1
|
Liu D, Li LF, Zhai H, Wang T, Lan J, Cao M, Yao M, Wang Y, Li J, Song X, Sun Y, Qiu HJ. Resveratrol inhibits African swine fever virus replication via the Nrf2-mediated reduced glutathione and antioxidative activities. Emerg Microbes Infect 2025; 14:2469662. [PMID: 39964001 PMCID: PMC11878180 DOI: 10.1080/22221751.2025.2469662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
African swine fever (ASF) is a highly contagious and severe infectious disease caused by African swine fever virus (ASFV). The disease significantly threatens the sustainable development of the global pig industry. Unfortunately, to date, no safe and efficacious vaccines are commercially available except in Vietnam. Antioxidative stress is a critical factor in antiviral strategies. In this study, we show that ASFV infection elevates the level of reactive oxygen species (ROS) and suppresses the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in vitro and in vivo. Moreover, overexpressing Nrf2 can significantly inhibit ASFV replication. Through high-throughput screening of natural small molecules against ASFV, we identify resveratrol (RES), an Nrf2 activator, as a compound capable of inducing the cellular antiviral responses and effectively inhibiting ASFV replication in primary porcine alveolar macrophages (PAMs). Notably, untargeted metabolomics profiling reveals that glutathione emerges as a primary differential metabolite related to the antiviral activities of RES against ASFV. Mechanistically, RES exerts its antiviral effects and attenuates the elevated level of ROS caused by ASFV infection by inducing the production of reduced glutathione (GSH) via the activation of the Nrf2 signaling pathway. In conclusion, RES exhibits broad efficacy as a potentially effective compound for inhibiting ASFV infection and alleviating the oxidative stress induced by ASFV infection via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People’s Republic of China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Technology, Yangtze University, Jingzhou, People’s Republic of China
| | - Mengxiang Cao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Meng Yao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People’s Republic of China
| | - Yijing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jia Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Xin Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- College of Animal Science and Technology, Yangtze University, Jingzhou, People’s Republic of China
| |
Collapse
|
2
|
Liu S, Liu Y, Li Z, Zhang M, Song C, Tang J. Dimethyl itaconate: An effective antioxidant for promoting angiogenesis under oxidative stress. Talanta 2025; 293:128024. [PMID: 40174364 DOI: 10.1016/j.talanta.2025.128024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Angiogenesis is an important physiological process in the human body. When ischemic diseases occur, the ischemic and hypoxic environment induces excessive production of reactive oxygen species (ROS) within cells, which inhibits angiogenesis and leads to poor prognosis. Therefore, finding antioxidants that can eliminate excessive ROS to promote angiogenesis is crucial for the treatment of ischemic diseases. In this work, we investigate the antioxidant effects of dimethyl itaconate (DMI) by using an oxidative stress model in human umbilical vein endothelial cells (HUVECs). Our results demonstrate that DMI significantly reduces excessive ROS in cells under oxidative stress. DMI could protect mechanical properties of HUVECs from oxidative stress. The Young's modulus of HUVECs was 10.0 ± 1.4 kPa after treatment with H2O2. However, the Young's modulus increased to 24.42 ± 1.4 kPa when HUVECs were co-incubated with H2O2 and DMI (40 μg mL-1). DMI also maintained cell morphology and cytoskeletal integrity. Meanwhile, DMI alleviates mitochondrial dysfunction by enhancing mitochondrial membrane potential (MMP) and increasing adenosine triphosphate (ATP) levels. The excellent antioxidant effects of DMI result from upregulating the expression levels of superoxide dismutase 2 and catalase, significantly leading to the removal of intracellular excessive ROS. With protecting HUVECs from oxidative stress damage, DMI promotes cell migration and angiogenesis. Consequently, this work not only elaborates on the mechanism by which DMI promotes angiogenesis by anti-oxidative stress, but also provides a new therapeutic option for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Suzhen Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yicong Liu
- Department of Special Needs Ward and General Practice, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China
| | - Chunli Song
- Department of Special Needs Ward and General Practice, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Jiang Y, Xie F, Ling X, Zhang J, Yu Y, Huang Q, Zhang L, Ye L, Tao W, Hou M, Zhang C, Wang J. TCA Cycle Intermediate Mitigates Di(2-ethylhexyl) Phthalate-Induced Cholestatic Liver Injury Through Modulation of the Nrf2/NQO1 Signalling Axis. Basic Clin Pharmacol Toxicol 2025; 136:e70047. [PMID: 40370325 DOI: 10.1111/bcpt.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
As a commonly used phthalate compound, di(2-ethylhexyl) phthalate (DEHP) has been shown to disrupt the tricarboxylic acid (TCA) cycle and aggravate tissue damage. However, whether the TCA cycle is involved in cholestatic liver injury (CLI) induced by DEHP and the protective effect of dimethyl fumarate (DMF), which is used to supplement TCA intermediate metabolites, remained unclear. Here, mice were randomized into five groups (n = 6/group): (1) Control, (2) DEHP (200 mg/kg/day), (3) DMF (100 mg/kg/day), (4) DEHP + DMF (30 mg/kg/day) and (5) DEHP + DMF (100 mg/kg/day). Our data demonstrated that DEHP exposure upregulated total bile acid (TBA) levels and broke the TCA cycle, resulting in reduced fumaric acid and malic acid. However, we further supplemented fumaric acid with DMF and found that DMF effectively reversed the high levels of TBA, alkaline phosphatase (ALP) and glutamyl transpeptidase (GGT) induced by DEHP in mice. Meanwhile, pathological results in the liver showed that DMF improved bile duct cell damage, inflammatory cell infiltration, collagen deposition and necrosis caused by DEHP. In addition, we found that DEHP elevated the level of interleukin (IL)-1β, IL-6, TNF-α and MDA and decreased the level of SOD in the mouse liver, which was effectively reversed by DMF treatment. Besides, DMF upregulated the expression of Nrf2 and NQO1 in the liver of DEHP-exposed mice. For in vitro validation, AML-12 cells were treated with (1) Control, (2) DEHP (250 μM), (3) DEHP + DMF (10 μM), (4) DEHP + DMF (25 μM) and (5) DEHP + DMF (50 μM). DEHP exposure increased the expression of IL-1β, IL-6 and TNF-α, which was mitigated by DMF, while ML385, an Nrf2 inhibitor, could counteract the anti-inflammatory effects of DMF. These findings indicate that DEHP broke the TCA cycle of the mouse liver, and DMF supplementation protects against DEHP-induced CLI by activating the Nrf2/NQO1 pathway.
Collapse
Affiliation(s)
- Yue Jiang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fang Xie
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xutao Ling
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiayi Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yun Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Qianqian Huang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Lun Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Lu Ye
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenkang Tao
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Mengzhen Hou
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| | - Jianqing Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
| |
Collapse
|
4
|
Li X, Qu S. Novel insights into the central protective role of ACE2 in diabetic cardiomyopathy: from underlying signaling pathways to therapeutic perspectives. Mol Cell Biochem 2025; 480:3535-3551. [PMID: 39928210 DOI: 10.1007/s11010-024-05196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiac complication specific to individuals with diabetes. It is defined as abnormalities of myocardial structure and function in diabetic patients who do not exhibit any obvious coronary artery disease, hypertensive heart disease, valvular heart disease, or inherited cardiomyopathy. A significant cardiovascular protective factor identified recently is angiotensin-converting enzyme 2 (ACE2), which is a rising star in the renin angiotensin system (RAS) and is responsible for the onset and progression of DCM. Nonetheless, there is not a comprehensive review outlining ACE2's effect on DCM. From the perspective of the pathogenesis of DCM, this review summarizes the myocardial protective role of ACE2 in the aspects of alleviating myocardial structure and dysfunction, correcting energy metabolism disorders, and restoring vascular function. Concurrently, we propose the connections between ACE2 and underlying signaling pathways, including ADAM17, Apelin/APJ, and Nrf2. Additionally, we highlight ACE2-related pharmaceutical treatment options and clinical application prospects for preventing and managing DCM. Further and underlying research is extensively required to completely comprehend the principal pathophysiological mechanism of DCM and the distinctive function of ACE2, switching experimental findings into clinical practice and identifying efficient therapeutic approaches.
Collapse
Affiliation(s)
- Xinyi Li
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Molina-Lopez C, Hurtado-Navarro L, O'Neill LAJ, Pelegrin P. 4-octyl itaconate reduces human NLRP3 inflammasome constitutive activation with the cryopyrin-associated periodic syndrome p.R262W, p.D305N and p.T350M variants. Cell Mol Life Sci 2025; 82:209. [PMID: 40410596 PMCID: PMC12102053 DOI: 10.1007/s00018-025-05699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 05/25/2025]
Abstract
Cryopyrin-associated periodic syndrome (CAPS) is a condition characterized by dominant genetic variants in the NLRP3 gene, which lead to the formation of constitutively active inflammasomes. These inflammasomes play a crucial role in CAPS patients' inflammatory episodes, these being primarily driven by the production of interleukin (IL)-1b. Although treatment with IL-1 blockers is effective for CAPS, some patients develop refractory responses and adverse reactions to these therapies. Consequently, there is a need for novel treatments for CAPS patients. Promising candidates are the derivatives of itaconate, which have been shown to impair NLRP3 inflammasome activation and IL-1β release in blood mononuclear cells from CAPS patients. In this study, we provide insight into the inhibitory mechanisms by which the itaconate derivative 4-octyl itaconate (4-OI) acts on NLRP3 that has different gain-of-function mutations (p.R262W, p.D305N and p.T350M) associated with CAPS. Notably, 4-OI effectively blocks the basal auto-activation of the inflammasome formed by NLRP3 p.R262W, p.D305N and p.T350M variants, which in turn reduces caspase-1 activation, gasdermin D processing, and IL-18 release. Furthermore, after lipopolysaccharide priming of macrophages, 4-OI also decreases IL-1β gene expression and release. Overall, 4-OI impairs CAPS-associated inflammasome function at multiple levels, meaning that therapeutic agents based on itaconate could be a promising therapeutic approach to managing inflammatory episodes in CAPS patients carrying p.R262W, p.D305N or p.T350M variants.
Collapse
Affiliation(s)
- Cristina Molina-Lopez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Edificio LAIB 4ª Planta, Carretera Buenavista S/N, 30120, El Palmar, Murcia, Spain
- CABIMER, Seville, Spain
| | - Laura Hurtado-Navarro
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Edificio LAIB 4ª Planta, Carretera Buenavista S/N, 30120, El Palmar, Murcia, Spain
- IdiPaz, Madrid, Spain
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Pablo Pelegrin
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), Edificio LAIB 4ª Planta, Carretera Buenavista S/N, 30120, El Palmar, Murcia, Spain.
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain.
| |
Collapse
|
6
|
Hingole P, Saha P, Das S, Gundu C, Kumar A. Exploring the role of mitochondrial dysfunction and aging in COVID-19-Related neurological complications. Mol Biol Rep 2025; 52:479. [PMID: 40397294 DOI: 10.1007/s11033-025-10586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, posed a tremendous challenge to healthcare systems globally. Severe COVID-19 infection was reported to be associated with altered immunometabolism and cytokine storms, contributing to poor clinical outcomes and in many cases resulting in mortality. Despite promising preclinical results, many drugs have failed to show efficacy in clinical trials, highlighting the need for novel approaches to combat the virus and its severe manifestations. Mitochondria, crucial for aerobic respiration, play a pivotal role in modulating immunometabolism and neuronal function, making their compromised capability as central pathological mechanism contributing to the development of neurological complications in COVID-19. Dysregulated mitochondrial dynamics can lead to uncontrolled immune responses, underscoring the importance of mitochondrial regulation in shaping clinical outcomes. Aging further accelerates mitochondrial dysfunction, compounding immune dysregulation and neurodegeneration, making older adults particularly vulnerable to severe COVID-19 and its neurological sequelae. COVID-19 infection impairs mitochondrial oxidative phosphorylation, contributing to the long-term neurological complications associated with the disease. Additionally, recent reports also suggest that up to 30% of COVID-19 patients experience lingering neurological issues, thereby highlighting the critical need for further research into mitochondrial pathways to mitigate long-tern neurological consequences of Covid-19. This review examines the role of mitochondrial dysfunction in COVID-19-induced neurological complications, its connection to aging, and potential biomarkers for clinical diagnostics. It also discusses therapeutic strategies aimed at maintaining mitochondrial integrity to improve COVID-19 outcomes.
Collapse
Affiliation(s)
- Prajakta Hingole
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, 168, Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Priya Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India
| | - Sourav Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India
| | - Chayanika Gundu
- Department of Ophthalmology, University of Wisconsin, Madison, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, 168, Maniktala Main Road, Kolkata, 700054, West Bengal, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) SAS Nagar, Sec 67, Mohali, 160062, Punjab, India.
| |
Collapse
|
7
|
Xie Y, Cheng Q, Xu ML, Xue J, Wu H, Du Y. Itaconate: A Potential Therapeutic Strategy for Autoimmune Disease. Scand J Immunol 2025; 101:e70026. [PMID: 40289463 DOI: 10.1111/sji.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Itaconate is a metabolite of the Krebs cycle, and endogenous itaconate is driven by a variety of innate signals that inhibit the production of inflammatory cytokines. The key mechanism of action of itaconate was initially found to be the competitive inhibition of succinate dehydrogenase (SDH), which inhibits the production of inflammatory factors, as well as its antioxidant effects. With increasing research, it was discovered that it modifies cysteine residues of related proteins through the Michael addition, such as modifying the Kelch-like ECH-associated protein 1 (KEAP1) protein and activating the nuclear factor erythroid 2-related factor 2 (NRF2) signalling pathway, as well as glycolytic enzymes and cellular pathway-associated factors that attenuate inflammatory responses and oxidative stress. It also acts on a variety of immune cells, affecting their function and activity, and has been increasingly shown to play a therapeutic role in a variety of inflammatory and autoimmune diseases through a combination of these mechanisms. In conclusion, there has been a great breakthrough in the research of itaconate, from the initial industrial application to the redefinition of the biological functions of itaconate. However, with the deepening of the research, we also found that there are more questions: the mechanism of action of itaconate, more functions of itaconate, clinical application of itaconate, and the use of itaconate still needs to be solved.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Li Xu
- Department of Nephrology, The Third Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Zhu B, Zhu L, Ge Z, Zheng S, Dai X, Feng D, Tan L, Sha P, Yao Y. 4-Octyl Itaconate Modulates Dendritic Cells Function and Tumor Immunity via NRF2 Activation. J Inflamm Res 2025; 18:5699-5713. [PMID: 40322530 PMCID: PMC12047388 DOI: 10.2147/jir.s516085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Objective Dendritic cells (DCs) play a pivotal role in orchestrating anti-tumor immune responses. However, various factors can suppress DCs function and compromise anti-tumor immunity. Itaconate, a metabolite activated during inflammation and infection, has been identified to possess immunomodulatory properties, but its role on DCs remains largely unexplored. In this study, we aimed to investigate the role of itaconate in regulating the maturation and function of DCs and its underlying molecular mechanism. Methods Bone marrow-derived dendritic cells (BMDCs) were treated with 4-octyl itaconate (4OI). The expression levels of CD40, CD80, CD86, and MHC-II on BMDCs were analyzed by flow cytometry. The mRNA expression of cytokines was assessed using RT-qPCR. BMDCs with different treatment were adoptively transferred to B16-OVA tumor-bearing mice. The production of IFN-γ, IL-2, and TNF-α in CD4+ T and CD8+ T cells were analyzed by flow cytometry. The protein level of NRF2 in BMDCs was analyzed by Western blot. Results Treatment with 4OI represses DC maturation and function. Specifically, 4OI-treated DCs exhibited impaired phenotypic and functional maturation, characterized by decreased expression of co-stimulatory molecules CD40, CD80, and CD86, as well as lower levels of pro-inflammatory cytokines IL-12, IL-6, TNF-α and IL-1β. Furthermore, these DCs demonstrated a diminished capacity to stimulate T cell responses both in vitro and in vivo. Mechanistically, 4OI inhibits DCs maturation and function through enhancing and activating KEAP1/NRF2 pathway. Conclusion This study reveals that 4OI inhibits DC function through NRF2 activation, elucidating the immunomodulatory mechanisms of itaconate and emphasizing its pivotal role in developing targeted DC-based tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Bo Zhu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, 215000, People’s Republic of China
- Department of Laboratory Medicine, Institute of Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 215123, People’s Republic of China
- Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Lihua Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 215123, People’s Republic of China
| | - Zongxia Ge
- Department of Laboratory Medicine, Institute of Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 215123, People’s Republic of China
| | - Songhang Zheng
- Department of Laboratory Medicine, Institute of Medical Immunology of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 215123, People’s Republic of China
| | - Xiaoqiu Dai
- Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Dingqi Feng
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 215123, People’s Republic of China
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Lu Tan
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Pengfei Sha
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| | - Yizheng Yao
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, 215000, People’s Republic of China
| |
Collapse
|
9
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
10
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Cheng J, Xiao Y, Jiang P. Fumarate integrates metabolism and immunity in diseases. Trends Endocrinol Metab 2025:S1043-2760(25)00051-7. [PMID: 40246619 DOI: 10.1016/j.tem.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Fumarate is a key metabolite produced primarily by the tricarboxylic acid (TCA) and urea cycles. In addition to having a metabolic role, its electrophilicity enables it to covalently modify cysteines; moreover, because of its α-ketoglutarate (α-KG)-like structure, it can also act as a competitive inhibitor of α-KG-dependent dioxygenases for epigenetic remodeling. Recent advances have broadened the role of fumarate as a bridge between metabolism and both innate and adaptive immunity, suggesting potentially important functions in anticancer immunity and autoimmune diseases. Here we review the connections between fumarate metabolism and immunity; we describe the mechanisms of fumarate regulation in cancer, autoimmunity, and other diseases; and we explore the clinical implications of fumarate and its esters for immunotherapy.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030; State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 100084.
| | - Yifeng Xiao
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China, 100084.
| |
Collapse
|
12
|
Wang F, Amona FM, Pang Y, Zhang Q, Liang Y, Chen X, Ke Y, Chen J, Song C, Wang Y, Li Z, Zhang C, Fang X, Chen X. Porcine reproductive and respiratory syndrome virus nsp5 inhibits the activation of the Nrf2/HO-1 pathway by targeting p62 to antagonize its antiviral activity. J Virol 2025; 99:e0158524. [PMID: 40019253 PMCID: PMC11998497 DOI: 10.1128/jvi.01585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infections often trigger oxidative stress and cytokine storms, resulting in significant tissue damage that causes fatalities in piglets and reproductive issues in sows. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to PRRSV infection. Here, we found that PRRSV induced cellular oxidative stress by triggering the production of reactive oxygen species and inhibiting the expression of antioxidant enzymes. Although Nrf2 is an important redox regulator that initiates the expression of downstream antioxidant genes, PRRSV can impair the Nrf2/HO-1 pathway. The overexpression of Nrf2 showed a significant anti-PRRSV effect, and inhibiting the expression of Nrf2 promoted the proliferation of PRRSV. Further analysis showed that Nrf2 positively regulated the production of type I interferons and interferon-stimulated genes, which may contribute to its anti-PRRSV effect. By screening the PRRSV-encoded protein, we found that the PRRSV nsp5 protein can degrade Nrf2 at the protein level. Mechanistically, nsp5 promotes Nrf2-Keap1 binding affinity by inhibiting p62-mediated Keap1 sequestration and increasing Keap1 expression. Subsequently, this increased Keap1-mediated degradation of Nrf2 ubiquitination through K48-linked polyubiquitin. Furthermore, we found that the residues Tyr146 and Arg147 of nsp5 are crucial for inhibiting the activation of the p62-mediated Nrf2 antioxidant pathway. Thus, our findings uncover a novel mechanism by which PRRSV disrupts the host antioxidant defense system and highlight the crucial role of the Nrf2/HO-1 antioxidant pathway in host defense against PRRSV.IMPORTANCEOxidative stress-induced redox imbalance is a crucial pathogenic mechanism in viral infections. Nrf2 and its antioxidant genes serve as the main defense pathways against oxidative stress. However, the role of Nrf2 in the context of porcine reproductive and respiratory syndrome virus (PRRSV) infection remains unclear. In this study, we demonstrated that PRRSV infection decreased the expression of antioxidant genes of the Nrf2 signaling pathway and overexpression of Nrf2 triggered a strong anti-PRRSV effect. PRRSV nsp5 enhanced Keap1-dependent degradation of Nrf2 ubiquitination, thereby weakening cellular resistance to oxidative stress and antagonizing the antiviral activity of Nrf2. Our study further revealed a new mechanism by which PRRSV evades host antiviral innate immunity by disturbing cellular redox homeostasis, providing a new target for developing anti-PRRSV drugs.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yuan Liang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xiaohan Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yongding Ke
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Junhao Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zongyun Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
13
|
Khramtsov YV, Rosenkranz AA, Ulasov AV, Slastnikova TA, Lupanova TN, Alieva RT, Georgiev GP, Sobolev AS. Modular Nanotransporters Containing Keap1 Monobodies Are Capable of Reducing the Toxic Effect of Acetaminophen on the Liver of Mice. DOKL BIOCHEM BIOPHYS 2025; 521:174-177. [PMID: 40216720 DOI: 10.1134/s1607672924601264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 05/16/2025]
Abstract
Previously, we created a modular nanotransporter (MNT) containing a monobody to Keap1, an intracellular protein inhibitor of the Nrf2 transcription factor that controls cellular protection from oxidative stress and is capable of interacting with Keap1 in hepatocytes and protect these cells from the effects of hydrogen peroxide. Oxidative liver damage by acetaminophen was used as a model to study the antitoxic effect of this MNT. Intraperitoneal injection of acetaminophen to mice resulted in an increase in the level of alanine aminotransferase and aspartate aminotransferase in the blood, as well as in liver edema. A significant decrease in the level of these enzymes in the blood, along with a decrease in liver edema, was observed after preliminary intravenous administration of MNT 2 h before the acetaminophen injection. The results obtained can be used as a basis for developing drugs to treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Yu V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow State University, Moscow, Russia
| | - A V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - T N Lupanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - R T Alieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - G P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Moscow State University, Moscow, Russia.
| |
Collapse
|
14
|
Meyer SP, Bauer R, Brüne B, Schmid T. The role of type I interferon signaling in myeloid anti-tumor immunity. Front Immunol 2025; 16:1547466. [PMID: 40098954 PMCID: PMC11911529 DOI: 10.3389/fimmu.2025.1547466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors often arise in chronically inflamed, and thus immunologically highly active niches. While immune cells are able to recognize and remove transformed cells, tumors eventually escape the control of the immune system by shaping their immediate microenvironment. In this context, macrophages are of major importance, as they initially exert anti-tumor functions before they adopt a tumor-associated phenotype that instead inhibits anti-tumor immune responses and even allows for sustaining a smoldering inflammatory, growth promoting tumor microenvironment (TME). Type I interferons (IFNs) are well established modulators of inflammatory reactions. While they have been shown to directly inhibit tumor growth, there is accumulating evidence that they also play an important role in altering immune cell functions within the TME. In the present review, we focus on the impact of type I IFNs on anti-tumor responses, driven by monocytes and macrophages. Specifically, we will provide an overview of tumor-intrinsic factors, which impinge on IFN-stimulated gene (ISG) expression, like the presence of nucleic acids, metabolites, or hypoxia. We will further summarize the current understanding of the consequences of altered IFN responses on macrophage phenotypes, i.e., differentiation, polarization, and functions. For the latter, we will focus on macrophage-mediated tumor cell killing and phagocytosis, as well as on how macrophages affect their environment by secreting cytokines and directly interacting with immune cells. Finally, we will discuss how type I IFN responses in macrophages might affect and should be considered for current and future tumor therapies.
Collapse
Affiliation(s)
- Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Lin TS, Cai XX, Wang YB, Xu JT, Xiao JH, Huang HY, Li SF, Liu KM, Chen JH, Li LP, Ni J, Chen YG, Zhu ZH, Li J, Hu YJ, Huang HD, Zuo HL, Lin YCD. Identifying Baicalein as a Key Bioactive Compound in XueBiJing Targeting KEAP1: Implications for Antioxidant Effects. Antioxidants (Basel) 2025; 14:248. [PMID: 40227198 PMCID: PMC11939276 DOI: 10.3390/antiox14030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND XueBiJing injection (XBJ) is renowned for its multi-target pharmacological effects, including immunomodulatory, antithrombotic, and antioxidant activities, offering potential therapeutic benefits for patients with severe infections such as sepsis and Coronavirus disease 2019 (COVID-19). Despite its clinical effectiveness, the molecular targets and mechanisms of XBJ remain unclear, warranting further investigation. PURPOSE This study aimed to identify the key bioactive compounds in XBJ and elucidate their molecular targets and mechanisms. METHODS The zebrafish model was first used to evaluate the anti-inflammatory and antioxidant effects of XBJ, and the differentially expressed genes (DEGs) were identified by RNA sequencing and network analysis. Network pharmacology was used to analyze the relationship between bioactive compounds and molecular targets, and molecular docking and kinetic simulation were used to explore the target binding ability of key compounds. Cellular Thermal Shift Assay-Western Blot (CETSA-WB) and Surface Plasmon Resonance (SPR) further verified the interaction between compounds and targets; finally, the key pathways were confirmed by gene silencing experiments. RESULTS The zebrafish model results reveal that XBJ significantly reduced neutrophil and macrophage counts in a dose-dependent manner, emphasizing its potent anti-inflammatory effects. A transcriptomic analysis highlighted the differential expression of key genes in the KEAP1/NRF2 pathway, including HMOX1, SLC7A11, NQO1, and TXNRD1. A network analysis further pinpointed KEAP1 as a central molecular target, with tanshinone IIA, baicalein, and luteolin identified as key active compounds modulating this pathway. Among these, tanshinone IIA and baicalein exhibited strong binding interactions with KEAP1, which were confirmed through molecular docking and kinetic simulations. Further validation showed that baicalein directly targets KEAP1, as demonstrated by CETSA-WB and SPR analysis. Additionally, the gene silencing experiments of KEAP1 and NRF2 reinforced their crucial roles in activating the KEAP1/NRF2 pathway. CONCLUSION These findings collectively establish baicalein as a critical bioactive compound in XBJ, driving its antioxidant and anti-inflammatory effects via KEAP1/NRF2 pathway activation through direct binding to KEAP1, providing new insights into the mechanism of action of XBJ.
Collapse
Affiliation(s)
- Ting-Syuan Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yi-Bing Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jia-Tong Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Ji-Han Xiao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Shang-Fu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Kun-Meng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Ji-Hang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
| | - Li-Ping Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jie Ni
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zi-Hao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jing Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
16
|
Lu S, Gong Y, He P, Qi M, Dong W. 4-octyl Itaconate Attenuates Acute Pancreatitis and Associated Lung Injury by Suppressing Ferroptosis in Mice. Inflammation 2025:10.1007/s10753-025-02256-x. [PMID: 39920558 DOI: 10.1007/s10753-025-02256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/09/2025]
Abstract
Acute pancreatitis (AP) is a common gastrointestinal emergency requiring hospitalization. In recent years, several studies have demonstrated a role for 4-octyl itaconate (4-OI) in anti-inflammatory and oxidative stress injury. However, the potential effects of 4-OI in AP have not been investigated. Caerulein and LPS were used to induce experimental AP models in mice and AR42J cells and then studied by histopathology, biochemical, and molecular analysis. Ferroptosis inhibitor ferrostatin-1 effectively improves pancreatic injury and reduces lipid peroxidation products in experimental AP mice. 4-OI treatment significantly alleviated pancreatic and AP-associated lung injury and inflammation in experimental AP mice by inhibiting ferroptosis. The ferroptosis activator Erastin blocked the protective effect of 4-OI against pancreatic injury in AP, validating that 4-OI alleviates pancreatitis injury through ferroptosis. In vitro experiments further confirmed that 4-OI treatment ameliorated AP-induced pancreatic injury by inhibiting ferroptosis. Our study, for the first time, found that 4-OI ameliorates AP and AP-related lung injury by inhibiting ferroptosis in experimental AP mice, providing a new therapeutic target for alleviating AP.
Collapse
Affiliation(s)
- Shimin Lu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
| | - Yang Gong
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Pengzhan He
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Mingming Qi
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang Province, China
| | - Weiguo Dong
- Central Laboratory of Renmin Hospital, Wuhan, 430060, Hubei Province, China.
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
17
|
Al Akiki Dit Al Mazraani R, Malys N, Maliene V. Itaconate and its derivatives as anti-pathogenic agents. RSC Adv 2025; 15:4408-4420. [PMID: 39931396 PMCID: PMC11808480 DOI: 10.1039/d4ra08298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
Pathogenic microorganisms and viruses cause outbreaks and pandemics that affect millions of people worldwide. Despite recent advances in pharmacology and medicine, the ability of infectious diseases to spread in the modern era is accelerating due to various factors contributing to increased human-to-human and human-animal contacts. With the global rise of drug resistance among pathogens and frequently occurring viral outbreaks, alternative drugs and therapies that specifically inhibit microbial virulence or regulate immune responses are attracting growing interest. The present review focuses on itaconate and its derivatives as potential anti-pathogenic agents. It summarizes the current state of research on itaconate metabolism in bacteria, fungi and mammals. This is followed by a comprehensive review of recent advances studying itaconate and its derivatives as anti-inflammatory, immunoregulatory, antimicrobial and antiviral compounds, along with their mechanisms of action. Finally, the review emphasises the existing challenges and future research directions for the application of itaconate and its derivatives as anti-pathogenic agents.
Collapse
Affiliation(s)
| | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
- Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology Radvilėnų st. 19 Kaunas LT-50254 Lithuania
| | - Vida Maliene
- Built Environment and Sustainable Technologies Research Institute, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University Byrom Street Liverpool L3 3AF UK
| |
Collapse
|
18
|
Han H, Zhang G, Yang Y, Li C, Li X, Zhong L, Chen Z, Xiong J, Cai T, Zhang L, Zhang X, Zhao Q. Therapeutic potential of monomethyl fumarate and aluminum ion combination in alleviating inflammation and oxidative stress in psoriasis. Redox Biol 2025; 79:103482. [PMID: 39736200 PMCID: PMC11750270 DOI: 10.1016/j.redox.2024.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025] Open
Abstract
Psoriasis is a chronic inflammatory skin condition characterized by erythematous plaques with white scales. Its pathogenesis is closely linked to oxidative stress and an imbalance in Th1/Th2 immune responses. Current treatments for psoriasis, such as topical agents, systemic therapies and phototherapy, frequently fail to achieve complete remission in clinical settings. Monomethyl fumarate (MMF), which has been approved by the US Food and Drug Administration in 2020 for multiple sclerosis, has demonstrated efficacy in psoriasis management. Additionally, our previous studies have identified aluminum ions as beneficial in psoriasis treatment. This present study investigates the combined therapeutic effects of MMF and aluminum ions and observed that the combination treatment achieves superior efficacy compared to either treatment alone in a psoriasis mouse model through the modulation of the Nrf2/NF-κB signaling pathway, as demonstrated in cellular models. The combination first activates Nrf2 nuclear translocation and induces antioxidant gene expression, followed by the inhibition of NF-κB nuclear translocation and phosphorylation, which reduces Th1 cytokine production and cellular chemotaxis. Concurrently, the treatment elevates Th2 cytokine secretion, thereby increasing the anti-inflammatory response in HaCaT cells. Overall, these findings support the MMF and aluminum ions combination (MMFAL) as a potential therapeutic strategy for psoriasis, effectively diminishing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chenxi Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiandeng Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zan Chen
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianxia Xiong
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Cai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingjuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Khramtsov YV, Bunin ES, Ulasov AV, Lupanova TN, Georgiev GP, Sobolev AS. GALA3-Containing Modular Nanotransporters Are Capable of Delivering Keap1 Monobody to Target Cells and Inhibiting the Formation of Reactive Oxygen Species in the Cells. DOKL BIOCHEM BIOPHYS 2025; 520:148-151. [PMID: 39899249 DOI: 10.1134/s1607672924601252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
In the previously created modular nanotransporter (MNT) capable of delivering a monobody to Keap1 into the cytosol, the endosomolytic module, translocation domain of diphtheria toxin (DTox), was replaced by the endosomolytic peptide GALA3. It was found that this substitution more than doubles the lifetime of MNT in the blood. Using confocal microscopy, it was shown that MNT with GALA3 was internalized into AML12 cells mainly due to binding to the epidermal growth factor receptor, and is also able to exit from endosomes into the cytosol. Using cellular thermal shift assay, it was shown that MNT with GALA3 and MNT with DTox are equally effective in disrupting the formation of the Nrf2 complex with Keap1, which led to similar protection of AML12 cells from the action of hydrogen peroxide. The obtained results allow not only optimizing the systemic use of MNT, but can also serve as a basis for creating agents aimed at treating diseases associated with oxidative stress.
Collapse
Affiliation(s)
| | - E S Bunin
- Institute of Gene Biology, RAS, Moscow, Russia
- Moscow State University, Moscow, Russia
| | - A V Ulasov
- Institute of Gene Biology, RAS, Moscow, Russia
| | | | | | - A S Sobolev
- Institute of Gene Biology, RAS, Moscow, Russia.
- Moscow State University, Moscow, Russia.
| |
Collapse
|
20
|
Li M, Yuan H, Yang X, Lei Y, Lian J. Glutamine-glutamate centered metabolism as the potential therapeutic target against Japanese encephalitis virus-induced encephalitis. Cell Biosci 2025; 15:6. [PMID: 39844330 PMCID: PMC11755858 DOI: 10.1186/s13578-024-01340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Japanese encephalitis (JE) induced by Japanese encephalitis virus (JEV) infection is the most prevalent diagnosed epidemic viral encephalitis globally. The underlying pathological mechanisms remain largely unknown. Given that viruses are obligate intracellular parasites, cellular metabolic reprogramming triggered by viral infection is intricately related to the establishment of infection and progression of disease. Therefore, uncovering and manipulating the metabolic reprogramming that underlies viral infection will help elucidate the pathogenic mechanisms and develop novel therapeutic strategies. METHODS Metabolomics analysis was performed to comprehensively delineate the metabolic profiles in JEV-infected mice brains and neurons. Metabolic flux analysis, quantitative real-time PCR, western blotting and fluorescence immunohistochemistry were utilized to describe detailed glutamine-glutamate metabolic profiles during JEV infection. Exogenous addition of metabolites and associated compounds and RNA interference were employed to manipulate glutamine-glutamate metabolism to clarify its effects on viral replication. The survival rate, severity of neuroinflammation, and levels of viral replication were assessed to determine the efficacy of glutamine supplementation in JEV-challenged mice. RESULTS Here, we have delineated a novel perspective on the pathogenesis of JE by identifying an aberrant low flux in glutamine-glutamate metabolism both in vivo and in vitro, which was critical in the establishment of JEV infection and progression of JE. The perturbed glutamine-glutamate metabolism induced neurotransmitter imbalance and created an immune-inhibitory state with increased gamma-aminobutyric acid/glutamate ratio, thus facilitating efficient viral replication both in JEV-infected neurons and the brain of JEV-infected mice. In addition, viral infection restrained the utilization of glutamine via the glutamate-α-ketoglutaric acid axis in neurons, thus avoiding the adverse effects of glutamine oxidation on viral propagation. As the conversion of glutamine to glutamate was inhibited after JEV infection, the metabolism of glutathione (GSH) was simultaneously impaired, exacerbating oxidative stress in JEV-infected neurons and mice brains and promoting the progression of JE. Importantly, the supplementation of glutamine in vivo alleviated the intracranial inflammation and enhanced the survival of JEV-challenged mice. CONCLUSION Altogether, our study highlights an aberrant glutamine-glutamate metabolism during JEV infection and unveils how this facilitates viral replication and promotes JE progression. Manipulation of these metabolic alterations may potentially be exploited to develop therapeutic approaches for JEV infection.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Hang Yuan
- Pathogenic Biology, Medical College of Yan'an University, Yan'an, 716000, China
| | - Xiaofei Yang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yingfeng Lei
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
21
|
Cui S, Han Q, Zhang R, Zeng S, Shao Y, Li Y, Li M, Liu W, Zheng J, Wang H. Integration of metabolomics methodologies for the development of predictive models for mortality risk in elderly patients with severe COVID-19. BMC Infect Dis 2025; 25:10. [PMID: 39748307 PMCID: PMC11697755 DOI: 10.1186/s12879-024-10402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The rapid evolution of the COVID-19 pandemic and subsequent global immunization efforts have rendered early metabolomics studies potentially outdated, as they primarily involved non-exposed, non-vaccinated populations. This paper presents a predictive model developed from up-to-date metabolomics data integrated with clinical data to estimate early mortality risk in critically ill COVID-19 patients. Our study addresses the critical gap in current research by utilizing current patient samples, providing fresh insights into the pathophysiology of the disease in a partially immunized global population. METHODS One hundred elderly patients with severe COVID-19 infection, including 46 survivors and 54 non-survivors, were recruited in January-February 2023 at the Second Hospital affiliated with Harbin Medical University. A predictive model within 24 h of admission was developed using blood metabolomics and clinical data. Differential metabolite analysis and other techniques were used to identify relevant characteristics. Model performance was assessed by comparing the area under the receiver operating characteristic curve (AUROC). The final prediction model was externally validated in a cohort of 50 COVID-19 elderly critically ill patients at the First Hospital affiliated with Harbin Medical University during the same period. RESULTS Significant disparities in blood metabolomics and laboratory parameters were noted between individuals who survived and those who did not. One metabolite indicator, Itaconic acid, and four laboratory tests (LYM, IL-6, PCT, and CRP), were identified as the five variables in all four models. The external validation set demonstrated that the KNN model exhibited the highest AUC of 0.952 among the four models. When considering a 50% risk of mortality threshold, the validation set displayed a sensitivity of 0.963 and a specificity of 0.957. CONCLUSIONS The prognostic outcome of COVID-19 elderly patients is significantly influenced by the levels of Itaconic acid, LYM, IL-6, PCT, and CRP upon admission. These five indicators can be utilized to assess the mortality risk in affected individuals.
Collapse
Affiliation(s)
- Shanpeng Cui
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Qiuyuan Han
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ran Zhang
- School of Measurement-Control and Communication Engineering, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang Province, China
| | - Siyao Zeng
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ying Shao
- Interventional vascular department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yue Li
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ming Li
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Wenhua Liu
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| | - Junbo Zheng
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| | - Hongliang Wang
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
22
|
Zhang B, Hou S, Tang J. Riboflavin Deficiency and Apoptosis: A Review. J Nutr 2025; 155:27-36. [PMID: 39510506 DOI: 10.1016/j.tjnut.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Riboflavin, commonly known as vitamin B2, is an essential micronutrient critical for the function of flavoproteins, which utilize flavin mononucleotide and flavin adenine dinucleotide as cofactors in energy metabolism, lipid metabolism, redox regulation, and protein folding. Nutritional riboflavin deficiency (RD) has previously been observed in humans and animals, leading to adverse outcomes such as growth retardation, increased mortality, and liver damage, which may be attributed to apoptosis. Although such deficiencies are now uncommon because of improved living standards, certain high-risk groups (e.g. those with chronic diseases, the elderly, and pregnant) have increased riboflavin demands, making them vulnerable to physiological RD associated with apoptosis. Understanding the pathways through which RD induces apoptosis, including mitochondrial dysfunction, endoplasmic reticulum stress, and reactive oxygen species, is essential for grasping its broader health impacts. Additionally, this deficiency disrupts fatty acid metabolism, potentially resulting in lipotoxic apoptosis. Despite its significance, RD-induced apoptosis remains underexplored in the literature. Therefore, this review will discuss the roles of redox imbalance, mitochondrial dysfunction, endoplasmic reticulum stress, and lipotoxicity in apoptosis regulation because of RD, aiming to highlight its importance for improving riboflavin nutrition and overall health.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
23
|
Adilović M, Hromić-Jahjefendić A, Mahmutović L, Šutković J, Rubio-Casillas A, Redwan EM, Uversky VN. Intrinsic Factors Behind the Long-COVID: V. Immunometabolic Disorders. J Cell Biochem 2025; 126:e30683. [PMID: 39639607 DOI: 10.1002/jcb.30683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The complex link between COVID-19 and immunometabolic diseases demonstrates the important interaction between metabolic dysfunction and immunological response during viral infections. Severe COVID-19, defined by a hyperinflammatory state, is greatly impacted by underlying chronic illnesses aggravating the cytokine storm caused by increased levels of Pro-inflammatory cytokines. Metabolic reprogramming, including increased glycolysis and altered mitochondrial function, promotes viral replication and stimulates inflammatory cytokine production, contributing to illness severity. Mitochondrial metabolism abnormalities, strongly linked to various systemic illnesses, worsen metabolic dysfunction during and after the pandemic, increasing cardiovascular consequences. Long COVID-19, defined by chronic inflammation and immune dysregulation, poses continuous problems, highlighting the need for comprehensive therapy solutions that address both immunological and metabolic aspects. Understanding these relationships shows promise for effectively managing COVID-19 and its long-term repercussions, which is the focus of this review paper.
Collapse
Affiliation(s)
- Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
24
|
Walter T, Matteo F, Marta DA, Carolina S, Leonardo S, Elena P, Maria Elena M, Fabio M, Enrica M, Raffaella N, Laura P, Anna Teresa P, Guido A, Alessandra P, Lucia N. NRF2 Antioxidant Response and Interferon-Stimulated Genes Are Differentially Expressed in SARS-CoV-2-Positive Young Subjects. Immun Inflamm Dis 2025; 13:e70109. [PMID: 39810451 PMCID: PMC11733084 DOI: 10.1002/iid3.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Several respiratory viruses, including Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), suppress nuclear factor-E2-related factor-2 (NRF2) antioxidant response, generating oxidative stress conditions to its advantage. NRF2 has also been reported to regulate the innate immune response through the inhibition of the interferon (IFN) pathway. However, its modulation in younger individuals and its correlation with the IFN response remain to be elucidated. METHODS The NRF2 and redox-related genes expression was examined in nasopharyngeal swabs from children attending the pediatric hospital for SARS-CoV-2 molecular testing. Expression levels were analyzed by stratifying the population according to the SARS-CoV-2 positivity, age, or the presence of symptoms. The results were correlated with Types I and III IFN genes and IFN-stimulated genes (ISGs). RESULTS We found that NRF2 expression was markedly diminished in positive patients compared to negative. Moreover, it correlated with higher expression of IFNα2 and IFNλ3, as well as ISG15 and ISG56. Interestingly, symptomatic patients with anosmia/ageusia showed pronounced expression of apurinic/apyrimidinic endonuclease1/redox factor 1 (APE1), together with Type I IFNs, ISG56, and the inflammasome component NLRP3. CONCLUSION The results indicate an interdependence between NRF2 antioxidant pathway and IFN-mediated response during SARS-CoV-2 infection in young subjects.
Collapse
Affiliation(s)
- Toscanelli Walter
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| | - Fracella Matteo
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - De Angelis Marta
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Scagnolari Carolina
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Sorrentino Leonardo
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Piselli Elena
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| | - Marcocci Maria Elena
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| | - Midulla Fabio
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Mancino Enrica
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Nenna Raffaella
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Petrarca Laura
- Department of Maternal Infantile and Urological SciencesSapienza UniversityRomeItaly
| | - Palamara Anna Teresa
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
- Department of Infectious DiseasesIstituto Superiore di SanitàRomeItaly
| | - Antonelli Guido
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Pierangeli Alessandra
- Laboratory of Virology, Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Nencioni Lucia
- Laboratory Affiliated to Istituto Pasteur Italia‐Fondazione Cenci Bolognetti, Department of Public Health and Infectious DiseasesSapienza UniversityRomeItaly
| |
Collapse
|
25
|
Lu J, He Y, Li Y, Chen X, Li H, Chen X, Xu J, Chen H, Wang Y, He X, Liu S, Chen L. Exploring bifunctional molecules for anti-SARS-CoV-2 and anti-inflammatory activity through structure-based virtual screening, SAR investigation, and biological evaluation. Int J Biol Macromol 2025; 287:138529. [PMID: 39653224 DOI: 10.1016/j.ijbiomac.2024.138529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
As new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, they raise increasing concerns about the efficacy of neutralizing antibodies and vaccines. This situation underscores the urgent need for specific drugs against the coronavirus disease 2019 (COVID-19). Given that COVID-19 is particularly associated with substantial inflammation, the development of novel, effective antiviral and anti-inflammatory agents represents a promising research direction. In this study, we virtually screened a library consisting of 2900 anti-inflammatory small molecules for their inhibitory effects on the 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2 and selected 23 promising candidates for further testing using a fluorescence resonance energy transfer (FRET) assay. The results indicated that Gnetol had the most potent inhibitory effect against SARS-CoV-2 3CLpro. Further structural modifications led to the identification of compounds 38 and 39, which displayed superior inhibitory activity. Compound 39 showed good selectivity for host proteases. Subsequently, Gnetol and its structural analogs, which demonstrated SARS-CoV-2 3CLpro inhibitory activity, were tested for their anti-inflammatory effects. Among these, Piceatannol and compound 39 exhibited enhanced anti-inflammatory effects, with compound 39 alone showing the most potent antiviral and anti-inflammatory activity. Thus, our study has explored a new research strategy for discovering antiviral and anti-inflammatory bifunctional molecules. The discovery of Gnetol and its structural analogs has provided new lead candidates for the development of COVID-19 therapeutics.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingying He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China; Peptide and small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; DP Technology, Beijing 100080, China
| | - Xixiang Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jianrong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China; Peptide and small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; DP Technology, Beijing 100080, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China.
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
26
|
Yin S, Tao Y, Li T, Li C, Cui Y, Zhang Y, Yin S, Zhao L, Hu P, Cui L, Wu Y, He Y, Yu S, Chen J, Lu S, Qiu G, Song M, Hou Q, Qian C, Zou Z, Xu S, Yu Y. Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane. Signal Transduct Target Ther 2024; 9:371. [PMID: 39730330 DOI: 10.1038/s41392-024-02077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/29/2024] Open
Abstract
Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood. Here, we demonstrate that the IRG1-itaconate axis facilitates the infections of VSV and IAV in macrophages and epithelial cells via Rab GTPases redistribution. Mechanistically, itaconate promotes the retention of Rab GTPases on the membrane via directly alkylating Rab GDP dissociation inhibitor beta (GDI2), the latter of which extracts Rab GTPases from the membrane to the cytoplasm. Multiple alkylated residues by itaconate, including cysteines 203, 335, and 414 on GDI2, were found to be important during viral infection. Additionally, this effect of itaconate needs an adequate distribution of Rab GTPases on the membrane, which relies on Rab geranylgeranyl transferase (GGTase-II)-mediated geranylgeranylation of Rab GTPases. The single-cell RNA sequencing data revealed high expression of IRG1 primarily in neutrophils during viral infection. Co-cultured and in vivo animal experiments demonstrated that itaconate produced by neutrophils plays a dominant role in promoting viral infection. Overall, our study reveals that neutrophils-derived itaconate facilitates viral infection via redistribution of Rab GTPases, suggesting potential targets for antiviral therapy.
Collapse
Affiliation(s)
- Shulei Yin
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yijie Tao
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Tianliang Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Chunzhen Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yani Cui
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Yunyan Zhang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200433, China
| | - Shenhui Yin
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Panpan Hu
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Yunyang Wu
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yixian He
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Shu Yu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Jie Chen
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Guifang Qiu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Mengqi Song
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Qianshan Hou
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Cheng Qian
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Zui Zou
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Yizhi Yu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Hu P, Li H, Ji Z, Jing W, Li Z, Yu S, Shan X, Cui Y, Wang B, Dong H, Zhou Y, Wang Z, Xiong H, Zhang X, Li HC, Wang J, Tang J, Wang T, Xie K, Liu Y, Zhu H, Yu Q. Fructose-1,6-diphosphate inhibits viral replication by promoting the lysosomal degradation of HMGB1 and blocking the binding of HMGB1 to the viral genome. PLoS Pathog 2024; 20:e1012782. [PMID: 39693295 DOI: 10.1371/journal.ppat.1012782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose-1,6-diphosphate (FBP), a key glycolytic metabolite, is recognized for its cytoprotective effects during stress. However, the role of FBP in viral infections is unknown. Here, we demonstrate that virus-infected cells exhibit elevated FBP levels. Exogenous FBP inhibits both RNA and DNA virus infections in vitro and in vivo. Modulating intracellular FBP levels by regulating the expression of the metabolic enzymes FBP1 and PFK1 significantly impacts viral infections. Mechanistically, the inhibitory effects of FBP are not a result of altered viral adhesion or entry and are largely independent of type I interferon-mediated immune responses; rather, they occur through modulation of HMGB1. During viral infections, FBP predominantly reduces the protein levels of HMGB1 by facilitating its lysosomal degradation. Furthermore, FBP interacts with HMGB1 and disrupts the binding of HMGB1 to viral genomes, thereby further inhibiting viral replication. Our findings underscore the potential of FBP as a therapeutic target for controlling viral infections.
Collapse
Affiliation(s)
- Penghui Hu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiyi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
| | - Zemin Ji
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weijia Jing
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zihan Li
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sujun Yu
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Shan
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Cui
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Baochen Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongyuan Dong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanzhao Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Zhe Wang
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Xiong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaomei Zhang
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui-Chieh Li
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinrong Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiuzhou Tang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuping Liu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haizhen Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
| | - Qiujing Yu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Ernst P, Zlati F, Kever L, Wirtz A, Goldbaum R, Pietruszka J, Wynands B, Frunzke J, Wierckx N. Selective production of the itaconic acid-derived compounds 2-hydroxyparaconic and itatartaric acid. Metab Eng Commun 2024; 19:e00252. [PMID: 39655188 PMCID: PMC11626831 DOI: 10.1016/j.mec.2024.e00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
There is a strong interest in itaconic acid in the medical and pharmaceutical sectors, both as an anti-bacterial compound and as an immunoregulator in mammalian macrophages. Fungal hosts also produce itaconic acid, and in addition they can produce two derivatives 2-hydroxyparaconic and itatartaric acid. Not much is known about these two derivatives, while their structural analogy to itaconate could open up several applications. In this study, we report the production of these two itaconate-derived compounds. By overexpressing the itaconate P450 monooxygenase Cyp3 in a previously engineered itaconate-overproducing Ustilago cynodontis strain, itaconate was converted to its lactone 2-hydroxyparaconate. The second product itatartarate is most likely the result of the subsequent lactone hydrolysis. A major challenge in the production of 2-hydroxyparaconate and itatartarate is their co-production with itaconate, leading to difficulties in their purification. Achieving high derivatives specificity was therefore the paramount objective. Different strategies were evaluated including process parameters such as substrate and pH, as well as strain engineering focusing on Cyp3 expression and product export. 2-hydroxyparaconate and itatartarate were successfully produced from glucose and glycerol, with the latter resulting in a higher derivatives specificity due to an overall slower metabolism on this non-preferred carbon source. The derivatives specificity could be further increased by metabolic engineering approaches including the exchange of the native itaconate transporter Itp1 with the Aspergillus terreus itaconate transporter MfsA. Both 2-hydroxyparaconate and itatartarate were recovered from fermentation supernatants following a pre-existing protocol. 2-hydroxyparaconate was recovered first through a process of evaporation, lactonization, and extraction with ethyl acetate. Subsequently, itatartarate could be obtained in the form of its sodium salt by saponification of the purified 2-hydroxyparaconate. Finally, several analytical methods were used to characterize the resulting products and their structures were confirmed by nuclear magnetic resonance spectroscopy. This work provides a promising foundation for obtaining 2-hydroxyparaconate and itatartarate in high purity and quantity. This will allow to unravel the full spectrum of potential applications of these novel compounds.
Collapse
Affiliation(s)
- Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Felicia Zlati
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Larissa Kever
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Rainer Goldbaum
- Institute of Bioorganic Chemistry, Heinrich-Heine University Düsseldorf in Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Bioorganic Chemistry, Heinrich-Heine University Düsseldorf in Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
30
|
Niayesh-Mehr R, Kalantar M, Bontempi G, Montaldo C, Ebrahimi S, Allameh A, Babaei G, Seif F, Strippoli R. The role of epithelial-mesenchymal transition in pulmonary fibrosis: lessons from idiopathic pulmonary fibrosis and COVID-19. Cell Commun Signal 2024; 22:542. [PMID: 39538298 PMCID: PMC11558984 DOI: 10.1186/s12964-024-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the tremendous advancements in the knowledge of the pathophysiology and clinical aspects of SARS-CoV-2 infection, still many issues remain unanswered, especially in the long-term effects. Mounting evidence suggests that pulmonary fibrosis (PF) is one of the most severe complications associated with COVID-19. Therefore, understanding the molecular mechanisms behind its development is helpful to develop successful therapeutic strategies. Epithelial to mesenchymal transition (EMT) and its cell specific variants endothelial to mesenchymal transition (EndMT) and mesothelial to mesenchymal transition (MMT) are physio-pathologic cellular reprogramming processes induced by several infectious, inflammatory and biomechanical stimuli. Cells undergoing EMT acquire invasive, profibrogenic and proinflammatory activities by secreting several extracellular mediators. Their activity has been implicated in the pathogenesis of PF in a variety of lung disorders, including idiopathic pulmonary fibrosis (IPF) and COVID-19. Aim of this article is to provide an updated survey of the cellular and molecular mechanisms, with emphasis on EMT-related processes, implicated in the genesis of PF in IFP and COVID-19.
Collapse
Affiliation(s)
- Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy.
| |
Collapse
|
31
|
Mendes LT, Gama-Almeida MC, Reis DL, Silva ACPE, Neris RLS, Galliez RM, Castiñeiras TMPP, on behalf of the UFRJ COVID-19 Working Group, Ludwig C, Valente AP, Costa dos Santos Junior G, El-Bacha T, Assunção-Miranda I. Longitudinal 1H NMR-Based Metabolomics in Saliva Unveils Signatures of Transition from Acute to Post-Acute Phase of SARS-CoV-2 Infection. Viruses 2024; 16:1769. [PMID: 39599883 PMCID: PMC11598993 DOI: 10.3390/v16111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
COVID-19 can range from a mild to severe acute respiratory syndrome and also could result in multisystemic damage. Additionally, many people develop post-acute symptoms associated with immune and metabolic disturbances in response to viral infection, requiring longitudinal and multisystem studies to understand the complexity of COVID-19 pathophysiology. Here, we conducted a 1H Nuclear Magnetic Resonance metabolomics in saliva of symptomatic subjects presenting mild and moderate respiratory symptoms to investigate prospective changes in the metabolism induced after acute-phase SARS-CoV-2 infection. Saliva from 119 donors presenting non-COVID and COVID-19 respiratory symptoms were evaluated in the acute phase (T1) and the post-acute phase (T2). We found two clusters of metabolite fluctuation in the COVID-19 group. Cluster 1, metabolites such as glucose, (CH3)3 choline-related metabolites, 2-hydroxybutyrate, BCAA, and taurine increased in T2 relative to T1, and in cluster 2, acetate, creatine/creatinine, phenylalanine, histidine, and lysine decreased in T2 relative to T1. Metabolic fluctuations in the COVID-19 group were associated with overweight/obesity, vaccination status, higher viral load, and viral clearance of the respiratory tract. Our data unveil metabolic signatures associated with the transition to the post-acute phase of SARS-CoV-2 infection that may reflect tissue damage, inflammatory process, and activation of tissue repair cascade. Thus, they contribute to describing alterations in host metabolism that may be associated with prolonged symptoms of COVID-19.
Collapse
Affiliation(s)
- Luiza Tomé Mendes
- LaRIV-Laboratory of Cellular Response to Viral Infections, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.T.M.); (A.C.P.e.S.); (R.L.S.N.)
| | - Marcos C. Gama-Almeida
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.C.G.-A.); (D.L.R.)
| | - Desirée Lopes Reis
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.C.G.-A.); (D.L.R.)
| | - Ana Carolina Pires e Silva
- LaRIV-Laboratory of Cellular Response to Viral Infections, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.T.M.); (A.C.P.e.S.); (R.L.S.N.)
| | - Rômulo Leão Silva Neris
- LaRIV-Laboratory of Cellular Response to Viral Infections, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.T.M.); (A.C.P.e.S.); (R.L.S.N.)
| | - Rafael Mello Galliez
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-599, Brazil; (R.M.G.); (T.M.P.P.C.)
| | - Terezinha Marta Pereira Pinto Castiñeiras
- Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-599, Brazil; (R.M.G.); (T.M.P.P.C.)
| | | | - Christian Ludwig
- Department of Metabolism and Systems Science, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK;
| | - Ana Paula Valente
- National Center for Nuclear Magnetic Resonance—Jiri Jonas, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Gilson Costa dos Santos Junior
- LabMet-Laboratory of Metabolomics, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil;
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondrial and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (M.C.G.-A.); (D.L.R.)
| | - Iranaia Assunção-Miranda
- LaRIV-Laboratory of Cellular Response to Viral Infections, Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.T.M.); (A.C.P.e.S.); (R.L.S.N.)
| |
Collapse
|
32
|
Xie J, Jia Z, Li Y, Liao L, Zhu Z, Wang Y, Huang R. Analysis of GCRV Pathogenesis and Therapeutic Measures Through Proteomic and Metabolomic Investigations in GCRV-Infected Tissues of Grass Carp ( Ctenopharyngodon idella). Int J Mol Sci 2024; 25:11852. [PMID: 39519403 PMCID: PMC11546743 DOI: 10.3390/ijms252111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Hemorrhagic disease caused by grass carp reovirus (GCRV) infection is a major problem affecting the grass carp aquaculture industry. Therefore, inhibiting the spread of GCRV infection is of great economic significance. Herein, we sequenced five tissues (gill, liver, intestine, kidney, and muscle) from grass carp before and after GCRV infection using data-independent acquisition proteomic and untargeted metabolomic technologies, and quantitatively identified 10,808 proteins and 4040 metabolites. Then, we analyzed the differentially expressed proteins (DEPs) and metabolites (DEMs) before and after GCRV infection in the five tissues. Gene ontology analysis revealed that the five tissue DEPs were enriched in metabolic, including carbohydrate and lipid metabolic processes. Chemical taxonomy analysis showed that the categories of DEMs mainly included carbohydrates and lipids, such as fatty acids, glycerophospholipids, steroids, and their derivatives. Both the proteomic and the metabolomic data showed that GCRV affected the carbohydrate and lipid metabolism in the host. Shared pathway analysis was performed at both the protein and metabolic levels, showing significant enrichment of the glycolysis and pentose phosphate pathways (p < 0.001). Further analysis of glycolysis and pentose phosphate pathway inhibitors revealed that these two pathways are important for GCRV replication. As the kidney was the most affected among the five tissues, we analyzed the butanoate metabolism in the kidney, which revealed that most of the differentially expressed proteins and differently expressed metabolites in the butanoate metabolism were related to the TCA cycle. Further investigation showed that fumaric acid, an intermediate product in the TCA cycle, significantly inhibited GCRV replication in the CIK cells (p < 0.001), and that this inhibitory effect may be related to its induction of interferon system activation. The addition of fumaric acid to feed increased the survival rate of juvenile grass carp by 19.60% during GCRV infection, and protected the tissues of those infected with GCRV, making it a potential anti-GCRV feed additive. Our results provide new perspectives on GCRV pathogenesis and antiviral strategies for grass carp.
Collapse
Affiliation(s)
- Juhong Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Jia
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (J.X.)
| |
Collapse
|
33
|
van der Horst D, Carter-Timofte ME, Danneels A, Silva da Costa L, Kurmasheva N, Thielke AL, Hansen AL, Chorošajev V, Holm CK, Belouzard S, de Weber I, Beny C, Olagnier D. Large-scale deep learning identifies the antiviral potential of PKI-179 and MTI-31 against coronaviruses. Antiviral Res 2024; 231:106012. [PMID: 39332537 DOI: 10.1016/j.antiviral.2024.106012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global pandemic of Coronavirus Disease (2019) (COVID-19), underscoring the urgency for effective antiviral drugs. Despite the development of different vaccination strategies, the search for specific antiviral compounds remains crucial. Here, we combine machine learning (ML) techniques with in vitro validation to efficiently identify potential antiviral compounds. We overcome the limited amount of SARS-CoV-2 data available for ML using various techniques, supplemented with data from diverse biomedical assays, which enables end-to-end training of a deep neural network architecture. We use its predictions to identify and prioritize compounds for in vitro testing. Two top-hit compounds, PKI-179 and MTI-31, originally identified as Pi3K-mTORC1/2 pathway inhibitors, exhibit significant antiviral activity against SARS-CoV-2 at low micromolar doses. Notably, both compounds outperform the well-known mTOR inhibitor rapamycin. Furthermore, PKI-179 and MTI-31 demonstrate broad-spectrum antiviral activity against SARS-CoV-2 variants of concern and other coronaviruses. In a physiologically relevant model, both compounds show antiviral effects in primary human airway epithelial (HAE) cultures derived from healthy donors cultured in an air-liquid interface (ALI). This study highlights the potential of ML combined with in vitro testing to expedite drug discovery, emphasizing the adaptability of AI-driven approaches across different viruses, thereby contributing to pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Adeline Danneels
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | - Naziia Kurmasheva
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Anne L Thielke
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | | | | | - Christian K Holm
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL- Center for Infection and Immunity of Lille, Lille, 59000, France
| | | | | | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus C, 8000, Denmark.
| |
Collapse
|
34
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
35
|
Ochar K, Iwar K, Nair VD, Chung YJ, Ha BK, Kim SH. The Potential of Glucosinolates and Their Hydrolysis Products as Inhibitors of Cytokine Storms. Molecules 2024; 29:4826. [PMID: 39459194 PMCID: PMC11510469 DOI: 10.3390/molecules29204826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
A cytokine storm is an intense inflammatory response characterized by the overproduction of proinflammatory cytokines, resulting in tissue damage, and organ dysfunction. Cytokines play a crucial role in various conditions, such as coronavirus disease, in which the immune system becomes overactive and releases excessive levels of cytokines, including interleukins, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). This anomalous response often leads to acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), and multiple organ injury (MOI). Glucosinolates are plant secondary metabolites predominantly found in Brassica vegetables, but are also present in other species, such as Moringa Adens and Carica papaya L. When catalyzed by the enzyme myrosinase, glucosinolates produce valuable products, including sulforaphane, phenethyl isothiocyanate, 6-(methylsulfinyl) hexyl isothiocyanate, erucin, goitrin, and moringin. These hydrolyzed products regulate proinflammatory cytokine production by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) signaling pathway and stimulating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This action can alleviate hyperinflammation in infected cells and modulate cytokine storms. In this review, we aimed to examine the potential role of glucosinolates in modulating cytokine storms and reducing inflammation in various conditions, such as coronavirus disease. Overall, we found that glucosinolates and their hydrolysis products can potentially attenuate cytokine production and the onset of cytokine storms in diseased cells. In summary, glucosinolates could be beneficial in regulating cytokine production and preventing complications related to cytokine storms.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Kanivalan Iwar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Vadakkemuriyil Divya Nair
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur Campus, Kangra District, Shahpur 176206, HP, India;
| | - Yun-Jo Chung
- National Creative Research Laboratory for Ca Signaling Network, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
36
|
He R, Zuo Y, Yi K, Liu B, Song C, Li N, Geng Q. The role and therapeutic potential of itaconate in lung disease. Cell Mol Biol Lett 2024; 29:129. [PMID: 39354366 PMCID: PMC11445945 DOI: 10.1186/s11658-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Lung diseases triggered by endogenous or exogenous factors have become a major concern, with high morbidity and mortality rates, especially after the coronavirus disease 2019 (COVID-19) pandemic. Inflammation and an over-activated immune system can lead to a cytokine cascade, resulting in lung dysfunction and injury. Itaconate, a metabolite produced by macrophages, has been reported as an effective anti-inflammatory and anti-oxidative stress agent with significant potential in regulating immunometabolism. As a naturally occurring metabolite in immune cells, itaconate has been identified as a potential therapeutic target in lung diseases through its role in regulating inflammation and immunometabolism. This review focuses on the origin, regulation, and function of itaconate in lung diseases, and briefly discusses its therapeutic potential.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Jilin University, Changchun, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| |
Collapse
|
37
|
Thom RE, D’Elia RV. Future applications of host direct therapies for infectious disease treatment. Front Immunol 2024; 15:1436557. [PMID: 39411713 PMCID: PMC11473292 DOI: 10.3389/fimmu.2024.1436557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
New and emerging pathogens, such as SARS-CoV2 have highlighted the requirement for threat agnostic therapies. Some antibiotics or antivirals can demonstrate broad-spectrum activity against pathogens in the same family or genus but efficacy can quickly reduce due to their specific mechanism of action and for the ability of the disease causing agent to evolve. This has led to the generation of antimicrobial resistant strains, making infectious diseases more difficult to treat. Alternative approaches therefore need to be considered, which include exploring the utility of Host-Directed Therapies (HDTs). This is a growing area with huge potential but difficulties arise due to the complexity of disease profiles. For example, a HDT given early during infection may not be appropriate or as effective when the disease has become chronic or when a patient is in intensive care. With the growing understanding of immune function, a new generation of HDT for the treatment of disease could allow targeting specific pathways to augment or diminish the host response, dependent upon disease profile, and allow for bespoke therapeutic management plans. This review highlights promising and approved HDTs that can manipulate the immune system throughout the spectrum of disease, in particular to viral and bacterial pathogens, and demonstrates how the advantages of HDT will soon outweigh the potential side effects.
Collapse
Affiliation(s)
- Ruth E. Thom
- Chemical, Biological and Radiological Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - R V. D’Elia
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
38
|
Romeo PH, Conquet L, Messiaen S, Pascal Q, Moreno SG, Bravard A, Bernardino-Sgherri J, Dereuddre-Bosquet N, Montagutelli X, Le Grand R, Petit V, Ferri F. Multiple Mechanisms of Action of Sulfodyne ®, a Natural Antioxidant, against Pathogenic Effects of SARS-CoV-2 Infection. Antioxidants (Basel) 2024; 13:1083. [PMID: 39334742 PMCID: PMC11429452 DOI: 10.3390/antiox13091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Few therapeutic options are available to treat COVID-19. The KEAP1/NRF2 pathway, the major redox-responsive pathway, has emerged as a potential therapeutic target for COVID-19 as it regulates redox homeostasis and inflammation that are altered during SARS-CoV-2 infection. Here, we characterized the effects of NRF2-agonist Sulfodyne®, a stabilized natural Sulforaphane, in cellular and animal models of SARS-CoV-2 infection. In pulmonary or colonic epithelial cell lines, Sulfodyne® elicited a more efficient inhibition of SARS-CoV-2 replication than NRF2-agonists DMF and CDDO. This antiviral activity was not dependent on NRF2 but was associated with the regulation of several metabolic pathways, including the inhibition of ER stress and mTOR signaling, which are activated during SARS-CoV-2 infection. Sulfodyne® also decreased SARS-CoV-2 mediated inflammatory responses by inhibiting the delayed induction of IFNB1 and type I IFN-stimulated genes in infected epithelial cell lines and by reducing the activation of human by-stander monocytes recruited after SARS-CoV-2 infection. In K18-hACE2 mice infected with SARS-CoV-2, Sulfodyne® treatment reduced both early lung viral load and disease severity by fine-tuning IFN-beta levels. Altogether, these results provide evidence for multiple mechanisms that underlie the antiviral and anti-inflammatory activities of Sulfodyne® and pinpoint Sulfodyne® as a potent therapeutic agent against pathogenic effects of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Paul-Henri Romeo
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Laurine Conquet
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Sébastien Messiaen
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Development of the Gonads (LDG/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Quentin Pascal
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Stéphanie G Moreno
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Anne Bravard
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Université Paris Cité, Institut Pasteur, 75724 Paris, France
| | - Roger Le Grand
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Vanessa Petit
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| | - Federica Ferri
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris Cité, Inserm, CEA, 92265 Fontenay-aux-Roses, France
- Laboratory on Repair and Transcription in Hematopoietic Stem Cells (LRTS/IRCM), Université Paris-Saclay, Inserm, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
39
|
Yan Z, Liang W, Zhu L, Kreso I, Romero V, Smith M, Chen Y. Sulforaphane's Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)-Dependent and -Independent Mechanism of Anti-SARS-CoV-2 Activity. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10010. [PMID: 39220635 PMCID: PMC11360660 DOI: 10.35534/jrbtm.2024.10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
It is well established that Nrf2 plays a crucial role in anti-oxidant and anti-inflammatory functions. However, its antiviral capabilities remain less explored. Despite this, several Nrf2 activators have demonstrated anti-SARS-CoV-2 properties, though the mechanisms behind these effects are not fully understood. In this study, using two mouse models of SARS-CoV-2 infection, we observed that the absence of Nrf2 significantly increased viral load and altered inflammatory responses. Additionally, we evaluated five Nrf2 modulators. Notably, epigallocatechin gallate (EGCG), sulforaphane (SFN), and dimethyl fumarate (DMF) exhibited significant antiviral effects, with SFN being the most effective. SFN did not impact viral entry but appeared to inhibit the main protease (MPro) of SARS-CoV-2, encoded by the Nsp5 gene, as indicated by two protease inhibition assays. Moreover, using two Nrf2 knockout cell lines, we confirmed that SFN's antiviral activity occurs independently of Nrf2 activation in vitro. Paradoxically, in vivo tests using the MA30 model showed that SFN's antiviral function was completely lost in Nrf2 knockout mice. Thus, although SFN and potentially other Nrf2 modulators can inhibit SARS-CoV-2 independently of Nrf2 activation in cell models, their Nrf2-dependent activities might be crucial for antiviral defense under physiological conditions.
Collapse
Affiliation(s)
- Ziqi Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Weifeng Liang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Ivana Kreso
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Venesa Romero
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Melisa Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
40
|
Wu QJ, Li Q, Yang P, Du L. Itaconate to treat acute lung injury: recent advances and insights from preclinical models. Am J Transl Res 2024; 16:3480-3497. [PMID: 39262751 PMCID: PMC11384376 DOI: 10.62347/nuin2087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/22/2024] [Indexed: 09/13/2024]
Abstract
Acute lung injury (ALI) is defined as the acute onset of diffuse bilateral pulmonary infiltration, leading to PaO2/FiO2 ≤ 300 mmHg without clinical evidence of left atrial hypertension. Acute respiratory distress syndrome (ARDS) involves more severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg). Treatment of ALI and ARDS has received renewed attention as the incidence of ALI caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has increased. Itaconate and its derivatives have shown therapeutic potential against ALI. This review provides an in-depth summary of the mechanistic research of itaconate in the field of acute lung injury, including inducing autophagy, preventing ferroptosis and pyroptosis, shifting macrophage polarization to an anti-inflammatory M2 phenotype, inhibiting neutrophil activation, regulating epigenetic modifications, and repressing aerobic glycolysis. These compounds merit further consideration in clinical trials. We anticipate that the clinical translation of itaconate-based drugs can be accelerated.
Collapse
Affiliation(s)
- Qin Juan Wu
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
- Department of Anesthesiology, Chengdu Second People's Hospital Chengdu 610000, Sichuan, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Ping Yang
- Department of Anesthesiology, Chongqing University Three Gorges Hospital Chongqing 404100, China
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital of Sichuan University Chengdu 610041, Sichuan, China
| |
Collapse
|
41
|
Cui BC, Aksenova M, Sikirzhytskaya A, Odhiambo D, Korunova E, Sikirzhytski V, Ji H, Altomare D, Broude E, Frizzell N, Booze R, Wyatt MD, Shtutman M. Suppression of HIV-TAT and cocaine-induced neurotoxicity and inflammation by cell penetrable itaconate esters. J Neurovirol 2024; 30:337-352. [PMID: 38884890 PMCID: PMC11512888 DOI: 10.1007/s13365-024-01216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
HIV-associated neurological disorder (HAND) is a serious complication of HIV infection marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of HIV and cocaine-induced transcriptomes in primary cortical cultures revealed significant overexpression of the macrophage-specific gene aconitate decarboxylase 1 (Acod1). The ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. Itaconate then facilitates cytokine production and activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. However, the immunometabolic function of itaconate was unexplored in HIV and cocaine-exposed microglia. We assessed the potential of 4-octyl-itaconate (4OI), a cell-penetrable ester form of itaconate known for its anti-inflammatory properties. When primary cortical cultures exposed to Tat and cocaine were treated with 4OI, microglial cell number increased and the morphological altercations induced by Tat and cocaine were reversed. Microglial cells also appeared more ramified, resembling the quiescent microglia. 4OI treatment inhibited secretion of the proinflammatory cytokines IL-1α, IL-1β, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling determined that Nrf2 target genes were significantly activated in Tat and 4OI treated cultures relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development to treat HAND coupled with CUD comorbidities.
Collapse
Affiliation(s)
- B Celia Cui
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Marina Aksenova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Aliaksandra Sikirzhytskaya
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diana Odhiambo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Elizaveta Korunova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Eugenia Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology and Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA
| | - Rosemarie Booze
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
42
|
Boothe PF, Kumar VP, Kong Y, Wang K, Levinson H, Mu D, Brown ML. Radiation Induced Skin Fibrosis (RISF): Opportunity for Angiotensin II-Dependent Intervention. Int J Mol Sci 2024; 25:8261. [PMID: 39125831 PMCID: PMC11312688 DOI: 10.3390/ijms25158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential insights in order to better care for and improve the quality of life of cancer survivors who face the risk of developing RISF.
Collapse
Affiliation(s)
- Patricia F. Boothe
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Howard Levinson
- The Center for Plastic Surgery at Sentara, 301 Riverview Ave. #400, Norfolk, VA 23510, USA;
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
- Leroy T. Canoles Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
43
|
Ernst P, Saur KM, Kiefel R, Niehoff PJ, Weskott R, Büchs J, Jupke A, Wierckx N. Balancing pH and yield: exploring itaconic acid production in Ustilago cynodontis from an economic perspective. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:103. [PMID: 39020434 PMCID: PMC11253337 DOI: 10.1186/s13068-024-02550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Itaconic acid is a promising bio-based building block for the synthesis of polymers, plastics, fibers and other materials. In recent years, Ustilago cynodontis has emerged as an additional itaconate producing non-conventional yeast, mainly due to its high acid tolerance, which significantly reduces saline waste coproduction during fermentation and downstream processing. As a result, this could likely improve the economic viability of the itaconic acid production process with Ustilaginaceae. RESULTS In this study, we characterized a previously engineered itaconate hyper-producing Ustilago cynodontis strain in controlled fed-batch fermentations to determine the minimal and optimal pH for itaconate production. Under optimal fermentation conditions, the hyper-producing strain can achieve the theoretical maximal itaconate yield during the production phase in a fermentation at pH 3.6, but at the expense of considerable base addition. Base consumption is strongly reduced at the pH of 2.8, but at cost of production yield, titer, and rate. A techno-economic analysis based on the entire process demonstrated that savings due to an additional decrease in pH control reagents and saline waste costs cannot compensate the yield loss observed at the highly acidic pH value 2.8. CONCLUSIONS Overall, this work provides novel data regarding the balancing of yield, titer, and rate in the context of pH, thereby contributing to a better understanding of the itaconic acid production process with Ustilago cynodontis, especially from an economic perspective.
Collapse
Affiliation(s)
- Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Katharina Maria Saur
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Robert Kiefel
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Paul-Joachim Niehoff
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Ronja Weskott
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Jochen Büchs
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
| |
Collapse
|
44
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
45
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
46
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
47
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Hao J, Zhang X, Hu R, Lu X, Wang H, Li Y, Cheng K, Li Q. Metabolomics combined with network pharmacology reveals a role for astragaloside IV in inhibiting enterovirus 71 replication via PI3K-AKT signaling. J Transl Med 2024; 22:555. [PMID: 38858642 PMCID: PMC11163744 DOI: 10.1186/s12967-024-05355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Astragaloside IV (AST-IV), as an effective active ingredient of Astragalus membranaceus (Fisch.) Bunge. It has been found that AST-IV inhibits the replication of dengue virus, hepatitis B virus, adenovirus, and coxsackievirus B3. Enterovirus 71 (EV71) serves as the main pathogen in severe hand-foot-mouth disease (HFMD), but there are no specific drugs available. In this study, we focus on investigating whether AST-IV can inhibit EV71 replication and explore the potential underlying mechanisms. METHODS The GES-1 or RD cells were infected with EV71, treated with AST-IV, or co-treated with both EV71 and AST-IV. The EV71 structural protein VP1 levels, the viral titers in the supernatant were measured using western blot and 50% tissue culture infective dose (TCID50), respectively. Network pharmacology was used to predict possible pathways and targets for AST-IV to inhibit EV71 replication. Additionally, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to investigate the potential targeted metabolites of AST-IV. Associations between metabolites and apparent indicators were performed via Spearman's algorithm. RESULTS This study illustrated that AST-IV effectively inhibited EV71 replication. Network pharmacology suggested that AST-IV inhibits EV71 replication by targeting PI3K-AKT. Metabolomics results showed that AST-IV achieved these effects by elevating the levels of hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-hydroxy-1 H-indole-3- acetamide, oxypurinol, while reducing the levels of PC (14:0/15:0). Furthermore, AST-IV also mitigated EV71-induced oxidative stress by reducing the levels of MDA, ROS, while increasing the activity of T-AOC, CAT, GSH-Px. The inhibition of EV71 replication was also observed when using the ROS inhibitor N-Acetylcysteine (NAC). Additionally, AST-IV exhibited the ability to activate the PI3K-AKT signaling pathway and suppress EV71-induced apoptosis. CONCLUSION This study suggests that AST-IV may activate the cAMP and the antioxidant stress response by targeting eight key metabolites, including hypoxanthine, 2-ketobutyric acid, adenine, nicotinic acid mononucleotide, prostaglandin H2, 6-Hydroxy-1 H-indole-3-acetamide, oxypurinol and PC (14:0/15:0). This activation can further stimulate the PI3K-AKT signaling to inhibit EV71-induced apoptosis and EV71 replication.
Collapse
Affiliation(s)
- JinFang Hao
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhang
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Ruixian Hu
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xiufeng Lu
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Hui Wang
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yuanhong Li
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Kai Cheng
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Qingshan Li
- School of Pharmaceutical, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
49
|
Chen JY, Huang TR, Hsu SY, Huang CC, Wang HS, Chang JS. Effect and mechanism of quercetin or quercetin-containing formulas against COVID-19: From bench to bedside. Phytother Res 2024; 38:2597-2618. [PMID: 38479376 DOI: 10.1002/ptr.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/13/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global coronavirus disease 2019 (COVID-19) pandemic since 2019. Immunopathogenesis and thromboembolic events are central to its pathogenesis. Quercetin exhibits several beneficial activities against COVID-19, including antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antithrombotic effects. Although several reviews have been published, these reviews are incomplete from the viewpoint of translational medicine. The authors comprehensively evaluated the evidence of quercetin against COVID-19, both basically and clinically, to apply quercetin and/or its derivatives in the future. The authors searched the PubMed, Embase, and the Cochrane Library databases without any restrictions. The search terms included COVID-19, SARS-CoV-2, quercetin, antiviral, anti-inflammatory, immunomodulatory, thrombosis, embolism, oxidative, and microbiota. The references of relevant articles were also reviewed. All authors independently screened and reviewed the quality of each included manuscript. The Cochrane Risk of Bias Tool, version 2 (RoB 2) was used to assess the quality of the included randomized controlled trials (RCTs). All selected studies were discussed monthly. The effectiveness of quercetin against COVID-19 is not solid due to methodological flaws in the clinical trials. High-quality studies are also required for quercetin-containing traditional Chinese medicines. The low bioavailability and highly variable pharmacokinetics of quercetin hinder its clinical applications. Its positive impact on immunomodulation through reverting dysbiosis of gut microbiota still lacks robust evidence. Quercetin against COVID-19 does not have tough clinical evidence. Strategies to improve its bioavailability and/or to develop its effective derivatives are needed. Well-designed RCTs are also crucial to confirm their effectiveness in the future.
Collapse
Affiliation(s)
- Jhong Yuan Chen
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung Rung Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih Yun Hsu
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching Chun Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei Syun Wang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung San Chang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Shahbaz MA, Kuivanen S, Mussalo L, Afonin AM, Kumari K, Behzadpour D, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Jalava P, Vapalahti O, Balistreri G, Lampinen R, Kanninen KM. Exposure to urban particulate matter alters responses of olfactory mucosal cells to SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2024; 249:118451. [PMID: 38341073 DOI: 10.1016/j.envres.2024.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Suvi Kuivanen
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Laura Mussalo
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Alexey M Afonin
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Kajal Kumari
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Donya Behzadpour
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juho Kalapudas
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland
| | - Anne M Koivisto
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Department of Neurology, Neuro Centre, Kuopio, Finland; University of Helsinki, Faculty of Medicine, Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Helsinki, Finland
| | - Elina Penttilä
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Heikki Löppönen
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Pasi Jalava
- University of Eastern Finland, Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Olli Vapalahti
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Giuseppe Balistreri
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Riikka Lampinen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Katja M Kanninen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| |
Collapse
|