1
|
Quiroga-González C, Prada-Salcedo LD, Buscot F, Tarkka M, Herrmann S, Bouffaud ML, Goldmann K. Severe drought impacts tree traits and associated soil microbial communities of clonal oaks. ENVIRONMENTAL MICROBIOME 2025; 20:63. [PMID: 40481602 PMCID: PMC12143084 DOI: 10.1186/s40793-025-00720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/18/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND Biotic and abiotic factors, including plant age, soil pH, soil organic matter concentration, and especially water availability, significantly influence soil microbial populations and plant characteristics. While many ecosystems are adapted to occasional droughts, climate change is increasing the frequency and severity of drought events, which negatively impacts plant productivity and survival. Long-lived, drought-sensitive tree species such as Quercus robur are particularly vulnerable to water shortages. Drought also alters soil microbial communities, reducing and reshaping microbial diversity, biomass, and activity, which can in turn disrupt key ecosystem functions. The objective of this study was to investigate the effects of natural drought conditions on soil physicochemical variables, plant traits and microbial communities of the oak clone DF159 in Central Germany. Our research focuses on two study sites, Bad Lauchstädt and Kreinitz, which differ in soil water retention capacity. Data collection spans two periods: before and after a severe drought in 2018. Oak traits and environmental data was collected from 2011 to 2023 covering two oak time series with trees planted annually between 2010 and 2019. Microbial communities were analyzed every second year between 2015 and 2021 around trees representing five different ages. RESULTS We found that plant traits, including apical growth, branch elongation and number of shoot flushes, were positively correlated with precipitation and relative humidity. Although the study sites differed in oak leaf number per shoot flush and number of shoot flushes, the 2018 drought negatively impacted all measured plant traits, regardless of sites. Soil bacterial richness and diversity declined at both study sites, independent of plant age, while fungal richness specifically increased in Bad Lauchstädt, which has a higher water-holding capacity, following the drought event. Bacterial community composition was more strongly affected by drought than fungal communities, whereas the latter was more responsive to plant age than bacterial communities. CONCLUSIONS Given their strong functional links during drought, interactions among vegetation, microbial communities, and soil functioning may ultimately influence major ecosystem services. Bacterial communities were particularly sensitive to drought, while fungal communities exhibited greater resistance, suggesting their potential role in supporting plant survival under drought stress. These findings highlight the risk that prolonged drought may cause irreversible shifts in microbial communities, with significant implications for soil functions and plant-microbe interactions.
Collapse
Affiliation(s)
- Camilo Quiroga-González
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany.
| | - Luis Daniel Prada-Salcedo
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Mika Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Sylvie Herrmann
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
| | - Marie-Lara Bouffaud
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
| | - Kezia Goldmann
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Kremer A, Chen J, Lascoux M. 'Chimes of resilience': what makes forest trees genetically resilient? THE NEW PHYTOLOGIST 2025; 246:1934-1951. [PMID: 40190135 PMCID: PMC12059515 DOI: 10.1111/nph.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/28/2025] [Indexed: 05/10/2025]
Abstract
Forest trees are foundation species of many ecosystems and are challenged by global environmental changes. We assemble genetic facts and arguments supporting or undermining resilient responses of forest trees to those changes. Genetic resilience is understood here as the capacity of a species to restore its adaptive potential following environmental changes and disturbances. Importantly, the data come primarily from European temperate tree species with large distributions and consider only marginally species with small distributions. We first examine historical trajectories of trees during repeated climatic changes. Species that survived the Pliocene-Pleistocene transition and underwent the oscillations of glacial and interglacial periods were equipped with life history traits enhancing persistence and resilience. Evidence of their resilience also comes from the maintenance of large effective population sizes across time and rapid microevolutionary responses to recent climatic events. We then review genetic mechanisms and attributes shaping resilient responses. Usually, invoked constraints to resilience, such as genetic load or generation time and overlap, have limited consequences or are offset by positive impacts. Conversely, genetic plasticity, gene flow, introgression, genetic architecture of fitness-related traits and demographic dynamics strengthen resilience by accelerating adaptive responses. Finally, we address the limitations of this review and highlight critical research gaps.
Collapse
Affiliation(s)
- Antoine Kremer
- UMR BIOGECO, INRAEUniversité de BordeauxCestas33612France
| | - Jun Chen
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSE‐75236Sweden
| |
Collapse
|
3
|
Yue C, Wang H, Meinzer FC, Dai X, Meng S, Shao H, Kou L, Gao D, Chen F, Fu X. Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance. PLANT, CELL & ENVIRONMENT 2025; 48:3875-3889. [PMID: 39831751 DOI: 10.1111/pce.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood. We measured resource pools (relative water content [RWC] soluble sugar [SS] and starch [S]) and anatomical features of leaves and supporting twigs for 36 trees in a subtropical population during the dry season when the Budyko's aridity index was 0.362. For each tree, we rank-transformed the RWC (RWCrank), SS (SSrank), and S (Srank) and characterised the resource segmentation within organs using Ln(RWCrank/SSrank) and Ln(RWCrank/Srank). We also assessed the resource segmentation between organs using the difference in resource pools between leaves and twigs (RWCleaf-twig, SSleaf-twig, and Sleaf-twig). Resource segmentation was much more effective than the organ-level resource pool alone in predicting intraspecific variation of tree growth rates. Fast-growing individuals were mainly characterised by lower leaf Ln(RWCrank/SSrank), higher twig Ln(RWCrank/SSrank), and lower SSleaf-twig. The resource segmentation strategy of fast-growing individuals was associated with anatomical attributes that facilitate phloem SS loading and unloading and thus water supply upstream. Our results highlight that resource segmentation is an important dimension of plant drought adaptive strategies and enables better prediction of tree growth vigour than resource pool attributes individually.
Collapse
Affiliation(s)
- Chen Yue
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Frederick C Meinzer
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Decai Gao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fusheng Chen
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Das AK, Baldo M, Dobor L, Seidl R, Rammer W, Modlinger R, Washaya P, Merganičová K, Hlásny T. The increasing role of drought as an inciting factor of bark beetle outbreaks can cause large-scale transformation of Central European forests. LANDSCAPE ECOLOGY 2025; 40:108. [PMID: 40416838 PMCID: PMC12098194 DOI: 10.1007/s10980-025-02125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025]
Abstract
Context Historically, large-scale outbreaks of the European spruce bark beetle were initiated mainly by windthrows. However, after 2018, a severe drought triggered the hitherto largest bark beetle outbreak observed in Europe, signalling a major shift in the disturbance regime. Objectives Develop and test an approach that allows simulating this novel disturbance dynamics and evaluate landscape-scale compound impacts of wind- and drought-initiated outbreaks throughout the twenty-first century. Methods We incorporated drought-initiated outbreaks into the forest landscape simulation model iLand, using critical values of vapour pressure deficit as the outbreak trigger. Forest management records and remote sensing-based disturbance maps were used to derive model parameters and evaluate simulated dynamics in a Central European forest landscape (41,000 hectares). The period 1961-2021 was used for model evaluation, and the years until 2100 for scenario analysis. Results Incorporating drought as outbreak trigger led to a notable decoupling of wind and bark beetle disturbances, which have historically formed a typical disturbance cascade in European forests. While forest growing stock and species composition were resilient to a wind-dominated disturbance regime, this resilience diminished under the compounded impact of wind- and drought-triggered disturbances. The new disturbance regime caused a persistent decline in Norway spruce and resulted in an overall decrease in landscape-level growing stock. Conclusions Our findings underscore the urgent need for new approaches to evaluate increasingly complex disturbance dynamics and suggest that the future impacts of bark beetles on forest landscapes may be greater than previously anticipated. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-025-02125-w.
Collapse
Affiliation(s)
- Agnish Kumar Das
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcka 129, 165 00, Prague 6, Suchdol, Czech Republic
| | - Marco Baldo
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcka 129, 165 00, Prague 6, Suchdol, Czech Republic
| | - Laura Dobor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcka 129, 165 00, Prague 6, Suchdol, Czech Republic
| | - Rupert Seidl
- Ecosystem Dynamics and Forest Management, Technical University of Munich, TUM School of Life Sciences, Hans-Carl-Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Werner Rammer
- Ecosystem Dynamics and Forest Management, Technical University of Munich, TUM School of Life Sciences, Hans-Carl-Von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Roman Modlinger
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcka 129, 165 00, Prague 6, Suchdol, Czech Republic
| | - Prosper Washaya
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcka 129, 165 00, Prague 6, Suchdol, Czech Republic
| | - Katarína Merganičová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcka 129, 165 00, Prague 6, Suchdol, Czech Republic
| | - Tomáš Hlásny
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcka 129, 165 00, Prague 6, Suchdol, Czech Republic
| |
Collapse
|
5
|
Cavelier G, Weigel R, Enderle L, Leuschner C. Douglas fir - A victim of its high productivity in a warming climate? Predominantly negative growth trends in the North German Lowlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179100. [PMID: 40112551 DOI: 10.1016/j.scitotenv.2025.179100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Recent hot droughts and a rising atmospheric vapor pressure deficit are exposing Central European forests to growing stress, causing growth decline, crown damage and elevated mortality of some of the economically most important tree species. Foresters therefore advocate the planting of introduced Douglas fir as a replacement of more vulnerable tree species, but the species' drought and heat resistance is not sufficiently understood. Here, we analyze long-term basal area increment (BAI) trends and the climate sensitivity of growth of 15 mature Douglas fir stands along a precipitation gradient (940-580 mm yr-1) in the North German Lowlands on similar soil. We searched for recent growth declines and assessed the potential of acclimatization to a drier climate. After a pronounced growth increase from 1980 to 2000, BAI has shifted in the last 15 years to a negative trend in the majority of stands, with drier stands being more affected. Thirty percent of the 304 studied trees show significant negative BAI trends, another 47 % non-significant negative trends, compared to 5 % with significant and 12 % with non-significant positive trends. The strongest drivers of a negative BAI trend were climate continentality (seasonal temperature amplitude), a cold February, a negative summer climatic water balance, and low precipitation, indicating declining growth rates especially in continental climates with cold winters and dry summers. A highly significant negative relation exists between recent BAI trend direction and highest growth rate in the past, indicating that faster growth in the past led to greater recent growth decline. We conclude that Douglas fir is more vulnerable to climate change in Central Europe's warmer lowlands than previously thought, which has to be considered in silvicultural planning.
Collapse
Affiliation(s)
| | - Robert Weigel
- Plant Ecology, University of Goettingen, Göttingen, Germany; Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Lena Enderle
- Plant Ecology, University of Goettingen, Göttingen, Germany
| | | |
Collapse
|
6
|
Laberge S, Courcot B, Trejo-Pérez R, Bélanger N. Soil CO 2 and CH 4 response to experimental warming under various tree species compositions in a temperate harwood forest. DISCOVER SOIL 2025; 2:21. [PMID: 40099210 PMCID: PMC11912556 DOI: 10.1007/s44378-025-00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Under climate change, some forest ecosystems appear to be transitioning into net source of carbon dioxide (CO2), raising questions about the future role of soil respiration rate (Rs), which depends on hydroclimatic conditions. Conversely, well-drained forest soils could become more significant sinks of methane (CH4) under warming. The main objective of this study was to assess the effects of artificial soil warming on Rs and CH4 fluxes in a sugar maple forest at the northern limit of Quebec temperate deciduous forests in eastern Canada, and to evaluate the effect of species composition on soil response to warming. We measured Rs and CH4 fluxes during the snow-free period of 2021 and 2022 in 32 plots distributed across three forest types, half of which were artificially heated by approximately 2 °C with heating cables. Forest soils were a very consistent sink for CH4 and it did not respond to artificial soil warming nor was it sensitive to variations in soil moisture, ionic activity in soil solution and forest types. However, we observed an increase in Rs in response to warming in the heated plots, but only up to a threshold of about 15 °C, beyond which Rs started to slow down in respect to the control plots. We also observed a weakening of the exponential relationship between Rs and soil temperature beyond this threshold. This trend varied across the forest types, with hardwood-beech stands being more sensitive to warming than mixedwoods and other hardwoods. This greater response of hardwood-beech stands to warming resulted in a more significant downshift of Rs, starting from a colder temperature threshold, around 10-12 °C. This study highlights a potential plateauing of Rs despite rising soil temperature, at least in eastern Canada's temperate deciduous forest, but this trend could vary from one forest type to another. Supplementary Information The online version contains supplementary material available at 10.1007/s44378-025-00045-4.
Collapse
Affiliation(s)
- Sharlène Laberge
- Data Science Laboratory, Université du Québec (TELUQ), Montreal, QC Canada
- Centre d’étude de la forêt, Université du Québec à Montréal, Montreal, QC Canada
| | - Blandine Courcot
- Data Science Laboratory, Université du Québec (TELUQ), Montreal, QC Canada
- Centre d’étude de la forêt, Université du Québec à Montréal, Montreal, QC Canada
| | - Rolando Trejo-Pérez
- Data Science Laboratory, Université du Québec (TELUQ), Montreal, QC Canada
- Centre d’étude de la forêt, Université du Québec à Montréal, Montreal, QC Canada
| | - Nicolas Bélanger
- Data Science Laboratory, Université du Québec (TELUQ), Montreal, QC Canada
- Centre d’étude de la forêt, Université du Québec à Montréal, Montreal, QC Canada
| |
Collapse
|
7
|
Bebchuk T, Moir AK, Arosio T, Kirdyanov AV, Torbenson MCA, Krusic PJ, Hindson TR, Howard H, Buchwal A, Norman CAP, Büntgen U. Taxus tree-ring chronologies from southern England reveal western European hydroclimate changes over the past three centuries. CLIMATE DYNAMICS 2025; 63:108. [PMID: 39896849 PMCID: PMC11782366 DOI: 10.1007/s00382-025-07601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Heatwaves and summer droughts across Europe are likely to intensify under anthropogenic global warming thereby affecting ecological and societal systems. To place modern trends and extremes in the context of past natural variability, annually resolved and absolutely dated climate reconstructions are needed. Here, we present a network of 153 yew (Taxus baccata L.) tree-ring width (TRW) series from 22 sites in southern England that cover the past 310 years. Significant positive correlations were found between TRW chronologies and both April-July precipitation totals (r > 0.7) and July drought indices (r > 0.59) back to 1901 CE (p < 0.05). We used a suite of residual and standard TRW chronologies to reconstruct interannual to multi-decadal spring-summer precipitation and mid-summer drought variability over western Europe, respectively. Our yew hydroclimate reconstructions capture the majority of reported summer droughts and pluvials back to 1710 CE. Clusters of severe drought spells occurred in the second half of the 18th and mid-twentieth century. Our study suggests that the frequency and intensity of recent hydroclimate extremes over western Europe are likely still within the range of past natural variability. Supplementary Information The online version contains supplementary material available at 10.1007/s00382-025-07601-2.
Collapse
Affiliation(s)
- Tatiana Bebchuk
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN UK
| | - Andy K. Moir
- Institute for the Environment, Brunel University, London, WC1H 0DG UK
- Tree-Ring Services, Oakraven Field Centre, Mitcheldean, Gloucestershire GL17 0EE UK
| | - Tito Arosio
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN UK
| | - Alexander V. Kirdyanov
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN UK
- Siberian Federal University, Krasnoyarsk, 660041 Russian Federation
| | - Max C. A. Torbenson
- Department of Geography, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Paul J. Krusic
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN UK
- Department of History, Stockholm University, Stockholm, Sweden
| | - Toby R. Hindson
- Tree-Ring Services, Oakraven Field Centre, Mitcheldean, Gloucestershire GL17 0EE UK
| | - Heidi Howard
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN UK
| | - Agata Buchwal
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN UK
- Institute of Geoecology and Geoinformation, Adam Mickiewicz University, B. Krygowskiego 10, 61-680 Poznan, Poland
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell Street, AZ 85721 Tucson, USA
| | | | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN UK
- Czech Globe Global Change Research Institute, Czech Academy of Sciences, 60300 Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| |
Collapse
|
8
|
Hafner BD, Hesse BD, Grams TEE. Redistribution of soil water by mature trees towards dry surface soils and uptake by seedlings in a temperate forest. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39822033 DOI: 10.1111/plb.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Hydraulic redistribution is considered a crucial dryland mechanism that may be important in temperate environments facing increased soil drying-wetting cycles. We investigated redistribution of soil water from deeper, moist to surface, dry soils in a mature mixed European beech forest and whether redistributed water was used by neighbouring native seedlings. In two experiments, we tracked hydraulic redistribution via (1) 2H labeling and (2) 18O natural abundance. In a throughfall exclusion experiment, 2H water was applied to 30-50 cm soil depth around mature beech trees and traced in soils, in coarse and fine roots, and in the rhizosphere. On five additional natural plots, the 18O signal was measured in seedlings of European beech, Douglas fir, silver fir, sycamore maple, and Norway spruce at dawn and noon after a rain-free period. We found a significant enrichment in 2H in surface soil fine roots of mature beech, and an indication for transfer of this water into their rhizosphere, suggesting hydraulic redistribution from deeper, moist to drier surface soils. On four of the five additional plots, δ18O of seedlings' root water was lower at dawn than at noon. This indicated that dawn root water originated from soil layers deeper than the seedlings' rooting depth, suggesting hydraulic redistribution by neighbouring mature trees. Hydraulic redistribution equated to about 10% of daily transpiration in mature beech trees, and contributed to root water in understory seedlings, emphasizing hydraulic redistribution as a notable mechanism in temperate forests. Transport mechanisms and potential of different tree species to redistribute water should be further addressed.
Collapse
Affiliation(s)
- B D Hafner
- School of Life Sciences, Soil Biophysics and Environmental Systems, Technical University of Munich, Freising, Germany
| | - B D Hesse
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
- School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany
| | - T E E Grams
- School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
Wang P, Wu X, Li N, Nie H, Ma Y, Wu J, Zhang Z, Ma Y. The StbHLH47 transcription factor negatively regulates drought tolerance in potato (Solanum tuberosum L.). BMC PLANT BIOLOGY 2025; 25:14. [PMID: 39754033 PMCID: PMC11699788 DOI: 10.1186/s12870-024-06010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms. The bHLH transcription factors involved play crucial roles not only in plant development and growth but also in responsesresponse to abiotic stress. RESULTS In this study, the StbHLH47 gene, which is highly expressed in potato leaves, was cloned and isolated. Subcellular localization assays revealed that the gene StbHLH47 performs transcriptional functions in the nucleus, as evidenced by increased malondialdehyde (MDA) content and relative conductivity under drought stress. These findings indicate that overexpressing plants are more sensitive to drought stress. Differential gene expression analysis of wild-type plants (WT) and plants overexpressing StbHLH47 (OE-StbHLH47) under drought stress revealed that the significantly differentially expressed genes were enriched in metabolic pathways, biosynthesis of various plant secondary metabolites, biosynthesis of metabolites, plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signalling pathway-plant, phenylpropanoid biosynthesis, and plant‒pathogen interactions. Among these pathways, the phenylalanine and abscisic acid (ABA) signal transduction pathways were enriched in a greater number of differentially expressed genes, and the expression trends of these differentially expressed genes (DEGs) were significantly different between WT and OE-StbHLH47. Therefore, it is speculated that StbHLH47 may regulate drought resistance mainly through these two pathways. Additionally, RT‒qPCR was used for fluorescence quantification of the expression of StNCED1 and StERD11, which are known for their drought resistance, and the results revealed that the expression levels were much lower in OE-StbHLH47 than in WT plants. CONCLUSION RNA-seq, RT‒qPCR, and physiological index analyses under drought conditions revealed that overexpression of the StbHLH47 gene increased the sensitivity of potato plants to drought stress, indicating that StbHLH47 negatively regulates drought tolerance in potato plants. In summary, our results indicate that StbHLH47 is a negative regulator of drought tolerance and provide a theoretical basis for further studies on the molecular mechanism involved.
Collapse
Affiliation(s)
- Peijie Wang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaojuan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Nan Li
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Hushuai Nie
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Yu Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Juan Wu
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Zhicheng Zhang
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, China
| | - Yanhong Ma
- Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| |
Collapse
|
10
|
Ziegler Y, Grote R, Alongi F, Knüver T, Ruehr NK. Capturing drought stress signals: the potential of dendrometers for monitoring tree water status. TREE PHYSIOLOGY 2024; 44:tpae140. [PMID: 39509249 DOI: 10.1093/treephys/tpae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The severity of droughts is expected to increase with climate change, leading to more frequent tree mortality and a decline in forest ecosystem services. Consequently, there is an urgent need for monitoring networks to provide early warnings of drought impacts on forests. Dendrometers capturing stem diameter variations may offer a simple and relatively low-cost opportunity. However, the links between stem shrinkage, a direct expression of tree water deficit (TWD), and hydraulic stress are not well understood thus far. In this study, we exposed two widespread conifers Pinus sylvestris L. and Larix decidua Mill. to lethal dehydration by withholding water and closely monitored TWD, midday water potential ($\psi $) and midday stomatal conductance (${\textit g}_{\textit s}$) under controlled greenhouse conditions. We found strong relationships between the three variables throughout the dehydration process, particularly suggesting the potential for continuous $\psi $ predictions and stomatal closure assessments. However, the relationships decoupled during recovery from severe drought. We also identified TWD thresholds that signal the onset of drought stress and tissue damage, providing insights into stress impacts and recovery potential. While these findings are promising, challenges remain in practically transferring them to field set-ups by suitable TWD normalization. Importantly, we observed that midday ${\textit g}_{\textit s}$ was drastically reduced when TWD persisted overnight, providing a directly applicable drought stress signal that does not require normalization. In conclusion, while challenges remain, our results highlight the potential of dendrometers for monitoring tree water dynamics. Implementing dendrometer networks could support the development of early warning metrics for drought impacts, enabling large-scale monitoring in diverse settings, such as urban areas and forest ecosystems.
Collapse
Affiliation(s)
- Yanick Ziegler
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Franklin Alongi
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Timo Knüver
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (KIT/IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
11
|
Thiffault N, Nordin P, Wotherspoon A, Hjelm K, Olofsson E. A trans-Atlantic perspective on successful plantation establishment in boreal ecosystems: lessons learned and research opportunities. NEW FORESTS 2024; 56:16. [PMID: 39649012 PMCID: PMC11618171 DOI: 10.1007/s11056-024-10086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Boreal forests, which account for one-third of the world's forested areas, play a crucial role in global climate regulation and provide significant ecological, economic, and cultural benefits. However, boreal ecosystems face substantial threats from climate change, leading to increased disturbances such as wildfires, insect outbreaks, and disease. In response, reforestation emerges as a vital strategy for maintaining and restoring forest cover. In this perspective paper, we summarize some recent research on plantation establishment in boreal ecosystems of eastern North America and Scandinavia, emphasizing the effectiveness of mechanical site preparation (MSP), species-specific responses, and soil nutrient dynamics. We suggest key areas for future research, including the long-term sustainability of MSP, the development of adaptive strategies to climate variability, species-specific optimization of planting techniques, and integration of technological advances. Addressing these research needs will support the development of adaptive silviculture practices that enhance boreal stands resilience and productivity, helping to meet reforestation objectives and mitigate the impacts of climate change. We aim to stimulate regional, national, and international research initiatives, contributing to the resilience and sustainability of boreal ecosystems.
Collapse
Affiliation(s)
- Nelson Thiffault
- Natural Resources Canada, Canadian Forest Service, Québec, QC Canada
- Centre d’étude de la forêt, Montréal, QC Canada
| | | | | | - Karin Hjelm
- Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Alnarp, Sweden
| | - Erika Olofsson
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| |
Collapse
|
12
|
Kopecký M, Hederová L, Macek M, Klinerová T, Wild J. Forest plant indicator values for moisture reflect atmospheric vapour pressure deficit rather than soil water content. THE NEW PHYTOLOGIST 2024; 244:1801-1811. [PMID: 39175085 DOI: 10.1111/nph.20068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Soil moisture shapes ecological patterns and processes, but it is difficult to continuously measure soil moisture variability across the landscape. To overcome these limitations, soil moisture is often bioindicated using community-weighted means of the Ellenberg indicator values of vascular plant species. However, the ecology and distribution of plant species reflect soil water supply as well as atmospheric water demand. Therefore, we hypothesized that Ellenberg moisture values can also reflect atmospheric water demand expressed as a vapour pressure deficit (VPD). To test this hypothesis, we disentangled the relationships among soil water content, atmospheric vapour pressure deficit, and Ellenberg moisture values in the understory plant communities of temperate broadleaved forests in central Europe. Ellenberg moisture values reflected atmospheric VPD rather than soil water content consistently across local, landscape, and regional spatial scales, regardless of vegetation plot size, depth as well as method of soil moisture measurement. Using in situ microclimate measurements, we discovered that forest plant indicator values for moisture reflect an atmospheric VPD rather than soil water content. Many ecological patterns and processes correlated with Ellenberg moisture values and previously attributed to soil water supply are thus more likely driven by atmospheric water demand.
Collapse
Affiliation(s)
- Martin Kopecký
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Lucia Hederová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Tereza Klinerová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| | - Jan Wild
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-252 43, Czech Republic
| |
Collapse
|
13
|
Oulehle F, Kolář T, Rybníček M, Hruška J, Büntgen U, Trnka M. Complex imprint of air pollution in the basal area increments of three European tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175858. [PMID: 39209174 DOI: 10.1016/j.scitotenv.2024.175858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The impact of atmospheric pollution on the growth of European forest tree species, particularly European beech, Silver fir and Norway spruce, is examined in five mesic forests in the Czech Republic. Analyzing of basal area increment (BAI) patterns using linear mixed effect models reveals a complex interplay between atmospheric nitrogen (N) and sulphur (S) deposition, climatic variables and changing CO2 concentrations. Beech BAI responds positively to N deposition (in tandem with air CO2 concentration), with soil phosphorus (P) availability emerging as a significant factor influencing overall growth rates. Fir BAI, on the other hand, was particularly negatively influenced by S deposition, although recent growth acceleration suggests growth resilience in post-pollution period. This fir growth surge likely coincides with stimulation of P acquisition following the decline of acidic pollution. The consequence is the current highest productivity among the studied tree species. The growth dynamics of both conifers were closely linked to the stoichiometric imbalance of phosphorus in needles, indicating the possible sensitivity of exogenous controls on nutrient uptake. Furthermore, spruce BAI was positively linked to calcium availability across sites. Despite enhanced water-use efficiency under elevated CO2, spruce growth is constrained by precipitation deficit and demonstrates weakening resilience to increasing growing season air temperatures. Overall, these findings underscore the intricate relationships between atmospheric pollution, nutrient availability, and climatic factors in shaping the growth dynamics of European forest ecosystems. Thus, incorporating biogeochemical context of nutrient availability is essential for realistic modelling of tree growth in a changing climate.
Collapse
Affiliation(s)
- Filip Oulehle
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic.
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Jakub Hruška
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic; Czech Geological Survey, Klárov 3, 118 21 Prague, Czech Republic
| | - Ulf Büntgen
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Miroslav Trnka
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
14
|
Jené L, Massó‐Rodríguez M, Munné‐Bosch S. Interactive effects of Orobanche latisquama parasitism and drought stress in Salvia rosmarinus plants growing under Mediterranean field conditions. PHYSIOLOGIA PLANTARUM 2024; 176:e14652. [PMID: 39641143 PMCID: PMC11621997 DOI: 10.1111/ppl.14652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Mediterranean-type ecosystems are recognized as critical hotspots for both biodiversity and climate change. Within these environments, plants often interact with diverse species, including holoparasitic plants, while simultaneously facing increasing episodes of precipitation shortages and rising temperatures. Here, we investigated the impact of Orobanche latisquama Reut. ex Boiss infestation on the Mediterranean shrub Salvia rosmarinus (L.) Spenn (rosemary) across three populations along an altitudinal gradient, focusing on its effects on host tolerance and resilience to severe summer drought in its natural habitat. Results showed no major physiological impact of the parasite on the host during spring but revealed an enhanced photo- and antioxidant-protective response during the summer drought in rosemary plants infested with O. latisquama. Infested plants showed elevated contents of α-tocopherol and a shift in the ascorbate ratio towards its oxidized state during the summer, particularly in upper and sun-exposed leaves. This was accompanied by elevated malondialdehyde content, indicating enhanced lipid peroxidation. However, despite the heightened photo-oxidative stress observed in leaves from infested plants, no damage to photosystem II was observed, indicating a good tolerance of rosemary to the interaction between parasitism and drought. By autumn, all plants displayed similar recovery patterns, and the differences between infested and non-infested plants disappeared, thus indicating a high resilience to the combination of these biotic and abiotic stresses. Overall, these findings underscore the great adaptive mechanisms S. rosmarinus plants have evolved to endure severe summer drought, even when challenged by holoparasitic plant infestation, and provide new insights into plant-parasite interactions in Mediterranean-type ecosystems.
Collapse
Affiliation(s)
- Laia Jené
- Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaSpain
- Institute of Research in Biodiversity (IRBio), University of BarcelonaSpain
| | - Marcel Massó‐Rodríguez
- Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaSpain
| | - Sergi Munné‐Bosch
- Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaSpain
- Institute of Research in Biodiversity (IRBio), University of BarcelonaSpain
| |
Collapse
|
15
|
Tao W, He J, Smith NG, Yang H, Liu J, Chen L, Tao J, Luo W. Tree growth rate-mediated trade-off between drought resistance and recovery in the Northern Hemisphere. Proc Biol Sci 2024; 291:20241427. [PMID: 39471856 PMCID: PMC11521623 DOI: 10.1098/rspb.2024.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 11/01/2024] Open
Abstract
The frequency and severity of drought events have increased with climate warming. This poses a significant threat to tree growth and survival worldwide. However, the underlying mechanism of tree growth responses to drought across diverse geographic regions and species remains inconclusive. Here, we used 2808 tree ring width chronologies of 32 species from 1951 to 2020 to examine the relationships between growth rates and resistance and recovery of trees in response to drought in the Northern Hemisphere. We found that trees with fast growth rates exhibited lower drought resistance but higher drought recovery compared to those with slow growth rates, which was further corroborated by the trade-off between resistance and recovery in response to variations in leaf photosynthetic traits. The difference in growth rates also well explained the large variability in the drought resistance and recovery for different geographic regions, as well as for species from different clades and successional stages. Our study provides a conclusive and uniform perspective that tree growth rate regulates drought resistance and recovery, shedding light on the diverse strategies employed by tree species in response to drought stress in the Northern Hemisphere.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| | - Jiang He
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
| | - Nicholas G. Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX79409, USA
| | - Hongjun Yang
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
| | - Jinchun Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
| | - Jianping Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| | - Weixue Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, People’s Republic of China
| |
Collapse
|
16
|
Alexandru AM, Mihai G, Stoica E, Curtu AL. Tree Resilience Indices of Norway Spruce Provenances Tested in Long-Term Common Garden Experiments in the Romanian Carpathians. PLANTS (BASEL, SWITZERLAND) 2024; 13:2172. [PMID: 39204608 PMCID: PMC11360809 DOI: 10.3390/plants13162172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Provenance trials provide a valuable opportunity to evaluate the impact of extreme events on growth and wood properties. In this study, we have evaluated 81 Norway spruce provenances, tested in three provenance trials established in the Romanian Carpathians in 1972. The response to drought of the Norway spruce provenances has been examined using the following tree resilience indices: resistance, recovery, resilience, and relative resilience. The relationship between climate and growth, the correlations between wood traits, and the coordinates of the origin and tree resilience indices were also analysed. In each provenance trial, there were significant differences between provenances and years regarding wood widths and latewood percentage (LWP). Regarding drought extreme events, the years when they occurred in all three provenance trials were 2000 and 2003. Significant differences between provenances for at least one tree resilience index have been found in all provenance trials, for the year 2000. By using subperiods of 25 years, changes in the relationship between climate and growth have been observed. Several provenances with high radial growth and good resistance and/or recovery have been identified. Provenances that performed better in common garden experiments could be used in assisted migration, even in the proximity of the current natural range.
Collapse
Affiliation(s)
- Alin Madalin Alexandru
- Department of Forest Genetics and Tree Breeding, “Marin Dracea” National Institute for Research and Development in Forestry, 077190 Voluntari, Romania; (G.M.); (E.S.)
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, 500123 Brasov, Romania
| | - Georgeta Mihai
- Department of Forest Genetics and Tree Breeding, “Marin Dracea” National Institute for Research and Development in Forestry, 077190 Voluntari, Romania; (G.M.); (E.S.)
| | - Emanuel Stoica
- Department of Forest Genetics and Tree Breeding, “Marin Dracea” National Institute for Research and Development in Forestry, 077190 Voluntari, Romania; (G.M.); (E.S.)
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, 500123 Brasov, Romania
| | - Alexandru Lucian Curtu
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, 500123 Brasov, Romania
| |
Collapse
|
17
|
Moreno M, Simioni G, Cochard H, Doussan C, Guillemot J, Decarsin R, Fernandez-Conradi P, Dupuy JL, Trueba S, Pimont F, Ruffault J, Jean F, Marloie O, Martin-StPaul NK. Isohydricity and hydraulic isolation explain reduced hydraulic failure risk in an experimental tree species mixture. PLANT PHYSIOLOGY 2024; 195:2668-2682. [PMID: 38748559 PMCID: PMC11288744 DOI: 10.1093/plphys/kiae239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 08/02/2024]
Abstract
Species mixture is promoted as a crucial management option to adapt forests to climate change. However, there is little consensus on how tree diversity affects tree water stress, and the underlying mechanisms remain elusive. By using a greenhouse experiment and a soil-plant-atmosphere hydraulic model, we explored whether and why mixing the isohydric Aleppo pine (Pinus halepensis, drought avoidant) and the anisohydric holm oak (Quercus ilex, drought tolerant) affects tree water stress during extreme drought. Our experiment showed that the intimate mixture strongly alleviated Q. ilex water stress while it marginally impacted P. halepensis water stress. Three mechanistic explanations for this pattern are supported by our modeling analysis. First, the difference in stomatal regulation between species allowed Q. ilex trees to benefit from additional soil water in mixture, thereby maintaining higher water potentials and sustaining gas exchange. By contrast, P. halepensis exhibited earlier water stress and stomatal regulation. Second, P. halepensis trees showed stable water potential during drought, although soil water potential strongly decreased, even when grown in a mixture. Model simulations suggested that hydraulic isolation of the root from the soil associated with decreased leaf cuticular conductance was a plausible explanation for this pattern. Third, the higher predawn water potentials for a given soil water potential observed for Q. ilex in mixture can-according to model simulations-be explained by increased soil-to-root conductance, resulting from higher fine root length. This study brings insights into the mechanisms involved in improved drought resistance of mixed species forests.
Collapse
Affiliation(s)
- Myriam Moreno
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
- French Environment and Energy Management Agency, 49000 Angers, France
| | - Guillaume Simioni
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
| | - Hervé Cochard
- Physique et physiologie Intégratives de l'Arbre en environnement Fluctuant, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Claude Doussan
- Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes, INRAE, 84914 Avignon, France
| | - Joannès Guillemot
- UMR Eco&Sols, CIRAD, 34398 Montpellier, France
- Eco&Sols, Univ Montpellier, CIRAD, INRAE, IRD, Montpellier SupAgro, 34398 Montpellier, France
- Department of Forest Sciences, ESALQ, University of São Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Renaud Decarsin
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
| | | | - Jean-Luc Dupuy
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
| | - Santiago Trueba
- Biodiversité Gènes et Communautés, INRAE, Université de Bordeaux, 33615 Pessac, France
| | - François Pimont
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
| | - Julien Ruffault
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
| | - Frederic Jean
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
| | - Olivier Marloie
- Unité de Recherche en écologie des Forêts Méditerranéennes, INRAE, 84914 Avignon, France
| | | |
Collapse
|
18
|
Martes L, Pfleiderer P, Köhl M, Sillmann J. Using climate envelopes and earth system model simulations for assessing climate change induced forest vulnerability. Sci Rep 2024; 14:17076. [PMID: 39048656 PMCID: PMC11269643 DOI: 10.1038/s41598-024-68181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Changing climatic conditions threaten forest ecosystems. Drought, disease and infestation, are leading to forest die-offs which cause substantial economic and ecological losses. In central Europe, this is especially relevant for commercially important coniferous tree species. This study uses climate envelope exceedance (CEE) to approximate species risk under different future climate scenarios. To achieve this, we used current species presence-absence and historical climate data, coupled with future climate scenarios from various Earth System Models. Climate scenarios tended towards drier and warmer conditions, causing strong CEEs especially for spruce. However, we show that annual averages of temperature and precipitation obscure climate extremes. Including climate extremes reveals a broader increase in CEEs across all tree species. Our study shows that the consideration of climate extremes, which cannot be adequately reflected in annual averages, leads to a different assessment of the risk of forests and thus the options for adapting to climate change.
Collapse
Affiliation(s)
- Leam Martes
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany.
| | - Peter Pfleiderer
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
- Climate Analytics, Berlin, Germany
| | - Michael Köhl
- Institute for Wood Science - World Forestry, Universität Hamburg, Leuschnerstraße 91, 21029, Hamburg, Germany
| | - Jana Sillmann
- Research Unit for Sustainability and Climate Risks, Universität Hamburg, Grindelberg 5, 20144, Hamburg, Germany
| |
Collapse
|
19
|
Beyer JN, Serebrenik YV, Toy K, Najar MA, Raniszewski NR, Shalem O, Burslem GM. Intracellular Protein Editing to Enable Incorporation of Non-Canonical Residues into Endogenous Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602493. [PMID: 39026884 PMCID: PMC11257474 DOI: 10.1101/2024.07.08.602493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The ability to study proteins in a cellular context is crucial to our understanding of biology. Here, we report a new technology for "intracellular protein editing", drawing from intein- mediated protein splicing, genetic code expansion, and endogenous protein tagging. This protein editing approach enables us to rapidly and site specifically install residues and chemical handles into a protein of interest. We demonstrate the power of this protein editing platform to edit cellular proteins, inserting epitope peptides, protein-specific sequences, and non-canonical amino acids (ncAAs). Importantly, we employ an endogenous tagging approach to apply our protein editing technology to endogenous proteins with minimal perturbation. We anticipate that the protein editing technology presented here will be applied to a diverse set of problems, enabling novel experiments in live mammalian cells and therefore provide unique biological insights.
Collapse
|
20
|
Kunert N, Münchinger IK, Hajek P. Turgor loss point explains climate-driven growth reductions in trees in Central Europe. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38940818 DOI: 10.1111/plb.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
As climate change thrives, and the frequency of intense droughts is affecting many forested regions, a mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. However, studies linking the observed growth reduction to mechanistic traits are still rare. We compared the median growth anomalies of 16 native tree species, gathered across a network of study plots in Bavaria, with the mean species-specific turgor loss point (πtlp) measured at five locations in Central Europe πtlp explained 37% of the growth anomalies observed in response to the intense droughts between 2018 and 2020 compared to the pre-drought period between 2006 and 2017 across sites. πtlp constitutes an important leaf drought tolerance trait and influences the growth response of native tree species during extraordinary dry periods. As climate change-induced droughts intensify, tree species with drought-tolerant leaves will be less vulnerable to growth reductions. πtlp provides a useful indicator for selecting tree species to adapt forest management systems to climate change.
Collapse
Affiliation(s)
- N Kunert
- Functional and Tropical Plant Ecology, University of Bayreuth, Bayreuth, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - I K Münchinger
- Functional and Tropical Plant Ecology, University of Bayreuth, Bayreuth, Germany
| | - P Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
21
|
Luo D, O’Neill GA, Yang Y, Galeano E, Wang T, Thomas BR. Population-specific climate sensitive top height curves and their applications to assisted migration. EUROPEAN JOURNAL OF FOREST RESEARCH 2024; 143:1349-1364. [PMID: 39449832 PMCID: PMC11496373 DOI: 10.1007/s10342-024-01694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 10/26/2024]
Abstract
Growth and yield (G&Y) of forest plantations can be significantly impacted by maladaptation resulting from climate change, and assisted migration has been proposed to mitigate these impacts by restoring populations to their historic climates. However, genecology models currently used for guiding assisted migration do not account for impacts of climate change on cumulative growth and assume that responses of forest population to climate do not change with age. Using provenance trial data for interior lodgepole pine (Pinus contorta subsp. latifolia Douglas) and white spruce (Picea glauca (Moench) Voss) in western Canada, we integrated Universal Response Functions, representing the relationship of population performance with their provenance and site climates, into top height curves in a G&Y model (Growth and Yield Projection System, GYPSY) to develop population-specific climate sensitive top height curves for both species. These new models can estimate the impact of climate change on top height of local populations and populations from a range of provenances to help guide assisted migration. Our findings reveal that climate change is expected to have varying effects on forest productivity across the landscape, with some areas projected to experience a slight increase in productivity by the 2050s, while the remainder are projected to face a significant decline in productivity for both species. Adoption of assisted migration, however, with the optimal populations selected was projected to maintain and even improve productivity at the provincial scale. The findings of this study provide a novel approach to incorporating assisted migration approaches into forest management to mitigate the negative impacts of climate change.
Collapse
Affiliation(s)
- Dawei Luo
- Department of Renewable Resources, University of Alberta, 442 Earth Science Buildings, Edmonton, AB T6G 2E3 Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Gregory A. O’Neill
- Kalamalka Forestry Centre, BC Ministry of Forests, 3401 Reservoir Road, Vernon, BC V1B 2C7 Canada
| | - Yuqing Yang
- Lands Planning Branch, Alberta Environment and Parks, 3 Floor, Petroleum Plaza South Tower, 9915 - 108 Street, Edmonton, AB T5K 2G8 Canada
| | - Esteban Galeano
- Department of Renewable Resources, University of Alberta, 442 Earth Science Buildings, Edmonton, AB T6G 2E3 Canada
- Department of Forestry, Mississippi State University, Thompson Hall, Rm 351, Starkville, Mississippi 39762 USA
| | - Tongli Wang
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Barb R. Thomas
- Department of Renewable Resources, University of Alberta, 442 Earth Science Buildings, Edmonton, AB T6G 2E3 Canada
| |
Collapse
|
22
|
Safaei M, Kleinebecker T, Weis M, Große-Stoltenberg A. Tracking effects of extreme drought on coniferous forests from space using dynamic habitat indices. Heliyon 2024; 10:e27864. [PMID: 38560251 PMCID: PMC10981029 DOI: 10.1016/j.heliyon.2024.e27864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Terrestrial ecosystems such as coniferous forests in Central Europe are experiencing changes in health status following extreme droughts compounding with severe heat waves. The increasing temporal resolution and spatial coverage of earth observation data offer new opportunities to assess these dynamics. Dense time-series of optical satellite data allow for computing Dynamic Habitat Indices (DHIs), which have been predominantly used in biodiversity studies. However, DHIs cover three aspects of vegetation changes that could be affected by drought: annual productivity, minimum cover, and seasonality. Here, we evaluate the health status of coniferous forests in the federal state of Hesse in Germany over the period 2017-2020 including the severe drought year of 2018 using DHIs based on the Normalized Difference Vegetation Index (NDVI) for drought assessment. To identify the most important variables affecting coniferous forest die-off, a series of environmental variables together with the three DHIs components were used in a logistic regression (LR) model. Each DHI component changed significantly across non-damaged and damaged sites in all years (p-value 0.05). When comparing 2017 to 2019, DHI-based annual productivity decreased and seasonality increased. Most importantly, none of the DHI components had reached pre-drought conditions, which likely indicates a change in ecosystem functioning. We also identified spatially explicit areas highly affected by drought. The LR model revealed that in addition to common environmental parameters related to temperature, precipitation, and elevation, DHI components were the most important factors explaining the health status. Our analysis demonstrates the potential of DHIs to capture the effect of drought events on Central European coniferous forest ecosystems. Since the spaceborne data are available at the global level, this approach can be applied to track the dynamics of ecosystem conditions in other regions, at larger spatial scales, and for other Land Use/Land Cover types.
Collapse
Affiliation(s)
- Mojdeh Safaei
- Division of Landscape Ecology and Landscape Planning, Institute of Landscape Ecology and Resource Management, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany
| | - Till Kleinebecker
- Division of Landscape Ecology and Landscape Planning, Institute of Landscape Ecology and Resource Management, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany
- Center for International Development and Environmental Research (ZEU), Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Manuel Weis
- Hessian Agency for Nature Conservation, Environment and Geology (HLNUG), Rheingaustraße 186, 65203, Wiesbaden, Germany
| | - André Große-Stoltenberg
- Division of Landscape Ecology and Landscape Planning, Institute of Landscape Ecology and Resource Management, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff Ring 26-32, 35392, Giessen, Germany
- Center for International Development and Environmental Research (ZEU), Senckenbergstrasse 3, 35390, Giessen, Germany
| |
Collapse
|
23
|
Popa A, van der Maaten E, Popa I, van der Maaten-Theunissen M. Early warning signals indicate climate change-induced stress in Norway spruce in the Eastern Carpathians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169167. [PMID: 38072249 DOI: 10.1016/j.scitotenv.2023.169167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Climate change is affecting forest ecosystems globally, in particular through warming as well as increases in the frequency and intensity of extreme events. Norway spruce (Picea abies (L.) Karst.) is one of the most important coniferous tree species in Europe. In recent extremely dry years in Central Europe, spruce suffered and large dieback has been observed. In parts of Eastern Europe, however, no large-scale decline in spruce has been reported so far, though anticipated changes in climate pose the question how the future of these forests may look like. To assess the current state of spruce forests in Eastern Europe, we established a tree-ring network consisting of 157 Norway spruce chronologies (from >3000 trees) of different ages distributed along elevational transects in the Eastern Carpathians, Romania. We evaluated early warning signals of climate change-induced stress, i.e. (1) growth decline, (2) increased sensitivity of tree growth (assessed over the statistics first-order autocorrelation and standard deviation), and (3) increased growth synchrony. A pronounced growth decline was observed over the last two decades, which was strongest in younger stands and at lower elevations. However, growth sensitivity and synchrony did not show consistent patterns, suggesting that forest decline may not be immediately imminent. Overall, our findings highlight an increased vulnerability of spruce in the Eastern Carpathians. With ongoing climate change, spruce dieback may be expected in this part of Europe as well.
Collapse
Affiliation(s)
- Andrei Popa
- National Institute for Research and Development in Forestry 'Marin Dracea', Bucharest, Romania; Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Brasov, Romania.
| | | | - Ionel Popa
- National Institute for Research and Development in Forestry 'Marin Dracea', Bucharest, Romania; Center for Mountain Economy (CE-MONT), Vatra Dornei, Romania
| | | |
Collapse
|
24
|
Neycken A, Wohlgemuth T, Frei ER, Klesse S, Baltensweiler A, Lévesque M. Slower growth prior to the 2018 drought and a high growth sensitivity to previous year summer conditions predisposed European beech to crown dieback. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169068. [PMID: 38049004 DOI: 10.1016/j.scitotenv.2023.169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The record-breaking drought in 2018 caused premature leaf discoloration and shedding (early browning) in many beech (Fagus sylvatica L.) dominated forests in Central Europe. However, a high degree of variability in drought response among individual beech trees was observed. While some trees were severely impacted by the prolonged water deficits and high temperatures, others remained vital with no or only minor signs of crown vitality loss. Why some beech trees were more susceptible to drought-induced crown damage than others and whether growth recovery is possible are poorly understood. Here, we aimed to identify growth characteristics associated with the variability in drought response between individual beech trees based on a sample of 470 trees in northern Switzerland. By combining tree growth measurements and crown condition assessments, we also investigated the possible link between crown dieback and growth recovery after drought. Beech trees with early browning exhibited an overall lower growth vigor before the 2018 drought than co-occurring vital beech trees. This lower vigor is mainly indicated by lower overall growth rates, stronger growth declines in the past decades, and higher growth-climate sensitivity. Particularly, warm previous year summer conditions negatively affected current growth of the early-browning trees. These findings suggest that the affected trees had less access to critical resources and were physiologically limited in their growth predisposing them to early browning. Following the 2018 drought, observed growth recovery potential corresponded to the amount of crown dieback and the local climatic water balance. Overall, our findings emphasize that beech-dominated forests in Central Europe are under increasing pressure from severe droughts, ultimately reducing the competitive ability of this species, especially on lowland sites with shallow soils and low water holding capacity.
Collapse
Affiliation(s)
- Anna Neycken
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich 8092, Switzerland.
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland; Climate Change and Extremes in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| | - Stefan Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Andri Baltensweiler
- Forest Resources and Management, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Mathieu Lévesque
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
25
|
Matsala M, Odruzhenko A, Hinchuk T, Myroniuk V, Drobyshev I, Sydorenko S, Zibtsev S, Milakovsky B, Schepaschenko D, Kraxner F, Bilous A. War drives forest fire risks and highlights the need for more ecologically-sound forest management in post-war Ukraine. Sci Rep 2024; 14:4131. [PMID: 38374396 PMCID: PMC10876951 DOI: 10.1038/s41598-024-54811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
Since 24 February 2022, Ukraine has experienced full-scale military aggression initiated by the Russian Federation. The war has had a major negative impact on vegetation cover of war-affected regions. We explored interactions between pre-war forest management and the impacts of military activities in three of the most forested Ukrainian areas of interest (AOI), affected by the war. These were forests lying between Kharkiv and Luhansk cities (AOI 'East'), forests along the Dnipro River delta (AOI 'Kherson'), and those of the Chornobyl Exclusion Zone (AOI CEZ). We used Sentinel satellite imagery to create damaged forest cover masks for the year 2022. We mapped forests with elevated fire hazard, which was defined as a degree of exposure to the fire-supporting land use (mostly an agricultural land, a common source of ignitions in Ukraine). We evaluated the forest disturbance rate in 2022, as compared to pre-war rates. We documented significant increases in non-stand replacing disturbances (low severity fires and non-fire disturbances) for all three of the AOIs. Damaged forest cover varied among the AOIs (24,180 ± 4,715 ha, or 9.3% ± 1.8% in the 'East' AOI; 7,293 ± 1,925 ha, or 15.7% ± 4.1% in the 'Kherson' AOI; 7,116 ± 1,274 ha, or 5.0% ± 0.9% in the CEZ AOI). Among the forests damaged in 2022, the 'Kherson' AOI will likely have the highest proportion of an area with elevated fire hazard in the coming decades, as compared to other regions (89% vs. 70% in the 'East' and CEZ AOIs respectively). Future fire risks and extensive war-related disturbance of forest cover call for forest management to develop strategies explicitly addressing these factors.
Collapse
Affiliation(s)
- Maksym Matsala
- Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Andrii Odruzhenko
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Taras Hinchuk
- Ukrainian Hydrometeorological Institute, Kyiv, Ukraine
| | - Viktor Myroniuk
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Igor Drobyshev
- Swedish University of Agricultural Sciences, Alnarp, Sweden
- University of Quebec at Abitibi-Temiscamingue, Ville-Marie, Canada
| | - Serhii Sydorenko
- Ukrainian Order 'Sign of Honor' Research Institute of Forestry and Forest Melioration Named After G. M. Vysotsky, Kharkiv, Ukraine
| | - Sergiy Zibtsev
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | | | - Florian Kraxner
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Andrii Bilous
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
26
|
Wu Y, Yin X, Zhou G, Bruijnzeel LA, Dai A, Wang F, Gentine P, Zhang G, Song Y, Zhou D. Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin. Nat Commun 2024; 15:823. [PMID: 38280877 PMCID: PMC10821892 DOI: 10.1038/s41467-023-44562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/19/2023] [Indexed: 01/29/2024] Open
Abstract
Droughts or floods are usually attributed to precipitation deficits or surpluses, both of which may become more frequent and severe under continued global warming. Concurring large-scale droughts in the Southwest and flooding in the Southeast of China in recent decades have attracted considerable attention, but their causes and interrelations are not well understood. Here, we examine spatiotemporal changes in hydrometeorological variables and investigate the mechanism underlying contrasting soil dryness/wetness patterns over a 54-year period (1965-2018) across a representative mega-watershed in South China-the West River Basin. We demonstrate that increasing rainfall intensity leads to severe drying upstream with decreases in soil water storage, water yield, and baseflow, versus increases therein downstream. Our study highlights a simultaneous occurrence of increased drought and flooding risks due to contrasting interactions between rainfall intensification and topography across the river basin, implying increasingly vulnerable water and food security under continued climate change.
Collapse
Affiliation(s)
- Yiping Wu
- Institute of Global Environmental Change, Department of Earth & Environmental Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
- National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an, 710061, PR China
| | - Xiaowei Yin
- Institute of Global Environmental Change, Department of Earth & Environmental Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Guoyi Zhou
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - L Adrian Bruijnzeel
- Department of Geography, King's College London, London, WC2B 4BG, UK
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650091, PR China
| | - Aiguo Dai
- Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Fan Wang
- Institute of Global Environmental Change, Department of Earth & Environmental Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Earth Institute, Columbia University, New York, NY, 10027, USA
| | - Guangchuang Zhang
- Institute of Global Environmental Change, Department of Earth & Environmental Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Yanni Song
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co. Ltd and Xi'an Jiaotong University, Xi'an, 710115, PR China
| | - Decheng Zhou
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| |
Collapse
|
27
|
Cheng Y, Oehmcke S, Brandt M, Rosenthal L, Das A, Vrieling A, Saatchi S, Wagner F, Mugabowindekwe M, Verbruggen W, Beier C, Horion S. Scattered tree death contributes to substantial forest loss in California. Nat Commun 2024; 15:641. [PMID: 38245523 PMCID: PMC10799937 DOI: 10.1038/s41467-024-44991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
In recent years, large-scale tree mortality events linked to global change have occurred around the world. Current forest monitoring methods are crucial for identifying mortality hotspots, but systematic assessments of isolated or scattered dead trees over large areas are needed to reduce uncertainty on the actual extent of tree mortality. Here, we mapped individual dead trees in California using sub-meter resolution aerial photographs from 2020 and deep learning-based dead tree detection. We identified 91.4 million dead trees over 27.8 million hectares of vegetated areas (16.7-24.7% underestimation bias when compared to field data). Among these, a total of 19.5 million dead trees appeared isolated, and 60% of all dead trees occurred in small groups ( ≤ 3 dead trees within a 30 × 30 m grid), which is largely undetected by other state-level monitoring methods. The widespread mortality of individual trees impacts the carbon budget and sequestration capacity of California forests and can be considered a threat to forest health and a fuel source for future wildfires.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| | - Stefan Oehmcke
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Brandt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Rosenthal
- US Geological Survey, Western Ecological Research Center, Three Rivers, Sequoia and Kings Canyon Field Station, Three Rivers, CA, USA
| | - Adrian Das
- US Geological Survey, Western Ecological Research Center, Three Rivers, Sequoia and Kings Canyon Field Station, Three Rivers, CA, USA
| | - Anton Vrieling
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Sassan Saatchi
- University of California, Los Angeles, CA, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Fabien Wagner
- University of California, Los Angeles, CA, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Maurice Mugabowindekwe
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Wim Verbruggen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Claus Beier
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Stéphanie Horion
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Felton A, Belyazid S, Eggers J, Nordström EM, Öhman K. Climate change adaptation and mitigation strategies for production forests: Trade-offs, synergies, and uncertainties in biodiversity and ecosystem services delivery in Northern Europe. AMBIO 2024; 53:1-16. [PMID: 37592197 PMCID: PMC10692060 DOI: 10.1007/s13280-023-01909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Climate change adaptation and mitigation strategies (CCAMS) are changes to the management of production forests motivated by the need to mitigate climate change, or adapt production forests to climate change risks. Sweden is employing CCAMS with unclear implications for biodiversity and forest ecosystem services (ES). Here, we synthesized evidence from 51 published scientific reviews, to evaluate the potential implications for biodiversity and a range of provisioning, regulating, and cultural ES, from the adoption of CCAMS relative to standard forestry practice. The CCAMS assessed were the adoption of (i) mixed-species stands, (ii) continuous cover forestry, (iii) altered rotation lengths, (iv) conversion to introduced tree species, (v) logging residue extraction, (vi) stand fertilization, and (vii) altered ditching/draining practices. We highlight the complexity of biodiversity and ES outcomes, identify knowledge gaps, and emphasize the importance of evidence-based decision making and landscape-scale planning when navigating choices involving the widespread adoption of CCAMS.
Collapse
Affiliation(s)
- Adam Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Rörsjöv 1, Box 49, 230 53, Alnarp, Sweden.
| | - Salim Belyazid
- Department of Physical Geography, Stockholm University, 106 91, Stockholm, Sweden
| | - Jeannette Eggers
- Division of Forest Planning, Department of Forest Resource Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Eva-Maria Nordström
- Division of Forest Planning, Department of Forest Resource Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Karin Öhman
- Division of Forest Planning, Department of Forest Resource Management, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
29
|
Vue Z, Ajayi PT, Neikirk K, Murphy AC, Prasad P, Jenkins BC, Vang L, Garza-Lopez E, Mungai M, Marshall AG, Beasley HK, Killion M, Parker R, Anukodem J, Lavine K, Ajijola O, Mobley BC, Dai DF, Exil V, Kirabo A, Su YR, Tomasek K, Zhang X, Wanjalla C, Hubert DL, Phillips MA, Shao JQ, McReynolds MR, Glancy B, Hinton A. Human Heart Failure Alters Mitochondria and Fiber 3D Structure Triggering Metabolic Shifts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569095. [PMID: 38076993 PMCID: PMC10705476 DOI: 10.1101/2023.11.28.569095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
This study, utilizing SBF-SEM, reveals structural alterations in mitochondria and myofibrils in human heart failure (HF). Mitochondria in HF show changes in structure, while myofibrils exhibit increased cross-sectional area and branching. Metabolomic and lipidomic analyses indicate concomitant dysregulation in key pathways. The findings underscore the need for personalized treatments considering individualized structural changes in HF.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Peter T. Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita C. Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Remi Parker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Josephs Anukodem
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Bret C. Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232 USA
| | - Dao-Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yan Ru Su
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kelsey Tomasek
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xiuqi Zhang
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, 37232, USA
| | - Celestine Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, 37232, USA
| | - David L. Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Jian-qiang Shao
- Central Microscopy Research Facility, Iowa City, IA 52242, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
- NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
30
|
Rybar J, Sitková Z, Marcis P, Pavlenda P, Pajtík J. Declining Radial Growth in Major Western Carpathian Tree Species: Insights from Three Decades of Temperate Forest Monitoring. PLANTS (BASEL, SWITZERLAND) 2023; 12:4081. [PMID: 38140406 PMCID: PMC10747720 DOI: 10.3390/plants12244081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
This study investigates the radial growth response of five key European forest tree species, i.e., Fagus sylvatica, Picea abies, Abies alba, Quercus petraea, and Pinus sylvestris, to dry years in the West Carpathians, Slovakia. Utilizing data from ICP Forests Level I plots, we identified species-specific growth declines, particularly in Pinus sylvestris and Fagus sylvatica, with milder radial growth declines for Quercus petraea and Picea abies. Abies alba exhibited a growth peak in the mid-2000s, followed by a decline in the end of the observed period. Elevation emerged as the only significant environmental predictor, explaining 3.5% of growth variability during dry periods, suggesting a potential mitigating effect. The scope of this study was limited by the complex interplay of ecological factors that influence tree growth, which vary across the ICP Forests Level I monitoring sites. Nonetheless, our findings enhance the understanding of species-specific growth responses and offer insights for the climate-smart management of temperate forests under changing conditions.
Collapse
Affiliation(s)
- Jergus Rybar
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Zuzana Sitková
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
| | - Peter Marcis
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
- Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Pavel Pavlenda
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
| | - Jozef Pajtík
- National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01 Zvolen, Slovakia; (Z.S.); (P.M.); (P.P.); (J.P.)
| |
Collapse
|
31
|
Kong L, Song Q, Wei H, Wang Y, Lin M, Sun K, Zhang Y, Yang J, Li C, Luo K. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. THE NEW PHYTOLOGIST 2023; 240:1848-1867. [PMID: 37691138 DOI: 10.1111/nph.19251] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Drought stress is one of the major limiting factors for the growth and development of perennial trees. Xylem vessels act as the center of water conduction in woody species, but the underlying mechanism of its development and morphogenesis under water-deficient conditions remains elucidation. Here, we identified and characterized an osmotic stress-induced ETHYLENE RESPONSE FACTOR 15 (PtoERF15) and its target, PtoMYC2b, which was involved in mediating vessel size, density, and cell wall thickness in response to drought in Populus tomentosa. PtoERF15 is preferentially expressed in differentiating xylem of poplar stems. Overexpression of PtoERF15 contributed to stem water potential maintaining, thus promoting drought tolerance. RNA-Seq and biochemical analysis further revealed that PtoERF15 directly regulated PtoMYC2b, encoding a switch of JA signaling pathway. Additionally, our findings verify that three sets of homologous genes from NAC (NAM, ATAF1/2, and CUC2) gene family: PtoSND1-A1/A2, PtoVND7-1/7-2, and PtoNAC118/120, as the targets of PtoMYC2b, are involved in the regulation of vessel morphology in poplar. Collectively, our study provides molecular evidence for the involvement of the PtoERF15-PtoMYC2b transcription cascade in maintaining stem water potential through the regulation of xylem vessel development, ultimately improving drought tolerance in poplar.
Collapse
Affiliation(s)
- Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hongbin Wei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yanhong Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Minghui Lin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Kuan Sun
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqian Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiarui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Maize Research Institute, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creationin Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
32
|
Ashraf MZ, Mogilicherla K, Sellamuthu G, Siino V, Levander F, Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). FRONTIERS IN PLANT SCIENCE 2023; 14:1157455. [PMID: 38078109 PMCID: PMC10703158 DOI: 10.3389/fpls.2023.1157455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.
Collapse
Affiliation(s)
- Muhammad Zubair Ashraf
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
33
|
Jaeger FC, Handa IT, Paquette A, Parker WC, Messier C. Young temperate tree species show different fine root acclimation capacity to growing season water availability. PLANT AND SOIL 2023; 496:485-504. [PMID: 38510944 PMCID: PMC10948563 DOI: 10.1007/s11104-023-06377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 03/22/2024]
Abstract
Background and aims Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years. Methods Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Acer saccharum Marsh., Betula papyrifera Marsh., Larix laricina K. Koch, Pinus strobus L., Picea glauca (Moench) Voss and Quercus rubra L. established at the International Diversity Experiment Network with Trees (IDENT) field experiment in Sault Ste. Marie, Ontario, Canada. Four replicates of each monoculture were subjected to high or low water availability treatments. Results Absorptive fine root density increased by 67% for Larix laricina, and 90% for Picea glauca, under the high-water availability treatment at 0-5 cm soil depth. The two late successional, slower growing tree species, Acer saccharum and Picea glauca, showed higher plasticity in absorptive fine root biomass in the upper 5 cm of soil (PIv = 0.36 & 0.54 respectively), and lower plasticity in fine root depth over the entire 30 cm soil profile compared to the early successional, faster growing tree species Betula papyrifera and Larix laricina. Conclusion Temperate tree species show contrasting acclimation responses in absorptive fine root biomass and rooting depth to differences in water availability. Some of these responses vary with tree species successional status and seem to benefit both early and late successional tree species. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-06377-w.
Collapse
Affiliation(s)
- Florentin C. Jaeger
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - I. Tanya Handa
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - Alain Paquette
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
| | - William C. Parker
- Forest Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Sault Ste. Marie, ON Canada
| | - Christian Messier
- Centre for Forest Research, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC Canada
- Institut des Sciences de La Forêt tempérée, Université du Québec en Outaouais, Ripon, Canada
| |
Collapse
|
34
|
Miranda A, Syphard AD, Berdugo M, Carrasco J, Gómez-González S, Ovalle JF, Delpiano CA, Vargas S, Squeo FA, Miranda MD, Dobbs C, Mentler R, Lara A, Garreaud R. Widespread synchronous decline of Mediterranean-type forest driven by accelerated aridity. NATURE PLANTS 2023; 9:1810-1817. [PMID: 37845335 DOI: 10.1038/s41477-023-01541-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Large-scale, abrupt ecosystem change in direct response to climate extremes is a critical but poorly documented phenomenon1. Yet, recent increases in climate-induced tree mortality raise concern that some forest ecosystems are on the brink of collapse across wide environmental gradients2,3. Here we assessed climatic and productivity trends across the world's five Mediterranean forest ecosystems from 2000 to 2021 and detected a large-scale, abrupt forest browning and productivity decline in Chile (>90% of the forest in <100 days), responding to a sustained, acute drought. The extreme dry and warm conditions in Chile, unprecedented in the recent history of all Mediterranean-type ecosystems, are akin to those projected to arise in the second half of the century4. Long-term recovery of this forest is uncertain given an ongoing decline in regional water balance. This dramatic plummet of forest productivity may be a spyglass to the future for other Mediterranean ecosystems.
Collapse
Affiliation(s)
- Alejandro Miranda
- Laboratorio de Ecología del Paisaje y Conservación, Departamento de Ciencias Forestales, Universidad de La Frontera, Temuco, Chile.
- Center for Climate and Resilience Research (CR2), Santiago, Chile.
| | - Alexandra D Syphard
- Department of Geography, San Diego State University, San Diego, CA, USA
- Conservation Biology Institute, Corvallis, OR, USA
| | - Miguel Berdugo
- Institute of Integrative Biology, Department of Environment Systems Science, ETH Zurich, Zürich, Switzerland
| | - Jaime Carrasco
- Departamento de Industria, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Susana Gómez-González
- Center for Climate and Resilience Research (CR2), Santiago, Chile
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Puerto Real, Spain
- Center for Fire and Socioecological Systems (FireSES), Universidad Austral de Chile, Valdivia, Chile
| | - Juan F Ovalle
- Facultad de Ciencias Forestales y de La Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Cristian A Delpiano
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Solange Vargas
- Departamento de Química y Biología, Facultad de Ciencias Naturales, Universidad de Atacama, Copiapó, Chile
| | - Francisco A Squeo
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Marcelo D Miranda
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cynnamon Dobbs
- Department of Natural Resources and the Environment, University of Connecticut, Mansfield, CT, USA
| | - Rayen Mentler
- Center for Climate and Resilience Research (CR2), Santiago, Chile
| | - Antonio Lara
- Center for Climate and Resilience Research (CR2), Santiago, Chile
- Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
- Fundación Centro de los Bosques Nativos FORECOS, Valdivia, Chile
| | - René Garreaud
- Center for Climate and Resilience Research (CR2), Santiago, Chile
- Departamento de Geofísica, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Wang J, Yan R, Wu G, Liu Y, Wang M, Zeng N, Jiang F, Wang H, He W, Wu M, Ju W, Chen JM. Unprecedented decline in photosynthesis caused by summer 2022 record-breaking compound drought-heatwave over Yangtze River Basin. Sci Bull (Beijing) 2023; 68:2160-2163. [PMID: 37598060 DOI: 10.1016/j.scib.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Jun Wang
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Ran Yan
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Guoxiong Wu
- State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yimin Liu
- State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Meirong Wang
- Joint Center for Data Assimilation Research and Applications, Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ning Zeng
- Department of Atmospheric and Oceanic Science and Earth System Interdisciplinary Center, University of Maryland, College Park MD 20742, USA
| | - Fei Jiang
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Hengmao Wang
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Wei He
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Mousong Wu
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Weimin Ju
- Frontiers Science Center for Critical Earth Material Cycling, International Institute for Earth System Science, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jing M Chen
- Department of Geography and Planning, University of Toronto, Toronto ON M5S3G3, Canada
| |
Collapse
|
36
|
Zhang X, Tong C, Fang D, Mei T, Li Y. Different hydraulic and photosynthetic responses to summer drought between newly sprouted and established Moso bamboo culms. FRONTIERS IN PLANT SCIENCE 2023; 14:1252862. [PMID: 37900750 PMCID: PMC10602750 DOI: 10.3389/fpls.2023.1252862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
The subtropical regions in China are prone to recurrent summer droughts induced by the Western Pacific Subtropical High-Pressure, which has induced the death of tens of millions of culms of Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), a widely distributed giant bamboo with high economic and ecological values. In the future, the intensity and frequency of the summer drought are projected to increase in these areas due to global climate change, which may lead to significant age-specific mortality of Moso bamboo. So far, it is still unclear about the age-specific response mechanisms of hydraulic traits and carbon balance of Moso bamboo when it is suffering to an ongoing summer drought. This study aimed to investigate the hydraulic and photosynthetic responses of newly sprouted (1 year old) and established (2-5 years old) culms of Moso bamboo to summer drought, which was manipulated by throughfall reduction in Lin'an of Zhejiang. The results showed that both newly sprouted and established culms had a gradually weakening hydraulic conductivity and photosynthesis during the whole drought process. In the early stage of the manipulated drought, the established culms had more loss of hydraulic conductivity than the newly sprouted culms. However, the newly sprouted culms had significant more loss of hydraulic conductivity and lower photosynthetic rates and stomatal conductance in the middle and late stages of the manipulated drought. The results suggest that the newly sprouted culms were more susceptible to summer drought than established culms due to the combined effects of hydraulic damage and photosynthetic restriction, explaining why the newly sprouted culms have higher mortality than elder culms when subjected to extreme drought. These findings provided insights into the mechanisms of Moso bamboo's age-specific drought-induced mortality, which will help for the anti-drought management of bamboo.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Chazi Tong
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Dongming Fang
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
- College of Horticulture, Jiyang College of Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, China
| | - Tingting Mei
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Yan Li
- State Key Laboratory of Subtropical Silvilculture, Zhejiang A&F University, Lin’an, Zhejiang, China
| |
Collapse
|
37
|
Entezari A, Esan OC, Yan X, Wang R, An L. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210957. [PMID: 36869587 DOI: 10.1002/adma.202210957] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Freshwater scarcity is a global challenge posing threats to the lives and daily activities of humankind such that two-thirds of the global population currently experience water shortages. Atmospheric water, irrespective of geographical location, is considered as an alternative water source. Sorption-based atmospheric water harvesting (SAWH) has recently emerged as an efficient strategy for decentralized water production. SAWH thus opens up a self-sustaining source of freshwater that can potentially support the global population for various applications. In this review, the state-of-the-art of SAWH, considering its operation principle, thermodynamic analysis, energy assessment, materials, components, different designs, productivity improvement, scale-up, and application for drinking water, is first extensively explored. Thereafter, the practical integration and potential application of SAWH, beyond drinking water, for wide range of utilities in agriculture, fuel/electricity production, thermal management in building services, electronic devices, and textile are comprehensively discussed. The various strategies to reduce human reliance on natural water resources by integrating SAWH into existing technologies, particularly in underdeveloped countries, in order to satisfy the interconnected needs for food, energy, and water are also examined. This study further highlights the urgent need and future research directions to intensify the design and development of hybrid-SAWH systems for sustainability and diverse applications.
Collapse
Affiliation(s)
- Akram Entezari
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Oladapo Christopher Esan
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiaohui Yan
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ruzhu Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
38
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
39
|
Metze D, Schnecker J, Canarini A, Fuchslueger L, Koch BJ, Stone BW, Hungate BA, Hausmann B, Schmidt H, Schaumberger A, Bahn M, Kaiser C, Richter A. Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions. Nat Commun 2023; 14:5895. [PMID: 37736743 PMCID: PMC10516970 DOI: 10.1038/s41467-023-41524-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change increases the frequency and intensity of drought events, affecting soil functions including carbon sequestration and nutrient cycling, which are driven by growing microorganisms. Yet we know little about microbial responses to drought due to methodological limitations. Here, we estimate microbial growth rates in montane grassland soils exposed to ambient conditions, drought, and potential future climate conditions (i.e., soils exposed to 6 years of elevated temperatures and elevated CO2 levels). For this purpose, we combined 18O-water vapor equilibration with quantitative stable isotope probing (termed 'vapor-qSIP') to measure taxon-specific microbial growth in dry soils. In our experiments, drought caused >90% of bacterial and archaeal taxa to stop dividing and reduced the growth rates of persisting ones. Under drought, growing taxa accounted for only 4% of the total community as compared to 35% in the controls. Drought-tolerant communities were dominated by specialized members of the Actinobacteriota, particularly the genus Streptomyces. Six years of pre-exposure to future climate conditions (3 °C warming and + 300 ppm atmospheric CO2) alleviated drought effects on microbial growth, through more drought-tolerant taxa across major phyla, accounting for 9% of the total community. Our results provide insights into the response of active microbes to drought today and in a future climate, and highlight the importance of studying drought in combination with future climate conditions to capture interactive effects and improve predictions of future soil-climate feedbacks.
Collapse
Affiliation(s)
- Dennis Metze
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Benjamin J Koch
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Schaumberger
- Agricultural Research and Education Centre Raumberg-Gumpenstein, Irdning, Austria
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- International Institute for Applied Systems Analysis, Advancing Systems Analysis Program, Laxenburg, Austria.
| |
Collapse
|
40
|
García-García I, Méndez-Cea B, González de Andrés E, Gazol A, Sánchez-Salguero R, Manso-Martínez D, Horreo JL, Camarero JJ, Linares JC, Gallego FJ. Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2607. [PMID: 37514222 PMCID: PMC10384727 DOI: 10.3390/plants12142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Ongoing climatic change is threatening the survival of drought-sensitive tree species, such as silver fir (Abies alba). Drought-induced dieback had been previously explored in this conifer, although the role played by tree-level genetic diversity and its relationship with growth patterns and soil microsite conditions remained elusive. We used double digest restriction-site-associated DNA sequencing (ddRADseq) to describe different genetic characteristics of five silver fir forests in the Spanish Pyrenees, including declining and non-declining trees. Single nucleotide polymorphisms (SNPs) were used to investigate the relationships between genetics, dieback, intraspecific trait variation (functional dendrophenotypic traits and leaf traits), local bioclimatic conditions, and rhizosphere soil properties. While there were no noticeable genetic differences between declining and non-declining trees, genome-environment associations with selection signatures were abundant, suggesting a strong influence of climate, soil physicochemical properties, and soil microbial diversity on local adaptation. These results provide novel insights into how genetics and diverse environmental factors are interrelated and highlight the need to incorporate genetic data into silver fir forest dieback studies to gain a better understanding of local adaptation.
Collapse
Affiliation(s)
- Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Belén Méndez-Cea
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059 Zaragoza, Spain
| | - Raúl Sánchez-Salguero
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - David Manso-Martínez
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jose Luis Horreo
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059 Zaragoza, Spain
| | - Juan Carlos Linares
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francisco Javier Gallego
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de CC Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
41
|
Putzenlechner B, Koal P, Kappas M, Löw M, Mundhenk P, Tischer A, Wernicke J, Koukal T. Towards precision forestry: Drought response from remote sensing-based disturbance monitoring and fine-scale soil information in Central Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163114. [PMID: 37011694 DOI: 10.1016/j.scitotenv.2023.163114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Prolonged drought and susceptibility to biotic stressors induced an extensive calamity in Norway spruce (Picea abies (L.) Karst.) and widespread crown defoliation in European beech (Fagus sylvatica L.) in Central Europe. For future management decisions, it is crucial to link changes in canopy cover to site conditions. However, current knowledge on the role of soil properties for drought-induced forest disturbance is limited due to the scarcity and low spatial resolution of soil information. We present a fine-scale assessment on the role of soil properties for forest disturbance in Norway spruce and European beech derived from optical remote sensing. A forest disturbance modeling framework based on Sentinel-2 time series was applied on 340 km2 in low mountain ranges of Central Germany. Spatio-temporal information on forest disturbance was calculated at 10 m spatial resolution in the period 2019-2021 and intersected with high-resolution soil information (1:10,000) based on roughly 2850 soil profiles. We found distinct differences in disturbed area, depending on soil type, texture, stoniness, effective rooting depth and available water capacity (AWC). For spruce, we found a polynomial relationship between AWC (R2 = 0.7) and disturbance, with highest disturbed area (65 %) for AWC between 90 and 160 mm. Interestingly, we found no evidence for generally higher disturbance on shallow soils, although stands on the deepest soils were significantly less affected. Noteworthy, sites affected first did not necessarily exhibit highest proportions of disturbed area post-drought, indicating recovery or adaptation. We conclude that site- and species-specific understanding of drought impacts benefits from a combination of remote sensing and fine-scale soil information. Since our approach revealed which sites were affected first and most, it qualifies for prioritizing in situ monitoring activities to most vulnerable stands in acute drought conditions as well as for developing long-term strategies for reforestation and site-specific risk assessment for precision forestry.
Collapse
Affiliation(s)
- Birgitta Putzenlechner
- Institute of Geography, Dep. Cartography, GIS and Remote Sensing, Georg-August-University, Goldschmidtstr. 5, 37077 Göttingen, Germany.
| | - Philipp Koal
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Martin Kappas
- Institute of Geography, Dep. Cartography, GIS and Remote Sensing, Georg-August-University, Goldschmidtstr. 5, 37077 Göttingen, Germany
| | - Markus Löw
- Federal Research and Training Centre for Forests Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130 Vienna, Austria
| | - Philip Mundhenk
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Alexander Tischer
- Institute of Geography, Friedrich-Schiller-University, Löbdergraben 32, 07743 Jena, Germany
| | - Jakob Wernicke
- Forestry Research and Competence Centre, ThüringenForst AöR, Jägerstr. 1, 99867 Gotha, Germany
| | - Tatjana Koukal
- Federal Research and Training Centre for Forests Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, 1130 Vienna, Austria
| |
Collapse
|
42
|
Bogdziewicz M, Kelly D, Tanentzap AJ, Thomas P, Foest J, Lageard J, Hacket-Pain A. Reproductive collapse in European beech results from declining pollination efficiency in large trees. GLOBAL CHANGE BIOLOGY 2023. [PMID: 37177909 DOI: 10.1111/gcb.16730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Climate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production ("masting breakdown") which can increase seed predation and decrease pollination efficiency in trees. Here, using 40 years of observations of individual seed production in European beech (Fagus sylvatica), we showed that masting breakdown results in declining viable seed production over time, in contrast to the positive trend apparent in raw seed count data. Furthermore, tree size modulates the consequences of masting breakdown on viable seed production. While seed predation increased over time mainly in small trees, pollination efficiency disproportionately decreased in larger individuals. Consequently, fecundity declined over time across all size classes, but the overall effect was greatest in large trees. Our study showed that a fundamental biological relationship-correlation between tree size and viable seed production-has been reversed as the climate has warmed. That reversal has diverse consequences for forest dynamics; including for stand- and biogeographical-level dynamics of forest regeneration. The tree size effects suggest management options to increase forest resilience under changing climates.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Peter Thomas
- School of Life Sciences, Keele University, Keele, UK
| | - Jessie Foest
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Jonathan Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H. Nutrient regime modulates drought response patterns of three temperate tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161601. [PMID: 36646222 DOI: 10.1016/j.scitotenv.2023.161601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Against the backdrop of global change, the intensity, duration, and frequency of droughts are projected to increase and threaten forest ecosystems worldwide. Tree responses to drought are complex and likely to vary among species, drought characteristics, and site conditions. Here, we examined the drought response patterns of three major temperate tree species, s. fir (Abies alba), E. beech (Fagus sylvatica), and N. spruce (Picea abies), along an ecological gradient in the South - Central - East part of Germany that included a total of 37 sites with varying climatic and soil conditions. We relied on annual tree-ring data to assess the influence of different drought characteristics and (micro-) site conditions on components of tree resilience and to detect associated temporal changes. Our study revealed that nutrient regime, drought frequency, and hydraulic conditions in the previous and subsequent years were the main determinants of drought responses, with pronounced differences among species. Specifically, we found that (a) higher drought frequency was associated with higher resistance and resilience for N. spruce and E. beech; (b) more favorable climatic conditions in the two preceding and following years increased drought resilience and determined recovery potential of E. beech after extreme drought; (c) a site's nutrient regime, rather than micro-site differences in water availability, determined drought responses, with trees growing on sites with a balanced nutrient regime having a higher capacity to withstand extreme drought stress; (d) E. beech and N. spruce experienced a long-term decline in resilience. Our results indicate that trees under extreme drought stress benefit from a balanced nutrient supply and highlight the relevance of water availability immediately after droughts. Observed long-term trends confirm that N. spruce is suffering from persistent climatic changes, while s. fir is coping better. These findings might be especially relevant for monitoring, scenario analyses, and forest ecosystem management.
Collapse
Affiliation(s)
- Gerhard Schmied
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Torben Hilmers
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Mellert
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Enno Uhl
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Vincent Buness
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Dominik Ambs
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Mathias Steckel
- Forst Baden-Württemberg (AöR), State Forest Enterprise Baden-Württemberg, Germany
| | - Peter Biber
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Muhidin Šeho
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Yves-Daniel Hoffmann
- Bavarian Office for Forest Genetics, Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| |
Collapse
|
44
|
Johnson DM, Haynes KJ. Spatiotemporal dynamics of forest insect populations under climate change. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101020. [PMID: 36906142 DOI: 10.1016/j.cois.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Effects of climate on forest insect populations are complex, often involving drivers that are opposing, nonlinear, and nonadditive. Overall, climate change is driving an increase in outbreaks and range shifts. Links between climate and forest insect dynamics are becoming clearer; however, the underlying mechanisms remain less clear. Climate alters forest insect population dynamics directly through life history, physiology, and voltinism, and indirectly through effects on host trees and natural enemies. Climatic effects on bark beetles, wood-boring insects, and sap-suckers are often indirect, through effects on host-tree susceptibility, whereas climatic effects on defoliators are comparatively more direct. We recommend process-based approaches to global distribution mapping and population models to identify the underlying mechanisms and enable effective management of forest insects.
Collapse
Affiliation(s)
| | - Kyle J Haynes
- University of Virginia, Blandy Experimental Farm, Boyce, VA 22620, USA
| |
Collapse
|
45
|
Patacca M, Lindner M, Lucas‐Borja ME, Cordonnier T, Fidej G, Gardiner B, Hauf Y, Jasinevičius G, Labonne S, Linkevičius E, Mahnken M, Milanovic S, Nabuurs G, Nagel TA, Nikinmaa L, Panyatov M, Bercak R, Seidl R, Ostrogović Sever MZ, Socha J, Thom D, Vuletic D, Zudin S, Schelhaas M. Significant increase in natural disturbance impacts on European forests since 1950. GLOBAL CHANGE BIOLOGY 2023; 29:1359-1376. [PMID: 36504289 PMCID: PMC10107665 DOI: 10.1111/gcb.16531] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 05/26/2023]
Abstract
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3 /year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.
Collapse
Affiliation(s)
- Marco Patacca
- Wageningen Environmental ResearchWageningen University and ResearchWageningenThe Netherlands
- Forest Ecology and Forest Management GroupWageningen University and ResearchWageningenThe Netherlands
| | | | | | | | - Gal Fidej
- Department for Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Barry Gardiner
- Institut Européen De La Forêt CultivéeCestasFrance
- Department of Forestry Economics and Forest PlanningAlbert‐Ludwigs‐ University FreiburgFreiburg im BreisgauGermany
| | - Ylva Hauf
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz AssociationPotsdamGermany
| | | | - Sophie Labonne
- INRAE, UR LESSEM, University of Grenoble AlpesGrenobleFrance
| | - Edgaras Linkevičius
- Faculty of Forest Sciences and Ecology, Agriculture AcademyVytautas Magnus UniversityKaunasLithuania
| | - Mats Mahnken
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz AssociationPotsdamGermany
- Chair of Forest Growth and Woody Biomass ProductionTU DresdenTharandtGermany
| | - Slobodan Milanovic
- Department of ForestryUniversity of Belgrade Faculty of ForestryBelgradeSerbia
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Gert‐Jan Nabuurs
- Wageningen Environmental ResearchWageningen University and ResearchWageningenThe Netherlands
- Forest Ecology and Forest Management GroupWageningen University and ResearchWageningenThe Netherlands
| | - Thomas A. Nagel
- Department for Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Laura Nikinmaa
- European Forest InstituteBonnGermany
- Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
| | | | - Roman Bercak
- Faculty of Forestry and Wood SciencesCzech University of Life SciencesSuchdolCzech Republic
| | - Rupert Seidl
- School of Life SciencesTechnical University of MunichFreisingGermany
- Berchtesgaden National ParkBerchtesgadenGermany
| | | | - Jaroslaw Socha
- Department of Forest Resources Management, Faculty of ForestryUniversity of Agriculture in KrakowKrakówPoland
| | - Dominik Thom
- Dendrology DepartmentUniversity of ForestrySofiaBulgaria
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVermontUSA
| | | | | | - Mart‐Jan Schelhaas
- Wageningen Environmental ResearchWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
46
|
Margalef-Marrase J, Molowny-Horas R, Jaime L, Lloret F. Modelling the dynamics of Pinus sylvestris forests after a die-off event under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159063. [PMID: 36202357 DOI: 10.1016/j.scitotenv.2022.159063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, die-off events in Pinus sylvestris populations have increased. The causes of these phenomena, which are usually related to local and regional extreme hot droughts, have been extensively investigated from a physiological viewpoint. However, the consequences of die-off process in terms of demography and vegetation dynamics have been less thoroughly addressed. Here, we projected P. sylvestris plot dynamics after a die-off event, under climate change scenarios, considering also their early demographic stages (i.e., seedlings, saplings and ingrowth from the sapling to adult class), to assess the resilience of P. sylvestris populations after such events. We used Integral Projection Models (IPMs) to project future plot structure under current climate, and under RCP4.5 and RCP8.0 climate scenarios, using climatic suitability - extracted from Species Distribution Models - as a covariable in the estimations of vital rates over time. Field data feeding IPMs were obtained from two successive surveys, at the end of the die-off event (2013) and four years later (2017), undertaken on populations situated across the P. sylvestris range of distribution in Catalonia (NE Spain). Plots affected by die-off experienced a loss of large trees, which causes that basal area, tree diameter and tree density will remain lower for decades relative to unaffected plots. After the event, this situation is partially counterbalanced in affected plots by a greater increase in basal area and seedling recruitment into tree stage, thus promoting resilience. However, resilience is delayed under the climate-change scenarios with warmer and drier conditions involving additional physiological stress, due to a reduced abundance of seedlings and a smaller plot basal area. The study shows lagged effect of drought-induced die-off events on forest structure, also revealing stabilizing mechanisms, such as recruitment and tree growth release, which enhance resilience. However, these mechanisms would be jeopardized by oncoming regional warming.
Collapse
Affiliation(s)
| | - Roberto Molowny-Horas
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra 08193, Spain
| | - Luciana Jaime
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra 08193, Spain
| | - Francisco Lloret
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra 08193, Spain; Unitat d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
47
|
Chang Q, He H, Ren X, Zhang L, Feng L, Lv Y, Zhang M, Xu Q, Liu W, Zhang Y, Wang T. Soil moisture drives the spatiotemporal patterns of asymmetry in vegetation productivity responses across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158819. [PMID: 36116661 DOI: 10.1016/j.scitotenv.2022.158819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Increasingly drastic global change is expected to cause hydroclimatic changes, which will influence vegetation productivity and pose a threat to the terrestrial carbon sink. Asymmetry represents an imbalance between vegetation growth and loss of growth during dry and wet periods, respectively. However, the mechanisms of asymmetric plant responses to hydrological changes remain poorly understood. Here, we examined the spatiotemporal patterns of asymmetric responses of vegetation productivity across terrestrial ecosystems in China. We analyzed several observational and satellite-based datasets of plant productivity and several reanalyzed datasets of hydroclimatic variables from 2001 to 2020, and used a random forest model to assess the importance of hydroclimatic variables for these responses. Our results showed that the productivity of >50 % of China's vegetated areas showed a more positive asymmetry (2.3 ± 9.4 %) over the study period, which were distributed broadly in northwest China (mainly grasslands and sparse vegetation ecosystems). Negative asymmetries were most common in forest ecosystems in northeast China. We demonstrated that one-third of vegetated areas tended to exhibit significant changes in asymmetry during 2001-2020. The trend towards stronger positive asymmetry (0.95 % yr-1) was higher than that towards stronger negative asymmetry (-0.55 % yr-1), which is beneficial for the carbon sink. We further showed that in China, soil moisture was a more important driver of spatiotemporal changes in asymmetric productivity than precipitation. We identified thresholds of surface soil moisture (20-30 %, volume water content) and root-zone soil moisture (200-350 mm, equivalent water height) that were associated with changes in asymmetry. Our findings highlight the necessity of considering the dynamic responses of vegetation to hydrological factors in order to fully understand the physiological growth processes of plants and avoid the possible loss of productivity due to future climate change.
Collapse
Affiliation(s)
- Qingqing Chang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoli Ren
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China
| | - Li Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Feng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China
| | - Yan Lv
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihua Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; National Ecological Science Data Center, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- National Ecological Science Data Center, Beijing 100101, China; State Key Laboratory of Grassland Agro-ecosystems, School of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Wang
- National Ecological Science Data Center, Beijing 100101, China; State Key Laboratory of Grassland Agro-ecosystems, School of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
48
|
Thomas A, Marron N, Bonal D, Piutti S, Dallé E, Priault P. Leaf and tree water-use efficiencies of Populus deltoides × P. nigra in mixed forest and agroforestry plantations. TREE PHYSIOLOGY 2022; 42:2432-2445. [PMID: 35870129 DOI: 10.1093/treephys/tpac094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In a global context where water will become a scarce resource under temperate latitudes, managing tree plantations with species associations, i.e., forest mixture or agroforestry, could play a major role in optimizing the sustainable use of this resource. Conceptual frameworks in community ecology suggest that, in mixed plantations, environmental resources such as water may be more efficiently used for carbon acquisition and tree growth thanks to niche complementarity among species. To test the hypotheses behind these conceptual frameworks, we estimated water-use efficiency (WUE) for poplar trees grown in a monoculture, in association with alder trees (forest mixture) and in association with clover leys (agroforestry) in an experimental plantation located in northeastern France. Water-use efficiency was estimated (i) at leaf level through gas exchange measurements and analysis of carbon isotope composition, (ii) at wood level through carbon isotope composition and (iii) at tree level with sap flow sensors and growth increment data. We hypothesized that species interactions would increase WUE of poplars in mixtures due to a reduction in competition and/or facilitation effects due to the presence of the N2-fixing species in mixtures. Poplar trees in both mixture types showed higher WUE than those in the monoculture. The differences we found in WUE between the monoculture and the agroforestry treatment were associated to differences in stomatal conductance and light-saturated net CO2 assimilation rate (at the leaf level) and transpiration (at the tree level), while the differences between the monoculture and the forest mixture were more likely due to differences in stomatal conductance at the leaf level and both transpiration and biomass accumulation at the tree level. Moreover, the more WUE was integrated in time (instantaneous gas exchanges < leaf life span < seasonal wood core < whole tree), the more the differences among treatments were marked.
Collapse
Affiliation(s)
- Anaïs Thomas
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Nicolas Marron
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Séverine Piutti
- Université de Lorraine, INRAE, UMR Laboratoire Agronomie et Environnement (LAE), 54518 Vandœuvre-lès-Nancy, France
| | - Erwin Dallé
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Pierrick Priault
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| |
Collapse
|
49
|
Petrik P, Petek-Petrik A, Kurjak D, Mukarram M, Klein T, Gömöry D, Střelcová K, Frýdl J, Konôpková A. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1287-1296. [PMID: 35238138 DOI: 10.1111/plb.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.
Collapse
Affiliation(s)
- P Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - A Petek-Petrik
- Department of Vegetation Ecology, Institute of Botany CAS, Brno, Czech Republic
| | - D Kurjak
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Mukarram
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - T Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - D Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - K Střelcová
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - J Frýdl
- Forestry and Game Management Research Institute, Jíloviště, Czech Republic
| | - A Konôpková
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
50
|
Kahmen A, Basler D, Hoch G, Link RM, Schuldt B, Zahnd C, Arend M. Root water uptake depth determines the hydraulic vulnerability of temperate European tree species during the extreme 2018 drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1224-1239. [PMID: 36219537 DOI: 10.1111/plb.13476] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
We took advantage of the European 2018 drought and assessed the mechanisms causing differences in drought vulnerability among mature individuals of nine co-occurring tree species at the Swiss Canopy Crane II site in Switzerland. Throughout the drought we monitored leaf water status and determined native embolism formation in the canopy of the trees as indicators of drought vulnerability. We also determined hydraulic vulnerability thresholds (Ψ12 -, Ψ50 - and Ψ88 -values), corresponding hydraulic safety margins (HSMs) and carbohydrate reserves for all species as well as total average leaf area per tree, and used stable isotopes to assess differences in root water uptake depth among the nine species as variables predicting differences in drought vulnerability among species. Marked differences in drought vulnerability were observed among the nine tree species. Six species maintained their water potentials above hydraulic thresholds, while three species, Fagus sylvatica, Carpinus betulus and Picea abies, were pushed beyond their hydraulic thresholds and showed loss of hydraulic conductivity in their canopies at the end of the drought. Embolism resistance thresholds and associated HSMs did not explain why the co-existing species differed in their drought vulnerability, neither did their degree of isohydry, nor their regulation of carbohydrate reserves. Instead, differences in structural-morphological traits, in particular root water uptake depth, were associated with the risk of reaching hydraulic vulnerability thresholds and embolism formation among the nine species. Our study shows that structural-morphological traits, such as root water uptake depth, determine how quickly different species approach hydraulic vulnerability thresholds during a drought event and can thus explain species differences in drought vulnerability among mature field-grown trees.
Collapse
Affiliation(s)
- A Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - D Basler
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - G Hoch
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - R M Link
- Ecophysiology and Vegetation Ecology, Universität Würzburg, Würzburg, Germany
| | - B Schuldt
- Ecophysiology and Vegetation Ecology, Universität Würzburg, Würzburg, Germany
| | - C Zahnd
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| | - M Arend
- Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland
| |
Collapse
|