1
|
Schoultz I, Claesson MJ, Dominguez‐Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025; 297:560-583. [PMID: 40270478 PMCID: PMC12087861 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical SciencesFaculty of Medicine and Health Örebro UniversityOrebroSweden
| | | | - Maria Gloria Dominguez‐Bello
- Department of Biochemistry & Microbiology and of AnthropologyRutgers University–New BrunswickNew BrunswickNew JerseyUSA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic SaalfeldTeaching Hospital of the University JenaJenaGermany
| | - Katri Korpela
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - H. Roager
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
2
|
Carrera Silva EA, Puyssegur J, Errasti AE. Coevolutionary interplay: Helminths-trained immunity and its impact on the rise of inflammatory diseases. eLife 2025; 14:e105393. [PMID: 40231720 PMCID: PMC12002795 DOI: 10.7554/elife.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial role in human health. A disruption in this evolutive balance, particularly during early life, can lead to immune dysregulation and inflammatory disorders. 'Biome repletion' has emerged as a potential therapeutic approach, introducing live microbes or helminth-derived products to restore immune balance. While helminth therapy has shown some promise, significant challenges remain in optimizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the optimal timing and dosage of their products or metabolites must be carefully considered to train the immune system effectively. We aim to discuss how helminths and their products induce trained immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial for their translation into clinical applications. By deciphering and harnessing helminth-derived products' diverse modes of action, we can unleash their full therapeutic potential and pave the way for innovative treatments.
Collapse
Affiliation(s)
- Eugenio Antonio Carrera Silva
- EACS and JP Institute of Experimental Medicine, National Scientific and Technical Research Council, National Academy of Medicine (IMEX-CONICET-ANM)Buenos AiresArgentina
| | - Juliana Puyssegur
- EACS and JP Institute of Experimental Medicine, National Scientific and Technical Research Council, National Academy of Medicine (IMEX-CONICET-ANM)Buenos AiresArgentina
| | - Andrea Emilse Errasti
- AEE Institute of Pharmacology, School of Medicine, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
3
|
Flores C, Millard S, Seekatz AM. Bridging Ecology and Microbiomes: Applying Ecological Theories in Host-associated Microbial Ecosystems. CURRENT CLINICAL MICROBIOLOGY REPORTS 2025; 12:9. [PMID: 40248762 PMCID: PMC12000275 DOI: 10.1007/s40588-025-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
Purpose of Review This review explores the application of classical ecological theory to host-associated microbiomes during initial colonization, maintenance, and recovery. We discuss unique challenges of applying these theories to host-associated microbiomes and host factors to consider going forward. Recent Findings Recent studies applying community ecology principles to host microbiomes continue to demonstrate a role for both selective and stochastic processes in shaping host-associated microbiomes. However, ecological frameworks developed to describe dynamics during homeostasis do not necessarily apply during diseased or highly perturbed states, where large variations can potentially lead to alternate stable states. Summary Despite providing valuable insights, the application of ecological theories to host-associated microbiomes has some unique challenges. The integration of host-specific factors, such as genotype or immune dynamics in ecological models or frameworks is crucial for understanding host microbiome assembly and stability, which could improve our ability to predict microbiome outcomes and improve host health.
Collapse
Affiliation(s)
- Clara Flores
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| | - Sophie Millard
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Life Sciences Building 157 A, 190 Collings St, Clemson, SC 29634 USA
| |
Collapse
|
4
|
Ito K, Islam J, Sakurai K, Koyama S, Matsuo A, Okano K, Hirakawa R, Furukawa M, Nochi T. Breast milk stabilizes bacterial communities in the large intestine even after weaning. Biochem Biophys Res Commun 2025; 756:151585. [PMID: 40068432 DOI: 10.1016/j.bbrc.2025.151585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The development and maintenance of a balanced microbiota is crucial for human health. Milk contains immune factors that not only protect offspring from infectious diseases but also play an important role in promoting the development and maintenance of the microbiota. However, the persisting effects of milk-derived immune factors on the maintenance of the microbiota after weaning have not been carefully examined. In this study, a cross-fostering model was employed using immunocompetent (IC) and immunodeficient (ID) mice in which one-half of the pups born from two dams were replaced. As a result, breast milk from the IC dam (IC milk) affected the development of the microbiota during lactation and maintained it even after weaning in the large intestine of the ID pups. The large intestinal microbiota of ID pups raised on IC milk remained similar to that of normal IC pups. Under normal conditions, the genus Mucispirillum was closely associated with other bacteria, forming a diverse bacterial community in the large intestine. In the small intestine, there were no differences in the microbiota before weaning, regardless of whether IC or ID milk was consumed. By contrast, significant differences were observed in the small intestinal microbiota between IC and ID mice after weaning; however, this was dependent on the immune-related characteristics of offspring (rather than milk-derived immune factors). These results indicate that breast milk plays an important role in the large (not small) intestine of offspring to create and maintain a diverse microbiota with a balanced bacterial network even after weaning.
Collapse
Affiliation(s)
- Kaori Ito
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Jahidul Islam
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Kota Sakurai
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Saeka Koyama
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Graduate Program in Food Science, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | | | - Kunihiro Okano
- GENODAS Co., Ltd. Miyagi, 980-8572, Japan; Department of Biological Environment, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Ryota Hirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Mutsumi Furukawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Graduate Program in Food Science, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Laboratory of Animal Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Miyagi, 980-8572, Japan; Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Animal Bioscience, University of Guelph, Ontario, N1G 2W1, Canada; Center for Professional Development, Institute for Excellence in Higher Education, Tohoku University, Miyagi, 980-8576, Japan.
| |
Collapse
|
5
|
Amato KR, Back JP, Sardaro MLS, Bicca‐Marques JC. Supplementation With Human Foods Affects the Gut Microbiota of Wild Howler Monkeys. Am J Primatol 2025; 87:e70029. [PMID: 40159691 PMCID: PMC11955745 DOI: 10.1002/ajp.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025]
Abstract
Wild primates face a wide range of anthropogenic influences globally that impact their health, fitness, and survival. One area of potential impact that has been particularly understudied is the supplementation of wild primate diets with human foods. Although the consumption of human foods represents a substantial dietary change for wild primates, knowledge of how it impacts their physiology and behavior is limited. Here we explore how human food supplementation impacts wild primates by comparing the gut microbiomes of free-ranging brown howler monkeys (Alouatta guariba) in periurban Brazil that do or do not have access to human foods. We found that howler monkeys consuming human foods had reduced gut microbial diversity and reduced relative abundances of fiber degrading microbial taxa, which has been associated with negative health consequences in other animals, including humans. However, the effect size of these differences was relatively small and varied over time. Additionally, the composition of the gut microbiome varied significantly across months, regardless of the access to human foods. We suggest that the biology of this howler monkey population is minimally impacted by human foods. Further empirical research will help clarify the relationship between human food supplementation and health across primate populations, facilitating conservation applications.
Collapse
Affiliation(s)
| | - Janaína P. Back
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
| | - Maria Luisa Savo Sardaro
- Department of AnthropologyNorthwestern UniversityEvanstonIllinoisUSA
- Department of Human Science and Promotion of the Quality of LifeUniversity of San RaffaeleRomeItaly
| | - Júlio César Bicca‐Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
6
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
7
|
Seifert A, Ingram K, Eko EN, Nunziato J, Ahrens M, Howell BR. Impact of maternal obesity and mode of delivery on the newborn skin and oral microbiomes. J Med Microbiol 2025; 74. [PMID: 40208663 DOI: 10.1099/jmm.0.002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Introduction. Previous studies have shown vast differences in the skin and oral microbiomes of newborns based on delivery method [Caesarean section (C-section) vs vaginal]. Exposure to or absence of certain bacteria during delivery can impact the neonate's future susceptibility to infections, allergies or autoimmunity by altering immune functions. Few studies have focused on the impact of maternal obesity on the variations of newborn skin and oral microbiomes. Obese pregnant women typically have a higher vaginal microbiome diversity, and their pregnancies are at higher risk for adverse outcomes and complications.Hypothesis. We hypothesized that the skin and oral microbiomes of newborns born to obese mothers would include more diverse, potentially pathogenic bacteria and that the skin and oral microbiome in C-section delivered newborns would be less diverse than vaginally delivered newborns.Aim. We aim to begin to establish maternal obesity and mode of delivery as factors contributing to increased risk for negative newborn outcomes through impacts on newborn bacterial dysbiosis.Methodology. A skin swab was collected immediately following delivery of 39 newborns from 13 healthy weight body mass index (BMI 18.50-24.99), 11 overweight (BMI 25.0-29.99) and 15 obese (BMI ≥30.00) pregnant participants. An oral swab was collected immediately following delivery for 38 of these newborns from 13 healthy weight, 10 overweight and 15 obese pregnant participants. Bacterial genera were identified via 16S rRNA amplicon sequencing.Results. The newborn skin microbiome was comprised of typical skin bacteria (i.e. Corynebacterium). Newborns of obese participants had a higher relative abundance of Peptoniphilus in their skin microbiome compared to newborns of healthy weight participants (P=0.007). Neonates born via C-section had a higher relative abundance of Ureaplasma in their oral microbiome compared to neonates delivered vaginally (P=0.046).Conclusion. We identified differences in the newborn skin and oral microbiomes based on pre-pregnancy BMI and method of delivery. These differences could be linked to an increased risk of allergies, autoimmune disease and infections. Future longitudinal studies will be crucial in determining the long-term impact of these specific genera on newborn outcomes. Understanding these connections could lead to targeted interventions that reduce the risk of adverse outcomes and improve overall health trajectory.
Collapse
Affiliation(s)
| | - Kelly Ingram
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Jaclyn Nunziato
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
- Carilion Clinic, Roanoke, VA, USA
| | - Monica Ahrens
- Department of Statistics at Virginia Tech, Blacksburg, VA, USA
| | - Brittany R Howell
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
8
|
Kilama J, Dahlen CR, Abbasi M, Shi X, Nagaraja TG, Crouse MS, Cushman RA, Snider AP, McCarthy KL, Caton JS, Amat S. Characterizing the prevalence of Fusobacterium necrophorum subsp. necrophorum, Fusobacterium necrophorum subsp. funduliforme, and Fusobacterium varium in bovine and ovine semen, bovine gut, and vagino-uterine and fetal microbiota using targeted culturing and qPCR. Microbiol Spectr 2025; 13:e0314524. [PMID: 40126218 PMCID: PMC12054004 DOI: 10.1128/spectrum.03145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Fusobacterium necrophorum is an important pathogen associated with several infectious diseases in cattle. However, recent sequencing-based studies reported that F. necrophorum may be positively associated with pregnancy in beef cows and that Fusobacterium is highly abundant in bull seminal microbiota with potential involvement in reproductive health and fertility. Here, we performed a comprehensive screening to (i) determine the prevalence of Fusobacterium necrophorum (subspecies necrophorum [FNN] and funduliforme [FNF]) and Fusobacterium varium (FV) in the reproductive microbiota of cattle and sheep as well as bovine digestive tract ecosystems, and (ii) explore whether these Fusobacterium spp. colonize calf prenatally. For this, we screened 11 different sample types including bovine and ram semen, bovine vaginal and uterine swabs, and bull fecal samples, as well as samples from 180- and 260-day-old calf fetuses and their respective dams using both quantitative PCR (qPCR; 514 samples) and targeted culturing (499 samples). By qPCR, all the targeted Fusobacterium spp. were detected across all sample types with varying prevalence rates and viability. FNF was highly prevalent in the bull semen (66.7%) and maternal ruminal fluids (87.1%), and its viability was confirmed through culturing. All the targeted Fusobacterium spp. were identified in vaginal and uterine swab samples (3.1%-9.4%), caruncles, fetal fluids, rumen, and meconium samples (2.7%-26.3%) by qPCR but were not isolated by culture method. Overall, our results, for the first time, suggest that F. necrophorum is a commensal member of healthy male reproductive microbiota, and that FNF, FNN, and FV are present in bovine vagino-uterine microbiota and calf intestine prenatally.IMPORTANCERecent sequencing-based studies suggest that Fusobacterium, including F. necrophorum, a known primary etiological agent for several important infectious diseases in cattle, may be non-pathogenic members of the reproductive microbiota with pro-fertility effects. However, further information regarding the absolute abundance, viability, and higher taxonomic resolution of the Fusobacterium species and subspecies which cannot be achievable by the amplicon sequencing approach is needed to confirm the commensal and non-pathogenic status of the Fusobacterium spp. in cattle. Here, we performed a comprehensive screening of F. necrophorum subspecies necrophorum, F. necrophorum subspecies funduliforme, and Fusobacterium varium from over 500 samples from 11 different sample types using targeted culturing and qPCR. Overall, our results provide novel insights into the prevalence and viability of Fusobacterium spp. in bovine male and female reproductive tracts and their presence in calf fetuses, which will serve as the basis for further research into understanding the role of Fusobacterium in cattle fertility.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Mina Abbasi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - T. G. Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Matthew S. Crouse
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Robert A. Cushman
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Alexandria P. Snider
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kacie L. McCarthy
- Department of Animal Sciences, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, North Dakota, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
9
|
Johnson MJ, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut microbiota and other factors associated with increased T cell regulation in HIV-exposed uninfected infants. Front Immunol 2025; 16:1533003. [PMID: 40098966 PMCID: PMC11911520 DOI: 10.3389/fimmu.2025.1533003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Infants exposed to HIV and uninfected (HEUs) are at higher risk of infectious morbidity than HIV-unexposed uninfected infants (HUUs). Multiple immune defects of unknown origin were observed in HEUs. We hypothesized that HEUs have more regulatory and inhibitory checkpoint-expressing T cells (Treg, Tici) than HUUs, which may dampen their immune defenses against pathogens. Method We used flow cytometry to measure 25 Treg/Tici subsets in HEUs and HUUs at birth, 6, 28, and 62 weeks of life. We used maternal and infant gut microbiome data reported in a previous study to establish correlations with the Treg/Tici. Results At birth, 3 Treg subsets, including the prototypic CD4+FOXP3+ and CD4+FOXP3+CD25+, had higher frequencies in 123 HEUs than in 117 HUUs, and 3 subsets had higher frequencies in HUUs. At 28 and 62 weeks of age, 5 Treg/Tici subsets had higher proportions in HEUs than HUUs. The frequencies of the Treg/Tici subsets that diverged between HEUs and HUUs at birth correlated with differential relative abundances of bacterial taxa in the maternal gut microbiome. The Treg/Tici subsets with significantly different frequencies at subsequent visits correlated with the concurrent composition of the infant gut microbiome. In vitro, treatment of HUU peripheral blood mononuclear cells (PBMC) with bacterial taxa most abundant in HEUs expanded Treg/Tici subsets with higher frequencies in HEUs than HUUs, recapitulating the in vivo correlations. Conversely, in vitro treatment of HEU PBMC did not increase Treg/Tici frequencies. Other factors that correlated with increased Treg/Tici frequencies were low maternal CD4+ T cells in HEUs at birth and male sex in the HUUs at 28 weeks of life. Discussion This study shows that maternal and infant gut dysbiosis are central to the increase in Treg/Tici in HEUs and may be targeted by mitigating interventions.
Collapse
Affiliation(s)
- Michael J. Johnson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sarah K. Lazarus
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashlynn E. Bennett
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Tovar-Salazar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer M. Kofonow
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaobing Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bruce McCollister
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Marta C. Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Weinberg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Caesar R. The impact of novel probiotics isolated from the human gut on the gut microbiota and health. Diabetes Obes Metab 2025; 27 Suppl 1:3-14. [PMID: 39726216 PMCID: PMC11894790 DOI: 10.1111/dom.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The gut microbiota plays a pivotal role in influencing the metabolism and immune responses of the body. A balanced microbial composition promotes metabolic health through various mechanisms, including the production of beneficial metabolites, which help regulate inflammation and support immune functions. In contrast, imbalance in the gut microbiota, known as dysbiosis, can disrupt metabolic processes and increase the risk of developing diseases, such as obesity, type 2 diabetes, and inflammatory disorders. The composition of the gut microbiota is dynamic and can be influenced by environmental factors such as diet, medication, and the consumption of live bacteria. Since the early 1900s, bacteria isolated from food and have been used as probiotics. However, the human gut also offers an enormous reservoir of bacterial strains, and recent advances in microbiota research have led to the discovery of strains with probiotic potentials. These strains, derived from a broad spectrum of microbial taxa, differ in their ecological properties and how they interact with their hosts. For most probiotics bacterial structural components and metabolites, such as short-chain fatty acids, contribute to the maintenance of metabolic and immunological homeostasis by regulating inflammation and reinforcing gut barrier integrity. Metabolites produced by probiotic strains can also be used for bacterial cross-feeding to promote a balanced microbiota. Despite the challenges related to safety, stability, and strain-specific properties, several newly identified strains offer great potential for personalized probiotic interventions, allowing for targeted health strategies.
Collapse
Affiliation(s)
- Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
11
|
Pietrasanta C, Ronchi A, Carlosama C, Lizier M, Silvestri A, Fornasa G, Melacarne A, D'Ambrosi F, Lutterotti M, Carbone E, Cetin I, Fumagalli M, Ferrazzi E, Penna G, Mosca F, Pugni L, Rescigno M. Effect of prenatal antibiotics on breast milk and neonatal IgA and microbiome: a case-control translational study protocol. Pediatr Res 2025:10.1038/s41390-025-03922-4. [PMID: 39966546 DOI: 10.1038/s41390-025-03922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Up to 25-35% of women receive antibiotics (ABX) during pregnancy, but little is known about the consequences on a key mucosal interface such as the mammary gland, and on the development of the neonatal gut's microbiota and IgA. We hypothesize that prenatal ABX negatively affect the immune functionality of mammary gland, the composition of breast milk microbiota, the development of neonatal fecal microbiota and the abundance of neonatal fecal IgA. METHODS Case-control translational cohort study on women and neonates in the presence or absence (N = 41 + 41 pairs) of exposure to prenatal ABX for at least 7 consecutive days after 32 weeks of gestation. RESULTS We will evaluate IgA concentration in breast milk and in neonatal feces up to one year after delivery. We will also evaluate clinical parameters, neurodevelopment and the composition of the IgA-coated and uncoated fractions of breast milk and fecal microbiota by means of magnetic-activated cell sorting (MACS) coupled with shotgun metagenomics. Finally, we will measure the concentration of the chemokine CCL28 on maternal serum and breast milk, as a marker of activity of the entero-mammary pathway. CONCLUSIONS Our results might support a data-driven evaluation of breast milk immune function in women exposed to prenatal ABX. IMPACT Breast milk IgA and microbiota are critical to determine the positive effects of breastfeeding in infants. This research protocol will investigate breast milk IgA, microbiota, and the IgA+ / IgA- fractions of neonatal fecal microbiota upon exposure to prenatal antibiotics. Fecal IgA and microbiota in infants exposed or not exposed to prenatal antibiotics will be analyzed up to 1 year after birth. This research will clarify the impact of prenatal antibiotics on the immune function of breast milk. This, in turn, might support the selective evaluation of breast milk IgA/microbiota in mothers exposed to prenatal antibiotics, or in donor human milk.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy.
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Andrea Ronchi
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | - Francesco D'Ambrosi
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elisa Carbone
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Cetin
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Monica Fumagalli
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Enrico Ferrazzi
- Department of Woman, Child and Neonate, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Department of Excellence 2023-2027, University of Milan, Milan, Italy
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Pugni
- NICU Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
12
|
Tafrishi R, Ahanchian H, Jafari SA, Pahlevanloo A, Kianifar H, Kiani M, Moazzen N, sadeghi T, Sly PD. Development and clinical assessment of a novel probiotic candy in the prevention of respiratory infections in asthmatic children. World Allergy Organ J 2025; 18:101023. [PMID: 39906528 PMCID: PMC11791275 DOI: 10.1016/j.waojou.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 02/06/2025] Open
Abstract
Objective Asthma is the most common chronic disease among children. Upper respiratory infections are often the cause of asthma exacerbation. Studies suggested that spore-forming probiotics can reduce viral infections. This study aimed to determine the effect of spore-forming probiotic Bacillus candy on respiratory illnesses in asthmatic children. Methods & materials In this randomized trial, 69 children aged 7-11 years with mild intermittent asthma were randomized to receive probiotic candy (containing 1010 CFU probiotic Bacillus coagulans) or placebo candy, daily for 2 months. The primary outcome was the number of viral respiratory infections. Secondary outcomes included salbutamol metered-dose inhaler (MDI) use, oral corticosteroids, school absenteeism, emergency department visits and hospitalizations, and Pediatric Asthma Control Questionnaire (c-ACT). Results The frequency of symptomatic respiratory illnesses was significantly lower in the probiotic candy group compared to placebo in the first month (0.28 ± 0.45 vs. 0.51 ± 0.50, p = 0.054), the second month (0.08 ± 0.28 vs. 0.41 ± 0.49, p = 0.001) and the total study (0.37 ± 0.54 vs. 0.90 ± 0.73, 0.001). The percent of patients with prednisolone consumption in the probiotic group was lower than the control group (2.9% vs. 14.7%) but did not show a significant difference (p = 0.081) and no difference was seen in the rate of emergency department visits and hospitalization between the 2 groups (both p = 0.254). The use of salbutamol and school absenteeism in the probiotic group was significantly lower than in the control group (p = 0.040 and p = 0.046, respectively. There was no significant difference in the evaluated scores for asthma control (c-ACT) in both probiotic and placebo groups. After the intervention, the difference between the 2 groups has become significant (p < 0.05). Conclusion Adding spore-forming probiotic candy containing Bacillus coagulans to standard asthma treatments reduced symptomatic respiratory illnesses over two months. Further studies including longer treatment periods are needed before making recommendations for routine use.
Collapse
Affiliation(s)
- Rana Tafrishi
- Department of Allergy and Immunology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Ahanchian
- Child Health Research Centre, University of Queensland, South Brisbane, Australia
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed ali Jafari
- Pediatrics Gastroenterology Department, Akbar Children Hospital, Mashhad University of Medical Sciences, Iran
| | - Abolfazl Pahlevanloo
- Food Biotechnology, Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Hamidreza Kianifar
- Pediatrics Gastroenterology Department, Akbar Children Hospital, Mashhad University of Medical Sciences, Iran
| | - Mohammadali Kiani
- Pediatrics Gastroenterology Department, Akbar Children Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Moazzen
- Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Akbar Children Hospital, Mashhad University of Medical Sciences, Iran
| | - Tahereh sadeghi
- Nursing and Midwifery Care Research Center, Akbar Children Hospital, Mashhad University of Medical Sciences, Iran
| | - Peter D. Sly
- Child Health Research Centre, University of Queensland, South Brisbane, Australia
| |
Collapse
|
13
|
Stephen-Victor E, Kuziel GA, Martinez-Blanco M, Jugder BE, Benamar M, Wang Z, Chen Q, Lozano GL, Abdel-Gadir A, Cui Y, Fong J, Saint-Denis E, Chang I, Nadeau KC, Phipatanakul W, Zhang A, Farraj FA, Holder-Niles F, Zeve D, Breault DT, Schmitz-Abe K, Rachid R, Crestani E, Rakoff-Nahoum S, Chatila TA. RELMβ sets the threshold for microbiome-dependent oral tolerance. Nature 2025; 638:760-768. [PMID: 39843735 PMCID: PMC11996044 DOI: 10.1038/s41586-024-08440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
Tolerance to dietary antigens is critical for avoiding deleterious type 2 immune responses resulting in food allergy (FA) and anaphylaxis1,2. However, the mechanisms resulting in both the maintenance and failure of tolerance to food antigens are poorly understood. Here we demonstrate that the goblet-cell-derived resistin-like molecule β (RELMβ)3,4 is a critical regulator of oral tolerance. RELMβ is abundant in the sera of both patients with FA and mouse models of FA. Deletion of RELMβ protects mice from FA and the development of food-antigen-specific IgE and anaphylaxis. RELMβ disrupts food tolerance through the modulation of the gut microbiome and depletion of indole-metabolite-producing Lactobacilli and Alistipes. Tolerance is maintained by the local production of indole derivatives driving FA protective RORγt+ regulatory T (Treg) cells5 through activation of the aryl hydrocarbon receptor. RELMβ antagonism in the peri-weaning period restores oral tolerance and protects genetically prone offspring from developing FA later in life. Together, we show that RELMβ mediates a gut immune-epithelial circuit regulating tolerance to food antigens-a novel mode of innate control of adaptive immunity through microbiome editing-and identify targetable candidates in this circuit for prevention and treatment of FA.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Gavin A Kuziel
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Bat-Erdene Jugder
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ziwei Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Gabriel L Lozano
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Azza Abdel-Gadir
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ye Cui
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Elisa Saint-Denis
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Iris Chang
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Angela Zhang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Farida Abi Farraj
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Faye Holder-Niles
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Daniel Zeve
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - David T Breault
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL, USA
| | - Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Seth Rakoff-Nahoum
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Zheng Y, Liu Y, Tian J, Liu S, Ma G, Xie Y, Zheng C, Wu Z. Ochratoxin A induces immunotoxicity by targeting Annexin A1 mediated neutrophil apoptosis in zebrafish. Front Immunol 2025; 16:1542964. [PMID: 39925799 PMCID: PMC11802535 DOI: 10.3389/fimmu.2025.1542964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Ochratoxin A (OTA) is a toxic secondary metabolite produced by Aspergillus and Penicillium species, posing a significant threat to global food safety. Previous studies have demonstrated the diverse toxic effects of OTA, including hepatotoxicity, nephrotoxicity, and carcinogenicity. However, limited understanding exists regarding its immunotoxicity and the underlying mechanisms, particularly in relation to innate immunity. Methods Zebrafish embryos were exposed to varying concentrations of OTA to assess its impact on embryonic development, innate immune cell formation, and immune response. Transcriptome sequencing analysis was performed to identify changes in gene expression. Additionally, the potential therapeutic effect of aesculetin was evaluated. Results Our results demonstrated that exposure to OTA inhibited embryonic development and induced malformations in a concentration-dependent manner. Additionally, OTA exposure led to a significant reduction in the number of neutrophils and macrophages, indicating compromised formation of innate immune cells. Furthermore, OTA exposure hampered the immune response during zebrafish fin regeneration, as evidenced by the diminished migration of neutrophils and macrophages to the wound area. Transcriptome sequencing analysis identified significant up-regulation of the anxa1a and anxa1d-mediated apoptosis signaling pathway in neutrophils following OTA treatment. Notably, administration of aesculetin, known for its anti-apoptosis activity, effectively attenuated the immunotoxic effects induced by OTA. Discussion These findings provide valuable insights into the immunotoxicity of OTA while highlight the potential therapeutic strategy using aesculetin for mitigating immune dysfunction caused by OTA.
Collapse
Affiliation(s)
- Yihong Zheng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yinuo Liu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jin Tian
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shuhong Liu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Gaowei Ma
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yupeng Xie
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chenhua Zheng
- Experiment Teaching Center of Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zekai Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Chen J, Song S, Li Y. Prevalence of neutropenia in the U.S. among reproductive-aged women: a population-based analysis of NHANES 2013-2020. BMC Public Health 2025; 25:181. [PMID: 39819597 PMCID: PMC11740553 DOI: 10.1186/s12889-025-21330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Infertility is one of the prominent public health concerns nationwide. Neutrophils, despite their established significance as vital players in both inflammatory and immune processes, have been studied scarcely in terms of their effect on female infertility. The present study aimed to determine the prevalence of neutropenia among women of reproductive age in the U.S. to contribute valuable insights to the broader context of reproductive health. METHODS The present study was designed as a cross-sectional investigation. The data of 5,250 female participants aged 18-45 years were obtained from the National Health and Nutrition Examination Survey (NHANES) conducted between the years 2013 and 2020. The representativeness of the population was ensured by conducting statistical assessments based on NHANES weights. A logistic regression model was established to assess the hematologic parameters across the distinct populations stratified according to age, ethnicity, smoking status, and infertility. Multivariate logistic regression was performed next, and weighted odds ratios along with the 95% confidence interval values were calculated, which assisted in predicting the prevalence of neutropenia among the female participants. RESULTS The data of a total of 5,250 female participants, representing a multiracial population of 51.17 million in the United States, were analyzed in the present study. Meanwhile, the estimated neutropenia incidence was 7.09% (95% CI: 6.16-8.01%), which indicated a prevalence among approximately 36.2 million U.S. citizens. In comparison to white subjects, black subjects exhibited a significantly lower average leukocyte count, with a mean difference (MD) of 1.16 × 109/L (P < 0.001), along with a lower neutrophil count (MD: 1.09 × 109/L; P < 0.001). It is noteworthy that a substantial decrease was noted in the distribution graphs of both neutrophil and leukocyte counts among the black subjects. Moreover, compared to non-smokers in the racial populations, including white, Mexican American, and black people, the smokers exhibited significantly elevated mean leukocyte count and mean neutrophil count. The logistic regression analysis indicated an elevated risk of neutropenia among black individuals and females with infertility. CONCLUSIONS Neutropenia appears to have a higher prevalence in the general population compared to that acknowledged previously. The findings of the present study indicated association between neutropenia and infertility. This highlighted the importance of directing increased attention toward neutropenia in the context of both research and clinical practice.
Collapse
Affiliation(s)
- Junfeng Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shuangna Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yiran Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
16
|
Jiang Q, Zhu X, Sun L, Xie C, Wang X, Ma L, Yan X. Akkermansia muciniphila Promotes SIgA Production and Alters the Reactivity Toward Commensal Bacteria in Early-Weaned Piglets. J Nutr 2025; 155:52-65. [PMID: 39528052 DOI: 10.1016/j.tjnut.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Secretory IgA (SIgA) is the first line of defense in protecting the intestinal epithelium against pathogenic bacteria, regulating gut microbiota composition, and maintaining intestinal homeostasis. Early weaning strategies may disrupt SIgA levels in piglet intestines, causing a decline in immune response and early weaning stress. However, the specific microbial mechanisms modulating SIgA in early-weaned piglets are not well understood. OBJECTIVES We hypothesized that Akkermansia muciniphila increases intestinal SIgA production in the early-weaned piglets. METHODS Fecal SIgA levels, SIgA-coated bacteria abundance, and fecal metagenomes were compared between 6 Huanjiang miniature (HM) and 6 Duroc×Landrace×Yorkshire (DLY) early-weaned piglets to identify bacterial species involved in SIgA modulation. Four bacterial species were investigated using 5 groups (Control, A. muciniphila, L. amylovorus, L. crispatus, and L. acidophilus) of male specific pathogen-free C57BL/6J mice, weaned 3 wk postbirth (n = 8/group). Subsequently, 10-d-old Landrace×Yorkshire (LY) piglets were randomly assigned to 3 groups (Control, 109A. muciniphila, and 108A. muciniphila) (n = 10/group) to evaluate the effect of orally administered A. muciniphila on intestinal SIgA production and microbial composition. RESULTS HM early-weaned piglets showed significantly higher SIgA levels [7.59 μg/mg, 95% confidence interval (CI): 3.2, 12, P = 0.002] and SIgA-coated bacteria abundance (8.64%, 95% CI: 3.2, 14, P = 0.014) than DLY piglets. In the mouse model, the administration of A. muciniphila significantly increased SIgA levels (3.50 μg/mg, 95% CI: 0.59, 6.4, P = 0.018), SIgA-coated bacteria abundance (9.06%, 95% CI: 4, 14, P = 0.018), and IgA+ plasma cell counts (6.1%, 95% CI: 4.3, 8, P = 0.005). In the pig experiments, the oral administration of A. muciniphila to LY piglets significantly enhanced intestinal SIgA concentrations (4.22 μg/mg, 95% CI: 0.37, 8.5, P = 0.034) and altered the SIgA-coated bacterial landscape. CONCLUSIONS Early intervention with A. muciniphila in nursing piglets can increases intestinal SIgA production and alter the reactivity toward commensal bacteria upon early weaning.
Collapse
Affiliation(s)
- Qin Jiang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China; Yazhouwan National Laboratory (YNL), Sanya, China
| | - Xiaoyan Zhu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingling Sun
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunlin Xie
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinkai Wang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Ma W, Yin L, Hu Y, Liu X, Guo Z, Zhong B, Qiu H, Li J. Multi-omics analysis reveals interactions between host and microbes in Bama miniature pigs during weaning. Front Microbiol 2024; 15:1482925. [PMID: 39723142 PMCID: PMC11668797 DOI: 10.3389/fmicb.2024.1482925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction There are complex interactions between host and gut microbes during weaning, many of the mechanisms are not yet fully understood. Previous research mainly focuses on commercial pigs, whereas limited information has been known about the host and gut microbe interactions in miniature pigs. Methods To address the issue in Bama miniature piglets that were weaned 30 days after birth, we collected samples on days 25 and 36 for metabolomics, transcriptomics, and microgenomics analysis. Results and discussion The average daily weight gain of piglets during weaning was only 58.1% and 40.6% of that during 0-25 days and 36-60 days. Metabolomic results identified 61 significantly different metabolites (SDMs), of which, the most significantly increased and decreased SDMs after weaning were ectoine and taurocholate, respectively, indicating the occurrence of inflammation. Metagenomic analysis identified 30 significantly different microbes before and after weaning. Bacteria related to decreasing intestinal inflammation, such as Megasphaera, Alistipes and Bifidobacterium, were enriched before weaning. While bacteria related to infection such as Chlamydia, Clostridium, Clostridioides, and Blautia were enriched after weaning. The carbohydrate enzymes CBM91, CBM13, GH51_1, and GH94 increase after weaning, which may contribute to the digestion of complex plant fibers. Furthermore, we found the composition of antibiotic resistance genes (ARGs) changed during weaning. Transcriptomic analysis identified 147 significantly differentially expressed genes (DEGs). The upregulated genes after weaning were enriched in immune response categories, whereas downregulated genes were enriched in protein degradation. Combining multi-omics data, we identified significant positive correlations between gene MZB1, genera Alistipes and metabolite stachydrine, which involve anti-inflammatory functions. The reduced abundance of bacteria Dialister after weaning had strong correlations with the decreased 2-AGPE metabolite and the downregulated expression of RHBDF1 gene. Altogether, the multi-omics study reflects dietary changes and gut inflammation during weaning, highlighting complex interactions between gut microbes, host genes and metabolites."
Collapse
Affiliation(s)
- Wen Ma
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Yin
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Ying Hu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenghong Guo
- Dossy Biological Engineering (Chongqing) Co., Ltd., Chongqing, China
| | - Bingyang Zhong
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Haofeng Qiu
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Jing Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Rühle J, Schwarz J, Dietz S, Rückle X, Schoppmeier U, Lajqi T, Poets CF, Gille C, Köstlin-Gille N. Impact of perinatal administration of probiotics on immune cell composition in neonatal mice. Pediatr Res 2024; 96:1645-1654. [PMID: 38278847 PMCID: PMC11772233 DOI: 10.1038/s41390-024-03029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Newborns and especially preterm infants are much more susceptible to infections than adults. The pathogens causing infections in newborns are often detectable in the intestinal flora of affected children even before disease onset. Therefore, it seems reasonable to prevent dysbiosis in newborns and preterm infants. An approach followed in many neonatal intensive care units (NICUs) is to prevent infections in preterm infants with probiotics however their mechanisms of action of probiotics are incompletely understood. Here, we investigated the effect of perinatal probiotic exposure on immune cells in newborn mice. METHODS Pregnant mice were orally treated with a combination of Lactobacillus acidophilus and Bifidobacterium bifidum (Infloran®) from mid-pregnancy until the offspring were harvested. Immune cell composition in organs of the offspring were analyzed by flow cytometry. RESULTS Perinatal probiotic exposure had profound effects on immune cell composition in the intestine, liver and lungs of newborn mice with reduction of myeloid and B cells and induction of T cells in the probiotic treated animals' organs at weaning. Furthermore, probiotic exposure had an effect on T cell development in the thymus. CONCLUSION Our results contribute to a better understanding of the interaction of probiotics with the developing immune system. IMPACT probiotics have profound effects on immune cell composition in intestines, livers and lungs of newborn mice. probiotics modulate T cell development in thymus of newborn mice. effects of probiotics on neonatal immune cells are particularly relevant in transition phases of the microbiome. our results contribute to a better understanding of the mechanisms of action of probiotics in newborns.
Collapse
Affiliation(s)
- Jessica Rühle
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Stefanie Dietz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Xenia Rückle
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Ulrich Schoppmeier
- Institute for Medical Microbiology and Hygiene, University Hospital Tuebingen, Tuebingen, Germany
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Christian F Poets
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany.
- Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany.
| |
Collapse
|
19
|
Fischer MT, Xue KS, Costello EK, Dvorak M, Raboisson G, Robaczewska A, Caty SN, Relman DA, O’Connell LA. Effects of parental care on skin microbial community composition in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612488. [PMID: 39314287 PMCID: PMC11419107 DOI: 10.1101/2024.09.11.612488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Parent-offspring interactions constitute the first contact of many newborns with their environment, priming community assembly of microbes through priority effects. Early exposure to microbes can have lasting influences on the assembly and functionality of the host's microbiota, leaving a life-long imprint on host health and disease. Studies of the role played by parental care in microbial acquisition have primarily focused on humans and hosts with agricultural relevance. Anuran vertebrates offer the opportunity to examine microbial community composition across life stages as a function of parental investment. In this study, we investigate vertical transmission of microbiota during parental care in a poison frog (Family Dendrobatidae), where fathers transport their offspring piggyback-style from terrestrial clutches to aquatic nurseries. We found that substantial bacterial colonization of the embryo begins after hatching from the vitelline envelope, emphasizing its potential role as microbial barrier during early development. Using a laboratory cross-foster experiment, we demonstrated that poison frogs performing tadpole transport serve as a source of skin microbes for tadpoles on their back. To study how transport impacts the microbial skin communities of tadpoles in an ecologically relevant setting, we sampled frogs and tadpoles of sympatric species that do or do not exhibit tadpole transport in their natural habitat. We found more diverse microbial communities associated with tadpoles of transporting species compared to a non-transporting frog. However, we detected no difference in the degree of similarity between adult and tadpole skin microbiotas, based on whether the frog species exhibits transporting behavior or not. Using a field experiment, we confirmed that tadpole transport can result in the persistent colonization of tadpoles by isolated microbial taxa associated with the caregiver's skin, albeit often at low prevalence. This is the first study to describe vertical transmission of skin microbes in anuran amphibians, showing that offspring transport may serve as a mechanism for transmission of parental skin microbes. Overall, these findings provide a foundation for further research on how vertical transmission in this order impacts host-associated microbiota and physiology.
Collapse
Affiliation(s)
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth K. Costello
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gaëlle Raboisson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anna Robaczewska
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Van Hul M, Cani PD, Petitfils C, De Vos WM, Tilg H, El-Omar EM. What defines a healthy gut microbiome? Gut 2024; 73:1893-1908. [PMID: 39322314 PMCID: PMC11503168 DOI: 10.1136/gutjnl-2024-333378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
The understanding that changes in microbiome composition can influence chronic human diseases and the efficiency of therapies has driven efforts to develop microbiota-centred therapies such as first and next generation probiotics, prebiotics and postbiotics, microbiota editing and faecal microbiota transplantation. Central to microbiome research is understanding how disease impacts microbiome composition and vice versa, yet there is a problematic issue with the term 'dysbiosis', which broadly links microbial imbalances to various chronic illnesses without precision or definition. Another significant issue in microbiome discussions is defining 'healthy individuals' to ascertain what characterises a healthy microbiome. This involves questioning who represents the healthiest segment of our population-whether it is those free from illnesses, athletes at peak performance, individuals living healthily through regular exercise and good nutrition or even elderly adults or centenarians who have been tested by time and achieved remarkable healthy longevity.This review advocates for delineating 'what defines a healthy microbiome?' by considering a broader range of factors related to human health and environmental influences on the microbiota. A healthy microbiome is undoubtedly linked to gut health. Nevertheless, it is very difficult to pinpoint a universally accepted definition of 'gut health' due to the complexities of measuring gut functionality besides the microbiota composition. We must take into account individual variabilities, the influence of diet, lifestyle, host and environmental factors. Moreover, the challenge in distinguishing causation from correlation between gut microbiome and overall health is presented.The review also highlights the resource-heavy nature of comprehensive gut health assessments, which hinders their practicality and broad application. Finally, we call for continued research and a nuanced approach to better understand the intricate and evolving concept of gut health, emphasising the need for more precise and inclusive definitions and methodologies in studying the microbiome.
Collapse
Affiliation(s)
- Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Camille Petitfils
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute, Wavre, Belgium
| | - Willem M De Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
21
|
Verhasselt V, Marchant A, Kollmann TR. Per Os to Protection - Targeting the Oral Route to Enhance Immune-mediated Protection from Disease of the Human Newborn. J Mol Biol 2024; 436:168718. [PMID: 39094783 DOI: 10.1016/j.jmb.2024.168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine, University of Western Australia, Perth, WA, Australia; Immunology and Breastfeeding Team, Telethon Kids Institute, Perth, WA, Australia
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Tobias R Kollmann
- Dalhousie University, Department of Microbiology & Immunology, Pediatric Infectious Diseases, Canada.
| |
Collapse
|
22
|
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling. Foods 2024; 13:3102. [PMID: 39410136 PMCID: PMC11476385 DOI: 10.3390/foods13193102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring's acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function.
Collapse
Affiliation(s)
- Dorsilla A. Katimbwa
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
23
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Ashby KM, Vobořil M, Salgado OC, Lee ST, Martinez RJ, O’Connor CH, Breed ER, Xuan S, Roll CR, Bachigari S, Heiland H, Stetson DB, Kotenko SV, Hogquist KA. Sterile production of interferons in the thymus affects T cell repertoire selection. Sci Immunol 2024; 9:eadp1139. [PMID: 39058762 PMCID: PMC12052003 DOI: 10.1126/sciimmunol.adp1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.
Collapse
Affiliation(s)
- K. Maude Ashby
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Matouš Vobořil
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Oscar C. Salgado
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - S. Thera Lee
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan J. Martinez
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Christine H. O’Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN 55455, USA
| | - Elise R. Breed
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Shuya Xuan
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Charles R. Roll
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Saumith Bachigari
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hattie Heiland
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel B. Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sergei V. Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kristin A. Hogquist
- Center for Immunology, Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Strunk T, Molloy EJ, Mishra A, Bhutta ZA. Neonatal bacterial sepsis. Lancet 2024; 404:277-293. [PMID: 38944044 DOI: 10.1016/s0140-6736(24)00495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 07/01/2024]
Abstract
Neonatal sepsis remains one of the key challenges of neonatal medicine, and together with preterm birth, causes almost 50% of all deaths globally for children younger than 5 years. Compared with advances achieved for other serious neonatal and early childhood conditions globally, progress in reducing neonatal sepsis has been much slower, especially in low-resource settings that have the highest burden of neonatal sepsis morbidity and mortality. By contrast to sepsis in older patients, there is no universally accepted neonatal sepsis definition. This poses substantial challenges in clinical practice, research, and health-care management, and has direct practical implications, such as diagnostic inconsistency, heterogeneous data collection and surveillance, and inappropriate treatment, health-resource allocation, and education. As the clinical manifestation of neonatal sepsis is frequently non-specific and the current diagnostic standard blood culture has performance limitations, new improved diagnostic techniques are required to guide appropriate and warranted antimicrobial treatment. Although antimicrobial therapy and supportive care continue as principal components of neonatal sepsis therapy, refining basic neonatal care to prevent sepsis through education and quality improvement initiatives remains paramount.
Collapse
Affiliation(s)
- Tobias Strunk
- Neonatal Directorate, King Edward Memorial Hospital, Child and Adolescent Health Service, Perth, WA, Australia; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, University of Dublin and Trinity Research in Childhood Centre, Dublin, Ireland; Children's Health Hospital at Tallaght, Tallaght University Hospital, Dublin, Ireland; Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland; Neonatology, Children's Health Hospital at Crumlin, Dublin, Ireland; Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland
| | - Archita Mishra
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada; Institute for Global Health and Development, The Aga Khan University South-Central Asia, Karachi, Pakistan
| |
Collapse
|
26
|
Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, García-Marcos L, Ros G, Martínez-Graciá C. The Early Appearance of Asthma and Its Relationship with Gut Microbiota: A Narrative Review. Microorganisms 2024; 12:1471. [PMID: 39065238 PMCID: PMC11278858 DOI: 10.3390/microorganisms12071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is, worldwide, the most frequent non-communicable disease affecting both children and adults, with high morbidity and relatively low mortality, compared to other chronic diseases. In recent decades, the prevalence of asthma has increased in the pediatric population, and, in general, the risk of developing asthma and asthma-like symptoms is higher in children during the first years of life. The "gut-lung axis" concept explains how the gut microbiota influences lung immune function, acting both directly, by stimulating the innate immune system, and indirectly, through the metabolites it generates. Thus, the process of intestinal microbial colonization of the newborn is crucial for his/her future health, and the alterations that might generate dysbiosis during the first 100 days of life are most influential in promoting hypersensitivity diseases. That is why this period is termed the "critical window". This paper reviews the published evidence on the numerous factors that can act by modifying the profile of the intestinal microbiota of the infant, thereby promoting or inhibiting the risk of asthma later in life. The following factors are specifically addressed in depth here: diet during pregnancy, maternal adherence to a Mediterranean diet, mode of delivery, exposure to antibiotics, and type of infant feeding during the first three months of life.
Collapse
Affiliation(s)
- Clara Suárez-Martínez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Genoveva Yagüe-Guirao
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Microbiology Service, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Pediatric Allergy and Pulmonology Units, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Gaspar Ros
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
27
|
Wang H, Qiu J, Zhou M, Luo Y, Li X, Wang M. Monobutyrin Can Regulate the Gut Microbiota, Which Is Beneficial for the Development of Intestinal Barrier Function and Intestinal Health in Weaned Mice. Nutrients 2024; 16:2052. [PMID: 38999800 PMCID: PMC11243092 DOI: 10.3390/nu16132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
In this study, we investigated the effect of monobutyrin (MB) on the gut microbiota and intestinal health of weaned mice. MB was administered via gavage to 21-day-old weaned mice. Samples of small intestinal and ileal contents were collected on day 1, day 7, and day 21 post-administration. Seven days of MB administration enhanced the mucin layer and morphological structure of the intestine and the integrity of the intestinal brush border. Both MB and sodium butyrate (SB) accelerated tight junction development. Compared to SB, MB modulated intestinal T cells in a distinct manner. MB increased the ratio of Treg cells in the small intestine upon the cessation of weaning. After 21 days of MB administration, enhancement of the villus structure of the ileum was observed. MB increased the proportion of Th17 cells in the ileum. MB facilitated the transition of the small intestinal microbiota toward an adult microbial community structure and enhanced the complexity of the microbial community structure. An increase in Th17 cells enhanced intestinal barrier function. The regulatory effect of MB on Th17 cells may occur through the intestinal microbiota. Therefore, MB can potentially be used to promote intestinal barrier function, especially for weaning animals, with promising application prospects.
Collapse
Affiliation(s)
- Haidong Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ji Qiu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minyao Zhou
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minqi Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Fischer F, Pierzchalski A, Riesbeck S, Aldehoff AS, Castaneda-Monsalve VA, Haange SB, von Bergen M, Rolle-Kampczyk UE, Jehmlich N, Zenclussen AC, Herberth G. An in vitro model system for testing chemical effects on microbiome-immune interactions - examples with BPX and PFAS mixtures. Front Immunol 2024; 15:1298971. [PMID: 38953021 PMCID: PMC11215145 DOI: 10.3389/fimmu.2024.1298971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Sarah Riesbeck
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Alix Sarah Aldehoff
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | | | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Perinatal Immunology, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
29
|
Sugino KY, Janssen RC, McMahan RH, Zimmerman C, Friedman JE, Jonscher KR. Vertical Transfer of Maternal Gut Microbes to Offspring of Western Diet-Fed Dams Drives Reduced Levels of Tryptophan Metabolites and Postnatal Innate Immune Response. Nutrients 2024; 16:1808. [PMID: 38931163 PMCID: PMC11206590 DOI: 10.3390/nu16121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of Il10 (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of Lactobacillus in GF offspring. Further, the expression of Il10 was downregulated in liver myeloid cells and in LPS-stimulated bone marrow-derived macrophages (BMDM) in adult offspring, suggestive of a hypo-responsive, or tolerant, innate immune response. BMDMs from adult mice lacking AHR in macrophages exhibited a similar tolerogenic response, including diminished expression of Il10. Overall, our study shows that exposure to maternal WD alters microbial metabolites in the offspring that affect AHR signaling, potentially contributing to innate immune hypo-responsiveness and progression of MASLD, highlighting the impact of early life gut dysbiosis on offspring metabolism. Further investigations are warranted to elucidate the complex interplay between maternal diet, gut microbial function, and the development of neonatal innate immune tolerance and potential therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
| | - Rachel H. McMahan
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Chelsea Zimmerman
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
30
|
Diddeniya G, Ghaffari MH, Hernandez-Sanabria E, Guan LL, Malmuthuge N. INVITED REVIEW: Impact of Maternal Health and Nutrition on the Microbiome and Immune Development of Neonatal Calves. J Dairy Sci 2024:S0022-0302(24)00869-5. [PMID: 38825126 DOI: 10.3168/jds.2024-24835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.
Collapse
Affiliation(s)
| | | | - Emma Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, Canada.
| |
Collapse
|
31
|
Zou M, Pezoldt J, Mohr J, Philipsen L, Leufgen A, Cerovic V, Wiechers C, Pils M, Ortiz D, Hao L, Yang J, Beckstette M, Dupont A, Hornef M, Dersch P, Strowig T, Müller AJ, Raila J, Huehn J. Early-life vitamin A treatment rescues neonatal infection-induced durably impaired tolerogenic properties of celiac lymph nodes. Cell Rep 2024; 43:114153. [PMID: 38687643 DOI: 10.1016/j.celrep.2024.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/23/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Gut-draining mesenteric and celiac lymph nodes (mLNs and celLNs) critically contribute to peripheral tolerance toward food and microbial antigens by supporting the de novo induction of regulatory T cells (Tregs). These tolerogenic properties of mLNs and celLNs are stably imprinted within stromal cells (SCs) by microbial signals and vitamin A (VA), respectively. Here, we report that a single, transient gastrointestinal infection in the neonatal, but not adult, period durably abrogates the efficient Treg-inducing capacity of celLNs by altering the subset composition and gene expression profile of celLNSCs. These cells carry information about the early-life pathogen encounter until adulthood and durably instruct migratory dendritic cells entering the celLN with reduced tolerogenic properties. Mechanistically, transiently reduced VA levels cause long-lasting celLN functional impairment, which can be rescued by early-life treatment with VA. Together, our data highlight the therapeutic potential of VA to prevent sequelae post gastrointestinal infections in infants.
Collapse
Affiliation(s)
- Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joern Pezoldt
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Juliane Mohr
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Multi-Parametric Bioimaging and Cytometry (MPBIC) Platform, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Marina Pils
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Diego Ortiz
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Lianxu Hao
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Juhao Yang
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, 48149 Münster, Germany; German Center for Infection Research (DZIF), Associated Site University of Münster, 48149 Münster, Germany
| | - Till Strowig
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Multi-Parametric Bioimaging and Cytometry (MPBIC) Platform, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Intravital Microscopy in Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jens Raila
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
32
|
Heppner N, Reitmeier S, Heddes M, Merino MV, Schwartz L, Dietrich A, List M, Gigl M, Meng C, van der Veen DR, Schirmer M, Kleigrewe K, Omer H, Kiessling S, Haller D. Diurnal rhythmicity of infant fecal microbiota and metabolites: A randomized controlled interventional trial with infant formula. Cell Host Microbe 2024; 32:573-587.e5. [PMID: 38569545 DOI: 10.1016/j.chom.2024.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/13/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Microbiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet.
Collapse
Affiliation(s)
- Nina Heppner
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Sandra Reitmeier
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Marjolein Heddes
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Michael Vig Merino
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Leon Schwartz
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alexander Dietrich
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Markus List
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Daan R van der Veen
- Faculty of Health and Biomedical Science, University of Surrey, 388 Stag Hill Campus, Guildford 17 GU27XH, UK
| | - Melanie Schirmer
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Hélène Omer
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Silke Kiessling
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany; Faculty of Health and Biomedical Science, University of Surrey, 388 Stag Hill Campus, Guildford 17 GU27XH, UK
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
33
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
34
|
Caputi V, Hill L, Figueiredo M, Popov J, Hartung E, Margolis KG, Baskaran K, Joharapurkar P, Moshkovich M, Pai N. Functional contribution of the intestinal microbiome in autism spectrum disorder, attention deficit hyperactivity disorder, and Rett syndrome: a systematic review of pediatric and adult studies. Front Neurosci 2024; 18:1341656. [PMID: 38516317 PMCID: PMC10954784 DOI: 10.3389/fnins.2024.1341656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Critical phases of neurodevelopment and gut microbiota diversification occur in early life and both processes are impacted by genetic and environmental factors. Recent studies have shown the presence of gut microbiota alterations in neurodevelopmental disorders. Here we performed a systematic review of alterations of the intestinal microbiota composition and function in pediatric and adult patients affected by autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and Rett syndrome (RETT). Methods We searched selected keywords in the online databases of PubMed, Cochrane, and OVID (January 1980 to December 2021) with secondary review of references of eligible articles. Two reviewers independently performed critical appraisals on the included articles using the Critical Appraisal Skills Program for each study design. Results Our systematic review identified 18, 7, and 3 original articles describing intestinal microbiota profiles in ASD, ADHD, and RETT, respectively. Decreased Firmicutes and increased Bacteroidetes were observed in the gut microbiota of individuals affected by ASD and ADHD. Proinflammatory cytokines, short-chain fatty acids and neurotransmitter levels were altered in ASD and RETT. Constipation and visceral pain were related to changes in the gut microbiota in patients affected by ASD and RETT. Hyperactivity and impulsivity were negatively correlated with Faecalibacterium (phylum Firmicutes) and positively correlated with Bacteroides sp. (phylum Bacteroidetes) in ADHD subjects. Five studies explored microbiota-or diet-targeted interventions in ASD and ADHD. Probiotic treatments with Lactobacillus sp. and fecal microbiota transplantation from healthy donors reduced constipation and ameliorated ASD symptoms in affected children. Perinatal administration of Lactobacillus sp. prevented the onset of Asperger and ADHD symptoms in adolescence. Micronutrient supplementation improved disease symptomatology in ADHD without causing significant changes in microbiota communities' composition. Discussion Several discrepancies were found among the included studies, primarily due to sample size, variations in dietary practices, and a high prevalence of functional gastrointestinal symptoms. Further studies employing longitudinal study designs, larger sample sizes and multi-omics technologies are warranted to identify the functional contribution of the intestinal microbiota in developmental trajectories of the human brain and neurobehavior. Systematic review registration https://clinicaltrials.gov/, CRD42020158734.
Collapse
Affiliation(s)
- Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR, United States
| | - Lee Hill
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Melanie Figueiredo
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jelena Popov
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Harvard Medical School, Boston, MA, United States
- Boston Children’s Hospital, Boston, MA, United States
| | - Emily Hartung
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States
- New York University Pain Research Center, New York, NY, United States
- New York University College of Dentistry, New York, NY, United States
| | - Kanish Baskaran
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Papiha Joharapurkar
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michal Moshkovich
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, McMaster Children’s Hospital, Hamilton, ON, Canada
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Gastroenterology, Hepatology, and Nutrition, the Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
35
|
Ciprandi G, Miraglia del Giudice M, Drago L. Progress on probiotics as add-on therapy for allergic rhinitis. REVUE FRANÇAISE D'ALLERGOLOGIE 2024; 64:103766. [DOI: 10.1016/j.reval.2023.103766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Rodriguez KA, Gurung M, Talatala R, Rearick JR, Ruebel ML, Stephens KE, Yeruva L. The Role of Early Life Gut Mycobiome on Child Health. Adv Nutr 2024; 15:100185. [PMID: 38311313 PMCID: PMC10907404 DOI: 10.1016/j.advnut.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The human gut microbiota is composed of bacteria (microbiota or microbiome), fungi (mycobiome), viruses, and archaea, but most of the research is primarily focused on the bacterial component of this ecosystem. Besides bacteria, fungi have been shown to play a role in host health and physiologic functions. However, studies on mycobiota composition during infancy, the factors that might shape infant gut mycobiota, and implications to child health and development are limited. In this review, we discuss the factors likely shaping gut mycobiota, interkingdom interactions, and associations with child health outcomes and highlight the gaps in our current knowledge of this ecosystem.
Collapse
Affiliation(s)
- Kayleigh Amber Rodriguez
- Arkansas Children's Research Institute, Little Rock, AR, United States; University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Infectious Diseases, Little Rock, AR, United States
| | - Manoj Gurung
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Rachelanne Talatala
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States
| | - Jolene R Rearick
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Meghan L Ruebel
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Kimberly E Stephens
- Arkansas Children's Research Institute, Little Rock, AR, United States; University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Infectious Diseases, Little Rock, AR, United States.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, United States Department of Agriculture, Agriculture Research Service, Little Rock, AR, United States; Arkansas Children's Nutrition Center, Little Rock, AR, United States.
| |
Collapse
|
37
|
Cha J, Kim TG, Bhae E, Gwak HJ, Ju Y, Choe YH, Jang IH, Jung Y, Moon S, Kim T, Lee W, Park JS, Chung YW, Yang S, Kang YK, Hyun YM, Hwang GS, Lee WJ, Rho M, Ryu JH. Skin microbe-dependent TSLP-ILC2 priming axis in early life is co-opted in allergic inflammation. Cell Host Microbe 2024; 32:244-260.e11. [PMID: 38198924 DOI: 10.1016/j.chom.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s). Early postnatal skin is dynamically populated by discrete subset of primed ILC2s driven by microbiota-dependent induction of thymic stromal lymphopoietin (TSLP) in keratinocytes. Specifically, the indole-3-aldehyde-producing tryptophan metabolic pathway, shared across Staphylococcus species, is involved in TSLP-mediated ILC2 priming. Furthermore, we demonstrate a critical contribution of the early postnatal S. lentus-TSLP-ILC2 priming axis in facilitating AD-like inflammation that is not replicated by later microbial exposure. Thus, our findings highlight the fundamental role of time-dependent neonatal microbial-skin crosstalk in shaping the threshold of innate type 2 immunity co-opted in adulthood.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Euihyun Bhae
- Department of Artificial Intelligence, Hanyang University, Seoul 04763, Korea
| | - Ho-Jin Gwak
- Department of Computer Science, Hanyang University, Seoul 04763, Korea
| | - Yeajin Ju
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Young Ho Choe
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taehyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wuseong Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul 04763, Korea; Department of Biomedical Informatics, Hanyang University, Seoul 04763, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
38
|
Johnson M, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut Microbiota and Other Factors Associated With Increased Regulatory T Cells in Hiv-exposed Uninfected Infants. RESEARCH SQUARE 2024:rs.3.rs-3909424. [PMID: 38352510 PMCID: PMC10862973 DOI: 10.21203/rs.3.rs-3909424/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
HIV-exposed uninfected infants (HEU) have higher infectious morbidity than HIV-unexposed infants (HUU). HEU have multiple immune defects of unknown origin. We hypothesized that HEU have higher regulatory T cells (Treg) than HUU, which may dampen their immune defenses against pathogens. We compared 25 Treg subsets between HEU and HUU and sought the factors that may affect Treg frequencies. At birth, 3 Treg subsets, including CD4 + FOXP3 + and CD4 + FOXP3 + CD25+, had higher frequencies in 123 HEU than 117 HUU and 3 subsets were higher in HUU. At 28 and 62 weeks of life, 5 Treg subsets were higher in HEU, and none were higher in HUU. The frequencies of the discrepant Treg subsets correlated at birth with differential abundances of bacterial taxas in maternal gut microbiome and at subsequent visits in infant gut microbiomes. In vitro, bacterial taxa most abundant in HEU expanded Treg subsets with higher frequencies in HEU, recapitulating the in vivo observations. Other factors that correlated with increased Treg were low maternal CD4 + T cells in HEU at birth and male sex in HUU at 28 weeks. We conclude that maternal and infant gut dysbiosis are central to the Treg increase in HEU and may be targeted by mitigating interventions.
Collapse
|
39
|
Rudbaek JJ, Agrawal M, Torres J, Mehandru S, Colombel JF, Jess T. Deciphering the different phases of preclinical inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2024; 21:86-100. [PMID: 37950021 PMCID: PMC11148654 DOI: 10.1038/s41575-023-00854-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammatory disease (IMID) of the gastrointestinal tract and includes two subtypes: Crohn's disease and ulcerative colitis. It is well-recognized that IBD is associated with a complex multifactorial aetiology that includes genetic predisposition and environmental exposures, with downstream dysregulation of systemic immune function and host-microbial interactions in the local environment in the gut. Evidence to support the notion of a multistage development of IBD is growing, as has been observed in other IMIDs such as rheumatoid arthritis and systemic lupus erythematosus. With the rising worldwide incidence of IBD, it is increasingly important to understand the complex interplay of pathological events during the different stages of disease development to enable IBD prediction and prevention strategies. In this article, we review comprehensively the current evidence pertaining to the preclinical phase of IBD, including at-risk, initiation and expansion phases. We also discuss the framework of preclinical IBD, expanding on underlying pathways in IBD development, future research directions and IBD development in the context of other IMIDs.
Collapse
Affiliation(s)
- Jonas J Rudbaek
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Section for Biomarkers, Immunology and Antibodies, Department for Congenital Disorders, Statens Serum Institut, Copenhangen, Denmark
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Saurabh Mehandru
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
40
|
Oldereid TS, Jiang X, Nordhus KS, Ponzetta A, Bjørnholt JV, Björkström NK, Melum E, Rasmussen H. Role of bacteria and microbial metabolites in immune modulation during early life. Scand J Immunol 2024; 99:e13336. [PMID: 38441196 DOI: 10.1111/sji.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/18/2023] [Accepted: 09/30/2023] [Indexed: 03/07/2024]
Abstract
Host-microbiome interplay from birth is essential for immune imprinting and tuning. Live gut microbes and microbial-derived metabolites regulate the development and modulation of the immune system, but whether microbial metabolites solely are sufficient to induce immune maturation remains unclear. Sterile faecal filtrates (FFT) were generated from murine gut contents. Newborn germ-free (GF) mice were treated twice daily with FFT (GF-FFT) or saline (GF-NaCl) from post-natal day 5 until 4 weeks of age. A third group of GF neonates were conventionalized by the transfer of caecal microbiota with live gut microbes. Host immune compartments were comprehensively immunophenotyped and systemically analysed in all available immune-related organs using flow cytometry. Oral FFT was associated with reduced survival among neonates (n = 7/19; 36.8% mortality), while saline treatment was well tolerated (n = 1/17, 5.9% mortality). Four-week-old FFT-treated pups were comparable in body weight to GF-NaCl, and the major B-cell, conventional T-cell and unconventional T-cell subsets were unchanged from saline-treated mice. Live bacteria administered during early life induced clear changes in proportions of B cells, T cells and T-cell subsets in all mucosal tissues and secondary lymphoid organs compared to GF-FFT, including restoration of intestinal natural killer T (NKT) cells with characteristics similar to conventional pups. Our findings show that oral administration of a FFT made of microbial metabolites, antigens and bacteriophages alone is insufficient to induce normal immune development elicited by the presence of live bacteria. Reduced survival during neonatal FFT treatment suggests a potential bioactive attribute of sterile faecal filtrates.
Collapse
Affiliation(s)
- Tine Simensen Oldereid
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xiaojun Jiang
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kathrine Sivertsen Nordhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jørgen Vildershøj Bjørnholt
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Henrik Rasmussen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Comparative Medicine, Division of Oslo Hospital Services, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
41
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
42
|
Coutry N, Gasmi I, Herbert F, Jay P. Mechanisms of intestinal dysbiosis: new insights into tuft cell functions. Gut Microbes 2024; 16:2379624. [PMID: 39042424 PMCID: PMC11268228 DOI: 10.1080/19490976.2024.2379624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.
Collapse
Affiliation(s)
- Nathalie Coutry
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Imène Gasmi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Fabien Herbert
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
43
|
Bertin B, Foligne B, Ley D, Lesage J, Beghin L, Morcel J, Gottrand F, Hermann E. An Overview of the Influence of Breastfeeding on the Development of Inflammatory Bowel Disease. Nutrients 2023; 15:5103. [PMID: 38140362 PMCID: PMC10745409 DOI: 10.3390/nu15245103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The first 1000 days of life is a critical period that contributes significantly to the programming of an individual's future health. Among the many changes that occur during this period early in life, there is growing evidence that the establishment of healthy gut microbiota plays an important role in the prevention of both short- and long-term health problems. Numerous publications suggest that the quality of the gut microbiota colonisation depends on several dietary factors, including breastfeeding. In this respect, a relationship between breastfeeding and the risk of inflammatory bowel disease (IBD) has been suggested. IBDs are chronic intestinal diseases, and perinatal factors may be partly responsible for their onset. We review the existence of links between breastfeeding and IBD based on experimental and clinical studies. Overall, despite encouraging experimental data in rodents, the association between breastfeeding and the development of IBD remains controversial in humans, partly due to the considerable heterogeneity between clinical studies. The duration of exclusive breastfeeding is probably decisive for its lasting effect on IBD. Thus, specific improvements in our knowledge could support dietary interventions targeting the gut microbiome, such as the early use of prebiotics, probiotics or postbiotics, in order to prevent the disease.
Collapse
Affiliation(s)
- Benjamin Bertin
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
| | - Benoit Foligne
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
| | - Delphine Ley
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
| | - Laurent Beghin
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Jules Morcel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
- Univ. Lille, Inserm, CHU Lille, CIC-1403 Inserm-CHU, F-59000 Lille, France
| | - Emmanuel Hermann
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (B.B.); (B.F.); (D.L.); (J.L.); (L.B.); (J.M.); (F.G.)
| |
Collapse
|
44
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Kemter AM, Patry RT, Arnold J, Hesser LA, Campbell E, Ionescu E, Mimee M, Wang S, Nagler CR. Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food. Cell Rep 2023; 42:113153. [PMID: 37742185 PMCID: PMC10697505 DOI: 10.1016/j.celrep.2023.113153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.
Collapse
Affiliation(s)
- Andrea M Kemter
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert T Patry
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Shan Wang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Elizalde-Torrent A, Borgognone A, Casadellà M, Romero-Martin L, Escribà T, Parera M, Rosales-Salgado Y, Díaz-Pedroza J, Català-Moll F, Noguera-Julian M, Brander C, Paredes R, Olvera A. Vaccination with an HIV T-Cell Immunogen (HTI) Using DNA Primes Followed by a ChAdOx1-MVA Boost Is Immunogenic in Gut Microbiota-Depleted Mice despite Low IL-22 Serum Levels. Vaccines (Basel) 2023; 11:1663. [PMID: 38005995 PMCID: PMC10675013 DOI: 10.3390/vaccines11111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the important role of gut microbiota in the maturation of the immune system, little is known about its impact on the development of T-cell responses to vaccination. Here, we immunized C57BL/6 mice with a prime-boost regimen using DNA plasmid, the Chimpanzee Adenovirus, and the modified Vaccinia Ankara virus expressing a candidate HIV T-cell immunogen and compared the T-cell responses between individuals with an intact or antibiotic-depleted microbiota. Overall, the depletion of the gut microbiota did not result in significant differences in the magnitude or breadth of the immunogen-specific IFNγ T-cell response after vaccination. However, we observed marked changes in the serum levels of four cytokines after vaccinating microbiota-depleted animals, particularly a significant reduction in IL-22 levels. Interestingly, the level of IL-22 in serum correlated with the abundance of Roseburia in the large intestine of mice in the mock and vaccinated groups with intact microbiota. This short-chain fatty acid (SCFA)-producing bacterium was significantly reduced in the vaccinated, microbiota-depleted group. Therefore, our results indicate that, although microbiota depletion reduces serum levels of IL-22, the powerful vaccine regime used could have overcome the impact of microbiota depletion on IFNγ-producing T-cell responses.
Collapse
Affiliation(s)
- Aleix Elizalde-Torrent
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Alessandra Borgognone
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Maria Casadellà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Luis Romero-Martin
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona (UAB), 08193 Cerdanyola del Valles, Spain
| | - Tuixent Escribà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Mariona Parera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Yaiza Rosales-Salgado
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Jorge Díaz-Pedroza
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Francesc Català-Moll
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Marc Noguera-Julian
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
| | - Christian Brander
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Aelix Therapeutics, 08028 Barcelona, Spain
| | - Roger Paredes
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Fight AIDS Foundation, Infectious Diseases Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Alex Olvera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| |
Collapse
|
47
|
Husso A, Pessa-Morikawa T, Koistinen VM, Kärkkäinen O, Kwon HN, Lahti L, Iivanainen A, Hanhineva K, Niku M. Impacts of maternal microbiota and microbial metabolites on fetal intestine, brain, and placenta. BMC Biol 2023; 21:207. [PMID: 37794486 PMCID: PMC10552303 DOI: 10.1186/s12915-023-01709-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ville Mikael Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hyuk Nam Kwon
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- School of Biological Sciences and Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, 44610, South Korea
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Afekta Technologies Ltd., Kuopio, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
48
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
49
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|