1
|
Zhang X, Yang Y, Han X, Wei D, Niu B, Huang Q, Li Y, Yin H, Zhang X, Liao M, Jia W. Unique phenomenon of H5 highly pathogenic avian influenza virus in China: co-circulation of Clade 2.3.4.4b H5N1 and H5N6 results in diversity of H5 Virus. Emerg Microbes Infect 2025; 14:2502005. [PMID: 40326336 PMCID: PMC12077465 DOI: 10.1080/22221751.2025.2502005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Recently, Clade 2.3.4.4b H5N1 virus has been widely prevalent globally. Although no outbreaks of Avian Influenza have occurred in poultry in China recently, Clade 2.3.4.4b H5 virus can still be isolated from wild birds, live poultry markets and environment, indicating the ongoing co-circulation of H5N1 and H5N6 viruses. In this study, phylogenetic analysis of global Clade 2.3.4.4b viruses and 20 laboratory-isolated H5 strains revealed that Chinese H5N1 and H5N6 viruses since 2021 cluster into two distinct groups, G-I and G-II. Bayesian phylodynamic analysis reveals that G-I H5N6 virus has become an endemic virus in China. In contrast, G-II H5N1 virus, with South China as its main epicentre, has been disseminated in China and its surrounding countries, with its transmission more reliant on the connections of wild birds and waterfowl. Reassortment analysis indicates that since 2023, Clade 2.3.4.4b H5 viruses isolated in China have formed seven genotypes. The genome of H5 viruses has undergone changes compared to those previously prevalent in China. Animal experiments have shown that prevalent H5 viruses exhibit significant lethality in chickens. Additionally, certain H5 viruses have shown the capability of systemic replication in mice. It is noted that H5N6 viruses with HA genes derived from H5N1 viruses demonstrate stronger virulence and pathogenicity in chickens and mice compared to G-I H5N6 viruses. Our study indicates that the co-circulation of H5N1 and H5N6 viruses in China has increased the diversity of H5 viruses, making continuous surveillance of H5 viruses essential.
Collapse
Affiliation(s)
- Xinkui Zhang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yujia Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xinyu Han
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Dandan Wei
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Beibei Niu
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Qiuhong Huang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yan Li
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, People’s Republic of China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, People’s Republic of China
| | - Xianpeng Zhang
- Dongguan Key Laboratory of Zoonosis, Dongguan Center for Animal Disease Prevention and Control, Dongguan, People’s Republic of China
| | - Ming Liao
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Weixin Jia
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Yan C, Shi J, Cui P, Chen Y, Wang C, Wang Y, Miao J, Zhang Y, Kong H, Zeng X, Tian G, Li C, Suzuki Y, Deng G, Chen H. Characterization of emerging H3N3 avian influenza viruses in poultry in China. Emerg Microbes Infect 2025; 14:2509748. [PMID: 40391939 DOI: 10.1080/22221751.2025.2509748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/15/2025] [Accepted: 05/18/2025] [Indexed: 05/22/2025]
Abstract
Avian influenza viruses continue to challenge poultry and human health; therefore, careful surveillance and evaluation of emerging viruses are important for animal disease control and human influenza pandemic preparedness. In this study, we detected a series of H3N3 subtype avian influenza viruses in chickens, pigeons, and ducks during our routine surveillance and diagnosis between September 2022 and May 2023. We performed extensive analyses to fully understand the origins of these viruses and their risk to animals and humans. We found that the viruses were complex reassortants; the viruses from chickens and pigeons carry genes mainly derived from H3N8 viruses and H10N3 viruses, whereas the two duck viruses were reassortants of duck and wild bird viruses. The chicken and pigeon, but not duck, viruses replicated in multiple organs of chickens and were shed for up to 13 days, but none caused disease or death. Six of the viruses tested all bound to both avian- and human-type receptors. Seventeen viruses were tested in mice and most replicated efficiently but were not lethal. Six viruses were tested in guinea pigs, and four of them transmitted efficiently via respiratory droplets. Our study thus identified novel H3N3 avian influenza viruses and revealed their zoonotic potential, thereby emphasizing the importance of careful monitoring and control of H3 viruses in animals.
Collapse
Affiliation(s)
- Cheng Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
- Institute of Western Agriculture, CAAS, Changji, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Congcong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jiahao Miao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
3
|
Ma W, Ren C, Shi L, Meng B, Feng Y, Zhang Y. Isoleucine at position 137 of haemagglutinin acts as a mammalian adaptation marker of H9N2 avian influenza virus. Emerg Microbes Infect 2025; 14:2455597. [PMID: 39817459 PMCID: PMC11789229 DOI: 10.1080/22221751.2025.2455597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/29/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified 10 H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference. A series of reassortants between CKLN/07 and CKLN/17 were generated and their chick embryo lethality was assessed. We found that the isoleucine (I) residue at position 137 (H3 numbering) in the haemagglutinin (HA) was responsible for the chick embryo lethality of the H9N2 virus. Further studies revealed that the threonine (T) to I mutation at HA position 137 enhanced viral replication in vitro and in vivo. Moreover, the HA-T137I substitution in H9N2 avian influenza virus increased the guinea pig transmission efficiency. We also found that the HA-T137I substitution was critical for α2,6-linked sialic acid binding preference and HA activation and stability of H9N2 virus. Our findings demonstrated that HA-137I is a key molecular marker for mammalian adaptation of H9N2 AIV.
Collapse
Affiliation(s)
- Weiwei Ma
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Chenyang Ren
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Lin Shi
- Poultry Diseases Research Laboratory, Liaoning Center for Prevention and Control of Animal Infectious Diseases, Shenyang, People’s Republic of China
| | - Bo Meng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Yali Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Ying Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People’s Republic of China
| |
Collapse
|
4
|
Fang K, Ni X, Wang X, Song W, Deng Z, Zhao Z, Hua W, Zeng Z, Wang W, Si Q, Wu J, Zhang B, Zhang P, Li H, Chen T. Detection and prevalence of avian influenza epidemic in the southwest of Poyang Lake and analysis of the influence of meteorological factors. One Health 2025; 20:101047. [PMID: 40331080 PMCID: PMC12054107 DOI: 10.1016/j.onehlt.2025.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Recently, the epidemiological profile of avian influenza has changed dramatically worldwide. Avian influenza sampling and surveillance of wholesale and retail markets in Nanchang, the largest city in the southwestern region of Poyang Lake, have been conducted since 2017. The transmission pattern of avian influenza in this region was comprehensively evaluated in multiple dimensions including time, subtype changes, seasonality and meteorological factors. Samples were tested for avian influenza A virus nucleic acids using real-time reverse transcription polymerase chain reaction, and positive results were typed. Wavelet coherence analysis was used to reveal the time-frequency variation in meteorological factors associated with avian influenza. The random forest algorithm was used to perform a multifactorial analysis of meteorological factors. Results revealed that the highest avian influenza positivity rate of 42.29 % (95 % CI: 41.18-43.41) occurred in summer. Meteorological factors were found to be significantly associated with the avian influenza positivity rate on a periodic basis. Random forest analysis revealed significant heterogeneity between meteorological factors and changes in the positivity rates of different avian influenza subtypes. Pollution concentration significantly affected the positivity rate of different avian influenza subtypes. The effect of temperature on the positivity rate of the H5 and H9 subtypes followed the opposite pattern to that of the non-H5/H7/H9 positivity rate. In winter, positivity rates of the H5 and H9 subtypes were lower and those of the non-H5/H7/H9 samples were higher; the opposite was true in spring. There is a correlation between pollutant concentration and avian influenza positivity rate. Authorities should consider climatic conditions and the level of contaminants in the prevention and control of avian influenza and adopt different preventive and control measures according to the characteristics of the different subtypes. We recommend continued surveillance of avian influenza in the region and the adoption of a 'one-health' approach for integrated prevention and control.
Collapse
Affiliation(s)
- Kang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiansheng Ni
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Xi Wang
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Wentao Song
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhiqiang Deng
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Hua
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Zhizhong Zeng
- Jiangxi Province Hospital of Integrated Chinese and Western Medicine, People's Republic of China
| | - Wei Wang
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Qianqian Si
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Jiang Wu
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Bo Zhang
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Ping Zhang
- The first hospital of Nanchang, Nanchang City, Jiangxi Province, People's Republic of China
| | - Hui Li
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, People's Republic of China
| | - Tianmu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Bo H, Zhang Y, Dong J, Li X, Zhao X, Wei H, Li Z, Wang D. Characterization of the avian influenza viruses distribution in the environment of live poultry market in China, 2019-2023. Infect Dis Poverty 2025; 14:36. [PMID: 40346680 PMCID: PMC12063257 DOI: 10.1186/s40249-025-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The prevalence and transmission of avian influenza viruses (AIVs) in the live poultry market (LPM) is a serious public health concern. This study was to investigate the prevalence of different subtypes of avian influenza viruses in environment of LPM, and to analyze the differences and seasonality of the nucleic acid positive rate (NAPR) of A type, H5, H7, and H9 subtypes in feces, sewage, drinking water, breeding cages, and chopping boards. METHODS Feces, breeding cages swabs, drinking water, sewage and chopping boards swabs were collected from live poultry market during 2019-2023 from southern and northern China. Real-time PCR was used to screen for virus subtypes. Viruses were isolated, and deep sequencing was performed to obtain whole-genome sequences. Chi-square test was used for statistical analysis of categorical variable, GraphPad Prism software were used to construct graphs. RESULTS A total of 64,599 environmental samples were collected from live poultry markets in the southern China and northern China between 2019 and 2023. The average NAPR of the A type was significantly higher in the samples collected from the southern China than in those collected from the northern China (P < 0.05). The NAPR of H5, H7, and H9 subtypes carried by the five types of environmental samples in the southern China were significantly different (P < 0.05), and a higher NAPR was detected in chopping boards (10.84%), breeding cages (0.28%), and drinking water (40.97%) respectively. The average NAPR of the H9 and H5 subtypes displayed seasonality, reaching a peak in January and February in the southern China, while the peak of the H9 subtype was from October to February in the northern China. A total of 19 subtypes were identified. The H5 subtype significantly decreased, the H7 subtype was almost undetectable, and other subtypes, such as the H3 subtype, increased. CONCLUSIONS The highly pathogenic H5 subtype has significantly decreased in the live poultry market in China since 2022. However, the proportion of some subtypes, such as the H3 subtype, with low pathogenicity to poultry, has increased, while the H9 subtype remains at a high level. It must be noted that these low pathogenic avian influenza viruses often have no obvious symptoms, can circulate asymptomatically in infected poultry, and are highly pathogenic to humans. Our findings provide insights into the control and prevention of avian influenza viruses and the risk of pandemics associated with avian influenza viruses in the live poultry market.
Collapse
Affiliation(s)
- Hong Bo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Ye Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Jie Dong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Xiyan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Xiang Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Hejiang Wei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Zi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China
| | - Dayan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Health Commission, Beijing, 102206, China.
- Key Laboratory for Biosafety, National Health Commission, Beijing, 102206, China.
| |
Collapse
|
6
|
Li Y, Quan X, Chen R, Wang X, Chen Y, Gan Y, Irwin DM, Shen Y. Adaptive selection of quasispecies during in vivo passaging in chickens, mice, and ferrets results in host-specific strains for the H9N2 avian influenza virus. J Virol 2025:e0015125. [PMID: 40338080 DOI: 10.1128/jvi.00151-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Sporadic human infections of avian influenza virus (AIV) raise significant public health concerns. A critical factor limiting the transmission of AIVs is the shift in receptor-binding preference from Siaα2,3 to Siaα2,6. To reveal the adaptive selection dynamics during the host adaptation process of AIVs, this study generated a viral library with random mutations in the HA gene of the H9N2 strain. Upon passaging the viral library in chickens and mice, the predominantly selected variants exhibited a preference for Siaα2,3 receptors. Notably, the wild-type strain remained dominant in both inoculated and direct-contact chickens, while variants with the ΔL226/R229I substitutions were preferentially selected in mice. Ferrets have a predominance of Siaα2,6 in their respiratory tract. As expected, the variant harboring the N289D mutation, which prefers Siaα2,6 binding, was enriched during in vivo passaging in ferrets. The mice-adapted variant with the ΔL226/R229I mutations causes reduced levels of TNF-α in the early days post-infection in mice, which correlated with an increase in its viral titers. Conversely, elevated levels of IL-6 and IL-1β at five dpi may contribute to the development of the cytokine release syndrome, potentially elucidating the higher fatality rate observed. In conclusion, based on the mutant spectra of the HA gene, this study elucidates the distinct quasispecies dynamics during the adaptation of H9N2 to different hosts, with receptor availability serving as one of the driving factors. Furthermore, a series of critical substitutions that influence the interspecific transmission potential of H9N2 AIVs were identified.IMPORTANCEThe mutation of viruses creates a quasispecies reservoir. In this study, we aimed to investigate the dynamics of quasispecies during the host adaptation of AIVs. We generated a viral library with random mutations in the HA gene of H9N2 and conducted serial passaging in chickens, mice, and ferrets for five generations, respectively. The wild-type strain was dominant in chickens, while mice selected viruses with the ΔL226/R229I substitutions. Both variants showed a preference for binding to Siaα2,3, which aligned with the abundance of Siaα2,3 found in the respiratory tract epithelial cells of chickens and mice. In ferrets, where Siaα2,6 is more prevalent, the variant with the N289D mutation, which prefers Siaα2,6, was found to be enriched. In summary, this study revealed the adaptive selection of H9N2 quasispecies in various hosts, contributing to our understanding of AIV host adaptation.
Collapse
Affiliation(s)
- Yiliang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xi Quan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rujian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiting Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingde Gan
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
7
|
Tan WX, Qin SY, Yang X, Li XM, Li JH, Cao H, Jiang J, Zhao Q, Sun HT. Global Prevalence and Distribution of H9 Subtype of Avian Influenza Viruses in Wild Birds: Literature Review with Meta-Analysis. Vector Borne Zoonotic Dis 2025; 25:346-358. [PMID: 40201959 DOI: 10.1089/vbz.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Background: As a natural accelerator of highly pathogenic avian influenza in wild birds, the H9 subtype of avian influenza poses a substantial threat to both humans and the poultry industry. A comprehensive meta-analysis is necessary to assess the current status of the global H9 outbreak. In this research, a literature review and meta-analysis are presented on the surveillance studies of the H9 subtype of avian influenza in wild birds worldwide up to 2024. Methods: A comprehensive search strategy was employed, utilizing the China Science and Technology Journal Database, China National Knowledge Infrastructure, PubMed, Google Scholar, and Scientific Direct databases. The exclusion criteria for this study included duplicate studies, reviews, other host studies, as well as research with inconsistent or insufficient data. An analysis was conducted on data obtained from a total of 31 publications. The rate-conversion analyses were conducted using a random-effects model in the "meta" package of the "R" software, with the PFT method implemented. Results: In the meta-analysis, the prevalence of wild bird H9 avian influenza virus (AIV) was found to be 0.02% (193 out of 365,972). Statistically significant higher prevalences of wild bird influenza A virus were observed in Norway and South Africa (0.87%, 21/2417 and 0.44%, 10/1155, respectively) in comparison with other regions. Within the Anseriformes family, the prevalence rate was much greater (0.17%, 80 out of 90,014) compared with other species. In addition, we performed subgroup analyses that included geographical variables. These assessments showed a higher prevalence of H9 in wild birds in cold regions (0.08%, 30/100,691). Conclusion: In summary, our results suggest that the occurrence of H9 AIV in avian populations differs among different geographical areas and species. Therefore, it is necessary to conduct further surveillance on the prevalence of AIV in wild birds to guide the creation of strong and efficient regulatory strategies targeted at eradicating the transmission of AIV across different species.
Collapse
Affiliation(s)
- Wen-Xu Tan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, PR China
- College of Life Science, Changchun Sci-Tech University, Shuangyang, PR China
| | - Si-Yuan Qin
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, PR China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, PR China
| | - Xiao-Man Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, PR China
| | - Jing-Hao Li
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, PR China
| | - Hongwei Cao
- School of Pharmacy, Yancheng Teachers University, Yancheng, PR China
| | - Jing Jiang
- College of Life Science, Changchun Sci-Tech University, Shuangyang, PR China
| | - Quan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, PR China
| | - He-Ting Sun
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang, PR China
| |
Collapse
|
8
|
Cui N, Wang P, Huang Q, Yuan Z, Su S, Xu C, Qi L. Detection of Avian Influenza Virus in Pigeons. Viruses 2025; 17:585. [PMID: 40285026 PMCID: PMC12031089 DOI: 10.3390/v17040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Pigeons (Columba livia) are usually kept as free-ranging or racing birds, and they have direct contact with livestock, poultry, and humans. Therefore, they may have an important role in the ecology of influenza virus among various species. In the present study, we bring together all available sequence data of pigeon avian influenza virus (AIV) from public databases to address the current understanding of the genomic characteristics and emergence of each subtype of AIV in pigeons. Collectively, we identified 658 pigeon AIV strains in 21 countries across the world, which were mainly distributed in Europe, Asia, and North America. H1 (2), H2 (1), H3 (8), H5 (71), H6 (16), H7 (16), H9 (543), and H11 (1) AIV subtypes have been identified in pigeons. In addition, we interrogate features of the H5, H6, H7, and H9 subtypes of pigeon AIV, which are relatively common in pigeons. It is particularly noteworthy that the H5 AIV strains identified in pigeons are all classified as HPAIV. For the first time, this study presents a complete overview of the multiple AIV subtypes that have been circulating in pigeons, providing information on their distribution and genomic characteristics. This study will help to understand the molecular evolution of AIV in pigeons.
Collapse
Affiliation(s)
- Ning Cui
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Peipei Wang
- Tiankang Bio-Pharmaceutical Co., Ltd., Wulumuqi 830011, China
| | - Qinghua Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Zihao Yuan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Shuai Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China
| | - Chuantian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Lihong Qi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
9
|
Hu Z, Ai H, Wang Z, Huang S, Sun H, Xuan X, Chen M, Wang J, Yan W, Sun J, Pu J, Brooke CB, Chang KC, Sun Y, Liu J. Impact of inactivated vaccine on transmission and evolution of H9N2 avian influenza virus in chickens. NPJ Vaccines 2025; 10:67. [PMID: 40185759 PMCID: PMC11971428 DOI: 10.1038/s41541-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
H9N2 avian influenza virus (AIV) is endemic in poultry worldwide and increasingly zoonotic. Despite the long-term widespread use of inactivated vaccines, H9N2 AIVs remain dominant in chicken flocks. We demonstrated that inactivated vaccines did not prevent the replication of H9N2 AIVs in the upper airway of vaccinated chickens. Viral transmission was enhanced during sequential passage in vaccinated chickens, which was attributed to the restricted production of defective interfering particles and the introduction of stable mutations (NP-N417D, M1-V219I, and NS1-R140W) which enhanced viral replication. Notably, the genetic diversity of H9N2 AIVs was greater and included more potential mammal/human-adapted mutations after passage through vaccinated chickens than through naïve chickens, which might facilitate the emergence of mammal-adapted strains. By contrast, vaccines inducing cellular/mucosal immunity in the upper respiratory tract effectively limit H9N2 AIV. These findings highlight the limitations of inactivated vaccines and the need for revised vaccination strategies to control H9N2 AIV.
Collapse
Affiliation(s)
- Zhe Hu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Ai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhen Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shiyue Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinxin Xuan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mingyue Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Sanya Institute of China Agricultural University, Hainan, China
| | - Jinxiu Wang
- Hainan Animal Disease Prevention and Control Center, Haikou, China
| | - Wei Yan
- Sanya Institute of China Agricultural University, Hainan, China
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiayi Sun
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China.
- Sanya Institute of China Agricultural University, Hainan, China.
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases of the Ministry of Agriculture and Rural Affairs, Beijing, China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
10
|
Yang J, Zheng S, Sun J, Wu H, Zhang D, Wang Y, Tian T, Zhu L, Wu Z, Li L, Gao GF, Bi Y, Yao H. A human-infecting H10N5 avian influenza virus: Clinical features, virus reassortment, receptor-binding affinity, and possible transmission routes. J Infect 2025; 90:106456. [PMID: 40049527 DOI: 10.1016/j.jinf.2025.106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND In late 2023, the first human case caused by an H10N5 avian influenza virus (AIV) was diagnosed in China. H10Ny AIVs have been identified in various poultry and wild birds in Eurasia, the Americas, and Oceania. METHODS We analyzed the clinical data of the H10N5 AIV-infected patient, isolated the virus, and evaluated the virus receptor-binding properties together with the H10N8 and H10N3 AIVs identified in humans and poultry. The genomic data of the human-infecting H10N5 strain and avian H10Ny AIVs (n = 48, including 16 strains of H10N3 and 2 strains of H10N8) from live poultry markets in China, during 2019-2021, were sequenced. We inferred the genetic origin and spread pattern of the H10N5 AIV using the phylodynamic methods. In addition, given all available nucleotide sequences, the spatial-temporal dynamics, host distribution, and the maximum-likelihood phylogenies of global H10 AIVs were reconstructed. FINDINGS The first H10N5 AIV-infected human case co-infected with seasonal influenza H3N2 virus was identified. Unfortunately, the patient died after systematic treatments. The H10N5 virus predominantly bound avian-type receptor, without any known mammalian-adapted mutations. Phylodynamic inference indicated that the H10N5 AIV was generated by multiple reassortments among viruses from Korea and Japan, central Asia, and China in late 2022, acquiring the seven gene segments from H10N7 or other low pathogenic AIVs in wild Anseriformes, except for the PA gene from H5N2 AIVs in Domestic Anseriformes. The HA gene of the H10N5 virus belongs to the North American lineage, which was probably introduced into Asia by migratory birds, subsequently forming local circulation. INTERPRETATION Unlike the human-infecting H10N3 and H10N8 AIVs acquiring six internal protein-coding genes from H9N2 AIVs in domestic poultry, the human-infecting H10N5 AIV was generated through multiple reassortments among viruses mainly carried by wild Anseriformes. Furthermore, worldwide distribution, inter-continental transmission, and genetic exchanges between Eurasian and North American lineages call for more concerns about influenza surveillance on H10Ny AIVs, especially in the flyway overlapping areas.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China
| | - Shufa Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanjun Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China
| | - Tian Tian
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China; The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China.
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing Key Laboratory of Surveillance, Early Warning and Pathogen Research on Emerging Infectious Diseases, Beijing, China.
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Wang YH, Chen JJ, Ma J, Owen JE, Wang GL, Yu LJ, Shan CX, Tian Y, Lv CL, Wang T, Zhang Y, Lin SH, Zhao XJ, Zhang S, Wei WQ, Zhang YY, Tang T, Li XL, Jiang T, Li J, Zhang XA, Hong F, Hay SI, Sun YS, Liu W, Fang LQ. Early-warning signals and the role of H9N2 in the spillover of avian influenza viruses. MED 2025:100639. [PMID: 40139184 DOI: 10.1016/j.medj.2025.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The spillover of avian influenza viruses (AIVs) presents a significant global public health threat, leading to unpredictable and recurring pandemics. Current pandemic assessment tools suffer from deficiencies in terms of timeliness, capability for automation, and ability to generate risk estimates for multiple subtypes in the absence of documented human cases. METHODS To address these challenges, we created an integrated database encompassing global AIV-related data from 1981 to 2022. This database enabled us to estimate the rapid expansion of spatial range and host diversity for specific AIV subtypes, alongside their increasing prevalence in hosts that have close contact with humans. These factors were used as early-warning signals for potential AIV spillover. We analyzed spillover patterns of AIVs using machine learning models, spatial Durbin models, and phylogenetic analysis. FINDINGS Our results indicate a high potential for future spillover by subtypes H3N1, H4N6, H5N2, H5N3, H6N2, and H11N9. Additionally, we identified a significant risk for re-emergence by subtypes H5N1, H5N6, H5N8, and H9N2. Furthermore, our analysis highlighted 12 key strains of H9N2 as internal genetic donors for human adaptation in AIVs, demonstrating the crucial role of H9N2 in facilitating AIV spillover. CONCLUSIONS These findings provide a foundation for rapidly identifying high-risk subtypes, thus optimizing resource allocation in vaccine manufacture. They also underscore the potential significance of reducing the prevalence of H9N2 as a complementary strategy to mitigate chances of AIV spillovers. FUNDING National Key Research and Development Program of China.
Collapse
Affiliation(s)
- Yan-He Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; The 968(th) Hospital of Joint Logistics Support Force of PLA, Jinzhou, Liaoning 121001, P.R. China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jun Ma
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Jonathan E Owen
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Lin-Jie Yu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Chun-Xi Shan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Yao Tian
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Tao Wang
- The 949(th) Hospital of Chinese PLA, Altay, Xinjiang 836500, P.R. China
| | - Yan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Sheng-Hong Lin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Xin-Jing Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sheng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Wang-Qian Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan-Yuan Zhang
- The 926(th) Hospital of Joint Logistics Support Force of PLA, Kaiyuan, Yunnan 661606, P.R. China
| | - Tian Tang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Xin-Lou Li
- Department of Medical Research, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental Protection, PLA Strategic Support Force Medical Center, Beijing 100101, P.R. China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Feng Hong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121, USA.
| | - Yan-Song Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, P.R. China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China; Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China.
| |
Collapse
|
12
|
Yang Y, Yang Z, Zhang X, Niu B, Huang Q, Li Y, Yin H, Zhang X, Liao M, Jia W. Rapid detection of Pan-Avian Influenza Virus and H5, H7, H9 subtypes of Avian Influenza Virus using CRISPR/Cas13a and lateral flow assay. Poult Sci 2025; 104:104745. [PMID: 39740498 PMCID: PMC11750554 DOI: 10.1016/j.psj.2024.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025] Open
Abstract
Avian Influenza Virus (AIV) has been prevalent worldwide in recent years, resulting in substantial economic losses in the poultry industry. More importantly, AIV is capable of cross-species transmission among mammals, posing a dormant yet considerable threat to human health and safety. In this study, two rapid detection methods for AIV based on the CRISPR-Cas13a were developed. These methods can identify AIV through the M gene and differentiate the H5, H7, and H9 subtypes via the HA gene. The first method utilizes RT-RAA isothermal amplification of the target sequence in combination with the "collateral effect" of the Cas13a protein. The results are measured using a real-time quantitative PCR instrument, with a Limit of Detection (LOD) as low as 1 copy/μL. The second method combines RT-RAA with Cas13a and a lateral flow assay, allowing results to be visually observed with the naked eye, with a LOD of 10 copies/μL. Both methods demonstrated specificity and sensitivity comparable to or exceeding that of qRT-PCR, suggesting strong potential for clinical application.
Collapse
Affiliation(s)
- Yujia Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyi Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xinkui Zhang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Beibei Niu
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuhong Huang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Li
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Xianpeng Zhang
- Dongguan Key Laboratory of Zoonosis, Dongguan Center for Animal Disease Prevention and Control, Dongguan, 523128, China
| | - Ming Liao
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Yin Y, Li W, Chen R, Wang X, Chen Y, Cui X, Lu X, Irwin DM, Shen X, Shen Y. Random forest algorithm reveals novel sites in HA protein that shift receptor binding preference of the H9N2 avian influenza virus. Virol Sin 2025; 40:109-117. [PMID: 39746614 PMCID: PMC11962996 DOI: 10.1016/j.virs.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025] Open
Abstract
A switch from avian-type α-2,3 to human-type α-2,6 receptors is an essential element for the initiation of a pandemic from an avian influenza virus. Some H9N2 viruses exhibit a preference for binding to human-type α-2,6 receptors. This identifies their potential threat to public health. However, our understanding of the molecular basis for the switch of receptor preference is still limited. In this study, we employed the random forest algorithm to identify the potentially key amino acid sites within hemagglutinin (HA), which are associated with the receptor binding ability of H9N2 avian influenza virus (AIV). Subsequently, these sites were further verified by receptor binding assays. A total of 12 substitutions in the HA protein (N158D, N158S, A160 N, A160D, A160T, T163I, T163V, V190T, V190A, D193 N, D193G, and N231D) were predicted to prefer binding to α-2,6 receptors. Except for the V190T substitution, the other substitutions were demonstrated to display an affinity for preferential binding to α-2,6 receptors by receptor binding assays. Especially, the A160T substitution caused a significant upregulation of immune-response genes and an increased mortality rate in mice. Our findings provide novel insights into understanding the genetic basis of receptor preference of the H9N2 AIV.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China; International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Wen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Rujian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yiting Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xinyuan Cui
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xingbang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto M5S1A8, Canada
| | - Xuejuan Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongyi Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou 510642, China.
| |
Collapse
|
14
|
Xue R, Ma H, Jiang Z, Xing L, Wang G, Lan Z, Zhang Y. Diversity of the H9N2 Avian Influenza Virus in Shandong Province, China. Transbound Emerg Dis 2025; 2025:1432483. [PMID: 40302737 PMCID: PMC12016696 DOI: 10.1155/tbed/1432483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 05/02/2025]
Abstract
H9N2 avian influenza virus (AIV) is one of the main pathogens causing respiratory disease in chicken; however, differentiating this virus from infectious bronchitis virus (IBV) and newcastle disease virus (NDV) only using clinical signs is difficult. In this study, 492 tracheal and lung tissue samples were collected from chicken farms in Shandong reporting respiratory symptoms and tested using Reverse Transcription-Polymerase Chain Reaction (RT-PCR) for the presence of H9N2 AIVs, IBVs, and NDVs. The H9N2 AIVs positive samples were inoculated with chicken embryos. Whole-genome sequences of the positive strains were obtained using Illumina MiSeq and analyzed for genetic evolution and key amino acid sites mutation. Seventy-two samples were positive for H9N2 subtype AIV, with a positive rate of 14.63%, while the positive rates of IBV and NDV were 6.10% and 0.41%, respectively. Thirty-four strains of H9N2 AIVs were obtained from positive samples. Phylogenetic tree analysis of HA and NA genes revealed that the 34 H9N2 AIV strains belonged to Y280-like and F/98-like branches, respectively. Clear temporalphylogenetic branching was observed, with some strains found in the "pre-2013 isolates" clade and others in the "post-2013 isolates" clade, which raised the possibility that strains in the former clade may have undergone recombination with viral strains from 10 years ago. Among the internal amino acid sites that are key to mammalian adaptation, all strains had an I368V mutation in the PB1 gene that enhanced viral transmissibility in mammals, and the PB2 genes of some strains were mutated to enhance the mammalian adaptation of I292V and A588V. Thus, the H9N2 AIV gene segments in Shandong have different degrees of recombination and gene variation, necessitating vigilant monitoring of virus variation.
Collapse
Affiliation(s)
- Ruixue Xue
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), 4566 Tangye West Road, Licheng District, Jinan 250100, China
| | - Huiling Ma
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), 4566 Tangye West Road, Licheng District, Jinan 250100, China
| | - Zixin Jiang
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), 4566 Tangye West Road, Licheng District, Jinan 250100, China
| | - Linlin Xing
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), 4566 Tangye West Road, Licheng District, Jinan 250100, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), 4566 Tangye West Road, Licheng District, Jinan 250100, China
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), 4566 Tangye West Road, Licheng District, Jinan 250100, China
| | - Yue Zhang
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), 4566 Tangye West Road, Licheng District, Jinan 250100, China
| |
Collapse
|
15
|
He M, Liu L, Hu J, Wang Z, Guo Z, Wang X, Sun Y, Shi S, Ren W, Wang Y, Nie X, Shang C, Liu Z, Jiang Q, Ren Z, Jin N, Li X, Zhao Z. The H5N6 Virus Containing Internal Genes From H9N2 Exhibits Enhanced Pathogenicity and Transmissibility. Transbound Emerg Dis 2025; 2025:6252849. [PMID: 40302749 PMCID: PMC12017012 DOI: 10.1155/tbed/6252849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 05/02/2025]
Abstract
The H5N6 avian influenza virus (AIV) is constantly undergoing recombination and evolution with other subtypes of AIV, resulting in various types of recombinant H5N6 viruses. However, the risk to human public health of different recombinant types of H5N6 viruses remains unclear. Recently, two types of different recombinant H5N6 viruses were isolated from chickens. One of the viruses possessed six internal genes originating from H9N2, named A/Chicken/Hubei/112/2020 (H5N6) (abbreviated 112); the other virus possessed PB2, PB1, PA, and NP originating from H5N1, while the M and NS genes were derived from H9N2, named A/Chicken/Hubei/125/2020 (H5N6) (abbreviated 125). Here, we investigated the receptor binding properties, pathogenicity, and transmissibility of the two H5N6 AIVs. The results showed that 112 and 125 could bind α-2,3-linked sialic acid receptor (avian-like receptor) and α-2,6-linked sialic acid receptor (human-like receptor). However, 125 and 112 showed different pathogenicity in mice. Mice infected with 125 lost only a slight body weight and all survived, while mice infected with 112 lost weight rapidly and all died within a week of infection. Furthermore, in the transmission experiment, 125 could only transmit through direct contact, while 112 could transmit not only by direct contact but also by aerosol. The above results indicated that 112 exhibited enhanced pathogenicity and transmissibility compared to 125, suggesting that the H5N6 virus, whose internal genes were derived from H9N2, could pose a greater threat to human health. Therefore, continuous monitoring of different recombinant H5N6 viruses in poultry should be carried out to prevent their transmission to humans.
Collapse
Affiliation(s)
- Manlin He
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Lina Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jinglei Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Zhenjun Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Xiaohan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shaowen Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wenhao Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yuxing Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoxuan Nie
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Qiwei Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zilin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Xu N, Chen Y, Wu Y, Guo Y, Wang C, Qin T, Chen S, Peng D, Liu X. The evolution of hemagglutinin-158 and neuraminidase-88 glycosylation sites modulates antigenicity and pathogenicity of clade 2.3.2.1 H5N1 avian influenza viruses. Vet Microbiol 2025; 300:110333. [PMID: 39647217 DOI: 10.1016/j.vetmic.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Clade 2.3.2.1 of the H5N1 avian influenza virus (AIV) evolved into several subclades. However, the effect of glycosylation on the biological characteristics of hemagglutinin (HA) and/or neuraminidase (NA) from H5N1 AIVs remains unclear. Here, we determined that the global prevalence of clade 2.3.2.1 H5N1 AIVs with deglycosylated residue 158 on HA (HA158-) and glycosylated residue 88 on NA (NA88+) were predominant via multiple sequence analysis. The deglycosylation of residue on NA 88 (NA88-) was observed in clade 2.3.2.1a (new) and clade 2.3.2.1e H5N1 AIVs. Interestingly, NA88- was coupled with the acquisition of 158 glycosylation sites on HA (HA158+) in clade 2.3.2.1e H5N1 AIVs from China, and clade 2.3.2.1a (new) H5N1 AIVs exhibiting the HA158-NA88- pattern were predominant in Bangladesh. Meanwhile, the temporal distribution of strain HA158+ NA88- was highly consistent with the implementation of Re-6 vaccine in China. The recombinant H5N1 AIVs constructed using a reverse genetic system showed that the acquisition of the HA158 glycosylation site facilitated viral evasion from Re-6 antisera, and the virus lacking glycosylation sites at HA158 and NA88 resulted in reduced NA activity, replication in mammalian cells, and pathogenicity in both chickens and mice compared to that of the viruses with alternative glycosylation patterns. Therefore, the acquisition of HA158+ in clade 2.3.2.1e H5N1 AIVs enables evasion of Re-6 vaccination pressure, and the virulence of clade 2.3.2.1 H5N1 AIVs is modulated by the absence of glycosylation sites at HA158 and NA88. Our finding highlighted the importance of epidemiological surveillance and timely updating vaccines of H5 AIVs.
Collapse
Affiliation(s)
- Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yuwei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yijie Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Chenrong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
17
|
Yang W, Zhang J, Dai J, Guo M, Lu X, Gao R, Liu K, Gu M, Hu S, Liu X, Wang X, Liu X. Multiple pathways to evaluate the immunoprotective effect of Turkeys Herpesvirus recombinant vaccine expressing HA of H9N2. Poult Sci 2025; 104:104335. [PMID: 39577170 PMCID: PMC11617676 DOI: 10.1016/j.psj.2024.104335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 11/24/2024] Open
Abstract
H9N2 avian influenza virus is a significant poultry pathogen that provides internal genes for multiple zoonotic subtypes of avian influenza, presenting a severe threat to public health. The isolation rate of H9N2 in poultry has increased annually in recent years. In this study, a recombinant Herpesvirus of Turkeys (HVT) vaccine expressing H9-HA was constructed using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. In the construction of HVT-EGFP-HA recombinant virus, nonhomologous end joining (NHEJ) is a much more efficient strategy compare to Homology-directed recombination (HDR). HVT-HA demonstrated stability and consistent replication with the parent strain. Subcutaneous injection and in-ovo injection of HVT-HA induced different levels of immune response. Compared to in-ovo injection of HVT-HA, subcutaneous injection induced significantly higher neutralizing serum antibodies. This finding is supported by the significantly higher CD4+ T cell response in Peripheral blood mononuclear cell Peripheral blood mononuclear cell (PBMC) in the subcutaneous injection group. However, in-ovo injection of HVT-HA resulted in significantly higher neutralizing antibodies in the Harderian glands. In addition, it significantly inhibited viral shedding after intranasal exposure to H9N2. This phenomenon could be attributed to the mucosal immunity present in the Hadrian gland. Thus, our findings indicate that the in-ovo injection of the HVT-HA recombinant vaccine is a promising method to inhibit the transmission of H9N2 via the upper respiratory tract in chickens.
Collapse
Affiliation(s)
- Wenhao Yang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jin Zhang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jing Dai
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Mengjiao Guo
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaolong Lu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Song W, Deng Z, He F, Fang K, Sheng L, Wu J, Tu J, Zhou K, Wang X, Wang W, Yi L, Li K, Abudunaibi B, Zhang P, Li H, Chen T. Active surveillance of avian influenza in the southwestern Poyang Lake area, China: Analyzing changes in wholesale and frozen fresh retail markets post-policy implementation. Poult Sci 2025; 104:104486. [PMID: 39577173 PMCID: PMC11617949 DOI: 10.1016/j.psj.2024.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
This study aims to conduct active surveillance of avian influenza in the southwestern Poyang Lake area of China and to analyze the changes in avian influenza prevalence in wholesale poultry markets and frozen fresh retail markets following the implementation of policies regulating frozen fresh poultry products. The type A avian influenza virus nucleic acids were detected using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), and a triplex real-time RT-PCR assay kit specific for H5/H7/H9 RNA was utilized on the influenza A-positive samples to differentiate among the avian influenza virus subtypes. From October 2020 to June 2024, the positivity rate of the live poultry wholesale market was 59.2 %. The positivity rate of frozen fresh retail markets was 45.4 %. In August 2023, the H9 subtype had the highest positivity rate in both markets. However, after that, the rate of untyped positives began to rise, particularly in the live poultry wholesale market where the positivity rate of the H5 subtype also showed an increasing trend. Implementing a frozen fresh poultry products policy has effectively reduced the avian influenza positivity rate in frozen fresh retail markets over the first two years. However, the positivity rate showed a rebound trend in the last two years. The live poultry wholesale market may be the source of the spread of avian influenza in frozen fresh retail markets, so managing the live poultry wholesale market and surveillance avian influenza should be strengthened. Recent surveillance indicates a significant uptick in the positivity rates of the H5 subtype and untyped strains of avian influenza, underscoring the importance of continued vigilance and strengthened prevention and control measures.
Collapse
Affiliation(s)
- Wentao Song
- State Key Laboratory of Vaccines for Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University
| | - Zhiqiang Deng
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Fenglan He
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Kang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University
| | - Lintao Sheng
- Jiangxi Health Capacity Service Center, Nanchang City, Jiangxi Province, PR China
| | - Jingwen Wu
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Junling Tu
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Kun Zhou
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Xi Wang
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Wei Wang
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Liu Yi
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Kangguo Li
- State Key Laboratory of Vaccines for Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University
| | - Buasiyamu Abudunaibi
- State Key Laboratory of Vaccines for Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University
| | - Ping Zhang
- The first hospital of Nanchang, Nanchang City, Jiangxi Province, PR China
| | - Hui Li
- Nanchang Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, PR China
| | - Tianmu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University.
| |
Collapse
|
19
|
Zhou Y, Li Y, Chen H, Shu S, Li Z, Sun H, Sun Y, Liu J, Lu L, Pu J. Origin, spread, and interspecies transmission of a dominant genotype of BJ/94 lineage H9N2 avian influenza viruses with increased threat. Virus Evol 2024; 10:veae106. [PMID: 39735714 PMCID: PMC11673197 DOI: 10.1093/ve/veae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/31/2024] Open
Abstract
The H9N2 subtype of avian influenza viruses (AIVs) is widely prevalent in poultry and wild birds globally, with occasional transmission to humans. In comparison to other H9N2 lineages, the BJ/94 lineage has raised more public health concerns; however, its evolutionary dynamics and transmission patterns remain poorly understood. In this study, we demonstrate that over three decades (1994-2023), BJ/94 lineage has undergone substantial expansion in its geographical distribution, interspecies transmission, and viral reassortment with other AIV subtypes, increasing associated public health risks. These changes were primarily driven by the emergence of a dominant genotype G57. In the first decade, G57 emerged in East China and rapidly adapted to chickens and spread across China. Since 2013, the G57 genotype has expanded beyond China into eight other countries and reassorted with various AIV subtypes to form new zoonotic reassortants. Chickens have played a key role in the generation and circulation of the G57 viruses, with ducks and other poultry species likely assuming an increasingly importantly role. Over the past decade, G57 has been more frequently detected in wild birds, mammals, and humans. Additionally, Vietnam has emerged as a new hotspot for the international spread of G57. Our results suggest that the BJ/94 lineage H9N2 virus may continue to overcome geographical and species barriers, with potentially more severe consequences.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yudong Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongzhuang Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, No. 411, Mancheng South Street, Jinfeng District, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan 750011, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Lu Lu
- Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh EH2 59RG, United Kingdom
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
20
|
Litao L, Feng C, Hongyu Z, Wenbin C, Fanlei M, Dandan Z, Xun J, Xinyu L, Qiaomei L, Honglei S, Yipeng S, Juan P, Jinhua L. Field production efficiency investigation of broilers immunized with a turkey herpesvirus vector vaccine expressing hemagglutinin from H9N2 subtype avian influenza virus. Vaccine 2024; 42:126436. [PMID: 39405642 DOI: 10.1016/j.vaccine.2024.126436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 12/14/2024]
Abstract
Turkey herpesvirus (HVT) vector vaccine expressing hemagglutinin from the H9N2 AIV, namely HVT-H9, were demonstrated to block H9N2 AIV infection and transmission in chickens. In this study, we evaluated the protection efficiency and production performance of broilers in HVT-H9 field trials in the presence or absence of the H9N2 AIV natural infection. HI titers against H9N2 AIV in broilers harboring maternal antibodies were successfully induced by HVT-H9. In the presence of H9N2 AIV natural infection, immunization with HVT-H9 blocked H9N2 AIV infection and reduced the mortality rate. Importantly, HVT-H9 vaccination slightly increased broiler weight and decreased the feed conversion rate in the absence of the H9N2 AIV natural infection but significantly reduced mortality rates and increased production efficiency during the H9N2 AIV natural infection. In summary, HVT-H9 immunization might block H9N2 AIV infection and improve production efficiency in the field, especially in the presence of H9N2 AIV natural infection.
Collapse
Affiliation(s)
- Liu Litao
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chen Feng
- QYH Biotech Co., Ltd., Beijing 100000, China
| | - Zhao Hongyu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chen Wenbin
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Meng Fanlei
- QYH Biotech Co., Ltd., Beijing 100000, China
| | | | - Jing Xun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Xinyu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liang Qiaomei
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sun Honglei
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sun Yipeng
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Pu Juan
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liu Jinhua
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Sun J, Zheng T, Jia M, Wang Y, Yang J, Liu Y, Yang P, Xie Y, Sun H, Tong Q, Li J, Yang J, Fu G, Shi Y, Qi J, Liu W, Liu J, Tian WX, Gao GF, Bi Y. Dual receptor-binding, infectivity, and transmissibility of an emerging H2N2 low pathogenicity avian influenza virus. Nat Commun 2024; 15:10012. [PMID: 39562538 PMCID: PMC11576999 DOI: 10.1038/s41467-024-54374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
The 1957 H2N2 influenza pandemic virus [A(H2N2)pdm1957] has disappeared from humans since 1968, while H2N2 avian influenza viruses (AIVs) are still circulating in birds. It is necessary to reveal the recurrence risk and potential cross-species infection of these AIVs from avian to mammals. We find that H2 AIVs circulating in domestic poultry in China have genetic and antigenic differences compared to the A(H2N2)pdm1957. One H2N2 AIV has a dual receptor-binding property similar to that of the A(H2N2)pdm1957. Molecular and structural studies reveal that the N144S, and N144E or R137M substitutions in hemagglutinin (HA) enable H2N2 avian or human viruses to bind or preferentially bind human-type receptor. The H2N2 AIV rapidly adapts to mice (female) and acquires mammalian-adapted mutations that facilitated transmission in guinea pigs and ferrets (female). These findings on the receptor-binding, infectivity, transmission, and mammalian-adaptation characteristics of H2N2 AIVs provide a reference for early-warning and prevention for this subtype.
Collapse
MESH Headings
- Animals
- Ferrets
- Influenza in Birds/virology
- Influenza in Birds/transmission
- Guinea Pigs
- Humans
- Mice
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Female
- Influenza A Virus, H2N2 Subtype/genetics
- Influenza A Virus, H2N2 Subtype/pathogenicity
- Influenza A Virus, H2N2 Subtype/metabolism
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/transmission
- China/epidemiology
- Influenza, Human/virology
- Influenza, Human/transmission
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Chickens/virology
- Poultry/virology
- Mice, Inbred BALB C
- Mutation
- Birds/virology
- Virulence
Collapse
Affiliation(s)
- Ju Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Tianyi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Mingjun Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yanjun Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Jingru Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yun Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Pengyun Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiaming Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Jing Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, 310058, China.
| | - Yuhai Bi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Chen Y, Yu Q, Fan W, Zeng X, Zhang Z, Tian G, Liu C, Bao H, Wu L, Zhang Y, Liu Y, Wang S, Cui H, Duan Y, Chen H, Gao Y. Recombinant Marek's disease virus type 1 provides full protection against H9N2 influenza A virus in chickens. Vet Microbiol 2024; 298:110242. [PMID: 39243669 DOI: 10.1016/j.vetmic.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
The H9N2 subtype of the avian influenza virus (AIV) poses a significant threat to the poultry industry and human health. Recombinant vaccines are the preferred method of controlling H9N2 AIV, and Marek's disease virus (MDV) is the ideal vector for recombinant vaccines. During this study, we constructed two recombinant MDV type 1 strains that carry the hemagglutinin (HA) gene of AIV to provide dual protection against both AIV and MDV. To assess the effects of different MDV insertion sites on the protective efficacy of H9N2 AIV, the HA gene of H9N2 AIV was inserted in UL41 and US2 of the MDV type 1 vector backbone to obtain recombinant viruses rMDV-UL41/HA and rMDV-US2/HA, respectively. An indirect immunofluorescence assay showed sustained expression of HA protein in both recombinant viruses. Additionally, the insertion of the HA gene in UL41 and US2 did not affect MDV replication in cell cultures. After immunization of specific pathogen-free chickens, although both the rMDV-UL41/HA and rMDV-US2/HA groups exhibited similar levels of hemagglutination inhibition antibody titers, only the rMDV-UL41/HA group provided complete protection against the H9N2 AIV challenge, and also offered complete protection against challenge with MDV. These results demonstrated that rMDV-UL41/HA could be used as a promising bivalent vaccine strain against both H9N2 avian influenza and Marek's disease in chickens.
Collapse
Affiliation(s)
- Yuntong Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Qingqing Yu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Wenrui Fan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Zibo Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Changjun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongmei Bao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Longbo Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yanping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yongzhen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Suyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yulu Duan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| | - Yulong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China.
| |
Collapse
|
23
|
Ma J, Xu S, Li Z, Li YA, Wang S, Shi H. Enhancement of protective efficacy of recombinant attenuated Salmonella typhimurium delivering H9N2 avian influenza virus hemagglutinins(HA) antigen vaccine candidate strains by C-C motif chemokine ligand 5 in chickens(chCCL5). Vet Microbiol 2024; 298:110264. [PMID: 39395372 DOI: 10.1016/j.vetmic.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The H9N2 inactivated avian influenza vaccine cannot induce cellular and mucosal immune responses, while the attenuated Salmonella vector as an intracellular bacterium can induce dominant cellular and mucosal immune responses. However, it provides low protection against the virus when delivering viral antigens and needs further optimization. Chicken C-C motif chemokine ligand 5 (chCCL5) is an important CC chemokine associated with immune cell chemotaxis, migration, and viral infection. This study connected the sequence of chCCL5 (CCL5) with the hemagglutinin sequence of the H9N2 avian influenza virus (yH9HA), utilizing the attenuated Salmonella typhimurium vector containing the delayed lysis system MazE/F regulated by arabinose as a carrier. A vaccine strain of recombinant attenuated Salmonella typhimurium and H9N2 avian influenza virus HA, rSC0130 (pS0017-yH9HA-CCL5), was successfully constructed. The experimental results indicate that yH9HA-CCL5 can be expressed in 293 T cells; compared to the strain without CCL5, rSC0130 (pS0017-yH9HA-CCL5) can induce significantly increased cellular immune responses and provide better protective effects in H9N2 virus challenge experiments. The above results indicate that chCCL5 can significantly enhance the protective effect of Salmonella delivering H9N2 avian influenza virus HA protein vaccine against H9N2 avian influenza virus infection, providing valuable theoretical support for further improving the protective efficiency of recombinant attenuated Salmonella vectors for delivering viral antigens.
Collapse
Affiliation(s)
- Jingwen Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shunshun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
24
|
Han M, Lu Q, Wang D, Zhou K, Jia C, Teng L, Hamuti A, Peng X, Hu Y, Li W, Yue M, Li Y. Oral co-administration of Lactiplantibacillus plantarum 16 and Lacticaseibacillus rhamnosus P118 improves host defense against influenza A virus infection. J Virol 2024; 98:e0095024. [PMID: 39258911 PMCID: PMC11494971 DOI: 10.1128/jvi.00950-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Influenza is an important zoonotic disease that persistently threatens global public health. While it is widely acknowledged that probiotics can modulate the host response to protect the host against infectious disease, the prophylactic efficacy on respiratory viral infection and the detailed mechanism remains elusive. Lactobacillus, the most commonly used probiotic widely applied in food production, has garnered significant attention. In our study utilizing both C57BL/6 and BALB/c mouse models, we explored the protective effect against two strains of influenza virus, A/Mink/China/01/2014(H9N2) and A/California/04/2009(H1N1), through the administration of Lactiplantibacillus plantarum strain 16 (L. plantarum 16) and Lacticaseibacillus rhamnosus strain P118 (L. rhamnosus P118), aiming to identify robust probiotic strains with antiviral properties. Our findings indicate that administering L. plantarum 16 or L. rhamnosus P118 alone does not provide sufficient protection against influenza. However, the co-administration of L. plantarum 16 and L. rhamnosus P118 dramatically reduces viral titers in the respiratory tract and lung, thereby markedly alleviating the clinical symptoms, improving prognosis, and reducing mortality. The mechanisms underlying this effect involve the modulation of host gut microbiota and metabolism through the co-administration of L. plantarum 16 and L. rhamnosus P118, resulting in enrichment of Firmicutes and enhancement of phenylalanine-related metabolism, ultimately leading to an augmentation of the antiviral immune response. Notably, we identified that the circulating metabolic molecule 2-Hydroxycinnamic acid plays a significant role in combating influenza. Our data suggest the potential utility of L. plantarum 16 and L. rhamnosus P118 two-bacterium or 2-Hydroxycinnamic acid in preventing influenza.IMPORTANCEVaccination represents the most optimal strategy to control influenza. Nevertheless, influenza viruses constantly evolve due to antigenic drift and shift, leading to the need for regular updates on influenza vaccines. Additionally, vaccination failure poses significant challenges to influenza prevention. Therefore, it is essential and beneficial to identify novel or universal antiviral measures to protect against influenza. While cumulative data suggest that probiotics offer protection against infectious diseases, the specific mechanisms, such as the effective metabolites or components, remain largely unknown. Our research discovered the capacity of combinational two-bacterium Lactiplantibacillus plantarum 16 and Lacticaseibacillus rhamnosus P118 to fight against influenza infection in a mouse model. The protection may occur through modulating the host's gut microbiota and metabolism, further influencing the host's antiviral immune response. Notably, we have identified a novel metabolic molecule, 2-Hydroxycinnamic acid, capable of enhancing antiviral response and restricting viral replication in vivo.
Collapse
Affiliation(s)
- Meiqing Han
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Qi Lu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Di Wang
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Kun Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Chenghao Jia
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Lin Teng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Azeguli Hamuti
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Yixiang Hu
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- MOA Key Laboratory of Animal Virology, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Zhang T, Tian Y, Zhang X, Wang W, He Y, Ge C, Jia F, Wang Z, Jiang Y. Improved cellular immune response induced by intranasal boost immunization with chitosan coated DNA vaccine against H9N2 influenza virus challenge. Microb Pathog 2024; 195:106871. [PMID: 39163919 DOI: 10.1016/j.micpath.2024.106871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
The H9N2 avian influenza virus (AIV) is spreading worldwide. Presence of H9N2 virus tends to increase the chances of infection with other pathogens which can lead to more serious economic losses. In a previous study, a regulated delayed lysis Salmonella vector was used to deliver a DNA vaccine named pYL233 encoding M1 protein, mosaic HA protein and chicken GM-CSF adjuvant. To further increase its efficiency, chitosan as a natural adjuvant was applied in this study. The purified plasmid pYL233 was coated with chitosan to form a DNA containing nanoparticles (named CS233) by ionic gel method and immunized by intranasal boost immunization in birds primed by oral administration with Salmonella strain. The CS233 DNA nanoparticle has a particle size of about 150 nm, with an encapsulation efficiency of 93.2 ± 0.12 % which protected the DNA plasmid from DNase I digestion and could be stable for a period of time at 37°. After intranasal boost immunization, the CS233 immunized chickens elicited higher antibody response, elevated CD4+ T cells and CD8+ T cells activation and increased T-lymphocyte proliferation, as well as increased productions of IL-4 and IFN-γ. After challenge, chickens immunized with CS233 resulted in the lowest levels of pulmonary virus titer and viral shedding as compared to the other challenge groups. The results showed that the combination of intranasal immunization with chitosan-coated DNA vaccine and oral immunization with regulatory delayed lytic Salmonella strain could enhance the immune response and able to provide protection against H9N2 challenge.
Collapse
MESH Headings
- Animals
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Chitosan
- Administration, Intranasal
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Chickens/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/blood
- Immunity, Cellular
- Virus Shedding
- Plasmids/genetics
- Nanoparticles
- Immunization, Secondary
- CD8-Positive T-Lymphocytes/immunology
- Adjuvants, Immunologic/administration & dosage
- Interferon-gamma
- Interleukin-4
- Adjuvants, Vaccine
- Poultry Diseases/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/virology
- CD4-Positive T-Lymphocytes/immunology
- Salmonella/immunology
- Salmonella/genetics
Collapse
Affiliation(s)
- Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
26
|
Peng L, Jin Z, Chen P, Zhang Z, Fan X, Hong W, Liu Y, Smith DK, Cheung WYM, Wang J, Zhu H, Lam TTY, Guan Y. Evolutionary characterization of the establishment of H6 influenza viruses in domestic geese in China: implications for the position of the host in the ecosystem. Virus Evol 2024; 10:veae075. [PMID: 39777275 PMCID: PMC11703943 DOI: 10.1093/ve/veae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 09/12/2024] [Indexed: 01/11/2025] Open
Abstract
Geese, both wild and domestic, are generally considered part of the natural reservoir for influenza A viruses. The highly pathogenic H5 Goose/Guangdong avian influenza virus lineage that is still causing outbreaks worldwide was first detected in domestic geese in 1996. However, while wild geese might have a somewhat restricted role in the influenza ecosystem, the role of domestic geese is little studied. Here, 109 H6 viruses isolated from domestic geese during 2001-2018 in southern China had their phylogeny, evolutionary dynamics, and molecular signatures characterized to examine the role of domestic geese. Our findings demonstrated that all geese H6 viruses were derived from H6 viruses established in ducks and that they subsequently formed three distinct hemagglutinin lineages. Rapid evolution of the hemagglutinin genes was not detected after the duck-to-goose transmissions of H6 viruses that then circulated in geese. Despite long-term persistence in geese, H6 viruses were rarely observed to transmit back to ducks or terrestrial poultry and never exchanged genes with viruses from other subtypes. Most geese H6 viruses maintained the primary molecular signatures of their duck precursors. This study raises the possibility that, rather than being part of the natural reservoir, domestic geese might be more like an aberrant host species for influenza A viruses, and perhaps a "dead-end" host.
Collapse
Affiliation(s)
- Liuxia Peng
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
| | - Ziying Jin
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Pathogen Research Institute, Shenzhen, Guangdong 518045, China
| | - Peiwen Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Pathogen Research Institute, Shenzhen, Guangdong 518045, China
| | - Zengfeng Zhang
- Department of Microbiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi 530021, China
| | - Wenshan Hong
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
| | - Yongmei Liu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Pathogen Research Institute, Shenzhen, Guangdong 518045, China
- Laboratory of Data Discovery for Health, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, China
| | - David K Smith
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, China
| | - William Yiu-Man Cheung
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Pathogen Research Institute, Shenzhen, Guangdong 518045, China
- Laboratory of Data Discovery for Health, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, China
| | - Jia Wang
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Pathogen Research Institute, Shenzhen, Guangdong 518045, China
- Laboratory of Data Discovery for Health, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, China
| | - Tommy Tsan-Yuk Lam
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Pathogen Research Institute, Shenzhen, Guangdong 518045, China
- Laboratory of Data Discovery for Health, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, China
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University Medical College, Shantou University, 243 Daxue Road, Shantou, Guangdong 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- EKIH (Gewuzhikang) Pathogen Research Institute, Shenzhen, Guangdong 518045, China
- Laboratory of Data Discovery for Health, 19W Hong Kong Science & Technology Parks, Hong Kong SAR, China
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200225, China
| |
Collapse
|
27
|
Huang J, Ma K, Zhang J, Zhou J, Yi J, Qi W, Liao M. Pathogenicity and transmission of novel highly pathogenic H7N2 variants originating from H7N9 avian influenza viruses in chickens. Virology 2024; 597:110121. [PMID: 38917688 DOI: 10.1016/j.virol.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.
Collapse
Affiliation(s)
- Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Kaixiong Ma
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiahao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiahui Yi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| | - Ming Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
28
|
Wu J, Wan Z, Qian K, Shao H, Ye J, Qin A. The amino acid variation at hemagglutinin sites 145, 153, 164 and 200 modulate antigenicity andreplication of H9N2 avian influenza virus. Vet Microbiol 2024; 296:110188. [PMID: 39018942 DOI: 10.1016/j.vetmic.2024.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
H9N2 avian influenza virus (AIV), one of the predominant subtypes circulating in the poultry industry, inflicts substantial economic damage. Mutations in the hemagglutinin (HA) and neuraminidase (NA) proteins of H9N2 frequently alter viral antigenicity and replication. In this paper, we analyzed the HA genetic sequences and antigenic properties of 26 H9N2 isolates obtained from chickens in China between 2012 and 2019. The results showed that these H9N2 viruses all belonged to h9.4.2.5, and were divided into two clades. We assessed the impact of amino acid substitutions at HA sites 145, 149, 153, 164, 167, 168, and 200 on antigenicity, and found that a mutation at site 164 significantly modified antigenic characteristics. Amino acid variations at sites 145, 153, 164 and 200 affected virus's hemagglutination and the growth kinetics in mammalian cells. These results underscore the critical need for ongoing surveillance of the H9N2 virus and provide valuable insights for vaccine development.
Collapse
Affiliation(s)
- Jinsen Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Zhimin Wan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No.12 East Wenhui Road, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
29
|
Bi Y, Yang J, Wang L, Ran L, Gao GF. Ecology and evolution of avian influenza viruses. Curr Biol 2024; 34:R716-R721. [PMID: 39106825 DOI: 10.1016/j.cub.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Four types of influenza virus have been identified in nature: influenza A, B, and C viruses are capable of infecting humans, and influenzas A and B cause annual epidemics (seasonal flu) in humans; however, influenza D is currently known to infect only pigs and cattle. The influenza A viruses (IAVs) are of greatest importance to humans, causing widespread significant morbidity and mortality, and have been responsible for at least five pandemics documented since the beginning of the 20th century (Table 1). The H1N1 and H3N2 IAVs continue to circulate in humans as seasonal influenza. In addition to humans, IAVs have a wide range of host animal species in nature, especially wild aquatic birds, the reservoir hosts of IAVs. The IAVs isolated from or adapted to an avian host are named avian influenza viruses (AIVs), and are of great concern owing to their involvement in the genesis of pandemic and outbreak strains. Moreover, the majority of AIVs persist in wild birds and domestic poultry, and novel variants continue to emerge in birds and other hosts, posing non-negligible threats to host ecology and public health.
Collapse
Affiliation(s)
- Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Liang Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Lin Ran
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences (CAS), Beijing 100101, China; The D.H. Chen School of Universal Health, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Kang M, Wang LF, Sun BW, Wan WB, Ji X, Baele G, Bi YH, Suchard MA, Lai A, Zhang M, Wang L, Zhu YH, Ma L, Li HP, Haerheng A, Qi YR, Wang RL, He N, Su S. Zoonotic infections by avian influenza virus: changing global epidemiology, investigation, and control. THE LANCET. INFECTIOUS DISEASES 2024; 24:e522-e531. [PMID: 38878787 DOI: 10.1016/s1473-3099(24)00234-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza virus continues to pose zoonotic, epizootic, and pandemic threats worldwide, as exemplified by the 2020-23 epizootics of re-emerging H5 genotype avian influenza viruses among birds and mammals and the fatal jump to humans of emerging A(H3N8) in early 2023. Future influenza pandemic threats are driven by extensive mutations and reassortments of avian influenza viruses rooted in frequent interspecies transmission and genetic mixing and underscore the urgent need for more effective actions. We examine the changing global epidemiology of human infections caused by avian influenza viruses over the past decade, including dramatic increases in both the number of reported infections in humans and the spectrum of avian influenza virus subtypes that have jumped to humans. We also discuss the use of advanced surveillance, diagnostic technologies, and state-of-the-art analysis methods for tracking emerging avian influenza viruses. We outline an avian influenza virus-specific application of the One Health approach, integrating enhanced surveillance, tightened biosecurity, targeted vaccination, timely precautions, and timely clinical management, and fostering global collaboration to control the threats of avian influenza viruses.
Collapse
Affiliation(s)
- Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Fang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo-Wen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Wen-Bo Wan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Yu-Hai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, Frankfort, KY, USA
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Hong Zhu
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ma
- Department of Scientific Research Management, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Peng Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ayidana Haerheng
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yang-Rui Qi
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Rui-Lan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Zhai K, Dong J, Zeng J, Cheng P, Wu X, Han W, Chen Y, Qiu Z, Zhou Y, Pu J, Jiang T, Du X. Global antigenic landscape and vaccine recommendation strategy for low pathogenic avian influenza A (H9N2) viruses. J Infect 2024; 89:106199. [PMID: 38901571 DOI: 10.1016/j.jinf.2024.106199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The sustained circulation of H9N2 avian influenza viruses (AIVs) poses a significant threat for contributing to a new pandemic. Given the temporal and spatial uncertainty in the antigenicity of H9N2 AIVs, the immune protection efficiency of vaccines remains challenging. By developing an antigenicity prediction method for H9N2 AIVs, named PREDAC-H9, the global antigenic landscape of H9N2 AIVs was mapped. PREDAC-H9 utilizes the XGBoost model with 14 well-designed features. The XGBoost model was built and evaluated to predict the antigenic relationship between any two viruses with high values of 81.1 %, 81.4 %, 81.3 %, 81.1 %, and 89.4 % in accuracy, precision, recall, F1 value, and area under curve (AUC), respectively. Then the antigenic correlation network (ACnet) was constructed based on the predicted antigenic relationship for H9N2 AIVs from 1966 to 2022, and ten major antigenic clusters were identified. Of these, four novel clusters were generated in China in the past decade, demonstrating the unique complex situation there. To help tackle this situation, we applied PREDAC-H9 to calculate the cluster-transition determining sites and screen out virus strains with the high cross-protective spectrum, thus providing an in silico reference for vaccine recommendation. The proposed model will reduce the clinical monitoring workload and provide a useful tool for surveillance and control of H9N2 AIVs.
Collapse
Affiliation(s)
- Ke Zhai
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jinze Dong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Peiwen Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xinsheng Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Wenjie Han
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yilin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Zekai Qiu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Department of Molecular and Radiooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Medical Faculty Heidelberg, Heidelberg University, Heidelberg 69047, Germany
| | - Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Taijiao Jiang
- Guangzhou National Laboratory, Guangzhou 510005, PR China; State Key Laboratory of Respiratory Disease, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Suzhou Institute of Systems Medicine, Suzhou 215123, PR China.
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Shenzhen Key Laboratory of Pathogenic Microbes & Biosecurity, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510030, PR China.
| |
Collapse
|
32
|
Wu Q, Wang W, Zhang X, Li D, Mei M. Effectively Evaluating a Novel Consensus Subunit Vaccine Candidate to Prevent the H9N2 Avian Influenza Virus. Vaccines (Basel) 2024; 12:849. [PMID: 39203975 PMCID: PMC11359011 DOI: 10.3390/vaccines12080849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
The enormous effects of avian influenza on poultry production and the possible health risks to humans have drawn much attention to this disease. The H9N2 subtype of avian influenza virus is widely prevalent among poultry, posing a direct threat to humans through infection or by contributing internal genes to various zoonotic strains of avian influenza. Despite the widespread use of H9N2 subtype vaccines, outbreaks of the virus persist due to the rapid antigenic drift and shifts in the influenza virus. As a result, it is critical to develop a broader spectrum of H9N2 subtype avian influenza vaccines and evaluate their effectiveness. In this study, a recombinant baculovirus expressing the broad-spectrum HA protein was obtained via bioinformatics analysis and a baculovirus expression system (BES). This recombinant hemagglutinin (HA) protein displayed cross-reactivity to positive sera against several subbranch H9 subtype AIVs. An adjuvant and purified HA protein were then used to create an rHA vaccine candidate. Evaluation of the vaccine demonstrated that subcutaneous immunization of the neck with the rHA vaccine candidate stimulated a robust immune response, providing complete clinical protection against various H9N2 virus challenges. Additionally, virus shedding was more effectively inhibited by rHA than by the commercial vaccine. Thus, our findings illustrate the efficacy of the rHA vaccine candidate in shielding chickens against the H9N2 virus challenge, underscoring its potential as an alternative to conventional vaccines.
Collapse
Affiliation(s)
- Qi Wu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Weihua Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mei Mei
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
33
|
Liang Z, Lin X, Sun L, Edwards KM, Song W, Sun H, Xie Y, Lin F, Ling S, Liang T, Xiao B, Wang J, Li M, Leung CY, Zhu H, Bhandari N, Varadarajan R, Levine MZ, Peiris M, Webster R, Dhanasekaran V, Leung NHL, Cowling BJ, Webby RJ, Ducatez M, Zanin M, Wong SS. A(H2N2) and A(H3N2) influenza pandemics elicited durable cross-reactive and protective antibodies against avian N2 neuraminidases. Nat Commun 2024; 15:5593. [PMID: 38961067 PMCID: PMC11222539 DOI: 10.1038/s41467-024-49884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.
Collapse
Affiliation(s)
- Zaolan Liang
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xia Lin
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Lihong Sun
- Guangzhou Institute for Respiratory Health and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kimberly M Edwards
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenjun Song
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanmin Xie
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fangmei Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shiman Ling
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tingting Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Biying Xiao
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jiaqi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Min Li
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chin-Yu Leung
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
- Joint Institute of Virology (Shantou University and The University of Hong Kong), Guangdong-Hongkong Joint Laboratory of Emerging Infectious Diseases, Shantou University, Shantou, P. R. China
| | - Nisha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Min Z Levine
- US Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Robert Webster
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mariette Ducatez
- Interactions Hosts-Pathogens (IHAP), Université de Toulouse, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Center for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| | - Sook-San Wong
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
34
|
Mahmoud SH, Gomaa M, El Taweel A, Moatasim Y, Kamel MN, El Sayes M, Abo Shama NM, Badra R, Mahmoud M, McKenzie PP, Webby RJ, Kandeil A, Ali MA, El-Shesheny R, Kayali G. Transmission dynamics of avian influenza viruses in Egyptian poultry markets. NPJ VIRUSES 2024; 2:25. [PMID: 40295755 PMCID: PMC11721067 DOI: 10.1038/s44298-024-00035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/20/2024] [Indexed: 04/30/2025]
Abstract
Live bird markets (LBMs) are considered hotspots for Avian Influenza Viruses (AIVs). In such markets, AIVs pose threats to both poultry and public health. Within LBMs, AIVs spread through various routes, including direct contact, environmental contamination, and aerosol transmission. Unique factors in Egyptian LBMs, such as the coexistence of wild and domestic birds, increase transmission risks between birds as well as spill-overs into exposed humans. Understanding the transmission dynamics of AIVs is vital for implementing effective control measures. We conducted a study in four Egyptian LBMs located in Mediterranean coast cities from November 2021 to March 2023. In this study we tested 3,971 samples from poultry, wild birds, and the environment, out of which 692 (17.4%) were positive for AIV. Poultry exhibited a higher prevalence (42.2%) than wild birds (34.4%). Environmental samples, including water (30.8%), surfaces (17.2%), and air (18.2%), also tested positive for AIV. Diverse AIV subtypes, including H5N1, H9N2, H5/H9 co-infection, and H5N8, were detected among avian species and the environment. Temporal analysis revealed fluctuating IAV positivity rates from November 2021 to March 2023. These results emphasize the importance of continuous surveillance, resource allocation, and multisectoral collaboration to protect poultry and human health, and prevent novel influenza strains' emergence in Egyptian LBMs.
Collapse
Affiliation(s)
- Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Mokhtar Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | | | | | - Pamela P McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | | |
Collapse
|
35
|
Li X, Dong Z, Li J, Dou C, Tian D, Ma Z, Liu W, Gao GF, Bi Y. Genetic characteristics of H1N1 influenza virus outbreak in China in early 2023. Virol Sin 2024; 39:520-523. [PMID: 38768710 PMCID: PMC11280127 DOI: 10.1016/j.virs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
•H1N1 strains were collected from Hunan and Jiangsu provinces in early 2023 following the optimized COVID-19 strategy. •Phylogenic analysis revealed that the epidemic H1N1 viruses fell into different HA clades compared to vaccine strains. •Mutations on HA antigenic sites suggest antigenic drift in the epidemic H1N1 viruses versus vaccine strains. •A potential mismatch was found between recommended vaccine strains and the epidemic H1N1 viruses. •The expeditious, precise, and personalized vaccine update program for influenza virus may need to be put on the agenda.
Collapse
Affiliation(s)
- Xuanxuan Li
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zefeng Dong
- Suzhou Center for Disease Control and Prevention, Suzhou, 215004, China
| | - Jiaming Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Deyu Tian
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; D. H. Chen School of Universal Health, Zhejiang University, Hangzhou 310058, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Wu Y, Kong W, Zhang Y, Lu S, Liu M. Effect of Nonpharmaceutical Interventions in Preventing COVID-19 on the Circulation of Avian Influenza Virus in Wuhan, Hubei Province, China. Transbound Emerg Dis 2024; 2024:5528986. [PMID: 40303159 PMCID: PMC12019926 DOI: 10.1155/2024/5528986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2025]
Abstract
Background In late 2019, several medical institutions in Wuhan, Hubei Province, China, reported cases of unexplained pneumonia. A novel coronavirus was isolated from human airway epithelial cells causing coronavirus disease-2019 (COVID-19). In recent years, many nonpharmaceutical interventions (NPIs) have been implemented to stop COVID-19 epidemic. This study aimed to explore the effect of NPIs on the circulation of avian influenza virus (AIV) in Wuhan. Materials and Methods External environmental samples were collected and subjected to viral RNA extraction. Real-time quantitative polymerase chain reaction was used to detect the H5, H7, and H9 subtypes of AIV. Statistical analyses were performed using the chi-square test and binary logistic regression in SPSS 20.0 software. Results A total of 2,451 external environmental samples were collected from seven districts from 2018 to 2022 in Wuhan, comprising 1,041 samples collected before COVID-19 and 1,410 samples after COVID-19. After COVID-19, the positive rate of AIV decreased significantly with the implementation of NPIs. The dominant subtype was the H9 subtype, followed by the H5 subtype. The positive rates of AIV in live poultry markets and poultry free-range sites were reduced significantly through the implementation of NPIs. Among the different sample types, higher positive rates of AIV were found in chopping boards, sewage, and cages. The positive rate of AIV was higher in trafficked source samples than that in autotrophic source samples. Conclusions This study identified the characteristics of AIV in terms of different districts, surveillance sites, sample types, and bird sources in Wuhan. This study conducted a multifactorial analysis of the factors affecting AIV infection and provided a theoretical basis and guidance for the future prevention and control of AIV in Wuhan.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Pathogen and ImmunologyWuhan Center for Disease Control and PreventionWuhan430021HubeiChina
| | - Wenhua Kong
- Department of Pathogen and ImmunologyWuhan Center for Disease Control and PreventionWuhan430021HubeiChina
| | - Yijie Zhang
- Department of Pathogen and ImmunologyWuhan Center for Disease Control and PreventionWuhan430021HubeiChina
| | - Sha Lu
- Infectious Disease Prevention and Control InstituteWuhan Center for Disease Control and PreventionWuhan430021HubeiChina
| | - Manqing Liu
- Department of Pathogen and ImmunologyWuhan Center for Disease Control and PreventionWuhan430021HubeiChina
| |
Collapse
|
37
|
Liang B, Fan M, Meng Q, Zhang Y, Jin J, Chen N, Lu Y, Jiang C, Zhang X, Zou Z, Ping J, Su J. Effects of the Glycosylation of the HA Protein of H9N2 Subtype Avian Influenza Virus on the Pathogenicity in Mice and Antigenicity. Transbound Emerg Dis 2024; 2024:6641285. [PMID: 40303068 PMCID: PMC12016912 DOI: 10.1155/2024/6641285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2025]
Abstract
As the H9N2 subtype avian influenza virus (H9N2 AIV) evolves naturally, mutations in the hemagglutinin (HA) protein still occur, which involves some sites with glycosylations. It is widely established that glycosylation of the H9N2 AIV HA protein has a major impact on the antigenicity and pathogenicity of the virus. However, the biological implications of a particular glycosylation modification site (GMS) have not been well investigated. In this study, we generated viruses with different GMSs based on wild-type (WT) viruses. Antigenicity studies revealed that the presence of viruses with a 200G+/295G- mutation (with glycosylation at position 200 and deletion of glycosylation at position 295 in the HA protein) combined with a single GMS, such as 87G+, 127G+, 148G+, 178G+, or 265G+, could significantly affect the antigenicity of the virus. Pathogenicity assays revealed that the addition of GMS, such as 127G+, 188G+, 148G+, 178G+, or 54G+, decreased the virulence of the virus in mice, except for 87G+. The removal of GMS, such as 280G- or 295G-, increased the pathogenicity of the virus in mice. Further studies on pathogenicity revealed that 87G+/295G- could also enhance the pathogenicity of the virus. Finally, we selected the WT, WT-87G+, WT-295G-, and WT-87G+/295G- strains as our further research targets to investigate the detailed biological properties of the viruses. GMS, which can enhance viral pathogenicity, did not significantly affect replication or viral stability in vitro but significantly promoted the expression of proinflammatory factors to enhance inflammatory responses in mouse lungs. These findings further deepen our understanding of the influence of the glycosylation of the HA protein of H9N2 AIV on the pathogenicity and antigenicity of the virus in mice.
Collapse
Affiliation(s)
- Bing Liang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglu Fan
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Meng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute in CAAS, Harbin, China
| | - Jiayu Jin
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Chen
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanlu Lu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenfeng Jiang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingxing Zhang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zongyou Zou
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Su
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety and Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
38
|
Wen F, Yan Z, Chen G, Chen Y, Wang N, Li Z, Guo J, Yu H, Liu Q, Huang S. Recent H9N2 avian influenza virus lost hemagglutination activity due to a K141N substitution in hemagglutinin. J Virol 2024; 98:e0024824. [PMID: 38466094 PMCID: PMC11019909 DOI: 10.1128/jvi.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
The H9N2 avian influenza virus (AIV) represents a significant risk to both the poultry industry and public health. Our surveillance efforts in China have revealed a growing trend of recent H9N2 AIV strains exhibiting a loss of hemagglutination activity at 37°C, posing challenges to detection and monitoring protocols. This study identified a single K141N substitution in the hemagglutinin (HA) glycoprotein as the culprit behind this diminished hemagglutination activity. The study evaluated the evolutionary dynamics of residue HA141 and studied the impact of the N141K substitution on aspects such as virus growth, thermostability, receptor-binding properties, and antigenic properties. Our findings indicate a polymorphism at residue 141, with the N variant becoming increasingly prevalent in recent Chinese H9N2 isolates. Although both wild-type and N141K mutant strains exclusively target α,2-6 sialic acid receptors, the N141K mutation notably impedes the virus's ability to bind to these receptors. Despite the mutation exerting minimal influence on viral titers, antigenicity, and pathogenicity in chicken embryos, it significantly enhances viral thermostability and reduces plaque size on Madin-Darby canine kidney (MDCK) cells. Additionally, the N141K mutation leads to decreased expression levels of HA protein in both MDCK cells and eggs. These findings highlight the critical role of the K141N substitution in altering the hemagglutination characteristics of recent H9N2 AIV strains under elevated temperatures. This emphasizes the need for ongoing surveillance and genetic analysis of circulating H9N2 AIV strains to develop effective control and prevention measures.IMPORTANCEThe H9N2 subtype of avian influenza virus (AIV) is currently the most prevalent low-pathogenicity AIV circulating in domestic poultry globally. Recently, there has been an emerging trend of H9N2 AIV strains acquiring increased affinity for human-type receptors and even losing their ability to bind to avian-type receptors, which raises concerns about their pandemic potential. In China, there has been a growing number of H9N2 AIV strains that have lost their ability to agglutinate chicken red blood cells, leading to false-negative results during surveillance efforts. In this study, we identified a K141N mutation in the HA protein of H9N2 AIV to be responsible for the loss of hemagglutination activity. This finding provides insight into the development of effective surveillance, prevention, and control strategies to mitigate the threat posed by H9N2 AIV to both animal and human health.
Collapse
MESH Headings
- Animals
- Chick Embryo
- Dogs
- Humans
- Chickens/virology
- Hemagglutination
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/growth & development
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/metabolism
- Influenza A Virus, H9N2 Subtype/pathogenicity
- Influenza in Birds/virology
- Poultry
- Female
- Mice
- Cell Line
- Amino Acid Substitution
- Evolution, Molecular
- Mutation
- Temperature
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhanfei Yan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Gaojie Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yao Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Nina Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Quan Liu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
39
|
Tan M, Zhang Y, Bo H, Li X, Zou S, Yang L, Liu J, Chen Q, Xu X, Zhu W, Wang D. Rapid adaptive substitution of L226Q in HA protein increases the pathogenicity of H9N2 viruses in mice. INFECTIOUS MEDICINE 2024; 3:100090. [PMID: 38444745 PMCID: PMC10914417 DOI: 10.1016/j.imj.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 03/07/2024]
Abstract
Background Since the first human infection with H9N2 virus was reported in 1998, the number of cases of H9N2 infection has exceeded one hundred by 2021. However, there is no systematic description of the biological characteristics of H9N2 viruses isolated from humans. Methods Therefore, this study analyzed the pathogenicity in mice of all available H9N2 viruses isolated from human cases in China from 2013 to 2021. Results Although most of the H9N2 viruses analyzed showed low or no pathogenicity in mice, the leucine to glutamine substitution at residue 226 (L226Q) in the hemagglutinin (HA) protein rapidly emerged during the adaptation of H9N2 viruses, and was responsible for severe infections and even fatalities. HA amino acid 226Q conferred a remarkable competitive advantage on H9N2 viruses in mice relative to viruses containing 226L, increasing their virulence, infectivity, and replication. Conclusion Thus, our study demonstrates that the adaptive substitution HA L226Q rapidly acquired by H9N2 viruses during the course of infection in mice contributed to their high pathogenicity.
Collapse
Affiliation(s)
- Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Qi Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
- School of Public Health, Sun Yat-sen University, Guangdong 510275, China
| | - Xiaohao Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
- School of Public Health, Sun Yat-sen University, Guangdong 510275, China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing 102206, China
| |
Collapse
|
40
|
Yao Q, Liu J, Liu H, Zhou Y, Huo M, Li Y, Gao Y, Ge Y. One-Health Challenge in H9N2 Avian Influenza: Novel Human-Avian Reassortment Virus in Guangdong Province, China. Transbound Emerg Dis 2024; 2024:9913934. [PMID: 40303180 PMCID: PMC12016894 DOI: 10.1155/2024/9913934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 05/02/2025]
Abstract
China is one of the highest producers of poultry meat output in the world, with a large scale of chicken rearing. Statistically analyzed H9N2-subtype avian influenza viruses (AIVs) have become the dominant subtype in China's live poultry market, with the highest detection rate. Although H9N2 AIV is of low pathogenicity and tends not to cause serious disease and high mortality in poultry, it poses a great challenge to the domestic poultry farming industry by causing a decrease in appetite, a decline in egg production, and deaths caused by mixed infections with another pathogenic microorganism. Moreover, novel influenza viruses (H7N9 and H3N8) infecting humans have emerged in China, and the H9N2 AIV provides all or part of the internal genes to the new recombinant viruses, posing a potential threat to public health and safety and human health. In this research, six H9N2 AIVs were isolated from feces or oropharyngeal swabs collected from live poultry markets and duck farms in Zhanjiang. After epidemiological investigations, phylogenetic analyses, and molecular characterization, we found that the ZJ81 strain was a chicken-human-mink recombinant virus, the ML3 strain was a chicken-human recombinant virus, and all six virus strains of the virus had a bias for the human receptor-binding site and a mutation that could cause an increase in virulence in mice. Therefore, surveillance and control of H9N2 AIV should be strengthened to provide data support for cross-species transmission of H9N2 AIV.
Collapse
Affiliation(s)
- Qiucheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jing Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Huizhen Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yan Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Miaotong Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuanguo Li
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, China
| | - Yuwei Gao
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, China
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
41
|
Ma L, Zheng H, Ke X, Gui R, Yao Z, Xiong J, Chen Q. Mutual antagonism of mouse-adaptation mutations in HA and PA proteins on H9N2 virus replication. Virol Sin 2024; 39:56-70. [PMID: 37967718 PMCID: PMC10877434 DOI: 10.1016/j.virs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Avian H9N2 viruses have wide host range among the influenza A viruses. However, knowledge of H9N2 mammalian adaptation is limited. To explore the molecular basis of the adaptation to mammals, we performed serial lung passaging of the H9N2 strain A/chicken/Hunan/8.27 YYGK3W3-OC/2018 (3W3) in mice and identified six mutations in the hemagglutinin (HA) and polymerase acidic (PA) proteins. Mutations L226Q, T511I, and A528V of HA were responsible for enhanced pathogenicity and viral replication in mice; notably, HA-L226Q was the key determinant. Mutations T97I, I545V, and S594G of PA contributed to enhanced polymerase activity in mammalian cells and increased viral replication levels in vitro and in vivo. PA-T97I increased viral polymerase activity by accelerating the viral polymerase complex assembly. Our findings revealed that the viral replication was affected by the presence of PA-97I and/or PA-545V in combination with a triple-point HA mutation. Furthermore, the double- and triple-point PA mutations demonstrated antagonistic effect on viral replication when combined with HA-226Q. Notably, any combination of PA mutations, along with double-point HA mutations, resulted in antagonistic effect on viral replication. We also observed antagonism in viral replication between PA-545V and PA-97I, as well as between HA-528V and PA-545V. Our findings demonstrated that several antagonistic mutations in HA and PA proteins affect viral replication, which may contribute to the H9N2 virus adaptation to mice and mammalian cells. These findings can potentially contribute to the monitoring of H9N2 field strains for assessing their potential risk in mammals.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabin Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiasong Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China; Hubei Jiangxia Laboratory, Wuhan, 430207, China.
| |
Collapse
|
42
|
Naiqing X, Tang X, Wang X, Cai M, Liu X, Lu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology 2024; 589:109926. [PMID: 37952465 DOI: 10.1016/j.virol.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Collapse
Affiliation(s)
- Xu Naiqing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
43
|
Zhu M, Zeng H, He J, Zhu Y, Wang P, Guo J, Guo J, Zhou H, Qin Y, Ouyang K, Wei Z, Huang W, Chen Y. Reassortant H9N2 canine influenza viruses containing the pandemic H1N1/2009 ribonucleoprotein complex circulating in pigs acquired enhanced virulence in mice. Virology 2024; 589:109927. [PMID: 37951087 DOI: 10.1016/j.virol.2023.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
The reassortment between avian H9N2 and Eurasian avian-like (EA) H1N1 viruses may have potentially changed from avian-to-mammals adaptation. This study generated 20 reassortant viruses with the introduction of H1N1/2009 internal genes from EA H1N1 virus into H9N2 virus. 12 of these recovered the replication capability both in the lungs and turbinate samples. 10 of 12 obtained PA gene segments from the ribonucleoprotein (RNP) complexes of the EA H1N1 virus, and 3 exhibited extreme virulence. Specially, the combination of PB2, PA and NP genes could overcome the species-specific restriction in human cells. Analysis of the polymerase activities found that introduction of the PA gene resulted in increased polymerase activity. These findings indicated that RNP complexes from EA H1N1 virus could confer an adaptation advantage and high compatibility to avian H9N2 virus. This raises new concerns for public health due to the possible coexistence of H9N2 and EA H1N1 viruses in dogs.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Hao Zeng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Jianqiao He
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Yaohui Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Pingping Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Jianing Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Jinfan Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Huabo Zhou
- Huabo Pet Hospital, Nanning, 530004, PR China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China.
| |
Collapse
|
44
|
Yang J, Yan J, Zhang C, Li S, Yuan M, Zhang C, Shen C, Yang Y, Fu L, Xu G, Shi W, Ma Z, Luo TR, Bi Y. Genetic, biological and epidemiological study on a cluster of H9N2 avian influenza virus infections among chickens, a pet cat, and humans at a backyard farm in Guangxi, China. Emerg Microbes Infect 2023; 12:2143282. [PMID: 36328956 PMCID: PMC9769140 DOI: 10.1080/22221751.2022.2143282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During an investigation in October 2018, two people with diarrhoea, mild abdominal pain, and mild arthralgia symptoms in Guangxi, China, were identified as infected by H9N2 avian influenza virus (AIV). Four H9N2 AIVs were isolated from one of two patients, a pet cat, and a dead chicken (two respective isolates from its lung and kidney tissues) bred by the patients at a backyard farm. Epidemiological investigation indicated that the newly bought chicken died first, and clinical syndromes appeared subsequently in the two owners and one cat. Furthermore, the two individuals possessed high H9N2-specific hemagglutination inhibition and microneutralization antibodies. Shared nucleotide sequence identity (99.9% - 100%) for all genes was detected in the four H9N2 isolates, and hemagglutinin (HA) T138A located on the receptor binding domain (RBD), resulted from nucleotide polymorphisms that were exclusively found in the isolate from the female patient. Moreover, HA K137N on the RBD was found in isolates from these three host species. Importantly, these four H9N2 isolates presented an exclusive binding preference for the human-type receptor (α2-6-SA), and could replicate and cause pathological changes in mice. Phylogenetic analyses showed that these four isolates clustered together and belonged to clade C1.2, lineage Y280. In addition, H9N2 viruses of human origin are genetically divergent and interspersed with the widespread poultry-origin H9N2 AIVs. All these results indicate a high risk of H9N2 AIVs in public health, and effective prevention and control measures against H9N2 AIVs should be considered and performed for both animal and human health.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jianhua Yan
- Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China
| | - Cheng Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China,College of Life Science and Technology, Xinjiang University, Urumchi, People’s Republic of China
| | - Shanqin Li
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Manhua Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chunge Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chenguang Shen
- School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, People’s Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People’s Republic of China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, People’s Republic of China
| | - Ting Rong Luo
- Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China, Yuhai Bi CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; Ting Rong Luo Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530005, People's Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China,University of Chinese Academy of Sciences, Beijing, People’s Republic of China, Yuhai Bi CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, People's Republic of China; Ting Rong Luo Laboratory of Animal Infectious Diseases, Medical College & College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530005, People's Republic of China
| |
Collapse
|
45
|
Wang X, Liu K, Guo Y, Pei Y, Chen X, Lu X, Gao R, Chen Y, Gu M, Hu J, Liu X, Hu S, Jiao XA, Liu X, Wang X. Emergence of a new designated clade 16 with significant antigenic drift in hemagglutinin gene of H9N2 subtype avian influenza virus in eastern China. Emerg Microbes Infect 2023; 12:2249558. [PMID: 37585307 PMCID: PMC10467529 DOI: 10.1080/22221751.2023.2249558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
H9N2 avian influenza viruses (AIVs) pose an increasing threat to the poultry industry worldwide and have pandemic potential. Vaccination has been principal prevention strategy to control H9N2 in China since 1998, but vaccine effectiveness is persistently challenged by the emergence of the genetic and/or antigenic variants. Here, we analysed the genetic and antigenic characteristics of H9N2 viruses in China, including 70 HA sequences of H9N2 isolates from poultry, 7358 from online databases during 2010-2020, and 15 from the early reference strains. Bayesian analyses based on hemagglutinin (HA) gene revealed that a new designated clade16 emerged in April 2012, and was prevalent and co-circulated with clade 15 since 2013 in China. Clade 16 viruses exhibited decreased cross-reactivity with those from clade 15. Antigenic Cartography analyses showed represent strains were classified into three antigenic groups named as Group1, Group2 and Group3, and most of the strains in Group 3 (15/17, 88.2%) were from Clade 16 while most of the strains in Group2 (26/29, 89.7%) were from Clade 15. The mean distance between Group 3 and Group 2 was 4.079 (95%CI 3.605-4.554), revealing that major switches to antigenic properties were observed over the emergence of clade 16. Genetic analysis indicated that 11 coevolving amino acid substitutions primarily at antigenic sites were associated with the antigenic differences between clade 15 and clade 16. These data highlight complexities of the genetic evolution and provide a framework for the genetic basis and antigenic characterization of emerging clade 16 of H9N2 subtype avian influenza virus.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yaqian Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuru Pei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xia Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaolong Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
| | - Xin-an Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
46
|
Zhang J, Wang X, Chen Y, Ye H, Ding S, Zhang T, Liu Y, Li H, Huang L, Qi W, Liao M. Mutational antigenic landscape of prevailing H9N2 influenza virus hemagglutinin spectrum. Cell Rep 2023; 42:113409. [PMID: 37948179 DOI: 10.1016/j.celrep.2023.113409] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
H9N2 influenza viruses are globally endemic in birds, and a sharp increase in human infections with H9N2 occurred during 2021 to 2022. In this study, we assess the antigenic and pathogenic impact of 23 hemagglutinin (HA) amino acid mutations. Our study reveals that three specific mutations, labeled R164Q, N166D, and I220T, are responsible for the binding of antibodies with escape mutations. Variants containing R164Q and I220T mutations increase viral replication in avian and mammalian cells. Furthermore, T150A and I220T mutations are found to enhance viral replication in mice, indicating that these mutations may have the potential to adapt mammals. Structure analysis reveals that residues 164 and 220 bearing R164Q and I220T mutations increase interactions with the surrounding residues. Our findings enrich current knowledge about the risk assessment regarding which predominant HA immune-escape mutations of H9N2 viruses may pose the greatest threat to the emergence of pandemics in birds and humans.
Collapse
Affiliation(s)
- Jiahao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Xiaomin Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Yiqun Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Hejia Ye
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Shiping Ding
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Tao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Yi Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Huanan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
47
|
Guo Y, Bai X, Liu Z, Liang B, Zheng Y, Dankar S, Ping J. Exploring the alternative virulence determinants PB2 S155N and PA S49Y/D347G that promote mammalian adaptation of the H9N2 avian influenza virus in mice. Vet Res 2023; 54:97. [PMID: 37858267 PMCID: PMC10588254 DOI: 10.1186/s13567-023-01221-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/07/2023] [Indexed: 10/21/2023] Open
Abstract
The occurrence of human infections caused by avian H9N2 influenza viruses has raised concerns regarding the potential for human epidemics and pandemics. The molecular basis of viral adaptation to a new host needs to be further studied. Here, the bases of nucleotides 627 and 701 of PB2 were changed according to the uncoverable purine-to-pyrimidine transversion to block the development of PB2 627K and 701N mutations during serial passaging in mice. The purpose of this experiment was to identify key adaptive mutations in polymerase and NP genes that were obscured by the widely known host range determinants PB2 627K and 701N. Mouse-adapted H9N2 variants were obtained via twelve serial lung-to-lung passages. Sequence analysis showed that the mouse-adapted viruses acquired several mutations within the seven gene segments (PB2, PB1, PA, NP, HA, NA, and NS). One variant isolate with the highest polymerase activity possessed three substitutions, PB2 S155N, PA S49Y and D347G, which contributed to the highly virulent and mouse-adaptative phenotype. Further studies demonstrated that these three mutations resulted in increased polymerase activity, viral transcription and replication in mammalian cells, severe interstitial pneumonia, excessive inflammatory cellular infiltration and increased growth rates in mice. Our results suggest that the substitution of these three amino acid mutations may be an alternative strategy for H9N2 avian influenza viruses to adapt to mammalian hosts. The continued surveillance of zoonotic H9N2 influenza viruses should also include these mammalian adaptation markers as part of our pandemic preparedness efforts.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuebing Bai
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Liang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqing Zheng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1V 8M5, Canada
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
Gao J, Wei J, Qin S, Liu S, Mo S, Long Q, Tan S, Lu N, Xie Z, Lin J. Exploring the global immune landscape of peripheral blood mononuclear cells in H5N6-infected patient with single-cell transcriptomics. BMC Med Genomics 2023; 16:249. [PMID: 37853397 PMCID: PMC10585775 DOI: 10.1186/s12920-023-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Avian influenza viruses (AIV), particularly H5N6, have risen in infection frequency, prompting major concerns. Single-cell RNA sequencing (scRNA-seq) can illustrate the immune cell landscape present in the peripheral circulation of influenza H5N6-infected individuals at the single-cell level. This study attempted to employ scRNA-seq technology to map the potentially hidden single cell landscape of influenza H5N6. METHODS High-quality transcriptomes were generated from scRNA-seq data of peripheral blood mononuclear cells (PBMCs), which were taken from a critically-ill child diagnosed with H5N6 avian influenza infection and one healthy control donor. Cluster analysis was then performed on the scRNA-seq data to identify the different cell types. The pathways, pseudotime developmental trajectories and gene regulatory networks involved in different cell subpopulations were also explored. RESULTS In total, 3,248 single cell transcriptomes were captured by scRNA-seq from PBMC of the child infected with H5N6 avian influenza and the healthy control donor and further identified seven immune microenvironment cell types. In addition, a subsequent subpopulation analysis of innate lymphoid cells (ILC) and CD4+ T cells revealed that subpopulations of ILC and CD4+ T cells were involved in cytokine and inflammation-related pathways and had significant involvement in the biological processes of oxidative stress and cell death. CONCLUSION In conclusion, characterizing the overall immune cell composition of H5N6-infected individuals by assessing the immune cell landscape in the peripheral circulation of H5N6 avian influenza-infected and healthy control donors at single-cell resolution provides key information for understanding H5N6 pathogenesis.
Collapse
Affiliation(s)
- Jiamin Gao
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China
| | - Jing Wei
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Simei Qin
- Department of Pediatrics, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China
| | - Sheng Liu
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Shuangyan Mo
- Department of Pediatrics, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China
| | - Qian Long
- Department of Clinical Laboratory, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Shiji Tan
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Ning Lu
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Zhouhua Xie
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China.
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China.
| | - Jianyan Lin
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China.
| |
Collapse
|
49
|
Naguib MM, Eriksson P, Jax E, Wille M, Lindskog C, Bröjer C, Krambrich J, Waldenström J, Kraus RHS, Larson G, Lundkvist Å, Olsen B, Järhult JD, Ellström P. A Comparison of Host Responses to Infection with Wild-Type Avian Influenza Viruses in Chickens and Tufted Ducks. Microbiol Spectr 2023; 11:e0258622. [PMID: 37358408 PMCID: PMC10434033 DOI: 10.1128/spectrum.02586-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.
Collapse
Affiliation(s)
- Mahmoud M. Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Janina Krambrich
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robert H. S. Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Göran Larson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Xu H, Zhu S, Govinden R, Chenia HY. Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses 2023; 15:1694. [PMID: 37632036 PMCID: PMC10459121 DOI: 10.3390/v15081694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Avian influenza viruses (AIV) are a continuous cause of concern due to their pandemic potential and devasting effects on poultry, birds, and human health. The low pathogenic avian influenza virus has the potential to evolve into a highly pathogenic avian influenza virus, resulting in its rapid spread and significant outbreaks in poultry. Over the years, a wide array of traditional and novel strategies has been implemented to prevent the transmission of AIV in poultry. Mass vaccination is still an economical and effective approach to establish immune protection against clinical virus infection. At present, some AIV vaccines have been licensed for large-scale production and use in the poultry industry; however, other new types of AIV vaccines are currently under research and development. In this review, we assess the recent progress surrounding the various types of AIV vaccines, which are based on the classical and next-generation platforms. Additionally, the delivery systems for nucleic acid vaccines are discussed, since these vaccines have attracted significant attention following their significant role in the fight against COVID-19. We also provide a general introduction to the dendritic targeting strategy, which can be used to enhance the immune efficiency of AIV vaccines. This review may be beneficial for the avian influenza research community, providing ideas for the design and development of new AIV vaccines.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Hafizah Y. Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|