1
|
Tamietti C, Stephen T, Rouvinski A, Tenebray B, Leparc‐Goffard I, de Laval F, Fernandes‐Pellerin S, Manuguerra J, Rey F, Hasan M, Badaut C, Flamand M, Matheus S, Briolant S. Prolonged Zika Virus NS1 Protein Circulation in Patient Sera Impacts Clinical Outcome Before the Rise of a Specific IgM Response. J Med Virol 2025; 97:e70368. [PMID: 40263920 PMCID: PMC12015152 DOI: 10.1002/jmv.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Zika virus (ZIKV) is a neurotropic virus that can be transmitted congenitally. In ZIKV-infected pregnant women, placental dysfunction is associated with the secretion of nonstructural protein 1 (NS1). In this study, the kinetics of NS1 secretion and antibody response were assessed and characterized in the serum of ZIKV-positive adult patients recruited in French Guiana. NS1 concentrations were quantified by a single molecule array (SiMoA) in 164 sequential serum samples collected from thirty patients during the first month after onset of symptoms. Serum NS1 concentrations in this cohort were unexpectedly low and ranged from 0.1 pg/mL to 380 pg/mL. The median persistence of NS1 in patients with a clinical score of 2 (6 days) was significantly lower than in patients with a clinical score of 3 (8 days). In both groups of patients, anti-NS1 IgM and IgG kinetics were similar but patients with a milder clinical score of 2 had statistically higher levels of specific IgM than those with a clinical score of 3. Herein, it was shown that NS1 circulating in patient sera is associated with clinical outcome, emphasizing the role of NS1 in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Carole Tamietti
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Tharshana Stephen
- Institut PasteurUniversité Paris Cité, Single Cell Biomarkers UTechSParisFrance
| | - Alexander Rouvinski
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Bernard Tenebray
- Unité de virologieInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Centre National de Référence des ArbovirusInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
| | - Isabelle Leparc‐Goffard
- Unité de virologieInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Centre National de Référence des ArbovirusInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
| | - Franck de Laval
- Service de Santé des Armées, CESPACentre d'épidémiologie et de santé publique des arméesMarseilleFrance
| | | | - Jean‐Claude Manuguerra
- Institut PasteurUniversité Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) UnitParisFrance
| | - Félix Rey
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Milena Hasan
- Institut PasteurUniversité Paris Cité, Single Cell Biomarkers UTechSParisFrance
| | - Cyril Badaut
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
- Unité de virologieInstitut de Recherche Biomédicale des Armées, Brétigny‐sur‐OrgeFrance
| | - Marie Flamand
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Séverine Matheus
- Institut PasteurUniversité Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) UnitParisFrance
| | - Sébastien Briolant
- Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA)Unité Parasitologie et EntomologieMarseilleFrance
- Aix Marseille Université, SSA, AP‐HMMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| |
Collapse
|
2
|
de Jong HK, Grobusch MP. Zika virus: an overview update. Curr Opin HIV AIDS 2025; 20:294-302. [PMID: 40048580 PMCID: PMC11970592 DOI: 10.1097/coh.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
PURPOSE OF REVIEW Although cases of Zika virus disease (ZVD) have declined globally since 2017, new outbreaks have been reported, such as in Asia in 2024. As there is no vaccine or treatment available to date, both vaccines and mAbs neutralizing Zika virus would be of great interest, especially for pregnant women and immunocompromised patients such as those living with HIV. This review focuses on new insights regarding ZVD in the last two years and summarizes the key literature on global epidemiology, transmission, diagnostics, clinical features, preventive measures, and treatment options. RECENT FINDINGS At the time of writing, ZVD is endemic across tropical and subtropical regions of the world, with the highest risk of infection in Latin America and the Caribbean, but no significant peaks in outbreak activity across endemic regions. There are ongoing efforts to further investigate the clinical and epidemiological long-term sequelae of the large outbreak in the Americas 2015-2018; further refinement of diagnostic tools to improve specificity in view of significant cross-reactivity potential, particularly with dengue virus. Multiple vaccines are in different clinical development stages; however, phase 3 trials are awaiting the next epidemic. SUMMARY While there is no current major zika virus outbreak, progress has been made in the epidemiological work-up of clinical-epidemiological data, refinement of diagnostic tools, and mainly preventive (vaccines) rather than curative (drugs) tools.
Collapse
Affiliation(s)
- Hanna K. de Jong
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam Public Health - Global Health, Amsterdam, The Netherlands
| | - Martin P. Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam Public Health - Global Health, Amsterdam, The Netherlands
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
- Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Ostrowsky JT, Katzelnick LC, Bourne N, Barrett ADT, Thomas SJ, Diamond MS, Beasley DWC, Harris E, Wilder-Smith A, Leighton T, Mehr AJ, Moua NM, Ulrich AK, Cehovin A, Fay PC, Golding JP, Moore KA, Osterholm MT, Lackritz EM. Zika virus vaccines and monoclonal antibodies: a priority agenda for research and development. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00750-3. [PMID: 40024262 DOI: 10.1016/s1473-3099(24)00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025]
Abstract
The 2015-16 Zika virus epidemic in the Americas drew global attention to Zika virus infection as a cause of microcephaly and Guillain-Barré syndrome. The epidemic highlighted the urgent need for preventive measures, including vaccines and monoclonal antibodies (mAbs). However, nearly 9 years later, no licensed Zika virus vaccines or mAbs are available, leaving the world's populations unprotected from ongoing disease transmission and future epidemics. The current low Zika virus incidence and unpredictability of future outbreaks complicates prospects for evaluation, licensure, and commercial viability of Zika virus vaccines and mAbs. We conducted an extensive review of Zika virus vaccines and mAbs in development, identifying 16 vaccines in phase 1 or phase 2 trials and three mAbs in phase 1 trials, and convened a 2-day meeting of 130 global Zika virus experts to discuss research priorities to advance their development. This Series paper summarises a priority research agenda to address key knowledge gaps and accelerate the licensure of Zika virus vaccines and mAbs for global use.
Collapse
Affiliation(s)
- Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA; Institute for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
| | - Michael S Diamond
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Annelies Wilder-Smith
- Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Ana Cehovin
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | | | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Roy RR, Tadkalkar N, Deshpande GR, Atre NM, Shil P, Sapkal G. Identification of B-cell epitopes of Indian Zika virus strains using immunoinformatics. Front Immunol 2025; 16:1534737. [PMID: 40083545 PMCID: PMC11903408 DOI: 10.3389/fimmu.2025.1534737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction The Zika virus is an emerging Flavivirus known to cause Zika infection in humans. It is associated with severe health problems such as microcephaly and Guillain-Barré syndrome post the Brazilian epidemic in 2015-16. The spread of the Zika virus to the Asian subcontinent, especially to India is a matter of great concern. Two recent co-circulating Indian Zika virus strains such as Rajasthan and Maharashtra detected in 2018 and 2021 were studied to identify B-cell epitopes in the envelope and non-structural 1 protein as these epitopes are major indicators of robust humoral immune response. The study aimed at identifying novel epitopes, followed by molecular docking with potent Zika virus-specific monoclonal antibodies. The novel epitopes identified in this study shall be essential in designing multi-epitope vaccines capable of inducing antibody response against Zika virus infection. Methods ABCpred, BepiPred 2.0 and Kolaskar-Tongaonkar methods were used for predicting the linear B-cell epitopes, and Discotope 2.0 and ElliPro were used for the prediction of conformational epitopes. Linear epitopes were further checked for protective antigenicity, allergenicity and toxicity. Based on the stringent study design criteria, only the novel epitopes were considered for molecular docking with complementary determining regions of potent Zika virus-specific monoclonal antibodies. Results Nineteen linear and five conformational epitopes were shortlisted based on protective potential, non-allergic and non-toxic properties for Zika virus E protein, from which nine linear and three conformational epitopes were identified as novel. Molecular docking studies revealed that the novel linear epitopes, one each from EDIII, EDII, EDI and EDI/DIII hinge were involved in epitope-CDR interactions with potent neutralizing Zika virus E-specific mouse monoclonal antibody ZV-67. Moreover, the novel EDII epitope was exclusively engaged in epitope-CDR interactions of potent neutralizing Zika virus E-specific human monoclonal antibody Z3L1. None of the linear epitopes of Zika virus NS1 were ascertained as novel based on our study criteria. Conformational epitopes were identified as novel for NS1 protein. Conclusion This study identified Zika virus-specific novel epitopes of envelope and non-structural -1 proteins in the currently co-circulating Indian strains. Furthermore, in-silico validation through molecular docking added insight into antigen-antibody interactions, paving way for future in vitro and in vivo studies.
Collapse
Affiliation(s)
- Rohan Raj Roy
- Diagnostic Virology Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Nitali Tadkalkar
- Diagnostic Virology Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Gururaj Rao Deshpande
- Diagnostic Virology Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Nitin M. Atre
- Bioinformatics and Data Management, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Pratip Shil
- Bioinformatics and Data Management, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| | - Gajanan Sapkal
- Diagnostic Virology Group, Indian Council of Medical Research (ICMR) - National Institute of Virology, Pune, India
| |
Collapse
|
5
|
Michita RT, Tran LB, Bark SJ, Kumar D, Toner SA, Jose J, Mysorekar IU, Narayanan A. Zika virus NS1 drives tunneling nanotube formation for mitochondrial transfer and stealth transmission in trophoblasts. Nat Commun 2025; 16:1803. [PMID: 39979240 PMCID: PMC11842757 DOI: 10.1038/s41467-025-56927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Zika virus (ZIKV) is unique among orthoflaviviruses in its vertical transmission capacity in humans, yet the underlying mechanisms remain incompletely understood. Here, we show that ZIKV induces tunneling nanotubes (TNTs) in placental trophoblasts which facilitate transfer of viral particles, proteins, mitochondria, and RNA to neighboring uninfected cells. TNT formation is driven exclusively via ZIKV non-structural protein 1 (NS1). Specifically, the N-terminal 1-50 amino acids of membrane-bound ZIKV NS1 are necessary for triggering TNT formation in host cells. Trophoblasts infected with TNT-deficient ZIKVΔTNT mutant virus elicited a robust antiviral IFN-λ 1/2/3 response relative to WT ZIKV, suggesting TNT-mediated trafficking allows ZIKV cell-to-cell transmission camouflaged from host defenses. Using affinity purification-mass spectrometry of cells expressing wild-type NS1 or non-TNT forming NS1, we found mitochondrial proteins are dominant NS1-interacting partners. We demonstrate that ZIKV infection or NS1 expression induces elevated mitochondria levels in trophoblasts and that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells. Together our findings identify a stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival and offers a basis for novel therapeutic developments targeting these interactions to limit ZIKV dissemination.
Collapse
Affiliation(s)
- Rafael T Michita
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Long B Tran
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven J Bark
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Deepak Kumar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shay A Toner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Huffington Centre on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, 16802, USA.
| |
Collapse
|
6
|
Li B, Qin XR, Qu JC, Wu GD, Zhang WK, Jiang ZZ, Liu PP, Li ZM, Yu TM, Zhou CM, Jiao YJ, Yu XJ. Pair combinations of human monoclonal antibodies fully protected mice against bunyavirus SFTSV lethal challenge. PLoS Pathog 2025; 21:e1012889. [PMID: 39888973 PMCID: PMC11785279 DOI: 10.1371/journal.ppat.1012889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/06/2025] [Indexed: 02/02/2025] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a viral hemorrhagic fever caused by a tick-borne virus SFTSV with a mortality rate of up to 30%. Currently, there is no vaccine or effective therapy for SFTS. Neutralizing monoclonal antibody therapy, which provides immediate passive immunity and may limit disease progression, has emerged as a reliable approach for developing therapeutic drugs for SFTS. In this study, 4 human monoclonal antibodies (hmAbs) derived from convalescent SFTS patients' lymphocytes based on human single-chain variable fragment antibody libraries were tested for their neutralizing activities in cells and their treatment effect in animals individually and in pair combinations. The neutralization test showed that all 4 hmAbs exhibited strong neutralizing activity against SFTSV infection in vitro. The protection rate of hmAbs 4-6, 1F6, 1B2, and 4-5 against SFTSV lethal challenge in IFNAR1-/- A129 mice are 50%, 16.7%, 83.3%, and 66.7%, respectively. Notably, the pair combination of antibodies (1B2 and 4-5, 1B2 and 1F6) that recognized distinct epitopes protected 100% of mice against SFTSV lethal challenge. In conclusion, our findings indicate that the pair combinations of hmAbs 1B2 and 4-5 or hmAbs 1B2 and 1F6 may serve as promising therapeutic drugs for treating SFTSV infection.
Collapse
Affiliation(s)
- Bang Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Xiang-rong Qin
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Jia-chen Qu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guan-du Wu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Wen-kang Zhang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ze-zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Pan-pan Liu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ze-min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Tian-mei Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Chuan-min Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Yong-jun Jiao
- Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Xue-jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Castro-Trujillo S, Mejía WR, Segura K, Castro-Meneses J, Vega R, Salgado D, Fonseca CE, Ortiz ÁM, Perdomo-Celis F, Bosch I, Narváez CF. A low pre-existing anti-NS1 humoral immunity to DENV is associated with microcephaly development after gestational ZIKV exposure. PLoS Negl Trop Dis 2025; 19:e0012193. [PMID: 39761322 PMCID: PMC11723597 DOI: 10.1371/journal.pntd.0012193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/10/2025] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Gestational Zika virus (ZIKV) infection is associated with the development of congenital Zika syndrome (CZS), which includes microcephaly and fetal demise. The magnitude and quality of orthoflavivirus-specific humoral immunity have been previously linked to the development of CZS. However, the role of ZIKV NS1-specific humoral immunity in mothers and children with prenatal ZIKV exposure and CZS remains undefined. In addition, considering that most of the at-risk population lives in dengue virus (DENV)-endemic areas, it is not clear what is the association between pre-existing DENV NS1-specific humoral immunity and CZS. METHODS Here, we studied 328 mothers and children with a clinical diagnosis and seropositivity for ZIKV infection during pregnancy, included during the 2015-2016 ZIKV epidemic in Colombia. We also performed clinical evaluation and pediatric neurological follow-up. The relative levels of circulating NS1-specific IgM and IgG against ZIKV and DENV were evaluated in mothers and children, and the association with the development of microcephaly was analyzed. RESULTS DENV and ZIKV IgG-NS1 antibodies in pregnant women were placentally transferred, and this passage and its duration in children depended on the maternal levels of the antibodies. We reported that higher concentrations of pre-existing DENV, but not ZIKV IgG-NS1 antibodies, were associated with a reduced risk of CZS-related microcephaly. Also, we observed that the IgM-NS1 response in infants is long-term and has a minor association with poor outcomes. CONCLUSIONS The development of microcephaly in children prenatally exposed to ZIKV is associated with low plasma levels of placentally transferred, pre-existing DENV IgG-NS1 antibodies. These data are compatible with a protective role of anti-NS1 IgG antibodies against ZIKV infection during pregnancy and highlight the promising role of NS1 as an orthoflavivirus vaccine target in high-risk populations.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - William R. Mejía
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Katherine Segura
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juanita Castro-Meneses
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Programa de Biología Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Rocío Vega
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Doris Salgado
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Carlos E. Fonseca
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Ángela M. Ortiz
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Pediatría, Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Carlos F. Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Área de Pediatría, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
8
|
Puerta-Guardo H, Biering SB, Castillo-Rojas B, DiBiasio-White MJ, Lo NT, Espinosa DA, Warnes CM, Wang C, Cao T, Glasner DR, Beatty PR, Kuhn RJ, Harris E. Flavivirus NS1-triggered endothelial dysfunction promotes virus dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.625931. [PMID: 39651279 PMCID: PMC11623691 DOI: 10.1101/2024.11.29.625931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The Flaviviridae are a family of viruses that include the important arthropod-borne human pathogens dengue virus (DENV), West Nile virus, Zika virus, Japanese encephalitis virus, and yellow fever virus. Flavivirus nonstructural protein 1 (NS1) is essential for virus replication but is also secreted from virus-infected cells. Extracellular NS1 acts as a virulence factor during flavivirus infection in multiple ways, including triggering endothelial dysfunction and vascular leak via interaction with endothelial cells. While the role of NS1 in inducing vascular leak and exacerbating pathogenesis is well appreciated, if and how NS1-triggered endothelial dysfunction promotes virus infection remains obscure. Flaviviruses have a common need to disseminate from circulation into specific tissues where virus-permissive cells reside. Tissue-specific dissemination is associated with disease manifestations of a given flavivirus, but mechanisms dictating virus dissemination are unclear. Here we show that NS1-mediated endothelial dysfunction promotes virus dissemination in vitro and in vivo . In mouse models of DENV infection, we show that anti-NS1 antibodies decrease virus dissemination, while the addition of exogenous NS1 promotes virus dissemination. Using an in vitro system, we show that NS1 promotes virus dissemination in two distinct ways: (1) promoting crossing of barriers and (2) increasing infectivity of target cells in a tissue- and virus-specific manner. The capacity of NS1 to modulate infectivity correlates with a physical association between virions and NS1, suggesting a potential NS1-virion interaction. Taken together, our study indicates that flavivirus NS1 promotes virus dissemination across endothelial barriers, providing an evolutionary basis for virus-triggered vascular leak. Author Summary The Flaviviridae contain numerous medically important human pathogens that cause potentially life-threatening infections. Over half of the world's population is at risk of flavivirus infection, and this number is expected to increase as climate change expands the habitats of the arthropod vectors that transmit these flaviviruses. There are few effective vaccines and no therapeutics approved for prevention or treatment of flavivirus infection, respectively. Given these challenges, understanding how and why flaviviruses cause pathogenesis is critical for identifying targets for therapeutic intervention. The secreted nonstructural protein 1 (NS1) of flaviviruses is a conserved virulence factor that triggers endothelial dysfunction in a tissue-specific manner. It is unknown if this endothelial dysfunction provides any benefit for virus infection. Here we provide evidence that NS1-triggered endothelial dysfunction facilitates virus crossing of endothelial barriers and augments infection of target cells in vitro and promotes virus dissemination in vivo . This study provides an evolutionary explanation for flaviviruses evolving the capacity to trigger barrier dysfunction and highlights NS1 and the pathways governing endothelial dysfunction, as therapeutic targets to prevent flavivirus dissemination.
Collapse
|
9
|
Liu X, Li Z, Li X, Wu W, Jiang H, Zheng Y, Zhou J, Ye X, Lu J, Wang W, Yu L, Li Y, Qu L, Wang J, Li F, Chen L, Wu L, Feng L. A single-dose circular RNA vaccine prevents Zika virus infection without enhancing dengue severity in mice. Nat Commun 2024; 15:8932. [PMID: 39414822 PMCID: PMC11484855 DOI: 10.1038/s41467-024-53242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Antibody-dependent enhancement (ADE) is a potential concern for the development of Zika virus (ZIKV) vaccines. Cross-reactive but poorly neutralizing antibodies, usually targeting viral pre-membrane or envelope (E) proteins, can potentially enhance dengue virus (DENV) infection. Although E domain III (EDIII) contains ZIKV-specific epitopes, its immunogenicity is poor. Here, we show that dimeric EDIII, fused to human IgG1 Fc fragment (EDIII-Fc) and encoded by circular RNA (circRNA), induces better germinal center reactions and higher neutralizing antibodies compared to circRNAs encoding monomeric or trimeric EDIII. Two doses of circRNAs encoding EDIII-Fc and ZIKV nonstructural protein NS1, another protective antigen, prevent lethal ZIKV infection in neonates born to immunized C57BL/6 mice and in interferon-α/β receptor knockout adult C57BL/6 mice. Importantly, a single-dose optimized circRNA vaccine with improved antigen expression confers potent and durable protection without inducing obvious DENV ADE in mice, laying the groundwork for developing flavivirus vaccines based on circRNAs encoding EDIII-Fc and NS1.
Collapse
Affiliation(s)
- Xinglong Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoxia Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixuan Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Jiang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yufen Zheng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zhou
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianmiao Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Junnan Lu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Wang
- Bioland Laboratory, Guangzhou, 510005, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yiping Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 501180, China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Linping Wu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Alvin Chew BL, Pan Q, Hu H, Luo D. Structural biology of flavivirus NS1 protein and its antibody complexes. Antiviral Res 2024; 227:105915. [PMID: 38777094 DOI: 10.1016/j.antiviral.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore, 636921; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921.
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, EMB 03-07, 59 Nanyang Drive, Singapore, 636921; NTU Institute of Structural Biology, Nanyang Technological University, EMB 06-01, 59 Nanyang Drive, Singapore, 636921; National Centre for Infectious Diseases, Singapore, 308442, Singapore.
| |
Collapse
|
11
|
Ceconi M, Ariën KK, Delputte P. Diagnosing arthropod-borne flaviviruses: non-structural protein 1 (NS1) as a biomarker. Trends Microbiol 2024; 32:678-696. [PMID: 38135616 DOI: 10.1016/j.tim.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In recent decades, the presence of flaviviruses of concern for human health in Europe has drastically increased,exacerbated by the effects of climate change - which has allowed the vectors of these viruses to expand into new territories. Co-circulation of West Nile virus (WNV), Usutu virus (USUV), and tick-borne encephalitis virus (TBEV) represents a threat to the European continent, and this is further complicated by the difficulty of obtaining an early and discriminating diagnosis of infection. Moreover, the possibility of introducing non-endemic pathogens, such as Japanese encephalitis virus (JEV), further complicates accurate diagnosis. Current flavivirus diagnosis is based mainly on RT-PCR and detection of virus-specific antibodies. Yet, both techniques suffer from limitations, and the development of new assays that can provide an early, rapid, low-cost, and discriminating diagnosis of viral infection is warranted. In the pursuit of ideal diagnostic assays, flavivirus non-structural protein 1 (NS1) serves as an excellent target for developing diagnostic assays based on both the antigen itself and the antibodies produced against it. This review describes the potential of such NS1-based diagnostic methods, focusing on the application of flaviviruses that co-circulate in Europe.
Collapse
Affiliation(s)
- Martina Ceconi
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium.
| |
Collapse
|
12
|
Muthukumaran R, Sankararamakrishnan R. Differences in the Membrane-Binding Properties of Flaviviral Nonstructural 1 (NS1) Protein: Comparative Simulations of Zika and Dengue Virus NS1 Proteins in Explicit Bilayers. ACS BIO & MED CHEM AU 2024; 4:137-153. [PMID: 38911907 PMCID: PMC11191575 DOI: 10.1021/acsbiomedchemau.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024]
Abstract
NS1 in flaviviruses is the only nonstructural protein that is secretory and interacts with different cellular components of the host cell membrane. NS1 is localized in the ER as a dimer to facilitate viral replication. Crystal structures of NS1 homologues from zika (ZIKV) and dengue (DENV) viruses have revealed the organization of different domains in NS1 dimers. The β-roll and the connector and intertwined loop regions of wing domains of NS1 have been shown to interact with the membranes. In this study, we have performed multiple molecular dynamics (MD) simulations of ZIKV and DENV NS1 systems in apo and in POPE bilayers with different cholesterol concentrations (0, 20 and 40%). The NS1 protein was placed just above the membrane surface, and for each NS1-membrane system two to three independent simulations with 600 ns production run were performed. At the end of the production runs, ZIKV NS1 inserts deeper inside the membrane compared to the DENV counterpart. Unlike ZIKV NS1, the orientation of DENV NS1 is asymmetric in which one of the chains in the dimer interacts with the membrane while the other is more exposed to the solvent. The β-roll region in ZIKV NS1 penetrates beyond the headgroup region and interacts with the lipid acyl chains while the C-terminal region barely interacts with the headgroup. Specific residues in the intertwined region deeply penetrate inside the membrane. The role of charged and aromatic residues of ZIKV NS1 in strongly interacting with the membrane components is revealed. The presence of cholesterol affects the extent of insertion in the membrane and interaction of individual residues. Overall, membrane-binding properties of ZIKV NS1 significantly differ from its counterpart in DENV. The differences found in the binding and insertion of NS1 can be used to design drugs and novel antibodies that can be flavivirus specific.
Collapse
Affiliation(s)
- Rajagopalan Muthukumaran
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Ramasubbu Sankararamakrishnan
- Department
of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Mehta
Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
13
|
Chew BLA, Ngoh AQ, Phoo WW, Weng MJG, Sheng HJ, Chan KWK, Tan EYJ, Gelbart T, Xu C, Tan GS, Vasudevan SG, Luo D. Structural basis of Zika virus NS1 multimerization and human antibody recognition. NPJ VIRUSES 2024; 2:14. [PMID: 40295651 PMCID: PMC11721437 DOI: 10.1038/s44298-024-00024-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 04/30/2025]
Abstract
Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family along with the four serotypes of dengue virus (DENV1-4). The recent global outbreaks of contemporary ZIKV strains demonstrated that infection can lead to neurological sequelae in adults and severe abnormalities in newborns that were previously unreported with ancestral strains. As such, there remains an unmet need for efficacious vaccines and antiviral agents against ZIKV. The non-structural protein 1 (NS1) is secreted from the infected cell and is thought to be associated with disease severity besides its proven usefulness for differential diagnoses. However, its physiologically relevant structure and pathogenesis mechanisms remain unclear. Here, we present high-resolution cryoEM structures of ZIKV recombinant secreted NS1 (rsNS1) and its complexes with three human monoclonal antibodies (AA12, EB9, GB5), as well as evidence for ZIKV infection-derived secreted NS1 (isNS1) binding to High Density Lipoprotein (HDL). We show that ZIKV rsNS1 forms tetramers and filamentous repeats of tetramers. We also observed that antibody binding did not disrupt the ZIKV NS1 tetramers as they bound to the wing and connector subdomain of the β-ladder. Our study reveals new insights into NS1 multimerization, highlights the need to distinguish the polymorphic nature of rsNS1 and isNS1, and expands the mechanistic basis of the protection conferred by antibodies targeting NS1.
Collapse
Affiliation(s)
- Bing Liang Alvin Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - An Qi Ngoh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wint Wint Phoo
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Mei Jie Grace Weng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Ho Jun Sheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eddie Yong Jun Tan
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Terri Gelbart
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, CA, USA
| | - Chenrui Xu
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gene S Tan
- Infectious Diseases, The J. Craig Venter Institute, La Jolla, CA, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
- Institute for Glycomics (G26), Griffith University Gold Coast Campus, Southport, QLD, Australia.
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
- National Centre for Infectious Diseases, Singapore, Singapore.
| |
Collapse
|
14
|
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
15
|
Wijesundara DK, Yeow A, McMillan CL, Choo JJ, Todorovic A, Mekonnen ZA, Masavuli MG, Young PR, Gowans EJ, Grubor-Bauk B, Muller DA. Superior efficacy of a skin-applied microprojection device for delivering a novel Zika DNA vaccine. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102056. [PMID: 38028199 PMCID: PMC10630652 DOI: 10.1016/j.omtn.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Zika virus (ZIKV) infections are spreading silently with limited global surveillance in at least 89 countries and territories. There is a pressing need to develop an effective vaccine suitable for equitable distribution globally. Consequently, we previously developed a proprietary DNA vaccine encoding secreted non-structural protein 1 of ZIKV (pVAX-tpaNS1) to elicit rapid protection in a T cell-dependent manner in mice. In the current study, we evaluated the stability, efficacy, and immunogenicity of delivering this DNA vaccine into the skin using a clinically effective and proprietary high-density microarray patch (HD-MAP). Dry-coating of pVAX-tpaNS1 on the HD-MAP device resulted in no loss of vaccine stability at 40°C storage over the course of 28 days. Vaccination of mice (BALB/c) with the HD-MAP-coated pVAX-tpaNS1 elicited a robust anti-NS1 IgG response in both the cervicovaginal mucosa and systemically and afforded protection against live ZIKV challenge. Furthermore, the vaccination elicited a significantly higher magnitude and broader NS1-specific T helper and cytotoxic T cell response in vivo compared with traditional needle and syringe intradermal vaccination. Overall, the study highlights distinctive immunological advantages coupled with an excellent thermostability profile of using the HD-MAP device to deliver a novel ZIKV DNA vaccine.
Collapse
Affiliation(s)
- Danushka K. Wijesundara
- Vaxxas Biomedical Facility, Hamilton, QLD 4007, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Arthur Yeow
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Christopher L.D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jovin J.Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aleksandra Todorovic
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zelalem A. Mekonnen
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Makutiro G. Masavuli
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Eric J. Gowans
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - Branka Grubor-Bauk
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - David A. Muller
- Vaxxas Biomedical Facility, Hamilton, QLD 4007, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Mysorekar I, Michita R, Tran L, Bark S, Kumar D, Toner S, Jose J, Narayanan A. Zika Virus NS1 Drives Tunneling Nanotube Formation for Mitochondrial Transfer, Enhanced Survival, Interferon Evasion, and Stealth Transmission in Trophoblasts. RESEARCH SQUARE 2023:rs.3.rs-3674059. [PMID: 38106210 PMCID: PMC10723532 DOI: 10.21203/rs.3.rs-3674059/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Zika virus (ZIKV) infection continues to pose a significant public health concern due to limited available preventive measures and treatments. ZIKV is unique among flaviviruses in its vertical transmission capacity (i.e., transmission from mother to fetus) yet the underlying mechanisms remain incompletely understood. Here, we show that both African and Asian lineages of ZIKV induce tunneling nanotubes (TNTs) in placental trophoblasts and multiple other mammalian cell types. Amongst investigated flaviviruses, only ZIKV strains trigger TNTs. We show that ZIKV-induced TNTs facilitate transfer of viral particles, proteins, and RNA to neighboring uninfected cells. ZIKV TNT formation is driven exclusively via its non-structural protein 1 (NS1); specifically, the N-terminal region (50 aa) of membrane-bound NS1 is necessary and sufficient for triggering TNT formation in host cells. Using affinity purification-mass spectrometry of cells infected with wild-type NS1 or non-TNT forming NS1 (pNS1ΔTNT) proteins, we found mitochondrial proteins are dominant NS1-interacting partners, consistent with the elevated mitochondrial mass we observed in infected trophoblasts. We demonstrate that mitochondria are siphoned via TNTs from healthy to ZIKV-infected cells, both homotypically and heterotypically, and inhibition of mitochondrial respiration reduced viral replication in trophoblast cells. Finally, ZIKV strains lacking TNT capabilities due to mutant NS1 elicited a robust antiviral IFN-λ 1/2/3 response, indicating ZIKV's TNT-mediated trafficking also allows ZIKV cell-cell transmission that is camouflaged from host defenses. Together, our findings identify a new stealth mechanism that ZIKV employs for intercellular spread among placental trophoblasts, evasion of antiviral interferon response, and the hijacking of mitochondria to augment its propagation and survival. Discerning the mechanisms of ZIKV intercellular strategies offers a basis for novel therapeutic developments targeting these interactions to limit its dissemination.
Collapse
|
17
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
18
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
19
|
Krabbe NP, Razo E, Abraham HJ, Spanton RV, Shi Y, Bhattacharya S, Bohm EK, Pritchard JC, Weiler AM, Mitzey AM, Eickhoff JC, Sullivan E, Tan JC, Aliota MT, Friedrich TC, O’Connor DH, Golos TG, Mohr EL. Control of maternal Zika virus infection during pregnancy is associated with lower antibody titers in a macaque model. Front Immunol 2023; 14:1267638. [PMID: 37809089 PMCID: PMC10556460 DOI: 10.3389/fimmu.2023.1267638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.
Collapse
Affiliation(s)
- Nicholas P. Krabbe
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Elaina Razo
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hunter J. Abraham
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel V. Spanton
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yujia Shi
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Saswati Bhattacharya
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann M. Mitzey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jens C. Eickhoff
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Healthy, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric Sullivan
- Nimble Therapeutics, Inc, Madison, WI, United States
| | - John C. Tan
- Nimble Therapeutics, Inc, Madison, WI, United States
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, United States
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Fujimura K, Guise AJ, Nakayama T, Schlaffner CN, Meziani A, Kumar M, Cheng L, Vaughan DJ, Kodani A, Van Haren S, Parker K, Levy O, Durbin AF, Bosch I, Gehrke L, Steen H, Mochida GH, Steen JA. Integrative systems biology characterizes immune-mediated neurodevelopmental changes in murine Zika virus microcephaly. iScience 2023; 26:106909. [PMID: 37332674 PMCID: PMC10275723 DOI: 10.1016/j.isci.2023.106909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Characterizing perturbation of molecular pathways in congenital Zika virus (ZIKV) infection is critical for improved therapeutic approaches. Leveraging integrative systems biology, proteomics, and RNA-seq, we analyzed embryonic brain tissues from an immunocompetent, wild-type congenital ZIKV infection mouse model. ZIKV induced a robust immune response accompanied by the downregulation of critical neurodevelopmental gene programs. We identified a negative correlation between ZIKV polyprotein abundance and host cell cycle-inducing proteins. We further captured the downregulation of genes/proteins, many of which are known to be causative for human microcephaly, including Eomesodermin/T-box Brain Protein 2 (EOMES/TBR2) and Neuronal Differentiation 2 (NEUROD2). Disturbances of distinct molecular pathways in neural progenitors and post-mitotic neurons may contribute to complex brain phenotype of congenital ZIKV infection. Overall, this report on protein- and transcript-level dynamics enhances understanding of the ZIKV immunopathological landscape through characterization of fetal immune response in the developing brain.
Collapse
Affiliation(s)
- Kimino Fujimura
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Shin-Yurigaoka General Hospital, Kanagawa, Japan
| | - Amanda J. Guise
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christoph N. Schlaffner
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anais Meziani
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Long Cheng
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan J. Vaughan
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Andrew Kodani
- Center for Pediatric Neurological Disease Research and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Simon Van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Ann F. Durbin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Irene Bosch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lee Gehrke
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganeshwaran H. Mochida
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Judith A. Steen
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Adhikari EH, Lu P, Kang YJ, McDonald AR, Pruszynski JE, Bates TA, McBride SK, Trank-Greene M, Tafesse FG, Lu LL. Diverging maternal and infant cord antibody functions from SARS-CoV-2 infection and vaccination in pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538955. [PMID: 37205338 PMCID: PMC10187183 DOI: 10.1101/2023.05.01.538955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immunization in pregnancy is a critical tool that can be leveraged to protect the infant with an immature immune system but how vaccine-induced antibodies transfer to the placenta and protect the maternal-fetal dyad remains unclear. Here, we compare matched maternal-infant cord blood from individuals who in pregnancy received mRNA COVID-19 vaccine, were infected by SARS-CoV-2, or had the combination of these two immune exposures. We find that some but not all antibody neutralizing activities and Fc effector functions are enriched with vaccination compared to infection. Preferential transport to the fetus of Fc functions and not neutralization is observed. Immunization compared to infection enriches IgG1-mediated antibody functions with changes in antibody post-translational sialylation and fucosylation that impact fetal more than maternal antibody functional potency. Thus, vaccine enhanced antibody functional magnitude, potency and breadth in the fetus are driven more by antibody glycosylation and Fc effector functions compared to maternal responses, highlighting prenatal opportunities to safeguard newborns as SARS-CoV-2 becomes endemic.
Collapse
Affiliation(s)
- Emily H. Adhikari
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
- Parkland Health, Dallas TX
| | - Pei Lu
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ye jin Kang
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Ann R. McDonald
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
| | - Jessica E. Pruszynski
- Division of Maternal-Fetal Medicine and Department of Obstetrics and Gynecology, UTSW Medical Center, Dallas, TX
| | - Timothy A. Bates
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Savannah K. McBride
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Mila Trank-Greene
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Fikadu G. Tafesse
- Department of Microbiology and Immunology, Oregon Health and Science University, Portland, OR
| | - Lenette L. Lu
- Parkland Health, Dallas TX
- Division of Infectious Diseases and Geographic Medicine and Department of Internal Medicine, UTSW Medical Center, Dallas, TX
- Department of Immunology, UTSW Medical Center, Dallas, TX
| |
Collapse
|
22
|
Saivish MV, Menezes GDL, da Costa VG, da Silva GCD, Marques RE, Nogueira ML, Silva RAD. Predicting Antigenic Peptides from Rocio Virus NS1 Protein for Immunodiagnostic Testing Using Immunoinformatics and Molecular Dynamics Simulation. Int J Mol Sci 2022; 23:7681. [PMID: 35887029 PMCID: PMC9322101 DOI: 10.3390/ijms23147681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
The mosquito-borne disease caused by the Rocio virus is a neglected threat, and new immune inputs for serological testing are urgently required for diagnosis in low-resource settings and epidemiological surveillance. We used in silico approaches to identify a specific antigenic peptide (p_ROCV2) in the NS1 protein of the Rocio virus that was theoretically predicted to be stable and exposed on its surface, where it demonstrated key properties allowing it to interact with antibodies. These findings related to the molecular dynamics of this peptide provide important insights for advancing diagnostic platforms and investigating therapeutic alternatives.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (G.C.D.d.S.)
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil;
| | - Gabriela de Lima Menezes
- Núcleo Colaborativo de Biosistemas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil;
- Bioinformatics Multidisciplinary Environment, Programa de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal 59078-400, RN, Brazil
| | - Vivaldo Gomes da Costa
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Gislaine Celestino Dutra da Silva
- Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (G.C.D.d.S.)
| | - Rafael Elias Marques
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil;
| | - Maurício Lacerda Nogueira
- Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (G.C.D.d.S.)
| | | |
Collapse
|
23
|
Zhang L, Li Z, Tang Z, Han L, Wei X, Xie X, Ren S, Meng K, Liu Y, Xu M, Qi L, Chen H, Wu J, Zhang N. Efficient Identification of Tembusu Virus CTL Epitopes in Inbred HBW/B4 Ducks Using a Novel MHC Class I-Restricted Epitope Screening Scheme. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:145-156. [PMID: 35623661 DOI: 10.4049/jimmunol.2100382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The identification of MHC class I-restricted CTL epitopes in certain species, particularly nonmammals, remains a challenge. In this study, we developed a four-step identification scheme and confirmed its efficiency by identifying the Anpl-UAA*76-restricted CTL epitopes of Tembusu virus (TMUV) in inbred haplotype ducks HBW/B4. First, the peptide binding motif of Anpl-UAA*76 was determined by random peptide library in de novo liquid chromatography-tandem mass spectrometry, a novel nonbiased, data-independent acquisition method that we previously established. Second, a total of 38 TMUV peptides matching the motif were screened from the viral proteome, among which 11 peptides were conserved across the different TMUV strains. Third, the conserved TMUV peptides were refolded in vitro with Anpl-UAA*76 and Anpl-β2-microglobulin to verify the results from the previous two steps. To clarify the structural basis of the obtained motif, we resolved the crystal structure of Anpl-UAA*76 with the TMUV NS3 peptide LRKRQLTVL and found that Asp34 is critical for the preferential binding of the B pocket to bind the second residue to arginine as an anchor residue. Fourth, the immunogenicity of the conserved TMUV peptides was tested in vivo using specific pathogen-free HBW/B4 ducks immunized with the attenuated TMUV vaccine. All 11 conserved TMUV epitopes could bind stably to Anpl-UAA*76 in vitro and stimulate the secretion of IFN-γ and lymphocyte proliferation, and three conserved and one nonconserved peptides were selected to evaluate the CTL responses in vivo by flow cytometry and their tetramers. We believe that this new scheme could improve the identification of MHC class I-restricted CTL epitopes, and our data provide a foundation for further study on duck anti-TMUV CTL immunity.
Collapse
Affiliation(s)
- Lin Zhang
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziche Tang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingxia Han
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuaimeng Ren
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Kai Meng
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yueyue Liu
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Minli Xu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lihong Qi
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Chen
- Division of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China;
- Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China;
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Kraivong R, Traewachiwiphak S, Nilchan N, Tangthawornchaikul N, Pornmun N, Poraha R, Sriruksa K, Limpitikul W, Avirutnan P, Malasit P, Puttikhunt C. Cross-reactive antibodies targeting surface-exposed non-structural protein 1 (NS1) of dengue virus-infected cells recognize epitopes on the spaghetti loop of the β-ladder domain. PLoS One 2022; 17:e0266136. [PMID: 35617160 PMCID: PMC9135231 DOI: 10.1371/journal.pone.0266136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Non-structural protein 1 (NS1) is a glycoprotein component of dengue virus (DENV) that is essential for viral replication, infection and immune evasion. Immunization with NS1 has been shown to elicit antibody-mediated immune responses which protect mice against DENV infections. Here, we obtained peripheral blood mononuclear cells from human subjects with secondary dengue infections, which were used to construct a dengue immune phage library displaying single-chain variable fragments. Phage selective for DENV NS1 were obtained by biopanning. Twenty-one monoclonal antibodies (mAbs) against DENV NS1 were generated from the selected phage and characterized in detail. We found most anti-NS1 mAbs used IGHV1 heavy chain antibody genes. The mAbs were classified into strongly and weakly-reactive groups based on their binding to NS1 expressed in dengue virus 2 (DENV2)-infected cells. Antibody binding experiments with recombinant NS1 proteins revealed that the mAbs recognize conformational epitopes on the β-ladder domain (amino acid residues 178–273) of DENV NS1. Epitope mapping studies on alanine-substituted NS1 proteins identified distinct but overlapping epitopes. Protruding amino acids distributed around the spaghetti loop are required for the binding of the strongly-reactive mAbs, whereas the recognition residues of the weakly-reactive mAbs are likely to be located in inaccessible sites facing toward the cell membrane. This information could guide the design of an NS1 epitope-based vaccine that targets cross-reactive conserved epitopes on cell surface-associated DENV NS1.
Collapse
Affiliation(s)
- Romchat Kraivong
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
| | - Somchoke Traewachiwiphak
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Napon Nilchan
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
| | - Nuntaya Pornmun
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Ranyikar Poraha
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Kanokwan Sriruksa
- Pediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand
| | - Wannee Limpitikul
- Pediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand
| | - Panisadee Avirutnan
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
25
|
Measles-based Zika vaccine induces long-term immunity and requires NS1 antibodies to protect the female reproductive tract. NPJ Vaccines 2022; 7:43. [PMID: 35440656 PMCID: PMC9018676 DOI: 10.1038/s41541-022-00464-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Zika virus (ZIKV) can cause devastating effects in the unborn fetus of pregnant women. To develop a candidate vaccine that can protect human fetuses, we generated a panel of live measles vaccine (MV) vectors expressing ZIKV-E and -NS1. Our MV-based ZIKV-E vaccine, MV-E2, protected mice from the non-lethal Zika Asian strain (PRVABC59) and the lethal African strain (MR766) challenge. Despite 100% survival of the MV-E2 mice, however, complete viral clearance was not achieved in the brain and reproductive tract of the lethally challenged mice. We then tested MV-based vaccines that expressed E and NS1 together or separately in two different vaccines. We observed complete clearance of ZIKV from the female reproductive tract and complete fetal protection in the lethal African challenge model in animals that received the dual antigen vaccines. Additionally, MV-E2 and MV-NS1, when administered together, induced durable plasma cell responses. Our findings suggest that NS1 antibodies are required to enhance the protection of ZIKV-E antibodies in the female reproductive tract.
Collapse
|
26
|
Abstract
Antibodies have been used to prevent or treat viral infections since the nineteenth century, but the full potential to use passive immunization for infectious diseases has yet to be realized. The advent of efficient methods for isolating broad and potently neutralizing human monoclonal antibodies is enabling us to develop antibodies with unprecedented activities. The discovery of IgG Fc region modifications that extend antibody half-life in humans to three months or more suggests that antibodies could become the principal tool with which we manage future viral epidemics. Antibodies for members of most virus families that cause severe disease in humans have been isolated, and many of them are in clinical development, an area that has accelerated during the effort to prevent or treat COVID-19 (coronavirus disease 2019). Broad and potently neutralizing antibodies are also important research reagents for identification of protective epitopes that can be engineered into active vaccines through structure-based reverse vaccinology. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James E Crowe
- Vanderbilt Vaccine Center, Department of Pediatrics, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
27
|
Wessel AW, Doyle MP, Engdahl TB, Rodriguez J, Crowe JE, Diamond MS. Human Monoclonal Antibodies against NS1 Protein Protect against Lethal West Nile Virus Infection. mBio 2021; 12:e0244021. [PMID: 34634945 PMCID: PMC8510529 DOI: 10.1128/mbio.02440-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Envelope protein-targeted vaccines for flaviviruses are limited by concerns of antibody-dependent enhancement (ADE) of infections. Nonstructural protein 1 (NS1) provides an alternative vaccine target that avoids this risk since this protein is absent from the virion. Beyond its intracellular role in virus replication, extracellular forms of NS1 function in immune modulation and are recognized by host-derived antibodies. The rational design of NS1-based vaccines requires an extensive understanding of the antigenic sites on NS1, especially those targeted by protective antibodies. Here, we isolated human monoclonal antibodies (MAbs) from individuals previously naturally infected with WNV, mapped their epitopes using structure-guided mutagenesis, and evaluated their efficacy in vivo against lethal WNV challenge. The most protective epitopes clustered at three antigenic sites that are exposed on cell surface forms of NS1: (i) the wing flexible loop, (ii) the outer, electrostatic surface of the wing, and (iii) the spaghetti loop face of the β-ladder. One additional MAb mapped to the distal tip of the β-ladder and conferred a lower level of protection against WNV despite not binding to NS1 on the surface of infected cells. Our study defines the epitopes and modes of binding of protective anti-NS1 MAb antibodies following WNV infection, which may inform the development of NS1-based countermeasures against flaviviruses. IMPORTANCE Therapeutic antibodies against flaviviruses often promote neutralization by targeting the envelope protein of the virion. However, this approach is hindered by a possible concern for antibody-dependent enhancement of infection and paradoxical worsening of disease. As an alternative strategy, antibodies targeting flavivirus nonstructural protein 1 (NS1), which is absent from the virion, can protect against disease and do not cause enhanced infection. Here, we evaluate the structure-function relationships and protective activity of West Nile virus (WNV) NS1-specific monoclonal antibodies (MAbs) isolated from the memory B cells of a naturally infected human donor. We identify several anti-NS1 MAbs that protect mice against lethal WNV challenge and map their epitopes using charge reversal mutagenesis. Antibodies targeting specific regions in the NS1 structure could serve as the basis for countermeasures that control WNV infection in humans.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael P. Doyle
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taylor B. Engdahl
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Due to the impact of the COVID-19 pandemic this past year, we have witnessed a significant acceleration in the science, technology, and policy of global health security. This review highlights important progress made toward the mitigation of Zika, Ebola, and COVID-19 outbreaks. These epidemics and their shared features suggest a unified policy and technology agenda that could broadly improve global health security. RECENT FINDINGS Molecular epidemiology is not yet in widespread use, but shows promise toward informing on-the-ground decision-making during outbreaks. Point-of-care (POC) diagnostics have been achieved for each of these threats; however, deployment of Zika and Ebola diagnostics lags behind those for COVID-19. POC metagenomics offers the possibility of identifying novel viruses. Vaccines have been successfully approved for Ebola and COVID-19, due in large part to public-private partnerships and advance purchase commitments. Therapeutics trials conducted during ongoing epidemics have identified effective antibody therapeutics for Ebola, as well as steroids (both inhaled and oral) and a broad-spectrum antiviral for COVID-19. SUMMARY Achieving global health security remains a challenge, though headway has been made over the past years. Promising policy and technology strategies that would increase resilience across emerging viral pathogens should be pursued.
Collapse
Affiliation(s)
| | - Michele Barry
- School of Medicine
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| |
Collapse
|
29
|
Wessel AW, Dowd KA, Biering SB, Zhang P, Edeling MA, Nelson CA, Funk KE, DeMaso CR, Klein RS, Smith JL, Cao TM, Kuhn RJ, Fremont DH, Harris E, Pierson TC, Diamond MS. Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain. J Virol 2021; 95:e0084421. [PMID: 34346770 PMCID: PMC8475509 DOI: 10.1128/jvi.00844-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DENV) and West Nile virus (WNV) are arthropod-transmitted flaviviruses that cause systemic vascular leakage and encephalitis syndromes, respectively, in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV NS1 and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV NS1 and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity in the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. Because exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcomes. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and is secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here, we assessed WNV NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in the circulation facilitate WNV dissemination to the brain and affect disease outcomes. Our findings facilitate understanding of the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ping Zhang
- Department of Immunology, Key Laboratory of Tropical Diseases Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Melissa A. Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher A. Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristen E. Funk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina R. DeMaso
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Robyn S. Klein
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Thu Minh Cao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Esposito S, Abu-Raya B, Bonanni P, Cahn-Sellem F, Flanagan KL, Martinon Torres F, Mejias A, Nadel S, Safadi MAP, Simon A. Coadministration of Anti-Viral Monoclonal Antibodies With Routine Pediatric Vaccines and Implications for Nirsevimab Use: A White Paper. Front Immunol 2021; 12:708939. [PMID: 34456918 PMCID: PMC8386277 DOI: 10.3389/fimmu.2021.708939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/15/2021] [Indexed: 02/01/2023] Open
Abstract
Routine childhood vaccinations are key for the protection of children from a variety of serious and potentially fatal diseases. Current pediatric vaccine schedules mainly cover active vaccines. Active vaccination in infants is a highly effective approach against several infectious diseases; however, thus far, for some important viral pathogens, including respiratory syncytial virus (RSV), vaccine development and license by healthcare authorities have not been accomplished. Nirsevimab is a human-derived, highly potent monoclonal antibody (mAb) with an extended half-life for RSV prophylaxis in all infants. In this manuscript, we consider the potential implications for the introduction of an anti-viral mAb, such as nirsevimab, into the routine pediatric vaccine schedule, as well as considerations for coadministration. Specifically, we present evidence on the general mechanism of action of anti-viral mAbs and experience with palivizumab, the only approved mAb for the prevention of RSV infection in preterm infants, infants with chronic lung disease of prematurity and certain infants with hemodynamically significant heart disease. Palivizumab has been used for over two decades in infants who also receive routine vaccinations without any alerts concerning the safety and efficacy of coadministration. Immunization guidelines (Advisory Committee on Immunization Practices, Joint Committee on Vaccination and Immunization, National Advisory Committee on Immunization, Centers for Disease Control and Prevention, American Academy of Pediatrics, The Association of the Scientific Medical Societies in Germany) support coadministration of palivizumab with routine pediatric vaccines, noting that immunobiologics, such as palivizumab, do not interfere with the immune response to licensed live or inactivated active vaccines. Based on the mechanism of action of the new generation of anti-viral mAbs, such as nirsevimab, which is highly specific targeting viral antigenic sites, it is unlikely that it could interfere with the immune response to other vaccines. Taken together, we anticipate that nirsevimab could be concomitantly administered to infants with routine pediatric vaccines during the same clinic visit.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Paolo Bonanni
- Specialization Medical School of Hygiene, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Katie L. Flanagan
- Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Federico Martinon Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Genetics, Vaccines and Pediatrics Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidad de Santiago, Santiago de Compostela, Spain
| | - Asuncion Mejias
- Division of Infectious Diseases, Department of Pediatrics, Center for Vaccines and Immunity Nationwide Children’s Hospital-The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pharmacology and Pediatrics, Malaga Medical School, Malaga University, Malaga, Spain
| | | | - Marco A. P. Safadi
- Department of Pediatrics, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Arne Simon
- Klinik für Pädiatrische Onkologie und Hämatologie Universitätsklinikum des Saarlandes, Homburg, Germany
| |
Collapse
|
31
|
Hassan AO, Shrihari S, Gorman MJ, Ying B, Yuan D, Raju S, Chen RE, Dmitriev IP, Kashentseva E, Adams LJ, Mann C, Davis-Gardner ME, Suthar MS, Shi PY, Saphire EO, Fremont DH, Curiel DT, Alter G, Diamond MS. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep 2021; 36:109452. [PMID: 34289385 PMCID: PMC8270739 DOI: 10.1016/j.celrep.2021.109452] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy. We recently reported the protective activity of an intranasally administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351, B.1.1.28, and B.1.617.1 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge with variant viruses. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Gorman
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dansu Yuan
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin Mann
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meredith E Davis-Gardner
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Departments of Microbiology and Immunology, University of Texas Medical Branch, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Carpio KL, Barrett ADT. Flavivirus NS1 and Its Potential in Vaccine Development. Vaccines (Basel) 2021; 9:622. [PMID: 34207516 PMCID: PMC8229460 DOI: 10.3390/vaccines9060622] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
The Flavivirus genus contains many important human pathogens, including dengue, Japanese encephalitis (JE), tick-borne encephalitis (TBE), West Nile (WN), yellow fever (YF) and Zika (ZIK) viruses. While there are effective vaccines for a few flavivirus diseases (JE, TBE and YF), the majority do not have vaccines, including WN and ZIK. The flavivirus nonstructural 1 (NS1) protein has an unusual structure-function because it is glycosylated and forms different structures to facilitate different roles intracellularly and extracellularly, including roles in the replication complex, assisting in virus assembly, and complement antagonism. It also plays a role in protective immunity through antibody-mediated cellular cytotoxicity, and anti-NS1 antibodies elicit passive protection in animal models against a virus challenge. Historically, NS1 has been used as a diagnostic marker for the flavivirus infection due to its complement fixing properties and specificity. Its role in disease pathogenesis, and the strong humoral immune response resulting from infection, makes NS1 an excellent target for inclusion in candidate flavivirus vaccines.
Collapse
Affiliation(s)
- Kassandra L. Carpio
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
33
|
Sanchez Vargas LA, Adam A, Masterson M, Smith M, Lyski ZL, Dowd KA, Pierson TC, Messer WB, Currier JR, Mathew A. Non-structural protein 1-specific antibodies directed against Zika virus in humans mediate antibody-dependent cellular cytotoxicity. Immunology 2021; 164:386-397. [PMID: 34056709 PMCID: PMC8442231 DOI: 10.1111/imm.13380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022] Open
Abstract
There is growing interest in understanding antibody (Ab) function beyond neutralization. The non-structural protein 1 (NS1) of Zika virus (ZIKV) is an attractive candidate for an effective vaccine as Abs against NS1, unlike the envelope or premembrane, do not carry the risk of mediating antibody-dependent enhancement. Our aim was to evaluate whether ZIKV NS1 Abs elicited following natural infection in humans can mediate antibody-dependent cellular cytotoxicity (ADCC). We evaluated the isotype specificity of ZIKV-specific Abs in immune sera and supernatants from stimulated immune PBMC and found that Abs against ZIKV NS1 and virus-like particles were predominantly of the IgG1 isotype. Using a recently developed FluoroSpot assay, we found robust frequencies of NS1-specific Ab-secreting cells in PBMC of individuals who were naturally infected with ZIKV. We developed assays to measure both natural killer cell activation by flow cytometry and target cell lysis of ZIKV NS1-expressing cells using an image cytometry assay in the presence of ZIKV NS1 Abs. Our data indicate efficient opsonization of ZIKV NS1-expressing CEM-NKR cell lines using ZIKV-immune but not ZIKV-naïve sera, a prerequisite of ADCC. Furthermore, sera from immune donors were able to induce both NK cell degranulation and lysis of ZIKV NS1 CEM-NKR cells in vitro. Our data suggest that ADCC is a possible mechanism for ZIKV NS1 Abs to eliminate virally infected target cells.
Collapse
Affiliation(s)
- Luis A Sanchez Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Awadalkareem Adam
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Mary Masterson
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Madison Smith
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Zoe L Lyski
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | | | | | - William B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.,Division of Infectious Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR, USA.,OHSU-PSU School of Public Health, Program in Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anuja Mathew
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| |
Collapse
|
34
|
Keeler SP, Fox JM. Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Based Protection against Emerging Virus Infections. Viruses 2021; 13:v13061037. [PMID: 34072720 PMCID: PMC8226613 DOI: 10.3390/v13061037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
35
|
Lambour J, Naranjo-Gomez M, Boyer-Clavel M, Pelegrin M. Differential and sequential immunomodulatory role of neutrophils and Ly6C hi inflammatory monocytes during antiviral antibody therapy. Emerg Microbes Infect 2021; 10:964-981. [PMID: 33858301 PMCID: PMC8158214 DOI: 10.1080/22221751.2021.1913068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antiviral monoclonal antibodies (mAbs) can generate protective immunity through Fc-FcγRs interactions. We previously showed a role for immune complexes (ICs) in the enhancement of antiviral T-cell responses through FcγR-mediated activation of dendritic cells (DCs). Here we addressed how mAb therapy in retrovirus-infected mice affects the activation of neutrophils and inflammatory monocytes, two FcγR-expressing innate effector cells rapidly recruited to sites of infection. We found that both cell-types activated in vitro by viral ICs secreted chemokines able to recruit monocytes and neutrophils themselves. Moreover, inflammatory cytokines potentiated chemokines and cytokines release by IC-activated cells and induced FcγRIV upregulation. Similarly, infection and mAb-treatment upregulated FcγRIV on neutrophils and inflammatory monocytes and enhanced their cytokines/chemokines secretion. Notably, upon antibody therapy neutrophils and inflammatory monocytes displayed distinct functional activation states and sequentially modulated the antiviral immune response by secreting Th1-type polarizing cytokines and chemokines, which occurred in a FcγRIV-dependent manner. Consistently, FcγRIV- blocking in mAb-treated, infected mice led to reduced immune protection. Our work provides new findings on the immunomodulatory role of neutrophils and monocytes in the enhancement of immune responses upon antiviral mAb therapy.
Collapse
Affiliation(s)
| | - Mar Naranjo-Gomez
- IGMM, Univ Montpellier, CNRS, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Univ Montpellier, CNRS, Montpellier, France
| | - Mireia Pelegrin
- IGMM, Univ Montpellier, CNRS, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
36
|
How NS1 Antibodies Prevent Severe Flavivirus Disease. Trends Biochem Sci 2021; 46:519-521. [PMID: 33895084 DOI: 10.1016/j.tibs.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
The flavivirus genus consists of several major human pathogens including dengue (DENV) and Zika viruses. The flavivirus nonstructural protein 1 (NS1) plays an important role in disease progression, for example, in the development of severe dengue disease. Anti-NS1 antibodies have been shown to confer protection, and two new studies by Biering et al. and Modhiran et al. on the structure of NS1:antibody complexes reveal their mechanism of neutralization.
Collapse
|
37
|
Yu L, Liu X, Ye X, Su W, Zhang X, Deng W, Luo J, Xiang M, Guo W, Zhang S, Xu W, Yan Q, Wang Q, Cui Y, Wu C, Guo W, Niu X, Zhang F, Lei C, Qu L, Chen L, Feng L. Monoclonal Antibodies against Zika Virus NS1 Protein Confer Protection via Fc γ Receptor-Dependent and -Independent Pathways. mBio 2021; 12:e03179-20. [PMID: 33563822 PMCID: PMC7885117 DOI: 10.1128/mbio.03179-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy causes congenital defects such as fetal microcephaly. Monoclonal antibodies (MAbs) against the nonstructural protein 1 (NS1) have the potential to suppress ZIKV pathogenicity without enhancement of disease, but the pathways through which they confer protection remain obscure. Here, we report two types of NS1-targeted human MAbs that inhibit ZIKV infection through distinct mechanisms. MAbs 3G2 and 4B8 show a better efficacy than MAb 4F10 in suppressing ZIKV infection in C57BL/6 neonatal mice. Unlike MAb 4F10 that mainly triggers antibody-dependent cell-mediated cytotoxicity (ADCC), MAbs 3G2 and 4B8 not only trigger ADCC but inhibit ZIKV infection without Fcγ receptor-bearing effector cells, possibly at postentry stages. Destroying the Fc-mediated effector function of MAbs 3G2 and 4B8 reduces but does not abolish their protective effects, whereas destroying the effector function of MAb 4F10 eliminates the protective effects, suggesting that MAbs 3G2 and 4B8 engage both Fcγ receptor-dependent and -independent pathways. Further analysis reveals that MAbs 3G2 and 4B8 target the N-terminal region of NS1 protein, whereas MAb 4F10 targets the C-terminal region, implying that the protective efficacy of an NS1-targeted MAb may be associated with its epitope recognition. Our results illustrate that NS1-targeted MAbs have multifaceted protective effects and provide insights for the development of NS1-based vaccines and therapeutics.IMPORTANCE Zika virus (ZIKV) is a mosquito-borne flavivirus that has been linked to congenital microcephaly during recent epidemics. No licensed antiviral drug or vaccine is available. Monoclonal antibodies (MAbs) against the nonstructural protein 1 (NS1) inhibit ZIKV pathogenicity but do not enhance the disease as envelope protein-targeted MAbs do. However, the protection mechanisms are not fully understood. Here, we show that in the presence or absence of Fcγ receptor-bearing effector cells, NS1-targeted human MAbs 3G2 and 4B8 inhibit ZIKV infection. Compared to MAb 4F10 that has no inhibitory effects without effector cells, 3G2 and 4B8 confer better protection in ZIKV-infected neonatal mice. Destroying the Fc-mediated effector function reduces but does not abolish the protection of 3G2 and 4B8, suggesting that they engage both Fcγ receptor-dependent and -independent pathways. The protective efficacy of NS1-targeted MAbs may be associated with their epitope recognition. Our findings will help to develop NS1-based vaccines and therapeutics.
Collapse
Affiliation(s)
- Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinglong Liu
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xianmiao Ye
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wan Su
- School of Biomedical Sciences, Huaqiao University, Quanzhou, China
| | - Xiaoyan Zhang
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Deng
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Luo
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengrong Xiang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenjing Guo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shengnan Zhang
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Xu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qihong Yan
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yilan Cui
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caixia Wu
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjing Guo
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefeng Niu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunliang Lei
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linbing Qu
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ling Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Biomedical Sciences, Huaqiao University, Quanzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liqiang Feng
- State Key Laboratories of Respiratory Diseases, Guangdong Provincial Key Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Pereira LR, Alves RPDS, Sales NS, Andreata-Santos R, Venceslau-Carvalho AA, Pereira SS, Castro-Amarante MF, Rodrigues-Jesus MJ, Favaro MTDP, Chura-Chambi RM, Morganti L, Ferreira LCDS. Enhanced Immune Responses and Protective Immunity to Zika Virus Induced by a DNA Vaccine Encoding a Chimeric NS1 Fused With Type 1 Herpes Virus gD Protein. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:604160. [PMID: 35047887 PMCID: PMC8757838 DOI: 10.3389/fmedt.2020.604160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) is a globally-distributed flavivirus transmitted to humans by Aedes mosquitoes, usually causing mild symptoms that may evolve to severe conditions, including neurological alterations, such as neonatal microcephaly and Guillain-Barré syndrome. Due to the absence of specific and effective preventive methods, we designed a new subunit vaccine based on a DNA vector (pgDNS1-ZIKV) encoding the non-structural protein 1 (NS1) genetically fused to the Herpes Simplex Virus (HSV) glycoprotein D (gD) protein. Recombinant plasmids were replicated in Escherichia coli and the expression of the target protein was confirmed in transfected HEK293 cells. C57BL/6 and AB6 (IFNAR1-/-) mice were i.m. immunized by electroporation in order to evaluate pgDNS1-ZIKV immunogenicity. After two doses, high NS1-specific IgG antibody titers were measured in serum samples collected from pgDNS1-ZIKV-immunized mice. The NS1-specific antibodies were capable to bind the native protein expressed in infected mammalian cells. Immunization with pgDNS1-ZIKV increased both humoral and cellular immune responses regarding mice immunized with a ZIKV NS1 encoding vaccine. Immunization with pgDNS1-ZIKV reduced viremia and morbidity scores leading to enhanced survival of immunodeficient AB6 mice challenged with a lethal virus load. These results give support to the use of ZIKV NS1 as a target antigen and further demonstrate the relevant adjuvant effects of HSV-1 gD.
Collapse
Affiliation(s)
- Lennon Ramos Pereira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rúbens Prince dos Santos Alves
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natiely Silva Sales
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Santos Pereira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Fernanda Castro-Amarante
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mônica Josiane Rodrigues-Jesus
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marianna Teixeira de Pinho Favaro
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ligia Morganti
- Biotechnology Center, Institute of Energy and Nuclear Research (IPEN), São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Luís Carlos de Souza Ferreira
| |
Collapse
|