1
|
Campbell A, Perold V, Ryan PG. Long-term changes in the incidence and characteristics of plastic ingested by White-chinned Petrels. MARINE POLLUTION BULLETIN 2025; 215:117904. [PMID: 40187203 DOI: 10.1016/j.marpolbul.2025.117904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Plastic floating at sea is difficult to measure due to its high spatial and temporal variation. White-chinned Petrels Procellaria aequinoctialis are surface-foraging seabirds found in the Southern Ocean that often ingest plastic. They are susceptible to being caught accidentally on long-line fishing gear, providing carcasses that can be used to monitor changes in the incidence and characteristics of plastic floating at sea. Of the 2486 White-chinned Petrels sampled off South Africa between 1979 and 2024, 57 % contained plastic. Data were grouped into time periods to determine temporal variation while accounting for unequal yearly sample sizes. The proportion of birds containing plastic has not changed since 1979. The number of plastic items ingested increased from an average of 2 items per bird in the early 1980s to 7 in 2017-24, mainly due to an increase in the last 5 years, but there has been no change in the total mass of ingested plastic. The proportion of pellets declined from 25 % to 17 %, with the average number of pellets per bird following a similar trend until two highly impacted birds were found in 2022 and 2023, possibly reflecting recent large pellet spills at sea off South Africa. White-chinned Petrels ingest more flexible plastics (threads and films) than other petrels, potentially linked to their behaviour of scavenging behind ships. Some birds contained fibrous gastroliths, up to 20 mm in diameter. Recording plastic loads in White-chinned Petrels offers a useful method to monitor long-term changes in floating plastic at sea.
Collapse
Affiliation(s)
- Abigail Campbell
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Vonica Perold
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
2
|
Li X, Hu S, Yu Z, He F, Zhao X, Liu R. New Evidence for the Mechanisms of Nanoplastics Amplifying Cadmium Cytotoxicity: Trojan Horse Effect, Inflammatory Response, and Calcium Imbalance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9471-9485. [PMID: 40350783 DOI: 10.1021/acs.est.5c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Nanoplastics (NPs) are emerging pollutants worldwide. Particularly worrisome is that although studies have reported that NPs can amplify the biotoxicity of environmental pollutants, the specific mechanism remains unclear. Here, we found that NPs, even without significant toxicity (cell survival: 99.11%), amplified the hepatocyte toxicity of Cd2+. Mechanistically, higher Cd2+ uptake (Δ = 23.80%) combined with crucial intracellular desorption behavior of Cd2+ loaded in NPs (desorption rate: 82.70%) were identified as prerequisites for NPs amplifying Cd2+ cytotoxicity. As for toxigenic pathways, the inflammatory response and calcium (Ca) signaling pathway were identified as the primary molecular events leading to the amplification of Cd2+ cytotoxicity. Further phenotypic monitoring revealed that NPs synergized with Cd2+ to induce more severe pyroptosis and apoptosis by activating the inflammatory caspase-1-dependent and Ca2+-mitochondrial-caspase-3 pathways to a greater extent, respectively. This study reveals and proves for the first time the "Trojan horse" effects of NPs, thus elucidating the actual mechanisms by which NPs act as toxicity amplifiers of pollutants, providing significant insights into accurate risk assessment of NPs in composite pollution.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Zelian Yu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Kong L, Li S, Fu Y, Cai Q, Zhai Z, Liang J, Ma T. Microplastics/nanoplastics contribute to aging and age-related diseases: Mitochondrial dysfunction as a crucial role. Food Chem Toxicol 2025; 199:115355. [PMID: 40020987 DOI: 10.1016/j.fct.2025.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The pervasive utilization of plastic products has led to a significant escalation in plastic waste accumulation. Concurrently, the implications of emerging pollutants such as microplastics (MPs) and nanoplastics (NPs) on human health are increasingly being acknowledged. Recent research has demonstrated that MPs/NPs may contribute to the onset of human aging and age-related diseases. Additionally, MPs/NPs have the potential to induce mitochondrial damage, resulting in mitochondrial dysfunction. Mitochondrial dysfunction is widely recognized as a hallmark of aging; thus, it is necessary to elucidate the relationship between them. In this article, we first elucidate the distribution of MPs/NPs in various environmental media, their pathways into the human body, and their subsequent distribution within human tissues and organs. Subsequently, we examine the interplay between MPs/NPs, mitochondrial dysfunction, and the aging process. We aspire that this article will enhance awareness regarding the toxicity of MPs/NPs while also offering a theoretical framework to support the development of improved regulatory policies in the future.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Zhengyu Zhai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|
4
|
Zhang L, Wang W, Wang F, Wu D, Su Y, Zhan M, Li K, Shi H, Xie B. Decoding the Plastic Patch: Exploring the Global Microplastic Distribution in the Surface Layers of Marine Regions with Interpretable Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7656-7666. [PMID: 40226856 DOI: 10.1021/acs.est.4c12227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The marine environment is grappling with microplastic (MP) pollution, necessitating an understanding of its distribution patterns, influencing factors, and potential ecological risks. However, the vast area of the ocean and budgetary constraints make conducting comprehensive surveys to assess MP pollution impractical. Interpretable machine learning (ML) offers an effective solution. Herein, we used four ML algorithms based on MP data calibrated to the size range of 20-5000 μm and considered various factors to construct a robust predictive ML model of marine MP distribution. Interpretation of the ML model indicated that biogeochemical and anthropogenic factors substantially influence global marine MP pollution, while atmospheric and physical factors exert lesser effects. However, the extent of the influence of each factor may vary within specific marine regions and their underlying mechanisms may differ across regions. The predicted results indicated that the global marine MP concentrations ranged from 0.176 to 27.055 particles/m3 and that MPs in the 20-5000-μm size range did not pose a potential ecological risk. The interpretable ML framework developed in this study covered MP data preprocessing, MP distribution prediction, and interpretation of the influencing factors of MPs, providing an essential reference for marine MP pollution management and decision making.
Collapse
Affiliation(s)
- Linjie Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenyue Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Kumar M, Michelas M, Boyer C. Polymer Chain Modification via HAT Chemistry and Its Application in Graft Copolymer Synthesis. ACS Macro Lett 2025; 14:396-404. [PMID: 40088163 DOI: 10.1021/acsmacrolett.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Hydrogen atom transfer (HAT) chemistry has emerged as a powerful tool for selective molecular functionalization, with significant applications in the pharmaceutical and agricultural industries. More recently, HAT has been explored in polymer chemistry as a versatile strategy for introducing targeted functional groups onto polymer chains, enabling precise control over properties such as solubility and mechanical strength. This study investigates the use of HAT to synthesize reversible addition-fragmentation chain transfer (RAFT) agents (or chain transfer agents, CTAs) by modifying various substrates, including toluene, ethyl acetate, and dioxane, in the presence of bis(dodecylsulfanylthiocarbonyl) disulfide or bis(3,5-dimethyl-1H-pyrazol-1-ylthiocarbonyl) disulfide. The resulting CTAs were evaluated in both thermal and photoinduced electron transfer (PET)-RAFT polymerization for controlled polymerization of various monomers. This approach was then extended to functionalize polycaprolactone (PCL) and polyvinyl acetate (PVAc), enabling the synthesis of graft copolymers with various vinyl monomers. To promote HAT, a range of photocatalysts, including iron(III) chloride (FeCl3), were investigated, offering advantages over conventional thermal HAT systems. Photocatalysis enables mild and efficient radical generation under light irradiation, providing a cost-effective and environmentally friendly alternative to expensive or toxic metal catalysts.
Collapse
Affiliation(s)
- Manish Kumar
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Maxime Michelas
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
6
|
Li S, Feng Q, Li Q, Xie Y, Xu P, Wang Z, Sun Q, Cao M, Zhang Q, Chen J. Synergistic Co-Recycling: Selective Oxidation of Polyethylene to Dicarboxylic Acids over Spent LiCoO 2 Cathodes. Angew Chem Int Ed Engl 2025:e202501509. [PMID: 40230045 DOI: 10.1002/anie.202501509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
The escalating production of lithium-ion batteries and plastics poses critical challenges to environmental integrity and resource sustainability. Here, we report a synergistic co-recycling strategy for spent lithium cobalt oxide (LCO) cathodes and waste polyethylene (PE), leveraging the catalytic properties of LCO to oxidize PE into high-value dicarboxylic acids. Through a combination of density functional theory calculations, electron spin resonance, and in situ infrared spectroscopy, we reveal that lithium-deficient LCO undergoes a spin-state transition of Co3+ to a high-spin state, facilitating the activation of oxygen and the generation of singlet oxygen. This reactive oxygen species drives the selective oxidation of PE via hydrogen atom transfer, achieving dicarboxylic acid yields of up to 77.5 wt%, markedly exceeding previous benchmarks. Validation with real-world plastic waste and spent batteries underscores the feasibility of this approach, presenting a sustainable paradigm-shift solution for the efficient management of lithium-ion batteries and plastic waste in a circular economy.
Collapse
Affiliation(s)
- Shengming Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Qianyue Feng
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Qingye Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Yeping Xie
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Panpan Xu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, P.R. China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Qiming Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Muhan Cao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Qiao Zhang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Jinxing Chen
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| |
Collapse
|
7
|
Uguen M, Cozzolino L. Location-dependent effect of microplastic leachates on the respiration rate of two engineering mussel species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10195-10202. [PMID: 39538076 DOI: 10.1007/s11356-024-35495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are ubiquitous in the world's oceans and pose serious environmental concerns, including their ingestion and the release of potentially toxic mixtures of intrinsic and extrinsic chemical compounds (i.e. leachates; MPLs). Mussels, as key intertidal bioengineers and filter-feeders are particularly susceptible to both exposure pathways. While the effects of microplastic ingestion have been widely investigated, research on the impacts of MPLs has only recently begun. This study examined the influence of MPLs derived from beached pellets collected in two separate regions, namely France and Portugal, on the respiration rates of two key ecosystem engineers, Mytilus edulis and Mytilus galloprovincialis. Possibly due to distinct mixtures of leached chemicals, unlike Portuguese-MPLs, exposure to French-MPLs significantly decreased the respiration rate of both mussel species. This research provides new insights into the physiological impacts of MPLs on bioengineer species, highlighting the importance of MP source and potential cascading effects at the ecosystem level. While we reported significant effects on mussel respiration after acute MPL exposure, future research should investigate long-term impacts and potential detoxification mechanisms to clarify the effects of MPs on mussel physiological performance and their potential consequences on specie fitness.
Collapse
Affiliation(s)
- Marine Uguen
- UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, Station Marine de Wimereux, 59000, Lille, France.
| | - Lorenzo Cozzolino
- CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
8
|
Jolaosho TL, Rasaq MF, Omotoye EV, Araomo OV, Adekoya OS, Abolaji OY, Hungbo JJ. Microplastics in freshwater and marine ecosystems: Occurrence, characterization, sources, distribution dynamics, fate, transport processes, potential mitigation strategies, and policy interventions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118036. [PMID: 40107217 DOI: 10.1016/j.ecoenv.2025.118036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Most of the literature on microplastics (MPs) focuses on freshwater or terrestrial ecosystems, frequently overlooking their interconnections with the marine environments. This oversight is worrying given that both ecosystems serve as primary pathways for the introduction of MPs into marine environments. This review synthesizes existing literature on MPs in both freshwater and marine ecosystems across all six continents. The most commonly produced plastic polymers in industry are polyethylene (36 %) and polypropylene (21 %), and studies revealed that these two materials are the most abundant in aquatic ecosystems. Primary and secondary MPs originate from a range of sources including land-based disposal, the ocean, airborne deposition, wastewater treatment facilities, automobiles, pharmaceuticals and personal care products, synthetic textiles, and insect repellents. Notably, secondary MPs, which are formed from the breakdown of larger plastic items comprise approximately 69-81% of marine debris, especially in urbanized, densely populated areas. The inconsistencies of the methodologies (sampling, extraction, and quantification) and the units employed for result presentations are part of the major limitations in MPs research. Environmental phenomena such as heteroaggregation, weathering, adsorption, leaching, and fragmentation are the major factors influencing the behavior, fate, and degradation process of plastic particles. The physicochemical properties of plastic polymers, such as density, crystallinity, as well as bioturbation, meteorological forces, and wind actions, including currents, waves, and tides, are responsible for biofouling, aggregation, sinking into the bottom sediment, resuspension, and the vertical, horizontal, and spatiotemporal distributions and transport of MPs. The potential solutions to mitigate plastic pollution are grounded in the 3Rs framework, which includes reducing production and consumption, advancing the biotechnological, chemical and microbial development of degradable polymers, promoting reusable plastic products with lower environmental impacts over their lifetimes, and recycling waste into new products. The regulatory policies on single-use plastics commonly involve permanent bans and financial penalties for violators. In addition, nations such as the United States, the Netherlands, and northern Europe have introduced economic incentives to encourage the return of reusable materials to reduce plastic waste and the resulting envrionmental pollution.
Collapse
Affiliation(s)
- Toheeb Lekan Jolaosho
- Faculty of Spatial Science, University of Groningen, Netherlands; Department of Fisheries, Faculty of Science, Lagos State University, Ojo, Lagos State, Nigeria; Faculty of Marine Science, University of Las Palmas de Gran Canaria, Spain; Aquaculture and Fisheries Management, Lagos State University of Science and Technology, Nigeria.
| | | | | | | | | | | | | |
Collapse
|
9
|
Trilla-Prieto N, Berrojalbiz N, Iriarte J, Fuentes-Lema A, Sobrino C, Vila-Costa M, Jiménez B, Dachs J. Biogeochemical Controls on Latitudinal (42°N to 70°S) and Depth Distribution of Organophosphate Esters in the Atlantic and Southern Oceans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5585-5595. [PMID: 40065202 PMCID: PMC11948325 DOI: 10.1021/acs.est.4c12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025]
Abstract
Large-scale oceanic assessments are key for determining the persistence and long-range transport potential of organic pollutants, but there is a dearth of these for organophosphate esters (OPEs), widely used as flame retardants and plasticizers. This work reports the latitudinal distribution (42°N-70°S) and vertical profiles (from the surface to 2000 m depth) of OPEs in the Atlantic and Southern Oceans and explores their biogeochemical controls. The latitudinal gradient shows higher surface OPE concentrations near the equator than at higher latitudes, consistent with the prevailing oceanic and atmospheric circulation, and measured wet deposition events. At the deep chlorophyll maximum depth, there was an inverse correlation between the concentrations of the OPEs and phytoplankton biomass, with the lowest concentrations in the Southern Ocean, consistent with the role of the biological pump depleting the levels of the OPEs from the photic zone. OPE latitudinal trends in the deep ocean (2000 m depth) resembled those at the surface with maximum intertropical concentrations. Analysis derived from OPE concentrations at the bottom of the photic zone and in the minimum oxygen layer suggested a complex dynamic biogeochemical cycling driven by transport, degradation, and redissolution of OPEs with depth. OPEs are persistent enough to reach all oceanic compartments, but a quantitative resolution of the sources, sinks, seasonality, and biogeochemical cycles will require future research.
Collapse
Affiliation(s)
- Núria Trilla-Prieto
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
- Department
of Evolutionary Biology, Ecology and Environmental Sciences, Faculty
of Biology, Universitat de Barcelona, Barcelona, Catalunya 08034, Spain
| | - Naiara Berrojalbiz
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Jon Iriarte
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | | | - Cristina Sobrino
- Grupo
de Oceanografía Biolóxica, Centro de Investigación
Mariña (CIM), Universidade de Vigo, Vigo 36310, Spain
| | - Maria Vila-Costa
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| | - Begoña Jiménez
- Department
of Instrumental Analysis and Environmental Chemistry, IQOG-CSIC, Madrid 28006, Spain
| | - Jordi Dachs
- Department
of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain
| |
Collapse
|
10
|
Perli G, Olazabal I, Breloy L, Vollmer I, López-Gallego F, Sardon H. Toward a Circular Economy of Heteroatom Containing Plastics: A Focus on Heterogeneous Catalysis in Recycling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6429-6456. [PMID: 40029300 DOI: 10.1021/acs.langmuir.4c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Plastics play a vital role in modern society, but their accumulation in landfills and the environment presents significant risks to ecosystems and human health. In addition, the discarding of plastic waste constitutes to a loss of valuable material. While the usual mechanical recycling method often results in reduced material quality, chemical recycling offers exciting opportunities to valorize plastic waste into compounds of interest. Its versatility leans on the broad horizon of chemical reactions applicable, such as hydrogenolysis, hydrolysis, alcoholysis, or aminolysis. The development of heterogeneous and supported organocatalysts has enormous potential to enhance the economic and industrial viability of these technologies, reducing the cost of the process and mitigating its global environmental impact. This review summarizes the challenges and opportunities of chemically recycling heteroatom-containing plastics through heterogeneous catalysis, covering widely used plastics such as polyesters (notably PET and PLA), BPA-polycarbonate (BPA-PC), polyurethane (PU), polyamide (PA), and polyether. It examines the potential and limitations of various solid catalysts, including clays, zeolites, and metal-organic frameworks as well as supported organocatalysts and immobilized enzymes (heterogeneous biocatalysts), for reactions that facilitate the recovery of high-value products. By reintroducing these high-value products into the economy as precursors, this approach supports a more sustainable lifecycle for plastics, aligning with the principles of a circular economy.
Collapse
Affiliation(s)
- Gabriel Perli
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Ion Olazabal
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Louise Breloy
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
11
|
Zhang M, Huo Z, Li L, Ji Y, Ding T, Hou G, Song S, Dai W. One-pot Hydrogenolysis of Polyethylene Terephthalate (PET) to p-xylene over CuZn/Al 2O 3 Catalyst. CHEMSUSCHEM 2025; 18:e202402013. [PMID: 39467061 DOI: 10.1002/cssc.202402013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Chemical upcycling of plastic wastes into valuable chemicals is a promising strategy for resolving plastic pollution, but economically viable methods currently are still lacking. Here, we report one-pot hydrogenolysis of PET plastic into p-xylene with an excellent yield (99.8 %) over a robust non-precious Cu-based catalyst, CuZn/Al2O3, in the absence of alcohol solvents. The presence of Zn species promotes the dispersion of Cu0 and increases the ratio of Cu+/Cu0, whereas the synergistic effect of Cu0 and Cu+ leads to a superior performance in the conversion of PET. The combination of GC-MS, 13C CP MAS NMR, 2D 1H-13C CP HETCOR NMR spectroscopy and kinetic studies for the first time demonstrates 4-methyl benzyl alcohol as an important reaction intermediate in the hydrogenolysis of PET. Mechanistic studies indicate that the conversion of PET mainly follows a hydrogenolysis process, involving the cleavage of ester bonds to alcohols and the C-O bond cleavage of alcohols to alkanes. This work not only brings new insight for understanding the upgrading pathway of PET, but also provides a guidance for the design of high-performance non-precious catalysts for the chemical upcycling of plastic wastes.
Collapse
Affiliation(s)
- Mengting Zhang
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P.R. China
| | - Zhaojing Huo
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P.R. China
| | - Longqian Li
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P.R. China
| | - Yi Ji
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P. R. China
| | - Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, P. R. China
| | - Song Song
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin,300072, P. R. China
| | - Weili Dai
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P.R. China
| |
Collapse
|
12
|
Liu XH, Jin JL, Sun HT, Li S, Zhang FF, Yu XH, Cao QZ, Song YX, Li N, Lu ZH, Wang T, Liu F, Wang JM. Perspectives on the microorganisms with the potentials of PET-degradation. Front Microbiol 2025; 16:1541913. [PMID: 40143857 PMCID: PMC11938130 DOI: 10.3389/fmicb.2025.1541913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Polyethylene terephthalate (PET), a widely used synthetic polymer in daily life, has become a major source of post-consumer waste due to its complex molecular structure and resistance to natural degradation, which has posed a significant threat to the global ecological environment and human health. Current PET-processing methods include physical, chemical, and biological approaches, however each have their limitations. Given that numerous microbial strains exhibit a remarkable capacity to degrade plastic materials, microbial degradation of PET has emerged as a highly promising alternative. This approach not only offers the possibility of converting waste into valuable resources but also contributes to the advancement of a circular economy. Therefore in this review, it is mainly focused on the cutting-edge microbial technologies and the key role of specific microbial strains such as Ideonella sakaiensis 201-F6, which can efficiently degrade and assimilate PET. Particularly noteworthy are the catalytic enzymes related to the metabolism of PET, which have been emphasized as a sustainable and eco-friendly strategy for plastic recycling within the framework of a circular economy. Furthermore, the study also elucidates the innovative utilization of degraded plastic materials as feedstock for the production of high-value chemicals, highlighting a sustainable path forward in the management of plastic waste.
Collapse
Affiliation(s)
- Xiao-huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jun-li Jin
- School of Biological Science, Jining Medical University, Jining, China
| | - Hai-tong Sun
- School of Biological Science, Jining Medical University, Jining, China
| | - Shuo Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei-fei Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-hong Yu
- School of Biological Science, Jining Medical University, Jining, China
| | - Qi-zhi Cao
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-xuan Song
- School of Biological Science, Jining Medical University, Jining, China
| | - Nan Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jian-min Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
13
|
Kalonde PK, Mwapasa T, Mthawanji R, Chidziwisano K, Morse T, Torguson JS, Jones CM, Quilliam RS, Feasey NA, Henrion MYR, Stanton MC, Blinnikov MS. Mapping waste piles in an urban environment using ground surveys, manual digitization of drone imagery, and object based image classification approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:374. [PMID: 40064733 DOI: 10.1007/s10661-025-13675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
There is wide recognition of the threats posed by the open dumping of waste in the environment. However, tools to surveil interventions for reducing this practice are poorly developed. This study explores the use of drone imagery for environmental surveillance. Drone images of waste piles were captured in a densely populated residential neighborhood in the Republic of Malawi. Images were processed using the Structure for Motion (SfM) technique and partitioned into segments using Orfeo Toolbox mounted in QGIS software. A total of 509 segments were manually labeled to generate data for training and testing a series of classification models. Four supervised classification algorithms (Random Forest, Artificial Neural Network, Naïve Bayes, and Support Vector Machine) were trained, and their performances were assessed regarding precision, recall, and F-1 score. Ground surveys were also conducted to map waste piles using a Global Positioning System (GPS) receiver and determine the physical composition of materials on the waste pile surface. Differences were observed between the field survey done by community-led physical mapping of waste piles and drone mapping. Drone mapping identified more waste piles than field surveys, and the spatial extent of waste piles was computed for each waste pile. The binary Support Vector Machine model predictions were the highest performing, with a precision of 0.98, recall of 0.99, and F1-score of 0.98. Drone mapping enabled the identification of waste piles in areas that cannot be accessed during ground surveys and further allowed the quantification of the total land surface area covered by waste piles. Drone imagery-based surveillance of waste piles thus has the potential to guide environmental waste policy, offer solutions for permanent monitoring, and evaluate waste reduction interventions.
Collapse
Affiliation(s)
- Patrick K Kalonde
- Department of Geography and Planning, St Cloud State University, St Cloud State University, 720 4Th Ave South, St Cloud, MN, 56301, USA.
- Liverpool School of Tropical Medicine, Liverpool, UK.
- Malawi Liverpool Wellcome Programme, Chichiri, P.O. Box 30096, Blantyre 3, Malawi.
| | - Taonga Mwapasa
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Rosheen Mthawanji
- Malawi Liverpool Wellcome Programme, Chichiri, P.O. Box 30096, Blantyre 3, Malawi
| | - Kondwani Chidziwisano
- Centre for Water, Sanitation, Health, and Appropriate Technology Development (WASHTED), Malawi University of Business and Applied Sciences, Blantyre, Malawi
| | - Tracy Morse
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Jeffrey S Torguson
- Department of Geography and Planning, St Cloud State University, St Cloud State University, 720 4Th Ave South, St Cloud, MN, 56301, USA
| | | | - Richard S Quilliam
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Nicholas A Feasey
- Liverpool School of Tropical Medicine, Liverpool, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Marc Y R Henrion
- Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi Liverpool Wellcome Programme, Chichiri, P.O. Box 30096, Blantyre 3, Malawi
| | | | - Mikhail S Blinnikov
- Department of Geography and Planning, St Cloud State University, St Cloud State University, 720 4Th Ave South, St Cloud, MN, 56301, USA
| |
Collapse
|
14
|
Miyazono K, Tadokoro K, Thushari GGN, Miyamoto H, Takasuka A, Watai M, Yasuda T, Sato T, Yamashita R, Kodama T, Takahashi K. Long-Term Changes in the Abundance, Size, and Morphotype of Marine Plastics in the North Pacific. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4608-4617. [PMID: 40010710 PMCID: PMC11912323 DOI: 10.1021/acs.est.4c09706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Understanding the spatiotemporal dynamics of microplastics on the ocean surface is crucial for assessing their impact on marine ecosystems and human health; however, long-term fluctuations have not been extensively studied. We present a long-term empirical data set on floating marine plastic debris collected from 1949 to 2020 around Japan in the western North Pacific. We observed three phases: 1) a period of increase (0-104 pieces/km2) from the early 1950s to the late 1970s; 2) a stagnation period, with high abundance (104-105 pieces/km2), from the 1980s to the early 2010s; and 3) a period of reincrease (>105 pieces/km2) from the mid-2010s to the present. The shift from film to fragmented plastic in the 1980s and the continuous downsizing may have caused the expansion of the offshore polluted area, resulting in a stagnation period by enhancing removal. The removal is most likely caused by sedimentation with phytoplankton, as the abundance of the plastic debris during this period was significantly related to the winter Pacific Decadal Oscillation, an index of annual primary productivity. The recent increase in microplastics suggests that plastic discharge is outpacing its removal capacity, suggesting that the impact of pollution on ocean surface biota is becoming increasingly evident.
Collapse
Affiliation(s)
- Kentaro Miyazono
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazuaki Tadokoro
- Japan
Fisheries Research and Education Agency, 3-27-5 Shinhama-cho, Shiogama, Miyagi 985-0001, Japan
| | - Gajahin G. N. Thushari
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Department
of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara road Badulla, Badulla 90000, Sri Lanka
| | - Hiroomi Miyamoto
- Japan
Fisheries Research and Education Agency, 2-12-4, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Akinori Takasuka
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Mikio Watai
- Japan
Fisheries Research and Education Agency, 2-12-4, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Tohya Yasuda
- Japan
Fisheries Research and Education Agency, 2-12-4, Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Takuya Sato
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Bioinformatics
Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan
| | - Rei Yamashita
- Atmosphere
and Ocean Research Institute, The University
of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba 277-8564, Japan
| | - Taketoshi Kodama
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazutaka Takahashi
- Graduate
School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
15
|
Alvarez E. Comparing quantity of marine debris to California horn shark sightings and egg appearances in Redondo Beach, California, USA. MARINE POLLUTION BULLETIN 2025; 212:117499. [PMID: 39765183 DOI: 10.1016/j.marpolbul.2024.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 03/05/2025]
Abstract
Marine debris such as plastic, metal, and rubber, is a significant source of anthropogenic waste pollution in oceanic waters. Debris continues to be found along Southern California's coastlines and poses serious risks to biodiversity and ecosystem health through entrapment, ingestion, and entanglement. One particular species that drops eggs in the South Bay, particularly in the Palos Verdes peninsula, is the California horn shark (Heterodontus francisci). In California, H. francisci is managed by the California Department of Fish and Wildlife under general finfish regulations. The International Union for Conservation of Nature (IUCN) has published a 'Red List of Threatened Species' and H. francisci is characterized as being 'data deficient.' Additionally, several studies have noted dwindling H. francisci populations and have indicated a need for more localized management strategies to ensure their protection. Using the citizen science app, Marine Debris Tracker, this study geotagged and characterized waste, and used ArcGIS to generate heat maps of marine debris, H. francisci sightings and egg appearances to assess relationships. These maps help to address the data gaps that exist on (1) debris found on the Redondo Beach Esplanade, (2) local beach H. francisci sightings, and (3) H. francisci egg casings in the Palos Verdes peninsula to understand potential impacts of environmental waste on H. francisci. With these maps, citizen scientists, conservationists, and other local stakeholders can focus their efforts on key hotspots that could potentially endanger nesting practices of the H. francisci. Since oceanic pollution is an international issue that threatens ecosystems and biodiversity including nesting practices, leveraging citizen science applications can be a critical tool for conservation and management strategies.
Collapse
Affiliation(s)
- Evelyn Alvarez
- California State University, Los Angeles, 5151 State University Drive ST 305, Los Angeles, CA 90032, USA.
| |
Collapse
|
16
|
Aloisi M, Poma AMG. Nanoplastics as Gene and Epigenetic Modulators of Endocrine Functions: A Perspective. Int J Mol Sci 2025; 26:2071. [PMID: 40076697 PMCID: PMC11899923 DOI: 10.3390/ijms26052071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Nanoplastics (NPs) represent a major challenge in environmental contamination resulting from the physical, chemical, and biological degradation of plastics. Their characterization requires advanced and expensive methods, which limit routine analyses. The biological effects of NPs depend on their chemical and physical properties, which influence toxicity and interactions with biological systems. Studies in animal models, such as Daphnia magna and Danio rerio, show that NPs induce oxidative stress, inflammation, DNA damage, and metabolic alterations, often related to charge and particle size. NPs affect endocrine functions by acting as endocrine disruptors, interfering with thyroid and sex hormones and showing potential transgenerational effects through epigenetic modifications, including DNA hyper- and hypomethylation. Behavioral and neurofunctional alterations have been observed in Danio rerio and mouse models, suggesting a link between NP exposure and neurotransmitters such as dopamine and serotonin. Despite limited human studies, the presence of NPs in breast milk and placenta underscores the need for further investigation of health effects. Research focusing on genetic and epigenetic markers is encouraged to elucidate the molecular mechanisms and potential risks associated with chronic exposure.
Collapse
|
17
|
Mello TJ, Longhini CM, Wanderley BMS, Silva CAD, Lehrback BD, Bom FC, Neto RR, Sá F, Vieira EA, Costa VE, Longo GO. Pollution affects even oceanic marine protected areas in Southwestern Atlantic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125485. [PMID: 39644954 DOI: 10.1016/j.envpol.2024.125485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Reefs are facing a global decline with sewage pollution emerging as a significant and poorly understood threat. Inadequate wastewater management and disorderly urbanization contribute to water pollution globally. Tropical Southwestern Atlantic comprises a set of oceanic Marine Protected Areas (MPAs) including the Fernando de Noronha Archipelago in Brazil, which has experienced significant population growth without expanding the sewage infrastructure. We mapped and quantified marine pollution in these MPAs, characterizing pollution sources and evaluating their effects on benthic and fish communities in 13 reef sites. We quantified nutrients, metals and metalloid, microplastics, fecal sterols, and Polycyclic Aromatic Hydrocarbons (PAHs) in both water and sediment samples. We also used isotopic tracing on macroalgae to identify the origin of organic matter and characterized benthic and fish communities, and algae biomass at each site. Pollution was more pronounced in the multiple-use area but also affected no-take areas. Effluents from wastewater treatment plants did not meet legislative standards, and reefs in the multiple-use area were enriched in orthophosphate and ammonia compared to those in the no-take area. Nitrogen isotopes in macroalgae revealed sewage-derived nitrogen throughout the multiple-use area. Nutrient enriched sites exhibited higher abundances of fast-growing and opportunistic green macroalgae, and higher biomass of brown macroalgae. The port area, within the multiple-use area, showed high PAHs, coprostanol and metal(loid) concentrations, suggesting untreated sewage and nautical chemical pollution. Microplastics were widespread in sediment and water samples. We documented the pervasive impacts of marine pollution on reef habitats even within marine protected areas in oceanic regions, demonstrating that local pollution control, sewage management and regulating procedures in port areas are critical to protect marine ecosystems. Comparisons with previous studies suggest marine pollution has substantially increased in the Archipelago in the last ten years. This is the first comprehensive assessment of marine pollution in an oceanic environment in Southwestern Atlantic, showing these isolated environments are not immune to pollution impacts.
Collapse
Affiliation(s)
- Thayná J Mello
- Marine Ecology Laboratory, Department of Oceanography and Limnology, Universidade Federal Do Rio Grande Do Norte, Natal, RN, 59014-002, Brazil; Instituto Chico Mendes de Conservação da Biodiversidade, Núcleo de Gestão Integrada Alcatrazes, São Sebastião, SP, 11610-000, Brazil
| | - Cybelle M Longhini
- Marine Biogeochemistry Laboratory, Department of Oceanography and Limnology, Universidade Federal Do Rio Grande Do Norte, Natal, RN, 59014-002, Brazil
| | - Bruno Mattos Silva Wanderley
- Marine Biogeochemistry Laboratory, Department of Oceanography and Limnology, Universidade Federal Do Rio Grande Do Norte, Natal, RN, 59014-002, Brazil
| | - Cesar Alexandro da Silva
- Laboratory of Environmental Geochemistry and Marine Pollution, Department of Oceanography, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Bethânia Dal'Col Lehrback
- Laboratory of Environmental Geochemistry and Marine Pollution, Department of Oceanography, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Fábio Cavalca Bom
- Laboratory of Environmental Geochemistry and Marine Pollution, Department of Oceanography, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Renato Rodrigues Neto
- Laboratory of Environmental Geochemistry and Marine Pollution, Department of Oceanography, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Fabian Sá
- Laboratory of Environmental Geochemistry and Marine Pollution, Department of Oceanography, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Edson A Vieira
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, BA, 45662-900, Brazil
| | - Vladmir E Costa
- Stable Isotopes Center, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 18618689, Brazil
| | - Guilherme O Longo
- Marine Ecology Laboratory, Department of Oceanography and Limnology, Universidade Federal Do Rio Grande Do Norte, Natal, RN, 59014-002, Brazil.
| |
Collapse
|
18
|
Tatlı HH, Parmaksız A, Uztemur A, Altunışık A. Microplastic accumulation in various bird species in Turkey. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:386-396. [PMID: 39847390 PMCID: PMC11816308 DOI: 10.1093/etojnl/vgae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 01/24/2025]
Abstract
Plastic pollution constitutes one of the major environmental problems of our time, and in recent years, it has emerged as a significant threat to the environment and to various organisms, including bird species. In this context, this study, which provides the first data in Türkiye, aimed to determine the level of microplastic (MP) pollution in 12 bird species (Eurasian buzzard; short-toed snake-eagle; white stork; northern long-eared owl; common barn-owl; ruddy shelduck; Eurasian eagle-owl; scarlet macaw; common pheasant; Indian peafowl; common kestrel; and gray parrot). The results indicate that MPs were detected in 50% of the specimens (n = 20), with an average of one MP/item per individual. With an average of three MPs per individual, the short-toed snake-eagle was found to be the species with the highest MP accumulation. Fibers (range: 51-534 µm) were the most common type of plastic found in the gastrointestinal tract of birds, with ethylene vinyl acetate and navy blue being the most common polymer type and color, respectively. It was also found that the abundance of MPs increased with the weight of specimens, contributing to the hypothesis that there is a correlation between the size/weight of animals and increased levels of MP accumulation. These findings highlight the impact of plastic pollution on birdlife and the need for further monitoring to assess the ecological impact of pollution.
Collapse
Affiliation(s)
- Hatice Hale Tatlı
- Biology Department, Faculty of Arts and Sciences, University of Recep Tayyip Erdogan, Merkez, Rize, Türkiye
| | - Arif Parmaksız
- Biology Department, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Türkiye
| | - Adil Uztemur
- Republic of Türkiye Ministry of Agriculture and Forestry General Directorate of Nature Conservation and National Parks, Şanlıurfa, Türkiye
| | - Abdullah Altunışık
- Biology Department, Faculty of Arts and Sciences, University of Recep Tayyip Erdogan, Merkez, Rize, Türkiye
| |
Collapse
|
19
|
Roscher L, Nöthig EM, Fahl K, Wekerle C, Krumpen T, Hoppmann M, Knüppel N, Primpke S, Gerdts G, Bergmann M. Origin and intra-annual variability of vertical microplastic fluxes in Fram Strait, Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178035. [PMID: 39708749 DOI: 10.1016/j.scitotenv.2024.178035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Microplastic (MP) pollution has reached the remotest areas of the globe, including the polar regions. In the Arctic Ocean, MPs have been detected in ice, snow, water, sediment, and biota, but their temporal dynamics remain poorly understood. To better understand the transport pathways and drivers of MP pollution in this fragile environment, this study aims to assess MPs (≥ 11 μm) in sediment trap samples collected at the HAUSGARTEN observatory (Fram Strait) from September 2019 to July 2021. MP fluxes determined by μ-Fourier transform infrared (FTIR) imaging ranged from 0 to 2.9 MP m-2 d-1, peaking in April 2020 and April 2021, with all detected MPs being <300 μm in size. There was no strong correlation between MPs and any of the recorded biogeochemical and physical variables, as each MP flux event was associated with different variables such as biogenic matter, sea ice concentration, or origin. By providing time series data over 21 months, this study provides a baseline for future MP flux assessments in Fram Strait, Arctic.
Collapse
Affiliation(s)
- Lisa Roscher
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Shelf Sea System Ecology, Kurpromenade 201, 27498 Helgoland, Germany; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Eva-Maria Nöthig
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Biological Oceanography, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Kirsten Fahl
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Marine Geology, Am Alten Hafen 26, 27568 Bremerhaven, Germany
| | - Claudia Wekerle
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Physical Oceanography, Klußmannstraße 3d, 27570 Bremerhaven, Germany
| | - Thomas Krumpen
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Sea Ice Physics, Klußmannstraße 3d, 27570 Bremerhaven, Germany
| | - Mario Hoppmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Physical Oceanography, Klußmannstraße 3d, 27570 Bremerhaven, Germany
| | - Nadine Knüppel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Biological Oceanography, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Sebastian Primpke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Shelf Sea System Ecology, Kurpromenade 201, 27498 Helgoland, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Shelf Sea System Ecology, Kurpromenade 201, 27498 Helgoland, Germany
| | - Melanie Bergmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
20
|
Ruggieri L, Amato O, Marrazzo C, Nebuloni M, Dalu D, Cona MS, Gambaro A, Rulli E, La Verde N. Rising Concern About the Carcinogenetic Role of Micro-Nanoplastics. Int J Mol Sci 2024; 26:215. [PMID: 39796071 PMCID: PMC11720132 DOI: 10.3390/ijms26010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, awareness regarding micro-nanoplastics' (MNPs) potential effects on human health has progressively increased. Despite a large body of evidence regarding the origin and distribution of MNPs in the environment, their impact on human health remains to be determined. In this context, there is a major need to address their potential carcinogenic risks, since MNPs could hypothetically mediate direct and indirect carcinogenic effects, the latter mediated by particle-linked chemical carcinogens. Currently, evidence in this field is scarce and heterogeneous, but the reported increased incidence of malignant tumors among younger populations, together with the ubiquitous environmental abundance of MNPs, are rising a global concern regarding the possible role of MNPs in the development and progression of cancer. In this review, we provide an overview of the currently available evidence in eco-toxicology, as well as methods for the identification and characterization of environmental MNP particulates and their health-associated risks, with a focus on cancer. In addition, we suggest possible routes for future research in order to unravel the carcinogenetic potential of MNP exposure and to understand prognostic and preventive implications of intratumoral MNPs.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Ottavia Amato
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Cristina Marrazzo
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Manuela Nebuloni
- Pathology Unit, Luigi University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Davide Dalu
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Maria Silvia Cona
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Anna Gambaro
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| | - Eliana Rulli
- Methodology for Clinical Research Laboratory, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Nicla La Verde
- Department of Oncology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (L.R.); (O.A.); (C.M.); (D.D.); (M.S.C.); (A.G.)
| |
Collapse
|
21
|
Furlan I, Fornari M, Sawakuchi AO, Giannini PCF, Dipold J, de Freitas AZ, Wetter NU, Semensatto D. Morphodynamics drive the transport and accumulation of anthropogenic microparticles in tropical coastal depositional systems in southeastern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177479. [PMID: 39547382 DOI: 10.1016/j.scitotenv.2024.177479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A significant limitation in current coastal pollution research is that microplastics (<5 mm) comprise only a fraction of all anthropogenic microparticles (AMP, <5 mm) scale residues. Comprehensive AMP assessments, including those comprising semisynthetic, and modified natural compositions, are lacking. For instance, the accumulation of AMP in different coastal morphological features within a depositional system remains poorly known, fueling long-lasting debates about the distribution process of microparticles. Using a multi-proxy approach, we address mutual interactions between distinct surface morphologies (tidal flats, beaches, and foredunes) and transport and deposition dynamics of AMP. This issue was addressed by analyzing sediment and water samples collected at a marine protected area in the south coastal of São Paulo (Brazil). Here, we showed that AMP abundance in the tidal mudflat (18,500-20,500 particles/kg) was four times higher than in beach sands (4700-5900 particles/kg), while the lowest abundance was observed in foredune sands (4350 particles/kg). This can be attributed to the low-energy hydrodynamics of tidal flats associated with the cohesive behavior of muddy sediments, which consequently favor trapping and act as the main sink for AMP. Further, coastal processes (waves and currents) drive AMP onshore through sediment transport from the surfzone to the beach, from where the AMP becomes available for onshore eolian transport. Higher AMP abundance (85 particles/l) was observed in the marine water samples compared to the estuarine water samples (35 particles/l). Fibers <1 mm appeared as the predominant AMP in the sediment (99-100 %) and water (80-95 %) samples, primarily consisting of modified cellulose (73 %), dye signature only (16 %), and microplastics (11 %). Consequently, we argue that to fully comprehend the spatial distribution of AMP in coastal sediments and waters, it is crucial to analyze these microparticles from an integrated perspective, primarily considering the hydro-wind dynamics of different coastal morpho-sedimentary compartments combined with sediment grain size.
Collapse
Affiliation(s)
- Isabela Furlan
- Biosciences Institute, São Paulo State University (UNESP), São Vicente 11330-900, Brazil.
| | - Milene Fornari
- Biosciences Institute, São Paulo State University (UNESP), São Vicente 11330-900, Brazil.
| | | | | | - Jessica Dipold
- Nuclear and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo 05508-000, Brazil
| | | | - Niklaus Ursus Wetter
- Nuclear and Energy Research Institute (IPEN), University of São Paulo (USP), São Paulo 05508-000, Brazil
| | - Décio Semensatto
- Department of Environmental Sciences, Federal University of São Paulo (UNIFESP), Diadema 09972270, Brazil
| |
Collapse
|
22
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
23
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Khalil MA, Schagerl M, Al-Zahrani M, Sun J. Microplastics as an Emerging Potential Threat: Toxicity, Life Cycle Assessment, and Management. TOXICS 2024; 12:909. [PMID: 39771124 PMCID: PMC11728610 DOI: 10.3390/toxics12120909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
The pervasiveness of microplastics (MPs) in terrestrial and aquatic ecosystems has become a significant environmental concern in recent years. Because of their slow rate of disposal, MPs are ubiquitous in the environment. As a consequence of indiscriminate use, landfill deposits, and inadequate recycling methods, MP production and environmental accumulation are expanding at an alarming rate, resulting in a range of economic, social, and environmental repercussions. Aquatic organisms, including fish and various crustaceans, consume MPs, which are ultimately consumed by humans at the tertiary level of the food chain. Blocking the digestive tracts, disrupting digestive behavior, and ultimately reducing the reproductive growth of entire living organisms are all consequences of this phenomenon. In order to assess the potential environmental impacts and the resources required for the life of a plastic product, the importance of life cycle assessment (LCA) and circularity is underscored. MPs-related ecosystem degradation has not yet been adequately incorporated into LCA, a tool for evaluating the environmental performance of product and technology life cycles. It is a technique that is designed to quantify the environmental effects of a product from its inception to its demise, and it is frequently employed in the context of plastics. The control of MPs is necessary due to the growing concern that MPs pose as a newly emergent potential threat. This is due to the consequences of their use. This paper provides a critical analysis of the formation, distribution, and methods used for detecting MPs. The effects of MPs on ecosystems and human health are also discussed, which posed a great challenge to conduct an LCA related to MPs. The socio-economic impacts of MPs and their management are also discussed. This paper paves the way for understanding the ecotoxicological impacts of the emerging MP threat and their associated issues to LCA and limits the environmental impact of plastic.
Collapse
Affiliation(s)
- Sameh S. Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | | | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Maha A. Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Majid Al-Zahrani
- Biological Sciences Department, College of Science and Art at Rabigh, King Abdulaziz University, Rabigh 25732, Saudi Arabia;
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
24
|
Piedade Cestari S, Rodrigues PV, Ribeiro AC, Castro MCR, Cruz V, Torres AR, Ramos N, Machado AV. Compatibilizer Efficiency in Enhancing Marine Plastic Waste Valorization Through Simulated Recycled Plastic Blends. Polymers (Basel) 2024; 16:3441. [PMID: 39684186 DOI: 10.3390/polym16233441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated the optimal combination of compatibilizers and stabilizers to enhance the value of marine environment plastic (MEP). The composition of the plastics was analysed, and a simulated recycled plastic blend (sMEP) was prepared based on a simplified composition of actual MEP. Different concentrations of three commercial compatibilizers (C1, C2 and C3) were tested to improve tensile strength. The tensile tests indicated that the blend compatibilized with 10 wt.% C3 (polypropylene grafted with maleic anhydride) exhibited the highest increase in tensile strength. This optimal compatibilization was then combined with two commercial stabilizers and applied to a simulated MEP blend. Scanning electron microscopy images showed that all blends had a continuous polyethylene phase with dispersed poly(ethylene terephthalate) (PET) and polypropylene (PP) droplets. The simulated blend with 10 wt.% C3 exhibited a reduced PET droplet size in the dispersed phase. Differential scanning calorimetry results revealed a decrease in polyethylene crystallinity and an increase in PP crystallinity. The improved properties of the blend were attributed to the effectiveness of the C3 compatibilizer in enhancing the interface between the PP and PET phases. An effective formulation was developed to valorise marine-sourced plastics by leveraging existing scientific knowledge and accessible commercial additives. Applying this enhanced formulation to real MEP not only demonstrated its effectiveness, but also highlighted a practical approach for reducing plastic pollution and supporting circular economy principles, contributing to environmental conservation efforts.
Collapse
Affiliation(s)
- Sibele Piedade Cestari
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| | - Pedro Veiga Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| | - Ana Cristina Ribeiro
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| | - Maria Cidália Rodrigues Castro
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| | - Vasco Cruz
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| | - Ana Rita Torres
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| | - Nuno Ramos
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| | - Ana Vera Machado
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), Campus de Azurém, University of Minho, 4804-533 Guimarães, Portugal
| |
Collapse
|
25
|
Zardi GI, Seuront L, Gevaert F, Nicastro KR. Plastiskin: A new form of plastic pollution affecting rocky shore organisms. MARINE POLLUTION BULLETIN 2024; 209:117121. [PMID: 39406061 DOI: 10.1016/j.marpolbul.2024.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/28/2024]
Abstract
Plastic pollution has become a significant environmental concern, with profound consequences for ecosystems worldwide, particularly for marine systems. Our study introduces 'plastiskin', a newly identified plastic pollution type encrusting intertidal organisms. Found on mussels and macroalgae, 'plastiskin' was composed of polypropylene and polyethylene. In mussels, the presence of 'plastiskin' was correlated with the absence of living endoliths in areas of the shells it covered, indicating a detrimental impact on the symbiotic endolithic community residing within mussel shells. In addition, we examined the potential negative effects of 'plastiskin' on the photosynthetic efficiency of macroalgae, however, these findings were inconclusive, stressing the need for further studies with larger sample sizes. Our baseline observations may serve as a groundwork for further investigation into the spatial distribution, temporal persistence, and ecological ramifications of 'plastiskin'. potential incorporation of 'plastiskin' as a new marine debris category into management and monitoring frameworks warrants serious consideration.
Collapse
Affiliation(s)
- Gerardo I Zardi
- Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000 Caen, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Laurent Seuront
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - François Gevaert
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France
| | - Katy R Nicastro
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000 Lille, France.
| |
Collapse
|
26
|
AlMusallami M, Al Ali A, Aljaberi S, Das H, Pavlopoulos K, Muzaffar SB. Ingestion of marine debris in juvenile sea turtles in Abu Dhabi, United Arab Emirates. MARINE POLLUTION BULLETIN 2024; 209:117029. [PMID: 39393232 DOI: 10.1016/j.marpolbul.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Marine plastics and other debris constitute a major threat to many marine species. Over 12 million tons of plastics are estimated to reach the oceans annually, causing adverse effects on hundreds of marine species. The Arabian Gulf is a small, sub-tropical and semi-enclosed gulf with extreme environmental conditions with high potential to accumulate marine debris. Sea turtles are especially vulnerable to plastic ingestion although data on marine plastics in juvenile sea turtles from this region is limited. Juvenile sea turtles are also vulnerable to cold stunning triggered by different environmental factors. We collected stranded sea turtles from different sites along the Abu Dhabi shoreline to characterize timing of strandings in relation to environmental factors. We also evaluated the marine debris ingested by sea turtles. Live individuals collected were kept in controlled conditions to allow them to recover. During this period, marine debris in feces were sorted and enumerated. In addition, individuals that were dead during collection were necropsied and the plastics in their gastrointestinal tracts were characterized. Industrial plastic pellets, sheet-like user plastics, and thread-like user plastics were recorded. All the live turtles (n = 55) passed plastics with their feces, and 85 % of the necropsied turtles (n = 47) had plastics in their gastrointestinal tracks. Plastic fragments constituted the largest proportion of marine debris recorded from turtles, followed by industrial pellets. We suggest that juvenile sea turtles that float for extended periods under mats of Sargassum eat vesicles or air bladders that resemble industrial pellets in their shape and size. Timing and location of strandings was associated with dominating Shamal winds in the Arabian Gulf. Condition of individuals that are cold-stunned could be further exacerbated by plastic ingestion. Long-term assessment of plastics in coastal zones is needed to better understand plastic pollution in the Arabian Gulf and to mitigate impacts on marine species.
Collapse
Affiliation(s)
- Mohamed AlMusallami
- Environment Agency - Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmed Al Ali
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Aljaberi
- Veterinary Services Section, Public Health Services Department, Dubai Municipality, Dubai, United Arab Emirates
| | - Himansu Das
- Environment Agency - Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kosmas Pavlopoulos
- Department of Geography and Planning, Sorbonne University, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
27
|
Litchfield SG, Schulz KG, Kelaher BP. Decomposition of Sargassum detritus varies with exposure to different plastic types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64534-64544. [PMID: 39542991 DOI: 10.1007/s11356-024-35505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Plastic pollution and ocean warming threaten crucial ecosystem processes, including detrital decomposition. We carried out a manipulative experiment using 20 outdoor raceways to test hypotheses about the influence of macroplastics (polyvinyl chloride (PVC), polyethylene terephthalate (PET), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and biodegradable (BIO)) and ocean warming (as 3 °C above ambient sea surface temperatures) on the decomposition of Sargassum vestitum. All types of plastic significantly decreased rates of S. vestitum decomposition compared to controls. LDPE was associated with the greatest decrease in detrital decomposition (41%), followed closely by BIO (28%), whilst HDPE had the least influence (12%) during our 40-day experiment. Treatments with LDPE and PET retained more carbon (%) in S. vestitum than the control treatment. However, plastics neither affected nitrogen (%), nor C/N ratio of the decomposing detritus. Ocean warming significantly increased the decomposition of S. vestitum, but did not affect relative carbon or nitrogen, nor C/N of the remaining detritus, nor did temperature interact with plastic treatments. As detrital decomposition significantly contributes to marine biogeochemical cycling, food-web connectivity, and secondary production, our multiple stressor experiment demonstrates the value of management strategies that simultaneously address the impacts of ocean warming and plastic pollution in nearshore environments.
Collapse
Affiliation(s)
- Sebastian G Litchfield
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia.
| | - Kai G Schulz
- Centre for Coastal Biogeochemistry and School of Environment, Science and Engineering, Southern Cross University, PO Box 157, East Lismore, NSW, 2480, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| |
Collapse
|
28
|
Reineccius J, Waniek JJ. Critical reassessment of microplastic abundances in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176449. [PMID: 39317250 DOI: 10.1016/j.scitotenv.2024.176449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Microplastics (MPs) pose a growing concern in the marine environment, but their global prevalence remains largely unknown due to the absence of precise and standardized detection methods. This review critically evaluates existing techniques for quantifying MP abundances in marine field studies, addressing inaccuracies resulting from the exclusion of particle sizes, polymer types, or limitations in identification methods. These traced inaccuracies were considered to recalculate MP abundances for particle sizes from 10 to 5000 μm, providing the first corrected global overview of MP distribution that enables quality assessment and reliable comparisons between adjusted data. The recalculations indicate that MP abundances are up to 15 times higher in marine waters (average (1.5 ± 36.2) × 105 items m-3) and up to 11 times higher in the marine sediments (average (2.7 ± 117.9) × 105 items kg-1) than previously reported in the literature. The Australasian Mediterranean Sea (average (1.2 ± 10.6) × 106 items m-3) and the North Atlantic (average (2.1 ± 37.6) × 105 items kg-1) emerged as the most polluted regions in marine waters and sediments, respectively, with primary contributors being the coasts of Southeast Asia and East America. This review demonstrates that previous field studies, global estimates, and models have significantly underestimated MP levels in marine environments in many cases, which could result in misinterpretations of both local and global pollution levels. This work highlights the critical need for precise handling of microplastic samples and urges future researchers to adopt standardized protocols for MP analysis to avoid inaccurate and misleading outcomes.
Collapse
Affiliation(s)
- Janika Reineccius
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, 18119 Rostock, Germany.
| | - Joanna J Waniek
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
29
|
Alimohammadi M, Demirer GN. Microplastics in anaerobic digestion: occurrence, impact, and mitigation strategies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:397-411. [PMID: 39464825 PMCID: PMC11499492 DOI: 10.1007/s40201-024-00910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
Microplastic pollution has emerged as a global environmental concern, with pervasive contamination in terrestrial and aquatic ecosystems. This review paper delves into the intricate dynamics of microplastics within anaerobic digestion systems, addressing their occurrence, impact, and potential mitigation strategies. The occurrence of microplastics in anaerobic digesters is widespread, entering these systems through diverse inputs, such as sewage sludge, organic waste, and etc. Microplastics in anaerobic digestion have been associated with potential adverse impacts on biogas production, process performance, microbial communities, and degradation processes, though the relationship is complex and context dependent. This review highlights the urgent need for comprehensive research into the fate of microplastics within anaerobic digesters. Mitigation strategies offer promise in alleviating microplastic contamination, with advanced separation methods, innovative techniques such as magnetic micro-submarines, photocatalytic micro-motors, membrane bioreactors combined with activated carbon filters, rapid sand filtration, or conventional activated sludge, and disintegration-oriented techniques such as electrocatalysis, biodegradation, and thermal decomposition. Nonetheless, there is a significant knowledge gap that necessitates further research into the fate and long-term effects of microplastics in digestate. Collaborative efforts are crucial to addressing this emerging concern and ensuring the sustainability of anaerobic digestion systems in the face of microplastic challenges.
Collapse
Affiliation(s)
- Mahsa Alimohammadi
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
| | - Goksel N. Demirer
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859 USA
- Institute for Great Lakes Research, Central Michigan University, Mt. Pleasant, MI 48859 USA
| |
Collapse
|
30
|
Maddox ML, Provencher JF, Mallory ML. Plastic ingestion in thick-billed murres (Uria lomvia) from the Canadian high Arctic. MARINE POLLUTION BULLETIN 2024; 209:117269. [PMID: 39541658 DOI: 10.1016/j.marpolbul.2024.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Plastic pollution continues to prevail across Arctic marine environments, readily available for marine organisms to ingest, especially seabirds. Seabird plastic ingestion datasets often lack standardized time series that allow for trend analysis. We examine the recent status of plastic ingestion (≥ 1 mm) in thick-billed murres (Uria lomvia) using standardized methods to assess spatial differences and time trends over two decades (2007-2021). In 2021, 7 % of the 43 thick-billed murres we examined from this region ingested plastic; 1 piece of plastic in three separate individuals. No significant temporal or spatial differences in murre plastic ingestion were observed. Therefore, plastic pollution (≥ 1 mm) currently poses a low risk to Arctic breeding murres. The long-term monitoring of plastic ingestion in this species should continue as murres have economic and cultural importance to communities and provide insight to marine plastic pollution trends.
Collapse
Affiliation(s)
- Mark L Maddox
- Department of Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada.
| | - Jennifer F Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
31
|
N S M, K V A. Microplastics contamination and risk assessment in bivalves of economic importance from Beypore estuary, Southern India. ENVIRONMENTAL RESEARCH 2024; 261:119711. [PMID: 39096987 DOI: 10.1016/j.envres.2024.119711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutant causing severe threat to the biotic and abiotic components of the coastal ecosystem. Accumulation of MPs in the commercially important bivalves Viz. Perna viridis (green mussel) and Meretrix casta (clam) collected from four different locations of Beypore estuary, Southern India was studied. The study focused on the accumulation, characteristics, diversity indices, and human health risk assessment of MPs in the bivalves of Beypore estuary. A total of 120 bivalve samples were examined for the MPs contamination. Whole tissue digestion method using 10% KOH was employed to retrieve the MP content. The results indicate that the average abundance of MPs in Perna viridis is 2.38 ± 1.56 MPs/individual and 0.15 ± 0.09 MP/g/wet weight whereas, for Meretrix casta it is 1.35 ± 1.02 MPs/individual and 0.3 ± 0.27 MP/g/wet weight. Spearman's correlation reveals that there is no significant correlation observed between the abundance of MPs in the bivalves with their morphomertric parameters. The characteristics of MPs in the bivalves are dominated by translucent colored particles (88.95%) in the form of films (45.13%) and fibers (33.6%) having a size ranged between 300 and 1000 μm (51.13%) and composed of polyethylene (54.5%) and polypropylene (20%) polymers. The microplastic index in Meretrix casta ranged between 0.02 and 0.07 whereas for Perna viridis it ranged between 0.08 and 0.10 indicating minimal to moderate MPs contamination. The microplastics diversity integrated index ranged between 0.67 and 0.69 for Meretrix casta whereas, for Perna viridis the value ranged between 0.34 and 0.60 suggests moderate diversity of MPs derived from multiple sources. Based on polymer hazard index, the potential health risk was assessed with a hazard level ranged between II and IV suggesting significant health risk. Systematic monitoring of MPs at river basin scale along with stringent plastic waste management is required to minimize plastic pollution load into the river system.
Collapse
Affiliation(s)
- Magesh N S
- Centre for Water Resources Development and Management, Kozhikode, Kerala, 673 571, India.
| | - Ajith K V
- Centre for Water Resources Development and Management, Kozhikode, Kerala, 673 571, India.
| |
Collapse
|
32
|
Perold V, Ronconi RA, Moloney CL, Dilley BJ, Connan M, Ryan PG. Little change in plastic loads in South Atlantic seabirds since the 1980s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175343. [PMID: 39127220 DOI: 10.1016/j.scitotenv.2024.175343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Despite growing concern about the large amounts of waste plastic in marine ecosystems, evidence of an increase in the amount of floating plastic at sea has been mixed. Both at-sea surveys and ingested plastic loads in seabirds show inconsistent evidence of significant increases in the amount of plastic since the 1980s. We use 3727 brown skua Catharacta antarctica regurgitations, each containing the remains of a single seabird, to monitor changes in plastic loads in four seabird taxa breeding at Inaccessible Island, Tristan da Cunha in nine years from 1987 to 2018. Frequency of occurrence in plastic ingestion and types were compared across four near-decadal time periods (1987-1989; 1999-2004; 2009-2014 and 2018) while loads were compared among years. The number and proportions of industrial pellets among ingested plastic decreased consistently over the study period in all four taxa, suggesting that industry initiatives to reduce pellet leakage have reduced the numbers of pellets at sea. Despite global plastic production increasing more than four-fold over the study period, there was no consistent increase in the total amount of ingested plastic in any species. Plastic loads in great shearwaters Ardenna gravis, which spend the austral winter in the North Atlantic Ocean, increased in 2018, but the proportion of shearwaters containing plastic decreased. We conclude that the density of plastic floating at sea has not increased in line with global production over the last 30 years.
Collapse
Affiliation(s)
- Vonica Perold
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa.
| | - Robert A Ronconi
- Environment and Climate Change Canada, Canadian Wildlife Service, Dartmouth, NS B2Y 2N6, Canada
| | - Coleen L Moloney
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Ben J Dilley
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - Maëlle Connan
- Department of Zoology, Marine Apex Predator Research Unit (MAPRU), Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
33
|
Yang J, Ji W, Li Y, Wu Y, Yao M, Wu W, Jing K, Zhang G. Adsorption behavior and quantum chemical analysis of surface functionalized polystyrene nano-plastics on gatifloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63287-63300. [PMID: 39480581 DOI: 10.1007/s11356-024-35457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
In this paper, the adsorption of gatifloxacin (GAT) by three types of polystyrene nano-plastics (PSNPs), including 400 nm polystyrene (PS), amino-modified PS (PS-NH2), and carboxyl-modified PS (PS-COOH) was studied and the adsorption mechanism were assessed. Experimental findings revealed that the equilibrium adsorption capacity of PSNPs to GAT followed the order PS-NH2 > PS-COOH > PS. The adsorption was regulated by both physical and chemical mechanisms, with intra-particle and external diffusion jointly controlling the adsorption rate. The adsorption process was heterogeneous, spontaneous, and entropy-driven. Sodium chloride (NaCl), alginic acid, copper ions (Cu2+), and zinc ions (Zn2+) inhibited adsorption, with Cu2+ and Zn2+ having the strongest effect on PS-NH2. Theoretical computations indicated that π-π and electrostatic interactions dominated PS adsorption of GAT, while PS-COOH and PS-NH2 adsorbed GAT through electrostatic interactions, hydrogen bonds, and van der Waals (vdW) forces. The surface electrostatic potential of PS-COOH and PS-NH2 was considerably higher than that of PS, with the maximum vdW penetration distance of GAT-PS-NH2 being 1.20 Å. This study's findings provide a theoretical foundation for the migration and synergistic removal of antibiotics, micro-plastics (MPs), and nano-plastics (NPs).
Collapse
Affiliation(s)
- Jie Yang
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Wei Ji
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Yanan Li
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Yaning Wu
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Meijing Yao
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Weiqin Wu
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | - Kangjian Jing
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, 030600, China
| | | |
Collapse
|
34
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
35
|
Patchaiyappan A, Singh A, Bautès N, Abimannan A. Face mask littering in coastal environment of Coromandel beaches, a comparison between street and beach littering - perspective and perceptions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61270-61282. [PMID: 39412720 DOI: 10.1007/s11356-024-35014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The usage of face mask has been encouraged globally to combat the COVID-19 pandemic. However, their improper disposal has begun to impact the environment. In the present study, face mask littering was assessed in sixteen stations across the beaches in Coromandel coast of South India for a period of four weeks. Moreover, an online questionnaire was recorded to evaluate the people's perception about face mask usage and littering. In terms of land use pattern, stations with both fishing and tourism activities had higher abundance of face mask littering when compared with exclusive fishing and tourism stations. The study also found that mask littering was higher in streets when compared to the beaches. Of 163 respondents, most of the respondents preferred using disposable single use masks and 39.9% of the respondents preferred to dispose of the face masks along with other wastes. The study highlights the lack of proper solid waste management, negligent littering, and the need for raising awareness, strategic intervention to control this menace.
Collapse
Affiliation(s)
- Arunkumar Patchaiyappan
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India.
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan.
- Svarnim, Sri Aurobindo Society, Puducherry, 605001, India.
| | - Abhishek Singh
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Nicolas Bautès
- Department of Social Sciences, French Institute of Pondicherry, UMIFRE 21 CNRSMAEE/USR 3330, 11, St. Louis Street, P.B. 33, Pondicherry, 60500, India
| | - Arulkumar Abimannan
- Department of Biotechnology, Achariya Arts and Science College, Affiliated to Pondicherry University, Pondicherry, 605014, India
| |
Collapse
|
36
|
Zimmer-Correa M, Carneiro Proietti M, Couto Di Tullio J, Rodrigues LDS, Quadro Oreste E, Kessler F, Bassoi M, Botta S. Plastic ingestion by odontocetes from the Western South Atlantic: A particular concern to a threatened species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124659. [PMID: 39097262 DOI: 10.1016/j.envpol.2024.124659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/29/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
The ingestion of debris by marine fauna is a growing threat to biodiversity. This study aimed to evaluate and characterize litter ingestion by odontocetes from the Western South Atlantic. Between 2018 and 2022, 154 stomachs from six species were collected from stranded individuals and incidental captures. Stomach contents were analyzed with the naked eye and items of anthropic origin found were counted and physically/chemically characterized. Generalized Linear Models were used to evaluate the influence of biological factors on the presence/absence of litter in stomachs, and for Pontoporia blainvillei only, the influence of these factors on the number of ingested items was also tested; additionally, a temporal analysis of ingestion was done for this species (1994-2022). A total of 156 items, mainly macro-sized plastics made of polypropylene, were found in 52 stomachs of four species: Tursiops spp. (FO% = 3.3%), Steno bredanensis (10.0%), Delphinus delphis (28.6%) and P. blainvillei (47.5%). The presence/absence of litter was explained only by species (χ2 = 28.29 and p < 0.001). For P. blainvillei, a threatened species in the region, the number of items was positively influenced by individual size (χ2 = 6.01 and p = 0.01) and sex (χ2 = 7.93 and p = 0.005). There was an increase in plastic ingestion by this species over the years (χ2 = 121.6 and p < 0.001) and it was estimated that 75% of P. blainvillei stomachs will contain plastic by 2040. The ingestion of litter by odontocetes from the Western South Atlantic was confirmed and the potential risks posed by this type of pollution were evidenced, especially since these species also face other anthropic pressures. These results further demonstrate the increasing threat of litter in the ocean and highlight the importance of circularity of plastics and proper waste management.
Collapse
Affiliation(s)
- Marina Zimmer-Correa
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil.
| | - Maíra Carneiro Proietti
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; The Ocean Cleanup, Rotterdam, the Netherlands
| | - Juliana Couto Di Tullio
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Lucas Dos S Rodrigues
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; Laboratório de Dinâmica Populacional Pesqueira, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; Departament d'Estadística i Investigació Operativa, Universitat de València, Valencia, Spain
| | - Eliezer Quadro Oreste
- Laboratório de Físico-Química Aplicada e Tecnológica (LAFQAT), Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Felipe Kessler
- Laboratório de Físico-Química Aplicada e Tecnológica (LAFQAT), Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Manuela Bassoi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; Laboratório de Bioacústica (LaB), Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, Brazil
| | - Silvina Botta
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil; Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| |
Collapse
|
37
|
de Fockert A, Eleveld MA, Bakker W, Felício JM, Costa TS, Vala M, Marques P, Leonor N, Moreira A, Costa JR, Caldeirinha RFS, Matos SA, Fernandes CA, Fonseca N, Simpson MD, Marino A, Gandini E, Camps A, Perez-Portero A, Gonga A, Burggraaff O, Garaba SP, Salama MS, Xiao Q, Calvert R, van den Bremer TS, de Maagt P. Assessing the detection of floating plastic litter with advanced remote sensing technologies in a hydrodynamic test facility. Sci Rep 2024; 14:25902. [PMID: 39472579 PMCID: PMC11522325 DOI: 10.1038/s41598-024-74332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Remote sensing technologies have the potential to support monitoring of floating plastic litter in aquatic environments. An experimental campaign was carried out in a large-scale hydrodynamic test facility to explore the detectability of floating plastics in ocean waves, comparing and contrasting different microwave and optical remote sensing technologies. The extensive experiments revealed that detection of plastics was feasible with microwave measurement techniques using X and Ku-bands with VV polarization at a plastic threshold concentration of 1 item/m2 or 1-10 g/m2. The optical measurements further revealed that spectral and polarization properties in the visible and infrared spectrum had diagnostic information unique to the floating plastics. This assessment presents a crucial step towards enabling the detection of aquatic plastics using advanced remote sensing technologies. We demonstrate that remote sensing has the potential for global targeting of plastic litter hotspots, which is needed for supporting effective clean-up efforts and scientific evidence-based policy making.
Collapse
Affiliation(s)
| | - M A Eleveld
- Deltares, Delft, 2600 MH, The Netherlands
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - W Bakker
- Deltares, Delft, 2600 MH, The Netherlands
| | - J M Felício
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
- Centro de Investigação Naval, Escola Naval, Almada, Portugal
| | - T S Costa
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
| | - M Vala
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
| | - P Marques
- Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - N Leonor
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal
| | - A Moreira
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
| | - J R Costa
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
- Departamento de Ciências e Tecnologias da Informação, Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
| | - R F S Caldeirinha
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal
| | - S A Matos
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
- Departamento de Ciências e Tecnologias da Informação, Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
| | - C A Fernandes
- Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal
| | - N Fonseca
- Antenna and Sub-Millimeter Wave Section, European Space Agency (ESA), Noordwijk, 2200 AG, The Netherlands
| | - M D Simpson
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - A Marino
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - E Gandini
- Antenna and Sub-Millimeter Wave Section, European Space Agency (ESA), Noordwijk, 2200 AG, The Netherlands
| | - A Camps
- Dept. Teoria del Senyal i Comunicacions, CommSensLab-UPC, Universitat Politècnica de Catalunya, and Institut d'Estudis Espacials de Catalunya/CTE-UPC, Barcelona, 08034, Spain
- UAE University, Al Ain, Abu Dhabi, UAE
| | - A Perez-Portero
- Dept. Teoria del Senyal i Comunicacions, CommSensLab-UPC, Universitat Politècnica de Catalunya, and Institut d'Estudis Espacials de Catalunya/CTE-UPC, Barcelona, 08034, Spain
| | - A Gonga
- Dept. Teoria del Senyal i Comunicacions, CommSensLab-UPC, Universitat Politècnica de Catalunya, and Institut d'Estudis Espacials de Catalunya/CTE-UPC, Barcelona, 08034, Spain
| | - O Burggraaff
- Leiden Observatory and Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - S P Garaba
- Marine Sensor Systems Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Schleusenstraße 1, 26382, Wilhelmshaven, Germany
| | - M S Salama
- Faculty of Geo-Information Science and Earth Observation (ITC), Twente University, Enschede, The Netherlands
| | - Q Xiao
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - R Calvert
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CD, The Netherlands
- School of Engineering, University of Edinburgh, Edinburgh, EH9 3FB, Scotland, UK
| | - T S van den Bremer
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, 2628 CD, The Netherlands
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - P de Maagt
- Antenna and Sub-Millimeter Wave Section, European Space Agency (ESA), Noordwijk, 2200 AG, The Netherlands
| |
Collapse
|
38
|
Kherdekar RD, Ade AB. Integrated approaches for plastic waste management. Front Microbiol 2024; 15:1426509. [PMID: 39391604 PMCID: PMC11465426 DOI: 10.3389/fmicb.2024.1426509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Plastic pollution is the challenging problem of the world due to usage of plastic in daily life. Plastic is essential for packaging food and other goods and utensils to avoid the risk of microbial attack. Due to its hydrophobic nature, it is used for wrapping as laminates or packaging liquid substances in pouches and sachets. The tensile strength of the plastic is more therefore it is used for manufacturing carrying bags that can bear heavy loads. Plastic is available in various forms as per the requirements in our daily life. Annually millions to trillions of polyethene carry bags are being manufactured and utilized throughout the world. The plastic requires millions of years for natural degradation. The physical and chemical processes are able to degrade plastic material at the meager level by 200 to 500 years in natural conditions. Many industries focus on recycling of plastic. Biodegradation is a comparatively slow and cheaper process that involves microbes. To dispose of plastic completely there is a need of an integrated process in which all the possible methods of disposal are involved and used sustainably so that minimum depletion occurs to the livestock and the environment. In the current review, we could try to emphasize the intricate nature of plastic polymers, pollution caused by it and possible mitigation strategies for plastic waste management.
Collapse
|
39
|
Lee H, Song SJ, Kim CS, Park B. Polystyrene nanoplastics-induced intestinal barrier disruption via inflammation and apoptosis in zebrafish larvae (Danio Rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107027. [PMID: 39098124 DOI: 10.1016/j.aquatox.2024.107027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Plastics are one of the most pervasive materials on Earth, to which humans are exposed daily. Polystyrene (PS) is a common plastic packaging material. However, the impact of PS on human health remains poorly understood. Therefore, this study aimed to identify intestinal damage induced by PS nanoplastics (PS-NPs) in zebrafish larvae which have a high homology with humans. Four days post fertilization (dpf), zebrafish larvae were exposed to 0-, 10-, and 50-ppm PS-NPs for 48 h Initially, to ascertain if 100 nm PS-NPs could accumulate in the gastrointestinal (GI) tract of zebrafish larvae, the larvae were exposed to red fluorescence-labeled PS-NPs, and at 6 dpf, the larvae were examined using a fluorescence microscope. Analysis of the fluorescence intensity revealed that the GI tract of larvae exposed to 50-ppm exhibited a significantly stronger fluorescence intensity than the other groups. Nonfluorescent PS-NPs were then used in further studies. Scanning electron microscopy (SEM) confirmed the spherical shape of the PS-NPs. Fourier-transform infrared spectroscopy (FT-IR) analysis revealed chemical alterations in the PS-NPs before and after exposure to larvae. The polydispersity index (PDI) value derived using a Zetasizer indicated a stable dispersion of PS-NPs in egg water. Whole-mount apoptotic signal analysis via TUNEL assay showed increased apoptosis in zebrafish larval intestines exposed to 50-ppm PS-NPs. Damage to the intestinal tissue was assessed by Alcian blue (AB) and hematoxylin and eosin (H&E) staining. AB staining revealed increased mucin levels in the zebrafish larval intestines. Thin larval intestinal walls with a decrease in the density of intestinal epithelial cells were revealed by H&E staining. The differentially expressed genes (DEGs) induced by PS-NPs were identified and analyzed. In conclusion, exposure to PS-NPs may damage the intestinal barrier of zebrafish larvae due to increased intestinal permeability, and the in vivo gene network may change in larvae exposed to PS-NPs.
Collapse
Affiliation(s)
- Hyejin Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Korean Convergence Medical Science, University of Science Technology (UST), Daejeon 34113, Republic of Korea
| | - Su Jeong Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66047, KS, USA
| | - Chan-Sik Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Korean Convergence Medical Science, University of Science Technology (UST), Daejeon 34113, Republic of Korea
| | - Bongkyun Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Korean Convergence Medical Science, University of Science Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
40
|
Chen MM, Zhang YQ, Cheng LC, Zhao FJ, Wang P. Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134884. [PMID: 38878434 DOI: 10.1016/j.jhazmat.2024.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 μg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 μg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (•OH and •O2-) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qing Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu-Chen Cheng
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
41
|
Malthaner L, Garcia X, Rios-Mendoza LM, Rivera-Hernández JR, Cruz R, Amezcua F. First Data on Anthropogenic Microparticles in the Gastrointestinal Tract of Juvenile Scalloped Hammerhead Sharks (Sphyrna lewini) in the Gulf of California. FISHES 2024; 9:310. [DOI: 10.3390/fishes9080310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Scalloped hammerhead sharks (Sphyrna lewini) are critically endangered, according to the International Union for Conservation of Nature Red List, likely due to anthropogenic activities such as intense fishing and pollution. Nowadays, plastic debris contamination is a subject of concern due to its extensive presence in the sea and the digestive tracts of many fish species. The possible effects of plastic debris as a vector of other pollutants are still unknown. We analyzed the digestive tract of 58 hammerhead sharks to investigate the correlation between plastic and other anthropogenic microparticle contamination and their feeding habits in the eastern region of the Gulf of California, revealing a debris contamination occurrence of 79.3%. Out of these, 91.4% corresponded to fibers, and the remaining 8.6% to fragments. The main component of the debris was cellulose (64.4%). According to their diet, these organisms exhibit benthopelagic habits, feeding both in the water column and on the seabed. These results indicate a high level of contamination of anthropogenic cellulosic microfibers in the area. Although cellulosic microfibers are recognized as a biomaterial, they can be harmful to marine species, posing an additional threat to this iconic shark. This changed according to the year, indicating that the anthropogenic microparticle ingestion is related to the discharges of human activities and their seasonality rather than to a selection process by the sharks.
Collapse
Affiliation(s)
- Leony Malthaner
- International Master of Science in Marine Biological Resources, Ghent University, 9000 Ghent, Belgium
| | - Ximena Garcia
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Cto. de los Posgrados S/N, C.U., Coyoacán, México City 04510, Mexico
| | | | - José R. Rivera-Hernández
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico
| | - Roberto Cruz
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico
| | - Felipe Amezcua
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico
| |
Collapse
|
42
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
43
|
Rong J, Yuan C, Yin X, Wu X, He F, Wang Y, Leung KSY, Lin S. Co-exposure of polystyrene nanoplastics and copper induces development toxicity and intestinal mitochondrial dysfunction in vivo and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172681. [PMID: 38663618 DOI: 10.1016/j.scitotenv.2024.172681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Nanoplastics (NPs) have raised concerns about the combined toxicity to living organisms due to their ability to adsorb heavy metals. There is still uncertainty, however, whether NPs combined with heavy metals exert adverse effects on intestinal microenvironment, especially the intestinal cells and microbiota. Herein, the combined effects of 500 nm spherical-shaped polystyrene nanoplastics (PSNPs) and copper ions (Cu2+) on intestinal cells and gut microbiota were assessed using HCT-116 cells and zebrafish models. The combined exposure of PSNPs (10 mg/L) and Cu2+ (0.5 mg/L) induced more severer hatching interference of zebrafish embryos, deformation, and mortality. In larval stage, PSNPs (10 mg/L) accumulated and carried more Cu2+ in the gastrointestinal tract (GIT) of zebrafish after co-exposure for 5 days. Excessive neutrophil recruitment and oxidative stress in GIT of zebrafish larvae were observed. The mechanism of the combined toxicity was revealed by transmission electron microscopy (TEM) showing the injuries of GIT, transcriptome and 16S rDNA gene sequencing showing the toxicity pathways, including oxidative phosphorylation and respiratory electron transport chain, as well as microbial community analysis showing the induced microbiota dysbiosis. In vitro tests using HCT-116 cells showed that PSNPs (10 mg/L) and Cu2+ (0.5 mg/L) increased cell death while decreasing ATP concentration and mitochondrial membrane potential after 48 h exposure. These findings may provide new insights into the combined toxicity of nanoplastics and heavy metals in the intestinal microenvironment.
Collapse
Affiliation(s)
- Jinyu Rong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Chenwei Yuan
- Department of Breast Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiang Yin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaohan Wu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Fei He
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yixin Wang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
44
|
Krause S, Ouellet V, Allen D, Allen S, Moss K, Nel HA, Manaseki-Holland S, Lynch I. The potential of micro- and nanoplastics to exacerbate the health impacts and global burden of non-communicable diseases. Cell Rep Med 2024; 5:101581. [PMID: 38781963 PMCID: PMC11228470 DOI: 10.1016/j.xcrm.2024.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Non-communicable diseases (NCD) constitute one of the highest burdens of disease globally and are associated with inflammatory responses in target organs. There is increasing evidence of significant human exposure to micro- and nanoplastics (MnPs). This review of environmental MnP exposure and health impacts indicates that MnP particles, directly and indirectly through their leachates, may exacerbate inflammation. Meanwhile, persistent inflammation associated with NCDs in gastrointestinal and respiratory systems potentially increases MnP uptake, thus influencing MnP access to distal organs. Consequently, a future increase in MnP exposure potentially augments the risk and severity of NCDs. There is a critical need for an integrated one-health approach to human health and environmental research for assessing the drivers of human MnP exposure and their bidirectional links with NCDs. Assessing these risks requires interdisciplinary efforts to identify and link drivers of environmental MnP exposure and organismal uptake to studies of impacted disease mechanisms and health outcomes.
Collapse
Affiliation(s)
- Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, Lyon, CNRS, ENTPE, UMR5023, 69622 Villeurbanne, France.
| | - Valerie Ouellet
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Deonie Allen
- WESP - Centre for Water, Environment, Sustainability & Public Health, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Steven Allen
- WESP - Centre for Water, Environment, Sustainability & Public Health, Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Kerry Moss
- Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Holly A Nel
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Semira Manaseki-Holland
- Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute for Global Innovation, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
45
|
Oliveira S, Krelling AP, Turra A. Contamination by microplastics in oysters shows a widespread but patchy occurrence in a subtropical estuarine system. MARINE POLLUTION BULLETIN 2024; 203:116380. [PMID: 38733889 DOI: 10.1016/j.marpolbul.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
Microplastics (MPs) have been widely documented in marine biota, with a notable presence in bivalve species. This study examines microplastic (MP) contamination in oysters across a subtropical estuarine system, revealing widespread and highly variable levels of contamination. Our results indicate a general trend of higher contamination in areas with greater anthropogenic impact, and unexpectedly high values in remote Marine Protected Areas, suggesting alternative sources of MPs. We observed a 94.31 % frequency of occurrence and an average contamination level of 8.16 ± 6.39 MP.ind-1, 1.06 ± 1.28 MP.g-1ww, and 7.54 ± 6.55 MP.g-1dw. Transparent fibers, predominantly composed of polyester and polyethylene from likely textile origins, were the most common. The findings underscore the significance of MP pollution in marine environments, even in protected zones. For enhanced spatial assessment and consistent data comparison, we recommend that future studies include MP quantities in terms of dry weight (MP.g-1dw) and biometric data such as size and weight.
Collapse
Affiliation(s)
- Suzane Oliveira
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Coastal and Oceanic Systems Postgraduate Program (PGSISCO), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil; Federal University of Paraná (UFPR), Scientific and didactic laboratories of Setor Litoral. R. Jaguariaíva, 512, 83260-000 Matinhos, Paraná, Brazil.
| | - Allan Paul Krelling
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Coastal and Oceanic Systems Postgraduate Program (PGSISCO), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil; Federal Institute of Paraná (IFPR), Paranaguá Campus, Natural Resources Department, Antônio Carlos Rodrigues St. 453, 83215-750 Paranaguá, Paraná, Brazil
| | - Alexander Turra
- Federal University of Paraná (UFPR), Center for Marine Studies (CEM), Coastal and Oceanic Systems Postgraduate Program (PGSISCO), Av. Beira-Mar, s/n, 83255-976 Pontal do Paraná, Paraná, Brazil; University of São Paulo (USP), Department of Biological Oceanography, Oceanographic Institute (IOUSP), Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil
| |
Collapse
|
46
|
Amundarain I, Asueta A, Leivar J, Santin K, Arnaiz S. Optimization of Pressurized Alkaline Hydrolysis for Chemical Recycling of Post-Consumer PET Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2619. [PMID: 38893883 PMCID: PMC11173775 DOI: 10.3390/ma17112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Addressing the environmental impact of poly(ethylene terephthalate) (PET) disposal highlights the need for efficient recycling methods. Chemical recycling, specifically alkaline hydrolysis, presents a promising avenue for PET waste management by depolymerizing PET into its constituent monomers. This study focuses on optimizing the pressurized alkaline hydrolysis process for post-consumer PET residues obtained from packaging materials. Post-consumer PET packaging waste was chemically recycled by means of an alkaline hydrolysis reaction in a 2 L pressurized reactor under varying conditions of the NaOH/PET ratio and temperature. The reaction's progress was monitored by sampling the liquid phase hourly over a four-hour period. The obtained products were purified, with a focus on isolating terephthalic acid (TPA). Higher temperatures (150 °C) resulted in superior TPA yields (>95%) compared to lower temperatures (120 °C). The NaOH/PET ratio showed minimal influence on the TPA yield. The optimal conditions (T = 150 °C; NaOH:PET = 2) were identified based on TPA yield and reaction cost considerations. This study demonstrates the feasibility of pressurized alkaline hydrolysis for PET recycling, with optimized conditions yielding high TPA purity and efficiency.
Collapse
Affiliation(s)
- Izotz Amundarain
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Edificio 202, 48170 Zamudio, Spain; (A.A.); (J.L.); (K.S.); (S.A.)
| | | | | | | | | |
Collapse
|
47
|
Feng S, Xue M, Xie F, Zhao H, Xue Y. Characterization of Thermotoga maritima Esterase Capable of Hydrolyzing Bis(2-hydroxyethyl) Terephthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12045-12056. [PMID: 38753963 DOI: 10.1021/acs.jafc.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The gene-encoding carboxylesterase (TM1022) from the hyperthermophilic bacterium Thermotoga maritima (T. maritima) was cloned and expressed in Escherichia coli Top10 and BL21 (DE3). Recombinant TM1022 showed the best activity at pH 8.0 and 85 °C and retained 57% activity after 8 h cultivation at 90 °C. TM1022 exhibited good stability at pH 6.0-9.0, maintaining 53% activity after incubation at pH 10.0 and 37 °C for 6 h. The esterase TM1022 exhibited the optimum thermo-alkali stability and kcat/Km (598.57 ± 19.97 s-1mM-1) for pN-C4. TM1022 hydrolyzed poly(ethylene terephthalate) (PET) degradation intermediates, such as bis(2-hydroxyethyl) terephthalate (BHET) and mono(2-hydroxyethyl) terephthalate (MHET). The Km, kcat, and kcat/Km values for BHET were 0.82 ± 0.01 mM, 2.20 ± 0.02 s-1, and 2.67 ± 0.02 mM-1 s-1, respectively; those for MHET were 2.43 ± 0.07 mM, 0.04 ± 0.001 s-1, and 0.02 ± 0.001 mM-1 s-1, respectively. When purified TM1022 was added to the cutinase BhrPETase, hydrolysis of PET from drinking water bottle tops produced pure terephthalic acids (TPA) with 166% higher yield than those obtained after 72 h of incubation with BhrPETase alone as control. The above findings demonstrate that the esterase TM1022 from T. maritima has substantial potential for depolymerizing PET into monomers for reuse.
Collapse
Affiliation(s)
- Sizhong Feng
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengke Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fang Xie
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongyang Zhao
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yemin Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
48
|
Dorsch A, Förschner F, Ravandeh M, da Silva Brito WA, Saadati F, Delcea M, Wende K, Bekeschus S. Nanoplastic Size and Surface Chemistry Dictate Decoration by Human Saliva Proteins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25977-25993. [PMID: 38741563 DOI: 10.1021/acsami.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.
Collapse
Affiliation(s)
- Anna Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Fritz Förschner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mehdi Ravandeh
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86057-970, Brazil
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry Department, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
49
|
Ebbesen LG, Strange MV, Gunaalan K, Paulsen ML, Herrera A, Nielsen TG, Shashoua Y, Lindegren M, Almeda R. Do weathered microplastics impact the planktonic community? A mesocosm approach in the Baltic Sea. WATER RESEARCH 2024; 255:121500. [PMID: 38554636 DOI: 10.1016/j.watres.2024.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 μg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 μm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.
Collapse
Affiliation(s)
- Linea Gry Ebbesen
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Markus Varlund Strange
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Kuddithamby Gunaalan
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | | | - Alicia Herrera
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Yvonne Shashoua
- Environmental Archaeology and Materials Science, National Museum of Denmark, Denmark
| | - Martin Lindegren
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Rodrigo Almeda
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark; EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
50
|
Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sci 2024; 14:471. [PMID: 38790450 PMCID: PMC11119293 DOI: 10.3390/brainsci14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plastic production, which exceeds one million tons per year, is of global concern. The constituent low-density polymers enable spread over large distances and micro/nano particles (MNPLs) induce organ toxicity via digestion, inhalation, and skin contact. Particles have been documented in all human tissues including breast milk. MNPLs, especially weathered particles, can breach the blood-brain barrier, inducing neurotoxicity. This has been documented in non-human species, and in human-induced pluripotent stem cell lines. Within the brain, MNPLs initiate an inflammatory response with pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. Glutamate and GABA neurotransmitter dysfunction also ensues with alteration of excitatory/inhibitory balance in favor of reduced inhibition and resultant neuro-excitation. Inflammation and cortical hyperexcitability are key abnormalities involved in the pathogenic cascade of amyotrophic lateral sclerosis (ALS) and are intricately related to the mislocalization and aggregation of TDP-43, a hallmark of ALS. Water and many foods contain MNPLs and in humans, ingestion is the main form of exposure. Digestion of plastics within the gut can alter their properties, rendering them more toxic, and they cause gut microbiome dysbiosis and a dysfunctional gut-brain axis. This is recognized as a trigger and/or aggravating factor for ALS. ALS is associated with a long (years or decades) preclinical period and neonates and infants are exposed to MNPLs through breast milk, milk substitutes, and toys. This endangers a time of intense neurogenesis and establishment of neuronal circuitry, setting the stage for development of neurodegeneration in later life. MNPL neurotoxicity should be considered as a yet unrecognized risk factor for ALS and related diseases.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Erik P. Pioro
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|