategies using regulatory T (Treg) cell therapy in a Tumor Microenvironment (TME). It also discusses factors affecting TME instability as well as relevant treatments to prevent future immune disorders. It is prognosticated that PD-1 inhibitors are risky and their adverse effects should be taken into account when they are administered to treat Acute Myeloid Leukemia (AML), lung adenocarcinoma, and prostate adenocarcinoma. In contrast, Treg molecular markers FoxP3 and CD25 analyzed here have stronger expression in almost all kinds of cancers compared with normal people. However, CD25 inhibitors are more effective compared to FoxP3 inhibitors, especially in combination with TGF-β blockade, in predicting patient survival. According to the data obtained from the Cancer Genome Atlas, we then concentrate on AML immunotherapy and discuss different therapeutic strategies including anti-CD25/IL-2, anti-CTLA-4, anti-IDO, antityrosine kinase receptor, and anti-PI3K therapies and highlight the recent advances and clinical achievements in AML immunotherapy. In order to prognosticate the risk and adverse effects of key target inhibitors (namely against CTLA-4, FoxP3, CD25, and PD-1), we finally analyzed and compared the Cancer Genome Atlas derived from ten common cancers. This review shows that Treg cells are strongly increased in AML and the comparative review of key markers shows that Tregbased immunotherapy is not effective for all kinds of cancer. Therefore, blocking CD25(+)FoxP3(+) Treg cells is suggested in AML more than other kinds of cancer; meanwhile, Treg markers studied in other cancers have also great lessons for AML immunotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lin Wan
- Department of Hematology and Oncology, The Children's Hospital of Soochow, Jiangsu, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|