1
|
Pimentão AR, Ribeiro R, Silva BA, Cuco AP, Castro BB. Ecological impacts of agrochemical and pharmaceutical antifungals on a non-target aquatic host-parasite model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107356. [PMID: 40311400 DOI: 10.1016/j.aquatox.2025.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 05/03/2025]
Abstract
Agrochemical fungicides and their pharmaceutical counterparts are a major anthropogenic threat to the biodiversity of freshwater ecosystems as they affect non-target organisms (including aquatic fungi) and disrupt the processes in which they intervene. The goal of this work was to assess the effects of four common agricultural fungicides differing in their modes of action (azoxystrobin, carbendazim, folpet, and mancozeb) and an antifungal pharmaceutical (clotrimazole) on a host × parasite experimental model. We conducted 21-day life history experiments with Daphnia magna (the host) in the absence or presence of Metschnikowia bicuspidata (a microparasitic yeast) to evaluate the effect of each fungicide on the outcome of this relationship (disease) and the fitness of both host and parasite. Interactive but context-dependent effects were observed in D. magna life history responses upon concomitant exposure to parasite and toxicant. The parasite had a drastic negative effect on host survival and reproduction. Carbendazim, clotrimazole and folpet significantly decreased host fitness. In some cases (depending on the combination of toxicant and measured endpoint), simultaneous exposure of the host to the parasite and fungicides led to a slight decrease in host reproduction, which was absent when only the fungicide was present. In two other cases, the fungicide interfered with the host-parasite relationship: azoxystrobin had an impact on infection intensity (decreasing spore load per host), whereas clotrimazole demonstrated a strong antiparasitic effect, clearing all signs of infection (0 % prevalence). These findings emphasize the context-dependent nature of the interaction between pollution and disease.
Collapse
Affiliation(s)
- A R Pimentão
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - R Ribeiro
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - B A Silva
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - A P Cuco
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - B B Castro
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal.
| |
Collapse
|
2
|
Sugden S, White AB, Lento J, Kurek J, Dimitrovas I, Emry S, Hua X, Ijzerman MM, Kidd KA, Morrow KL, Ollinik JE, Schnell L, Thormeyer M, Edge CB. Legacy effects of four decades of insecticide applications on contemporary riverine benthic macroinvertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126397. [PMID: 40348269 DOI: 10.1016/j.envpol.2025.126397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Insecticides have known effects on riverine benthic macroinvertebrate (BMI) assemblages. However, there is limited understanding of the legacy effects of insecticides, particularly in watersheds that received decades of historical applications. From 1952 to 1993, over 6.2 million ha in the province of New Brunswick (Canada) was treated with one to twelve different insecticides including dichlorodiphenyltrichloroethane (DDT), aminocarb, fenitrothion, and phosphamidon. Using a contemporary BMI dataset that included 274 sites within watersheds that cover 50 % of New Brunswick, we evaluated the relative importance of historical insecticide applications and contemporary environmental variables in explaining variability in BMI assemblages. We found that historical insecticides explained a significant, but small, amount of variation in contemporary assemblages. The number of insecticide applications showed a stronger association with BMI metrics than the total amount of insecticide(s) applied, though contemporary environmental measures such as urban land use, substrate size, geology, and climate all had more explanatory power than insecticide metrics. Our results suggested that while contemporary environmental variables and historical insecticide applications both affect BMI assemblage composition, the former often had a stronger role in structuring assemblages. Recognizing the influence of legacy stressors provides important context for understanding contemporary bioindicator responses to environmental change.
Collapse
Affiliation(s)
- Scott Sugden
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Amy B White
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Jennifer Lento
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, NB, Canada.
| | - Joshua Kurek
- Department of Geography and Environment, Mount Allison University, Sackville, NB, Canada.
| | - Ilya Dimitrovas
- Department of Geography and Environment, Mount Allison University, Sackville, NB, Canada.
| | - Sandra Emry
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Xiaotian Hua
- Quantitative Life Sciences Program, McGill University, Montreal, QC, Canada.
| | - Moira M Ijzerman
- School of Environmental Studies, University of Guelph, Guelph, ON, Canada.
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Katlyn Lm Morrow
- Department of Geography and Environment, Mount Allison University, Sackville, NB, Canada.
| | - Jessica E Ollinik
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada.
| | - Laura Schnell
- Department of Biology, University of Regina, Regina, SK, Canada.
| | - Markus Thormeyer
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Christopher B Edge
- Canadian Forest Service, Natural Resources Canada, Fredericton, NB, Canada.
| |
Collapse
|
3
|
Yan Z, Jin X, Feng C, Leung KMY, Zhang X, Lin Q, Wu F. Beyond the Single-Contaminant Paradigm: Advancing Mixture Toxicity and Cumulative Risk Assessment in Environmental Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40409992 DOI: 10.1021/acs.est.5c05712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaowei Zhang
- School of Ecology and Environmental Sciences, Yunnan University, Yunnan 650091, China
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Li J, Hou L, Liu N, Rao K, Zheng J, Xu J, Giesy JP, Jin X. A decade-long meta-analysis of risks posed by pesticides in Chinese surface waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125898. [PMID: 40403657 DOI: 10.1016/j.jenvman.2025.125898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/15/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Despite their global benefits to agriculture, pesticides pose potential risks to wildlife as well as to the structure and function of ecological communities. A comprehensive meta-analysis was conducted to assess the occurrence, toxicity effects, and ecological risks of pesticides in the surface water of major river basins of China from 2012 to 2023. Using a multi-tier risk assessment, exposure and ecotoxicity data were analyzed and compared for 58 priority pesticides, revealing widespread contamination across major river basins. Among the 46 frequently detected pesticides, concentrations ranged from non-detectable to 12,100 ng/L, with hazard quotients (HQ) ranging from a maximum of 21,764.71 for deltamethrin to a minimum of 0.01 for carbaryl. The Pearl, Huai, and Yangtze River basins exhibited the greatest concentrations of pesticides, particularly in regions with intensive agricultural activity. Base on HQ screening, the hierarchical risk assessment identified 20 "high-risk" pesticides, while semi-probabilistic analysis further prioritized 13 compounds out of 28 pesticides with prioritization index (PI) > 1.0. Notably, probabilistic risk assessment revealed that, over the decade, bifenthrin and λ-cyhalothrin posed the greatest threats, with maximum risk products (the product of exceedance probability and magnitude of effect) of 81.24 % and 76.96 %, respectively. These findings demonstrate that pyrethroid insecticides present the greatest risks to aquatic organisms in Chinese surface waters. This systematic evaluation provides critical insights for evidence-based environmental management strategies and underscores the urgent need for enhanced monitoring of greater-risk pesticides to protect aquatic biodiversity.
Collapse
Affiliation(s)
- Jiuying Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Lin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kaifeng Rao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76798-7266, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48895, USA
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| |
Collapse
|
5
|
Hou L, Xiong W, Chen M, Xu J, Johnson AC, Zhan A, Jin X. Pesticide Pollution Reduces the Functional Diversity of Macroinvertebrates in Urban Aquatic Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8568-8577. [PMID: 40232133 DOI: 10.1021/acs.est.5c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Urbanization accelerates innovation and economic growth but imposes significant ecological challenges, particularly to aquatic biodiversity and ecosystem functionality. Among urban stressors, pesticide-driven chemical pollution represents a critical, yet under-recognized, global threat. Quantifying the causes and consequences of pesticides on biodiversity loss and ecosystem degradation is vital for ecological risk assessment and management, offering insights to promote sustainable societal development. This study evaluated anthropogenic stressors and macroinvertebrate communities at 42 sites across two major drainages in Beijing using chemical analysis and environmental DNA (eDNA), focusing on macroinvertebrate responses to pesticide exposure in the context of multiple anthropogenic stressors. Pesticides significantly impacted the α- and β-functional diversity of macroinvertebrates, accounting for 18.46 and 14.6% of the total observed variation, respectively, underscoring the role of functional groups in pesticide risk assessment. Land use and flow quantity directly influenced pesticide levels, which in turn affected macroinvertebrate functional diversity, while basic water quality had a less pronounced effect. These results provide empirical evidence of pesticide pollution's impact on macroinvertebrate functional diversity at the watershed scale under field conditions in a highly urbanized area. The findings highlight the importance of considering multiple stressors and sensitive taxa in pesticide risk assessment and management for urban aquatic ecosystems.
Collapse
Affiliation(s)
- Lin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming Economic and Technological Development District, 2 Puxin Road, Kunming, Yunnan 650214, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| |
Collapse
|
6
|
Acharjee A, Annagiri S. Effect of a pyrethroid-based pesticide on colony survival and behaviour of a tropical non-target ant Diacamma indicum. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02895-8. [PMID: 40319188 DOI: 10.1007/s10646-025-02895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The global use of chemical pesticides negatively affects both target and non-target species, significantly impacting biodiversity and ecosystems. While the effects of pesticides have been studied on non-target species like bees, there have been few studies considering ants. Our study focuses on the non-target tropical ponerine ant, Diacamma indicum Santschi, 1920, which inhabits areas near human settlements and is likely to encounter pesticide-contaminated environments. We investigated the short-term effects of field-relevant exposure to alpha-cypermethrin, a widely used synthetic pyrethroid insecticide, by contaminating the area around the nest. Using the recommended dose (RD) and its multiples (4RD, 2RD, 0.5RD, 0.25RD) to reflect realistic field levels, we conducted experiments in the lab via double-blind randomised controlled trials. We found that pesticide exposure for five days did not significantly affect colony size or mortality across all tested doses, but individual behaviour was markedly impacted at every dose. Five pesticide-induced behaviours- paralysis, trembling, appendage shaking, staggering, and twitching- were identified and quantified. Compared to the controls, the first- and second-day post-application showed significantly higher behavioural effects. Maximum effects were observed at 4RD, affecting nearly 20% of the colony. Quantitative behavioural assessment revealed that ants that died after five days exhibited significantly higher levels of sickness, with paralysis serving as a predictor of mortality. Our findings demonstrate the resilience of D. indicum colonies to field-realistic cypermethrin exposure while also highlighting adverse behavioural implications, which can be leveraged in future environmental impact assessments.
Collapse
Affiliation(s)
- Anwesha Acharjee
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sumana Annagiri
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
7
|
Wisniewski FF, Martins EC, Hakoyama DS, Batista LFA, Grassi MT, Zawadzki SF, Abate G. Microplastics and organic contaminants: Investigation of the sorption process on different polymer types. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 272:104567. [PMID: 40250306 DOI: 10.1016/j.jconhyd.2025.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
The presence of microplastics (MPs) in aquatic environments raises major concerns due to their ability to sorb and transport Emerging Contaminants (ECs). In this work, a sorption study was carried out, using MPs of polyester (PES), polyamide (PA), polyvinyl chloride (PVC), polypropylene (PP), high-density polyethylene (HDPE) and low-density polyethylene (LDPE), in the size range of 63 to 250 μm. Five emerging contaminants (ECs) were selected for this evaluation: Ametryn (AMT), atrazine (ATZ), bisphenol A (BPA), progesterone (PGT) and pyraclostrobin (PCT). The MPs were previously characterized by different analytical techniques and presented results in good agreement with the literature. Sorption experiments presented a predominance in the interaction of the most nonpolar ECs (PCT and PGT), with all six polymers. In general, under the evaluated conditions, the highest sorption percentages were obtained for: PA > PP > LDPE > PVC > HDPE > PES, for 24 h of contact time, that could be considered as the apparent equilibrium time, and the increase in the mass of MPs contributed for the enhancement in the sorption process, probably due to the greater availability of interaction sites. Also, the variation in ionic strength and pH caused no significant effect between the sorption of most ECs and the MPs. The results indicate a greater interaction between MPs and nonpolar contaminants, revealing that MPs play a limited role in the transport of more polar compounds in the aquatic medium.
Collapse
Affiliation(s)
- Fabiane Ferraz Wisniewski
- Deπartamento de Química, Universidade Federal do Paraná, Centro Politécnico, CP 19032, CEP 81531-980 Curitiba, PR, Brazil
| | - Elisandra Carolina Martins
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, CEP 88040-900 Florianópolis, SC, Brazil
| | - Danieli Sayuri Hakoyama
- Deπartamento de Química, Universidade Federal do Paraná, Centro Politécnico, CP 19032, CEP 81531-980 Curitiba, PR, Brazil
| | - Luis Fernando Amorim Batista
- Deπartamento de Química, Universidade Federal do Paraná, Centro Politécnico, CP 19032, CEP 81531-980 Curitiba, PR, Brazil
| | - Marco Tadeu Grassi
- Deπartamento de Química, Universidade Federal do Paraná, Centro Politécnico, CP 19032, CEP 81531-980 Curitiba, PR, Brazil
| | - Sonia Faria Zawadzki
- Deπartamento de Química, Universidade Federal do Paraná, Centro Politécnico, CP 19032, CEP 81531-980 Curitiba, PR, Brazil
| | - Gilberto Abate
- Deπartamento de Química, Universidade Federal do Paraná, Centro Politécnico, CP 19032, CEP 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Hu X, Tlili A, Schirmer K, Bao M, Bürgmann H. Metal concentration in freshwater sediments is linked to microbial biodiversity and community composition. ENVIRONMENT INTERNATIONAL 2025; 199:109465. [PMID: 40253931 DOI: 10.1016/j.envint.2025.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
The effect of metals on freshwater microbiomes is poorly understood compared to other factors, such as nutrients or climate. While deleterious effects of metals on plant and animal biodiversity are well documented, the role of metals in shaping the biodiversity, composition and functional potential of sediment microbial communities remains unknown. Therefore, we explored if metal concentrations can be linked to alterations in biodiversity and composition of freshwater sediment microbial communities. We collected sediments from 34 streams and lakes in Switzerland and grouped them based on their metal content. Microbial diversity and community composition were determined using 16S rRNA gene amplicon sequencing. Most of the sediments were not contaminated with metals according to Sediment Environmental Quality Criteria, although some stations exceeded the limits for Cu, Zn, and Pb. Nevertheless, correlational analysis indicated links of metal concentrations to various aspects of sediment microbial biodiversity. Al concentrations were significantly (p < 0.05) correlated with microbial richness. We further observed a predominantly negative correlation between some metals and abundances of dominant taxa. Predicted microbial functional potential analysis indicated that different types of metals have different effects on microbial functional potential. For example, Mn exhibited a significant positive correlation with nitrogen fixation potential, whereas Cu, Pb, and Zn displayed a significant negative correlation. Overall, our findings indicate that metal concentrations may alter microbial community diversity and functional potential in freshwater sediments even at ambient concentrations. Further research into the role of metals as drivers of microbial biodiversity and factors in biodiversity loss is warranted.
Collapse
Affiliation(s)
- Xin Hu
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Chinese Academy of Fishery Sciences, Beijing 100141, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Ahmed Tlili
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum 6047, Switzerland.
| |
Collapse
|
9
|
Keck F, Peller T, Alther R, Barouillet C, Blackman R, Capo E, Chonova T, Couton M, Fehlinger L, Kirschner D, Knüsel M, Muneret L, Oester R, Tapolczai K, Zhang H, Altermatt F. The global human impact on biodiversity. Nature 2025; 641:395-400. [PMID: 40140566 PMCID: PMC12058524 DOI: 10.1038/s41586-025-08752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
Human activities drive a wide range of environmental pressures, including habitat change, pollution and climate change, resulting in unprecedented effects on biodiversity1,2. However, despite decades of research, generalizations on the dimensions and extent of human impacts on biodiversity remain ambiguous. Mixed views persist on the trajectory of biodiversity at the local scale3 and even more so on the biotic homogenization of biodiversity across space4,5. We compiled 2,133 publications covering 97,783 impacted and reference sites, creating an unparallelled dataset of 3,667 independent comparisons of biodiversity impacts across all main organismal groups, habitats and the five most predominant human pressures1,6. For all comparisons, we quantified three key measures of biodiversity to assess how these human pressures drive homogenization and shifts in composition of biological communities across space and changes in local diversity, respectively. We show that human pressures distinctly shift community composition and decrease local diversity across terrestrial, freshwater and marine ecosystems. Yet, contrary to long-standing expectations, there is no clear general homogenization of communities. Critically, the direction and magnitude of biodiversity changes vary across pressures, organisms and scales at which they are studied. Our exhaustive global analysis reveals the general impact and key mediating factors of human pressures on biodiversity and can benchmark conservation strategies.
Collapse
Affiliation(s)
- François Keck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.
| | - Tianna Peller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
| | - Roman Alther
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
| | | | - Rosetta Blackman
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Teofana Chonova
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Chemistry, Dübendorf, Switzerland
| | - Marjorie Couton
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
| | - Lena Fehlinger
- GEA Aquatic Ecology Group, University of Vic-Central University of Catalonia, Vic, Spain
| | - Dominik Kirschner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Ecosystems and landscape evolution, ETH Zürich, Zurich, Switzerland
- Department of Landscape Dynamics & Ecology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Mara Knüsel
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
| | - Lucile Muneret
- INRAE, Université Paris-Saclay, AgroParisTech, UMR Agronomie, Palaiseau, France
- INRAE, Agroécologie, Institut Agro, Univ. Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Rebecca Oester
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Mendrisio, Switzerland
| | - Kálmán Tapolczai
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Heng Zhang
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Dübendorf, Switzerland.
| |
Collapse
|
10
|
Lu Y, Jin L, Chen H, Luo A, Ehrlich E, Li S, Wilkinson DM, Sha Z, Yang J. Urbanization leads to convergent succession and homogenization of phytoplankton functional traits in a subtropical watershed over 11 years. ENVIRONMENTAL RESEARCH 2025; 271:121097. [PMID: 39938632 DOI: 10.1016/j.envres.2025.121097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Urbanization can significantly drive biodiversity loss in river ecosystems, yet the underlying mechanisms require further study. Here, we used a trait-based approach to investigate temporal succession and variation in the dissimilarity of phytoplankton community functional traits along an urbanizing subtropical river over 11 years - during which time the downstream of catchment underwent rapid urbanization. Our results indicated that urbanization altered the interannual succession of phytoplankton. The phytoplankton communities in the rural region were mainly shaped by a specialist trade-off between extreme lotic strategies (single cell, high maximum growth rate and high silica demand) in river habitat, and extreme lentic strategies (colonial, toxin production and nitrogen fixation abilities) in reservoir habitat. Conversely, in the urban region, generalist strategies with intermediate trait combinations (moderate mobility and mixotrophic ability) dominated the communities in both river and reservoir habitats. Time-lag analysis of functional dissimilarity showed lower, or even no significant variations of functional beta diversity in the urban region. Further decomposition of functional beta diversity indicated a reduced rate of functional turnover in urban river compared with that in rural river and a decrease in functional nestedness in urban reservoir. Paired differences between river and reservoir in the urban region exhibited convergent succession by functional turnover. The convergent succession and homogenization in the urban region made the variation in phytoplankton functional structure more unpredictable in a random forest model, and diminished the relationship between functional dissimilarity and environmental factors compared to the rural region. Our study shows how urbanization shapes the phytoplankton functional structure and causes homogenization in functional trait composition. The insight gained enhance our ability to assess and predict the environmental impacts of urbanization on aquatic ecosystems.
Collapse
Affiliation(s)
- Yifan Lu
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anqi Luo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elias Ehrlich
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14469, Germany; Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin 12587, Germany
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - David M Wilkinson
- School of Natural Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - Zhansen Sha
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Hebei University, Baoding 071000, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
11
|
Conseil G, Cardoso O, Felten V, Rosin C, Pasquini L, Huguet-Cizo M, Milla S, Banas D. Caging Gammarus roeseli to track pesticide contamination: How agricultural practices shape water quality in small waterbodies? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118143. [PMID: 40185031 DOI: 10.1016/j.ecoenv.2025.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Contaminant monitoring in agroecosystems is increasingly revealing overlooked molecules, particularly within complex pesticide mixtures. This study assessed the effectiveness of chemical and ecotoxicological methods for evaluating contamination and biological responses in Gammarus roeseli exposed to pesticides and transformation products (TPs) in lentic small water bodies (LSWBs) near agricultural zones. We examined 7 LSWBs, finding variable contamination levels shaped by watershed composition differences. Analysis of 136 compounds identified key TPs, including chlorothalonil R471811, metazachlor ESA, and OXA, which collectively represented 86.2 % of the total quantified contaminants. These results underscore the persistence of both current and banned pesticides in the ponds studied. While G. roeseli showed favorable survival rates, significant reductions in locomotion and ventilation were observed at heavily contaminated sites, with biochemical analyses suggesting neurotoxic effects and activation of detoxification mechanisms in response to contaminants. Multivariate analyses revealed site-specific variations, highlighting the complex interactions between contamination levels and environmental conditions. Biomarker responses in gammarids served as sensitive indicators of residual toxicity in LSWBs, with frequent associations with historical contamination or current pesticide applications. This in situ caging approach across a contamination gradient demonstrates strong potential for biomonitoring and ecotoxicological assessments in agroecosystems. Extending exposure durations and including more heavily contaminated ponds could further enhance risk evaluation, thereby improving biomonitoring accuracy in headwater aquatic ecosystems. By integrating site-specific environmental conditions, contamination profiles, and biological responses, this study provides valuable insights into the influence of agricultural practices on LSWBs contamination and underscores the critical need to incorporate TPs into future risk assessment frameworks.
Collapse
Affiliation(s)
- Gaspard Conseil
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France; LTSER-Zone Atelier Moselle, Nancy F-57000, France.
| | - Olivier Cardoso
- Office Français de la Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, 9 avenue Buffon, Orléans F45071, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, Metz F-57000, France
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, Nancy F-54000, France
| | - Laure Pasquini
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, Nancy F-54000, France
| | | | - Sylvain Milla
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France
| | - Damien Banas
- Université de Lorraine, INRAE, L2A, Nancy F-54500, France.
| |
Collapse
|
12
|
Mendes F, Machado BO, Castro BB, Sousa MJ, Chaves SR. Harnessing the power of biosensors for environmental monitoring of pesticides in water. Appl Microbiol Biotechnol 2025; 109:92. [PMID: 40216649 PMCID: PMC11991957 DOI: 10.1007/s00253-025-13461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
The current strong reliance on synthetic chemicals, namely pesticides, is far from environmentally sustainable. These xenobiotics contribute significantly to global change and to the current biodiversity crisis, but have been overlooked when compared to other agents (e.g., climate change). Aquatic ecosystems are particularly vulnerable to pesticides, making monitoring programs essential to preserve ecosystem health, safeguard biodiversity, ensure water quality, and mitigate potential human health risks associated with contaminated water sources. Biosensors show great potential as time/cost-effective and disposable systems for the high-throughput detection (and quantification) of these pollutants. In this mini-review, we provide an overview of biosensors specifically developed for environmental water monitoring, covering different pesticide classes (and active ingredients), and types of biosensors (according to the bio-recognition element) and transducers, as well as the nature of sample matrices analyzed. We highlight the variety of biosensors that have been developed and successfully applied to detection of pesticides in aqueous samples, including enzymatic biosensors, immunosensors, aptasensors, and whole cell-based biosensors. While most biosensors have been designed to detect insecticides, expanding their compound target range could significantly streamline monitoring of environmental contaminants. Despite limitations related to stability, reproducibility, and interference from environmental factors, biosensors represent a promising and sustainable technology for pesticide monitoring in the aquatic environments, offering sensitivity and specificity, as well as portability and real-time results. We propose that biosensors would be most effective as an initial screening step in a tiered assessment, complementing conventional methods. KEY POINTS: • Pesticides harm aquatic ecosystems and biodiversity, requiring better monitoring • Biosensors offer cost-effective solutions to detect pesticides in water samples • Biosensors complement conventional methods as a sustainable tool for initial screens.
Collapse
Affiliation(s)
- Filipa Mendes
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Beatriz O Machado
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Bruno B Castro
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
13
|
Yang Y, Zhang Q, Covaci A, Liu Y, Xiao Y, Xiao Y, Zhang S, Jiang X, Xia X. Unraveling the Composition Profile and Ecological Risk of Triazine Herbicides and Their Transformation Products in Urban Sewage Discharge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6235-6246. [PMID: 40106695 DOI: 10.1021/acs.est.4c12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Triazine herbicides (THs) are used globally to control weeds in urban environments, but their transformation products (TPs) are rarely considered due to the lack of reference standards. In this study, a total of 41 TPs were found in wastewater influents and effluents of 28 municipal wastewater treatment plants (MWWTPs) from six cities in China by integrating suspect screening (36 TPs), molecular networking (9 TPs), and diagnostic fragment searching (12 TPs). Among these, 36 TPs were detected for the first time in urban aquatic environments, and 28 TPs were first reported in aquatic environments. Polar THs and their TPs were only partially removed from the aqueous phase in the wastewater treatment process. Concentrations of THs and their TPs present in wastewater effluents ranged from 107 to 435 ng/L. Thus, THs and their TPs discharged from wastewater effluents pose a medium risk to freshwater algae in the receiving waters. Moreover, 4 THs (ametryne, atrazine, terbutryn, and prometryne) and 3 TPs (atrazine-desisopropyl, TP247, and TP258) pose significant risks in several effluents. Considering the persistent and mobile properties and ecological risk of THs and their TPs, these contaminants should be specifically considered in further environmental monitoring and included in the regulation.
Collapse
Affiliation(s)
- Yingying Yang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shangwei Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Regional Environment and Sustainability, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Zhang B, Mu H, Li H, Zhang X, Yang G, Chen W, Yan Y, An W, Yang M. Nationwide prediction of pesticide residual levels in soil: Implications on the resulting risk and prioritization framework. ENVIRONMENT INTERNATIONAL 2025; 197:109355. [PMID: 40058304 DOI: 10.1016/j.envint.2025.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/19/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Pesticides are widely accumulated in agricultural soils in China under successive applications, causing negative impacts on non-target species and environmental qualities. However, a nationwide overview of the residual levels of pesticides in soil, and the ecological risks to non-target soil species are lacking. In this study, we calculated geographically gridded concentrations of 107 pesticide active ingredients (AIs) in soils in China based on the Computational Pesticide Input (CPI) model and further assessed the ecological risks to soil biota. In the end, we proposed an integrated usage-impact model to identify prioritize control pesticides based on the usage, risk and persistence of pesticides. Pesticide concentrations were calculated in a range from 0.01 mg kg-1 to over 185 mg kg-1. Glyphosate is the most prevalent pesticide that exists in most locations. The ecological risks were mostly assessed as medium risk, with extreme high- and high risk found in 1 % and 21 % of soils. Supervision and management of azoxystrbin, boscalid, butachlor and chlorpyrifos need to be prioritized. The results of this study provide guidance to local governments for the designation more accurate risk mitigation strategies across regions.
Collapse
Affiliation(s)
- Bin Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| | - Hongyu Mu
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, China 100193
| | - Hua Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China 102206
| | - Xianghua Zhang
- School of Economics and Management, Northeast Forestry University, Harbin, China 150040
| | - Guang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China 100085
| | - Wenxiu Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| | - Yan Yan
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China 100085
| | - Wei An
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China 100190
| |
Collapse
|
15
|
Pesce S, Bérard A, Coutellec MA, Hedde M, Langlais-Hesse A, Larras F, Leenhardt S, Mongruel R, Munaron D, Sabater S, Gallai N. Linking ecotoxicological effects on biodiversity and ecosystem functions to impairment of ecosystem services is a challenge: an illustration with the case of plant protection products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2773-2785. [PMID: 37548787 DOI: 10.1007/s11356-023-29128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
There is growing interest in using the ecosystem services framework for environmental risk assessments of chemicals, including plant protection products (PPPs). Although this topic is increasingly discussed in the recent scientific literature, there is still a substantial gap between most ecotoxicological studies and a solid evaluation of potential ecotoxicological consequences on ecosystem services. This was recently highlighted by a collective scientific assessment (CSA) performed by 46 scientific experts who analyzed the international science on the impacts of PPPs on biodiversity, ecosystem functions, and ecosystem services. Here, we first point out the main obstacles to better linking knowledge on the ecotoxicological effects of PPPs on biodiversity and ecological processes with ecosystem functions and services. Then, we go on to propose and discuss possible pathways for related improvements. We describe the main processes governing the relationships between biodiversity, ecological processes, and ecosystem functions in response to effects of PPP, and we define categories of ecosystem functions that could be directly linked with the ecological processes used as functional endpoints in investigations on the ecotoxicology of PPPs. We then explore perceptions on the possible links between these categories of ecosystem functions and ecosystem services among a sub-panel of the scientific experts from various fields of environmental science. We find that these direct and indirect linkages still need clarification. This paper, which reflects the difficulties faced by the multidisciplinary group of researchers involved in the CSA, suggests that the current gap between most ecotoxicological studies and a solid potential evaluation of ecotoxicological consequences on ecosystem services could be partially addressed if concepts and definitions related to ecological processes, ecosystem functions, and ecosystem services were more widely accepted and shared within the ecotoxicology community. Narrowing this gap would help harmonize and extend the science that informs decision-making and policy-making, and ultimately help to better address the trade-off between social benefits and environmental losses caused by the use of PPPs.
Collapse
Affiliation(s)
| | | | - Marie-Agnès Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro-Agrocampus Ouest, IFREMER, Rennes, France
| | - Mickaël Hedde
- Eco&Sols, Univ. Montpellier, INRAE, IRD, CIRAD, Institut Agro Montpellier, Montpellier, France
| | | | - Floriane Larras
- INRAE, DEPE, Paris, France
- KREATiS SAS, 23 rue du Creuzat, ZAC de St-Hubert, 38080, L'Isle-d'Abeau, France
| | | | - Rémi Mongruel
- Ifremer, UMR 6308 Amure, CS10070, 29280, Plouzané, France
| | | | - Sergi Sabater
- Catalan Institute of Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, and Institute of Aquatic Ecology, University of Girona-Montilivi Campus, 17071, Girona, Spain
| | - Nicola Gallai
- UMR LEREPS/ENSFEA, 2 route de Narbonne, Castanet-Tolosan Cedex, 31320 Cedex, France
| |
Collapse
|
16
|
Bérard A, Crouzet O, Morin S, Pesce S. Improved assessment of the impacts of plant protection products on certain soil ecosystem services requires better consideration of terrestrial microalgae and cyanobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2786-2793. [PMID: 38010548 DOI: 10.1007/s11356-023-31198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
There is growing scientific and societal consciousness that the environmental risks and impacts of plant protection products (PPPs) cannot be properly assessed without considering ecosystem services. However, the science on this issue remains incomplete and fragmented, as recently illustrated in a collective scientific assessment that pointed out the limited knowledge on the risks and impacts of PPPs on soil ecosystem services, which are clearly overlooked. Beside soil ecosystem services, certain key players involved in these services are largely overlooked in the scientific literature on the risks and impacts of PPPs, namely soil microbial photosynthetic communities. Here, we followed the principles of evidence-based logic chain approaches to show the importance of considering these microorganisms when studying the impacts of PPPs on certain services provided by soil ecosystems, with a focus on regulating and maintenance services that play a role in the regulation of baseline flows and extreme events. Terrestrial microalgae and cyanobacteria are ubiquitous photosynthetic microorganisms that, together with other soil micro- and macro-organisms, play key roles in the ecosystem functions that underpin these ecosystem services. There is an extensive literature on the ecotoxicological effects of PPPs on different organisms including soil microorganisms, but studies concerning soil microbial photosynthetic communities are very scarce. However, there is scientific evidence that herbicides can have both direct and indirect impacts on these microbial photosynthetic communities. Given that they play key functional roles, we argue that soil microbial photosynthetic communities warrant greater attention in efforts to assess the environmental risks and impacts of PPPs and, ultimately, help preserve or restore the regulating and maintenance services provided by soil ecosystems.
Collapse
Affiliation(s)
- Annette Bérard
- UMR EMMAH, INRAE, Avignon Université, 84000, Avignon, France
| | - Olivier Crouzet
- OFB, Direction Recherche Et Appui Scientifique, 78610, Auffargis, France
| | | | | |
Collapse
|
17
|
Wang P, Chen Z, Guo E, Xiang Q, Li C, Feng X, Lian L, Luo X, Chen L. Silver nanoparticles alter planktonic community structure and promote ecosystem respiration in freshwater mesocosms. ENVIRONMENTAL RESEARCH 2024; 262:119824. [PMID: 39173815 DOI: 10.1016/j.envres.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The widespread use of silver nanoparticles (AgNPs) has resulted in their release into the aquatic environment, which threatens the health of aquatic ecosystems. Although the ecotoxicological effects of AgNPs have been widely reported at individual and population levels, the impact of long-term exposure to AgNPs on community structure and ecosystem function in aquatic ecosystems remains poorly understood. Herein, the present study investigated the effects of long-term exposure (28 d) to environmentally relevant concentrations (1 μg/L and 10 μg/L) of AgNPs on the community structure and function of freshwater ecosystems by artificially constructed 28 mesocosms freshwater ecosystem in experimental greenhouses, using plastic water tanks and food web manipulation. The results showed that long-term exposure to AgNPs significantly altered the community structure of zooplankton, phytoplankton, and bacterioplankton in the aquatic ecosystem. Exposure to 10 μg/L AgNPs significantly reduced the zooplankton density (70.3%, p < 0.05) and increased the phytoplankton biomass and bacterial richness and diversity via a "top-down effect." With regards to ecosystem function, AgNPs exposure significantly increased the respiration in freshwater ecosystems but did not have a significant effect on decomposition. The partial least squares path modeling (PLS-PM) further revealed that AgNPs may have a negative impact on ecosystem functions by reducing zooplankton community density and thus increasing phytoplankton biomass. This study is the first to show that long-term exposure to environmentally relevant concentrations of AgNPs leads to alterations in plankton community structure and promotes respiration in freshwater ecosystems. It emphasizes the need for assessing the environmental risk of long-term exposure to AgNPs at the ecosystem level.
Collapse
Affiliation(s)
- Peng Wang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhiying Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ende Guo
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qianqian Xiang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Chengjing Li
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xia Feng
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lihong Lian
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xia Luo
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Liqiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
18
|
Woodley SK, Agostini G, Jones DK, Relyea RA. Salinization and low-dose levels of pesticides alter brain shape of larval amphibians. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125027. [PMID: 39332802 DOI: 10.1016/j.envpol.2024.125027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Wetland communities are increasingly threatened by multiple stressors simultaneously, such as pesticides and salinization. We examined the effects of ecologically-relevant exposures to broad-spectrum insecticides and salinization on amphibian neurodevelopment, which is strongly linked to how organisms respond behaviorally to environmental change. Prior research showed that exposure to trace concentrations of an organophosphate pesticide (chlorpyrifos) altered the brain shape and behavior of larval and metamorphic amphibians. It is unknown whether brain shape is altered by additional pesticides and road salt. Using outdoor mesocosms, we tested whether salt (NaCl) and representatives from three pesticide families (organophosphates, pyrethroids, and neonicotinoids) altered tadpole (Lithobates pipiens) brain shape. Of the two organophosphates, chlorpyrifos induced relatively longer telencephalon lengths relative to body mass, consistent with previous studies, but malathion had no effect on brain shape. Of the two pyrethroids, permethrin, but not cypermethrin, increased telencephalon length. For the neonicotinoids, there were marginally significant effects of imidacloprid and thiamethoxam on telencephalon length. Thus, the impacts of pesticides on brain shape was not dictated by pesticide family. Exposure to relatively high concentrations of salt resulted in brains that were less wide but had longer optic tecta. Although we failed to find strong interactive effect of salt with pesticides, there was some weak, nonsignificant, evidence that exposure to salt masked responses to pesticides. Together, our results indicate that environmentally realistic levels of pesticides and salinization can alter larval brain shape. Our study highlights the importance of studying the impacts of naturally-occurring levels of pesticides and salinization on vertebrate neural development.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Gabriela Agostini
- Institute of Ecology, Genetic and Evolution of Buenos Aires, CONICET-Universidad de Buenos Aires, CABA, Argentina; COANA, Amphibian Conservation in Argentina, La Plata, Argentina
| | - Devin K Jones
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180-3590, USA
| | - Rick A Relyea
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180-3590, USA
| |
Collapse
|
19
|
Conseil G, Milla S, Cardoso O, Pasquini L, Rosin C, Banas D. Occurrence, dispersal, and associated environmental risk assessment of pesticides and their transformation products in small water bodies of Northeastern France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66643-66666. [PMID: 39636537 DOI: 10.1007/s11356-024-35573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
The widespread use of pesticides, specifically plant protection products (PPPs), has led to their transformation products (TPs) being increasingly detected in various environmental compartments, notably surface waters. This study integrates field-detected TPs into an environmental risk assessment of lentic small water bodies (LSWBs). For this purpose, measured environmental concentrations (MECs) of PPPs and TPs in 12 LSWBs, influenced by tributaries under varying agricultural pressures, were collected. Ecotoxicological data from multiple sources were compiled to calculate risk quotients (RQs) and identify potentially harmful PPPs and TPs. Among 86 molecules investigated, 17 PPPs and 30 TPs were detected, representing nearly half of those initially targeted. Ponds exhibited diverse PPP and TP compositions and levels with 12 substances posing high pesticide risk, primarily atrazine-2-hydroxy, MCPA, and metolachlor. Various pond conditions indicated moderate to high risk to aquatic organisms at corresponding MECs. Despite diverse agricultural pressures, only one site was deemed low-risk, highlighting widespread contamination risk due to co-occurring molecules. Given the prevalence of TPs in water bodies, urgent efforts are needed to gather ecotoxicological data on these contaminants to enhance environmental risk assessments. This study provides novel insights into pesticide risks in a less-studied yet common European landscape, focusing on TPs.
Collapse
Affiliation(s)
- Gaspard Conseil
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France.
- LTSER-Zone Atelier Moselle, 57000, Nancy, France.
| | - Sylvain Milla
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France
| | - Olivier Cardoso
- Office Français de La Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, 9 Avenue Buffon, 45071, Orléans, France
| | - Laure Pasquini
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Christophe Rosin
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France
| | - Damien Banas
- Université de Lorraine, INRAE, L2A, F-54500, Nancy, France
- LTSER-Zone Atelier Moselle, 57000, Nancy, France
| |
Collapse
|
20
|
Teiba II, El-Bilawy EH, Abouelsaad IA, Shehata AI, Alhoshy M, Habib YJ, Abu-Elala NM, El-Khateeb N, Belal EB, Hussain WAM. The role of marine bacteria in modulating the environmental impact of heavy metals, microplastics, and pesticides: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64419-64452. [PMID: 39547992 DOI: 10.1007/s11356-024-35520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
Bacteria assume a pivotal role in mitigating environmental issues associated with heavy metals, microplastics, and pesticides. Within the domain of heavy metals, bacteria exhibit a wide range of processes for bioremediation, encompassing biosorption, bioaccumulation, and biotransformation. Toxigenic metal ions can be effectively sequestered, transformed, and immobilized, hence reducing their adverse environmental effects. Furthermore, bacteria are increasingly recognized as significant contributors to the process of biodegradation of microplastics, which are becoming increasingly prevalent as contaminants in marine environments. These microbial communities play a crucial role in the colonization, depolymerization, and assimilation processes of microplastic polymers, hence contributing to their eventual mineralization. In the realm of pesticides, bacteria play a significant role in the advancement of environmentally sustainable biopesticides and the biodegradation of synthetic pesticides, thereby mitigating their environmentally persistent nature and associated detrimental effects. Gaining a comprehensive understanding of the intricate dynamics between bacteria and anthropogenic contaminants is of paramount importance in the pursuit of technologically advanced and environmentally sustainable management approaches.
Collapse
Affiliation(s)
- Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
| | - Emad H El-Bilawy
- King Salman International University, South Sinai City, 46618, Egypt
| | | | - Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nermeen M Abu-Elala
- King Salman International University, South Sinai City, 46618, Egypt
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nagwa El-Khateeb
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Elsayed B Belal
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Warda A M Hussain
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
21
|
Han G, Kong R, Liu C, Huang K, Xu Q, Wu J, Fei J, Zhang H, Su G, Letcher RJ, Shi J, Rohr JR. Field and Laboratory Evidence That Chlorpyrifos Exposure Reduced the Population Density of a Freshwater Snail by Increasing Juvenile Mortality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17543-17554. [PMID: 39231302 DOI: 10.1021/acs.est.4c04202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.
Collapse
Affiliation(s)
- Guixin Han
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chunsheng Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kai Huang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qiaolin Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiamin Fei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guanyong Su
- School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Robert J Letcher
- Department of Chemistry and Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, China University of Geosciences, Wuhan 430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jason R Rohr
- Department of Biological Science, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
22
|
Niu Z, Chen C, Ruan Q, Duan Y, Liu S, Chen D. Plant Root Secretion Alleviates Carbamate-Induced Molecular Alterations of Dissolved Organic Matter. TOXICS 2024; 12:654. [PMID: 39330581 PMCID: PMC11435816 DOI: 10.3390/toxics12090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
Studying the interaction between pesticide contamination in the plant system and the dissolved organic matter (DOM) composition is important to understand the impact of pesticides and plants on the ecological function of DOM. The present study investigated the effects of DOM on the bioaccumulation and biotransformation of carbamates in plants, carbamate exposure on DOM composition, and plant root secretion on the interaction between DOM and carbamates. The concentrations of carbamates and their metabolites in living cabbage plants were continuously tracked through an in vivo analytical method. The presence of DOM was found to reduce the highest bioconcentrations and shorten the time it took to reach the highest bioaccumulated amounts of isoprocarb and carbofuran in plants, while it showed no significant effect on the uptake behavior of carbaryl. DOM profiling results indicated that carbamate exposure substantially decreased the number and molecular diversity of DOM. Notably, plant root secretion alleviated carbamate-induced DOM molecular alterations by inducing a higher turnover rate of DOM compared to that in the uncontaminated group, highlighting the role of plants in mitigating the effects of exogenous pesticide exposure on DOM composition and maintaining DOM molecular homeostasis.
Collapse
Affiliation(s)
- Zihan Niu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Qijun Ruan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Yingming Duan
- China College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shuqin Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou 510070, China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 511443, China
| |
Collapse
|
23
|
Zheng C, Yang J, Wang Y, Ahmed W, Khan A, Li J, Weng J, Mehmood S, Li W. Comprehensive Assessment of Herbicide Toxicity on Navicula sp. Algae: Effects on Growth, Chlorophyll Content, Antioxidant System, and Lipid Metabolism. Mar Drugs 2024; 22:387. [PMID: 39330268 PMCID: PMC11433268 DOI: 10.3390/md22090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigated the effects of herbicide exposure on Navicula sp. (MASCC-0035) algae, focusing on growth density, chlorophyll content, antioxidant system, and lipid metabolism. Navicula cultures were exposed to different concentrations of atrazine (ATZ), glyphosate (Gly), and acetochlor (ACT) for 96 h. Results showed a significant decrease in cell numbers, with higher herbicide concentrations having the most noticeable impacts. For instance, Gly-G2 had reduced cell populations by 21.00% at 96 h. Chlorophyll content varied, with Gly having a greater impact on chlorophyll a compared to ATZ and ACT. Herbicide exposure also affected the antioxidant system, altering levels of soluble sugar, soluble protein, and reactive oxygen species (ROS). Higher herbicide rates increased soluble sugar content (e.g., ATZ, Gly, and ACT-G2 had increased by 14.03%, 19.88%, and 19.83%, respectively, at 72 h) but decreased soluble protein content, notably in Gly-G2 by 11.40%, indicating cellular stress. Lipid metabolism analysis revealed complex responses, with changes in free proline, fatty acids, and lipase content, each herbicide exerting distinct effects. These findings highlight the multifaceted impacts of herbicide exposure on Navicula algae, emphasizing the need for further research to understand ecological implications and develop mitigation strategies for aquatic ecosystems.
Collapse
Affiliation(s)
- Chunyan Zheng
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jie Yang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Yunting Wang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Waqas Ahmed
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Amir Khan
- Department of Medicine, Hainan Medical University, Haikou 571100, China
| | - Jiannan Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 570228, China
| | - Sajid Mehmood
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Weidong Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
24
|
Wu G, Shi W, Zheng L, Wang X, Tan Z, Xie E, Zhang D. Impacts of organophosphate pesticide types and concentrations on aquatic bacterial communities and carbon cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134824. [PMID: 38876013 DOI: 10.1016/j.jhazmat.2024.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Organophosphorus pesticides (OPPs) are important chemical stressors in aquatic ecosystems, and they attract increasing more attentions recently. However, the impacts of different OPPs on carbon cycling remain unclear, particularly for those functional-yet-uncultivable microbes. This study investigated the change in lake aquatic microbial communities in the presence of dichlorvos, monocrotophos, omethoate and parathion. All OPPs significantly inhibited biomass (p < 0.05) and the expression of carbon cycle-related cbbLG gene (p < 0.01), and altered aquatic microbial community structure, interaction, and assembly. Variance partitioning analysis showed a stronger impact of pesticide type on microbial biomass and community structure, where pesticide concentration played more significant roles in carbon cycling. From analysis of cbbLG gene and PICRUSt2, Luteolibacter and Verrucomicrobiaceae assimilated inorganic carbon through Wood-Ljungdahl pathway, whereas it was Calvin-Benson-Bassham cycle for Cyanobium PCC-6307. This work provides a deeper insight into the behavior and mechanisms of microbial community change in aquatic system in response to OPPs, and explicitly unravels the impacts of OPPs on their carbon-cycling functions.
Collapse
Affiliation(s)
- Guanxiong Wu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wei Shi
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhanming Tan
- College of Horticulture and Forestry, Tarim University, Alar, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
25
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
26
|
Negrín Dastis JO, McGuinness B, Tadiri CP, Yargeau V, Gonzalez A. Connectivity mediates the spatial ecological impacts of a glyphosate-based herbicide in experimental metaecosystems. Oecologia 2024; 205:709-723. [PMID: 39133237 PMCID: PMC11358246 DOI: 10.1007/s00442-024-05601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Metacommunity ecology has shown that connectivity is important for the persistence of a species locally and across connected ecosystems, however we do not know if ecological effects in freshwater ecosystems exposed to biocides leaking from agriculture depend on metaecosystem connectivity. We experimentally replicated metaecosystems in the laboratory using gradostats as a model system. We tested the effects of connectivity, in terms of node distance from the pollutant-source, flow rate, and a glyphosate-based herbicide, on phytoplankton productivity, diversity and stability. Gradostats were composed of interconnected equally spaced nodes where resources and phytoplankton move directionally along a gradient of increasing distance from the source of the polluting herbicide. We hypothesised that ecological effects would be stronger in the node situated closer to the point of herbicide input, but that flow would suppress phytoplankton populations in distant nodes. Overall, RoundUp impacted phytoplankton productivity and stability by reducing algal biomass and abundances. This occurred especially in the node closest to the diluted herbicide point-source and under high flow, where species abundances were heavily suppressed by the effects of the rapidly flowing herbicide. At low flow on the other hand, distant nodes where buffered from the effects of the slow-moving herbicide. No differences in beta and gamma diversity among replicate metaecosystems was found; however, a significant loss of alpha diversity in all metaecosystems occurred through time until the end of the experiment. Together, these results point to the importance of considering aquatic connectivity in management plans for monitoring and mitigating unintended ecological consequences of agrochemical runoff.
Collapse
Affiliation(s)
- Jorge Octavio Negrín Dastis
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
- Fisheries and Oceans Canada, 200 Kent Street, Ottawa, ON, K1A 0E6, Canada.
| | - Brendon McGuinness
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
| | - Christina P Tadiri
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
- Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4058, Basel, Switzerland
| | - Viviane Yargeau
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, QC, H3A 1A3, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
| |
Collapse
|
27
|
Burgos-Aceves MA, Banaee M, Vazzana I, Betancourt-Lozano M, González-Mille DJ, Aliko V, Faggio C, Ilizaliturri-Hernández CA. Effect of emerging pollutants on the gut microbiota of freshwater animals: Focusing on microplastics and pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174809. [PMID: 39019277 DOI: 10.1016/j.scitotenv.2024.174809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In recent years, emerging environmental pollutants have increasingly endangered the health of freshwater organisms. The gut microbiota exhibits sensitivity to medications, dietary factors and environmental pollutants, rendering it a novel target for toxicological studies. The gut microbiota can be a potential exposure route affecting the host's health. Herein, we review the current knowledge on two different but concurrent pollutants, microplastics and pesticides, regarding their impact on the gut microbiota, which includes alterations in microbial composition, gene expression, function, and health effects in the hosts. Moreover, synergetic interactions between microplastics and pesticides can exacerbate dysbiosis and health risks. We discuss health-related implications of gut microbial changes based on the consequences in metabolism, immunity, and physiology function. Further research is needed to discover the mechanisms underlying these effects and develop strategies for mitigating their harmful impacts on freshwater animals.
Collapse
Affiliation(s)
- Mario A Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Irene Vazzana
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Palermo, Italy
| | | | - Donají J González-Mille
- Programa Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
28
|
Wang J, Li M, Yin T, Ma X, Zhu X. Concentration-dependent effects of spinetoram on nontarget freshwater microalgae: A comparative study on Chlorella vulgaris and Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2024; 252:118755. [PMID: 38555091 DOI: 10.1016/j.envres.2024.118755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
The rising global demand for agricultural products is leading to the widespread application of pesticides, such as spinetoram, resulting in environmental pollution and ecotoxicity to nontarget organisms in aquatic ecosystems. This research focused on assessing the toxicity of spinetoram at various concentrations (0, 0.01, 0.1, 0.5, 1.0, and 3.0 mg L-1) on two common freshwater microalgae, Chlorella vulgaris and Microcystis aeruginosa, to shed light on the ecotoxicological effects of insecticides. Our findings demonstrate that M. aeruginosa is more sensitive to spinetoram than is C. vulgaris, with a concentration-dependent reduction in the growth rate observed for M. aeruginosa, whereas only the highest concentration of spinetoram adversely affected C. vulgaris. At a concentration of 0.01 mg L-1, the growth rate of M. aeruginosa unexpectedly increased beginning on day 7, indicating a potential hormetic effect. Although initial exposure to spinetoram improved the photosynthetic efficiency of both microalgae strains at all concentrations, detrimental effects became apparent at higher concentrations and with prolonged exposure. The photosynthetic efficiency of C. vulgaris recovered, in contrast to that of M. aeruginosa, which exhibited limited recovery. Spinetoram more significantly inhibited the effective quantum yield of PSII (EQY) in M. aeruginosa than in C. vulgaris. Although spinetoram is not designed to target phytoplankton, its toxicity can disrupt primary productivity and modify phytoplankton-consumer interactions via bottom-up control mechanisms. This study enhances our understanding of spinetoram's ecotoxicity and potential effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Meng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tianchi Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaogang Ma
- School of Civil Engineering, North Minzu University, Yinchuan 750030, China
| | - Xuexia Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
29
|
Kárpáti Z, Szelényi MO, Tóth Z. Exposure to an insecticide formulation alters chemosensory orientation, but not floral scent detection, in buff-tailed bumblebees (Bombus terrestris). Sci Rep 2024; 14:14622. [PMID: 38918480 PMCID: PMC11199514 DOI: 10.1038/s41598-024-65388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Although pesticide-free techniques have been developed in agriculture, pesticides are still routinely used against weeds, pests, and pathogens worldwide. These agrochemicals pollute the environment and can negatively impact human health, biodiversity and ecosystem services. Acetamiprid, an approved neonicotinoid pesticide in the EU, may exert sub-lethal effects on pollinators and other organisms. However, our knowledge on the scope and severity of such effects is still incomplete. Our experiments focused on the effects of the insecticide formulation Mospilan (active ingredient: 20% acetamiprid) on the peripheral olfactory detection of a synthetic floral blend and foraging behaviour of buff-tailed bumblebee (Bombus terrestris) workers. We found that the applied treatment did not affect the antennal detection of the floral blend; however, it induced alterations in their foraging behaviour. Pesticide-treated individuals started foraging later, and the probability of finding the floral blend was lower than that of the control bumblebees. However, exposed bumblebees found the scent source faster than the controls. These results suggest that acetamiprid-containing Mospilan may disrupt the activity and orientation of foraging bumblebees. We hypothesize that the observed effects of pesticide exposure on foraging behaviour could be mediated through neurophysiological and endocrine mechanisms. We propose that future investigations should clarify whether such sub-lethal effects can affect pollinators' population dynamics and their ecosystem services.
Collapse
Affiliation(s)
- Zsolt Kárpáti
- Department of Chemical Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Magdolna Olívia Szelényi
- Department of Chemical Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- National Laboratory for Health Security, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Tóth
- Department of Zoology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary.
| |
Collapse
|
30
|
Thieffry S, Aubert J, Devers-Lamrani M, Martin-Laurent F, Romdhane S, Rouard N, Siol M, Spor A. Engineering multi-degrading bacterial communities to bioremediate soils contaminated with pesticides residues. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134454. [PMID: 38688223 DOI: 10.1016/j.jhazmat.2024.134454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Parallel to the important use of pesticides in conventional agriculture there is a growing interest for green technologies to clear contaminated soil from pesticides and their degradation products. Bioaugmentation i. e. the inoculation of degrading micro-organisms in polluted soil, is a promising method still in needs of further developments. Specifically, improvements in the understanding of how degrading microorganisms must overcome abiotic filters and interact with the autochthonous microbial communities are needed in order to efficiently design bioremediation strategies. Here we designed a protocol aiming at studying the degradation of two herbicides, glyphosate (GLY) and isoproturon (IPU), via experimental modifications of two source bacterial communities. We used statistical methods stemming from genomic prediction to link community composition to herbicides degradation potentials. Our approach proved to be efficient with correlation estimates over 0.8 - between model predictions and measured pesticide degradation values. Multi-degrading bacterial communities were obtained by coalescing bacterial communities with high GLY or IPU degradation ability based on their community-level properties. Finally, we evaluated the efficiency of constructed multi-degrading communities to remove pesticide contamination in a different soil. While results are less clear in the case of GLY, we showed an efficient transfer of degrading capacities towards the receiving soil even at relatively low inoculation levels in the case of IPU. Altogether, we developed an innovative protocol for building multi-degrading simplified bacterial communities with the help of genomic prediction tools and coalescence, and proved their efficiency in a contaminated soil.
Collapse
Affiliation(s)
- Sylvia Thieffry
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie,21000 Dijon, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120 Palaiseau, France.
| | - Julie Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120 Palaiseau, France
| | - Marion Devers-Lamrani
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie,21000 Dijon, France
| | - Fabrice Martin-Laurent
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie,21000 Dijon, France
| | - Sana Romdhane
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie,21000 Dijon, France
| | - Nadine Rouard
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie,21000 Dijon, France
| | - Mathieu Siol
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie,21000 Dijon, France
| | - Aymé Spor
- INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie,21000 Dijon, France.
| |
Collapse
|
31
|
Zhong J, Fox EGP, Ling S, Yan Z, Xu J, Yang H, Hong Z, Qin C, Qiu H. Bioactivities of scent gland chemicals from Mictis fuscipes Hsiao (Hemiptera: Coreidae) on Solenopsis invicta Buren (Hymenoptera: Formicidae). PEST MANAGEMENT SCIENCE 2024; 80:2892-2904. [PMID: 38411441 DOI: 10.1002/ps.7997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Given the chemical diversity within stink bugs scent glands, they can be convenient models for bioprospecting novel pest control products. Preliminary behaviour observations indicated that adult Mictis fuscipes stink bugs secrete liquid droplets when defending against Solenopsis invicta fire ants, killing them within minutes. Hence, this study aimed to analyse the chemical composition of the metathoracic scent gland secretions of M. fuscipes adults, as well as assess their biological activities against fire ants. RESULTS Bioassaying fire ants against secretions of several local stink bugs confirmed that the defensive secretions of two Mictis species are significantly more lethal, where M. fuscipes was the most lethal. Volatiles chromatography analysis indicated the secretions of female and male M. fuscipes stink bugs contains 20 and 26 components, respectively, chiefly hexanoic acid and hexyl hexanoate. Five compounds were consistently present in the secretion of female adults: hexyl hexanoate, hexanoic acid, hexyl acetate, hexyl butyrate, and eugenol. These yielded a strong electrophysiological antennal (EAD) response from S. invicta workers, female alates and males, where hexyl acetate showed the strongest response. The combination of these five compounds proved strongly repellent to S. invicta. When tested singly, hexanoic acid, hexyl butyrate, hexyl hexanoate, and eugenol were repellent to S. invicta, but hexyl acetate seemed slightly attractive. Additionally, the same mixture of five components exhibited strong contact and fumigant toxicity towards S. invicta workers, eugenol being the strongest. CONCLUSION Defensive chemicals of M. fuscipes exhibit robust biological activity against S. invicta and could inspire the development of biopesticides. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiamei Zhong
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, China
- College of Life Science, Nanchang University, Nanchang, China
| | - Eduardo G P Fox
- Programa de Pós-Graduação em Ambiente e Sociedade (PPGAS), Universidade Estadual de Goiás (UEG), Quirinópolis, Brazil
| | - Siquan Ling
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, China
| | - Zheng Yan
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, China
| | - Jinzhu Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, China
| | - Hua Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, China
| | - Ziqiong Hong
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, China
| | - Changsheng Qin
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, China
| | - Hualong Qiu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, China
| |
Collapse
|
32
|
Shang Y, Wang X, Wu X, Dou H, Wei Q, Wang Q, Liu G, Sun G, Wang L, Zhang H. Bacterial and fungal community structures in Hulun Lake are regulated by both stochastic processes and environmental factors. Microbiol Spectr 2024; 12:e0324523. [PMID: 38602397 PMCID: PMC11064641 DOI: 10.1128/spectrum.03245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Microorganisms are a crucial component of lake ecosystems and significant contributors to biogeochemical cycles. However, the understanding of how primary microorganism groups (e.g., bacteria and fungi) are distributed and constructed within different lake habitats is lacking. We investigated the bacterial and fungal communities of Hulun Lake using high-throughput sequencing techniques targeting 16S rRNA and Internal Transcribed Spacer 2 genes, including a range of ecological and statistical methodologies. Our findings reveal that environmental factors have high spatial and temporal variability. The composition and community structures vary significantly depending on differences in habitats. Variance partitioning analysis showed that environmental and geographical factors accounted for <20% of the community variation. Canonical correlation analysis showed that among the environmental factors, temperature, pH, and dissolved oxygen had strong control over microbial communities. However, the microbial communities (bacterial and fungal) were primarily controlled by the dispersal limitations of stochastic processes. This study offers fresh perspectives regarding the maintenance mechanism of bacterial and fungal biodiversity in lake ecosystems, especially regarding the responses of microbial communities under identical environmental stress.IMPORTANCELake ecosystems are an important part of the freshwater ecosystem. Lake microorganisms play an important role in material circulation and energy flow owing to their unique enzymatic and metabolic capacity. In this study, we observed that bacterial and fungal communities varied widely in the water and sediments of Hulun Lake. The primary factor affecting their formation was identified as dispersal limitation during stochastic processes. Environmental and geographical factors accounted for <20% of the variation in bacterial and fungal communities, with pH, temperature, and dissolved oxygen being important environmental factors. Our findings provide new insights into the responses of bacteria and fungi to the environment, shed light on the ecological processes of community building, and deepen our understanding of lake ecosystems. The results of this study provide a reference for lake management and conservation, particularly with respect to monitoring and understanding microbial communities in response to environmental changes.
Collapse
Affiliation(s)
- Yongquan Shang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xibao Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xiaoyang Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Qinguo Wei
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Qi Wang
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China
| | - Gang Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Guolei Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lidong Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Honghai Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
33
|
Gilliard G, Demortier T, Boubsi F, Jijakli MH, Ongena M, De Clerck C, Deleu M. Deciphering the distinct biocontrol activities of lipopeptides fengycin and surfactin through their differential impact on lipid membranes. Colloids Surf B Biointerfaces 2024; 239:113933. [PMID: 38729019 DOI: 10.1016/j.colsurfb.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Lipopeptides produced by beneficial bacilli present promising alternatives to chemical pesticides for plant biocontrol purposes. Our research explores the distinct plant biocontrol activities of lipopeptides surfactin (SRF) and fengycin (FGC) by examining their interactions with lipid membranes. Our study shows that FGC exhibits a direct antagonistic activity against Botrytis cinerea and no marked immune-eliciting activity in Arabidopsis thaliana while SRF only demonstrates an ability to stimulate plant immunity. It also reveals that SRF and FGC exhibit diverse effects on membrane integrity and lipid packing. SRF primarily influences membrane physical state without significant membrane permeabilization, while FGC permeabilizes membranes without significantly affecting lipid packing. From our results, we can suggest that the direct antagonistic activity of lipopeptides is linked to their capacity to permeabilize lipid membrane while the stimulation of plant immunity is more likely the result of their ability to alter the mechanical properties of the membrane. Our work also explores how membrane lipid composition modulates the activities of SRF and FGC. Sterols negatively impact both lipopeptides' activities while sphingolipids mitigate the effects on membrane lipid packing but enhance membrane leakage. In conclusion, our findings emphasize the importance of considering both membrane lipid packing and leakage mechanisms in predicting the biological effects of lipopeptides. It also sheds light on the intricate interplay between the membrane composition and the effectiveness of the lipopeptides, providing insights for targeted biocontrol agent design.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Thomas Demortier
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Farah Boubsi
- Microbial Processes and Interactions laboratory, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - M Haissam Jijakli
- Integrated and Urban Plant Pathology Laboratory, UMRt BioEcoAgro 1158 INRAE, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Caroline De Clerck
- AgricultureIsLife, UMRt BioEcoAgro 1158 INRAE, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, UMRt BioEcoAgro 1158 INRAE, TERRA teaching and research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium.
| |
Collapse
|
34
|
Huang Y, Liang T, Yang L, Hu G, Zhang J, Lu C, Chen H, Ma G. MOF-based Ag NPs/Co 3O 4 nanozyme for colorimetric detection of thiophanate-methyl based on analyte-enhanced sensing mechanism. Mikrochim Acta 2024; 191:264. [PMID: 38622377 DOI: 10.1007/s00604-024-06282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 04/17/2024]
Abstract
Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.
Collapse
Affiliation(s)
- Yali Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leiwenxuan Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gaohua Hu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianyang Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Guicen Ma
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Laboratory of Quality and Safety and Risk Assessment for Tea Products (Hangzhou), Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
35
|
Siddique A, Shahid N, Liess M. Revealing the cascade of pesticide effects from gene to community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170472. [PMID: 38296075 DOI: 10.1016/j.scitotenv.2024.170472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Global pesticide exposure in agriculture leads to biodiversity loss, even at ultra-low concentrations below the legal limits. The mechanisms by which the effects of toxicants act at such low concentrations are still unclear, particularly in relation to their propagation across the different biological levels. In this study, we demonstrate, for the first time, a cascade of effects from the gene to the community level. At the gene level, agricultural pesticide exposure resulted in reduced genetic diversity of field-collected Gammarus pulex, a dominant freshwater crustacean in Europe. Additionally, we identified alleles associated with adaptations to pesticide contamination. At the individual level, this genetic adaptation to pesticides was linked to a lower fecundity, indicating related fitness costs. At the community level, the combined effect of pesticides and competitors caused a decline in the overall number and abundance of pesticides susceptible macroinvertebrate competing with gammarids. The resulting reduction in interspecific competition provided an advantage for pesticide-adapted G. pulex to dominate macroinvertebrate communities in contaminated areas, despite their reduced fitness due to adaptation. These processes demonstrate the complex cascade of effects, and also illustrate the resilience and adaptability of biological systems across organisational levels to meet the challenges of a changing environment.
Collapse
Affiliation(s)
- Ayesha Siddique
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Naeem Shahid
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100 Vehari, Pakistan.
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
36
|
Asefa EM, Mergia MT, Ayele S, Damtew YT, Teklu BM, Weldemariam ED. Pesticides in Ethiopian surface waters: A meta-analytic based ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168727. [PMID: 38007129 DOI: 10.1016/j.scitotenv.2023.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
In most developing countries, including Ethiopia, a conspicuous gap exists in understanding risk of pesticides and establishing robust regulatory frameworks for their effective management. In this context, we present a detailed assessment of pesticide risks within Ethiopian aquatic ecosystems in at least 18 distinct surface water bodies, including 46 unique sample locations. Measured environmental concentrations (MECs; n = 388) of current-use pesticides (n = 52), sourced from existing field studies, were compared against their respective regulatory threshold levels (RTLs). The results indicated a scarcity of pesticide exposure data across the majority of Ethiopian water bodies situated within agricultural watersheds. Importantly, surface water pesticide concentrations ranged from 0.0001 to 142.66 μg/L, with a median concentration of 0.415 μg/L. The available dataset revealed that 142 out of 356 MECs (approximately 40 %) of the identified pesticides entail significant acute risks to aquatic ecosystems, with the highest RTL exceedances up to a factor of 8695. Among the pesticide use groups, insecticides exhibited the highest exceedance rate, while this was rarer for fungicides and herbicides. Furthermore, a species-specific insecticide risk assessment indicated aquatic invertebrates (54.4 %) and fishes (38.4 %) are more exposed to pesticide risks, attributable to pyrethroids and organophosphates. In conclusion, our findings demonstrate that the presently registered pesticides in Ethiopia carry elevated risks towards aquatic environments under real-world settings. This challenges the notion that pesticides approved through Ethiopian pesticide regulatory risk assessment entail minimal environmental hazards. Consequently, we advocate for the adoption of more refined risk assessment strategies, a post-registration reevaluation process, and, if deemed necessary, the imposition of bans or restrictions on highly toxic pesticides.
Collapse
Affiliation(s)
- Elsai Mati Asefa
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, 235 Harar, Ethiopia; Department of Biology, College of Computational and Natural Science, Hawassa University, 05 Hawassa, Ethiopia.
| | - Mekuria Theshome Mergia
- Department of Biology, College of Computational and Natural Science, Hawassa University, 05 Hawassa, Ethiopia
| | - Shiferaw Ayele
- Department of Biology, College of Computational and Natural Science, Hawassa University, 05 Hawassa, Ethiopia
| | - Yohannes Tefera Damtew
- School of Environmental Health, College of Health and Medical Sciences, Haramaya University, 235 Harar, Ethiopia; School of Public Health, The University of Adelaide, Adelaide 5005, Australia
| | - Berhan Mellese Teklu
- Plant Quarantine and Regulatory Lead Executive, Ethiopian Agricultural Authority, 313003 Addis Ababa, Ethiopia
| | - Ermias Deribe Weldemariam
- Department of Environmental Management, Faculty of Urban Development Studies, Kotebe University of Education, 31248 Addis Ababa, Ethiopia
| |
Collapse
|
37
|
Amador P, Vega C, Navarro Pacheco NI, Moratalla-López J, Palacios J, Crettaz Minaglia MC, López I, Díaz M, Rico A. Effects of the fungicide azoxystrobin in two habitats representative of mediterranean coastal wetlands: A mesocosm experiment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106828. [PMID: 38176168 DOI: 10.1016/j.aquatox.2023.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
This paper investigates the effects of the fungicide azoxystrobin, a compound widely used in rice farming, on aquatic communities representative of two habitats characteristic of Mediterranean wetland ecosystems: water springs and eutrophic lake waters. The long-term effects of azoxystrobin were evaluated on several structural (phytoplankton, zooplankton, macroinvertebrate populations and communities) and functional (microbial decomposition, macrophyte and periphyton growth) parameters making use of freshwater mesocosms. Azoxystrobin was applied in two pulses of 2, 20, 200 µg/L separated by 14 d using the commercial product ORTIVA (23 % azoxystrobin w/w). The results show that these two habitats responded differently to the fungicide application due to their distinct physico-chemical, functional, and structural characteristics. Although overall sensitivity was found to be similar between the two (lowest NOEC < 2 µg/L), the taxa and processes that were affected differed substantially. In general, the most sensitive species to the fungicide were found in the water spring mesocosms, with some species of phytoplankton (Nitzschia sp.) or macrocrustaceans (Echinogammarus sp. and Dugastella valentina) being significantly affected at 2 µg/L. In the eutrophic lake mesocosms, effects were found on phytoplankton taxa (Desmodesmus sp. and Coelastrum sp.), on numerous zooplankton taxa, on chironomids and on the beetle Colymbetes fuscus, although at higher concentrations. The hemipteran Micronecta scholtzi was affected in both treatments. In addition, functional parameters such as organic matter decomposition or macrophyte growth were also affected at relatively low concentrations (NOEC 2 µg/L). Structural Equation Modelling was used to shed light on the indirect effects caused by azoxystrobin on the ecosystem. These results show that azoxystrobin is likely to pose structural and functional effects on Mediterranean wetland ecosystems at environmentally relevant concentrations. Moreover, it highlights the need to consider habitat-specific features when conducting ecotoxicological research at the population and community levels.
Collapse
Affiliation(s)
- Pablo Amador
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Constanza Vega
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Natividad Isael Navarro Pacheco
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Jesús Moratalla-López
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Jose Palacios
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain
| | - Melina Celeste Crettaz Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Isabel López
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Mónica Díaz
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, Paterna, Valencia 46980, Spain; IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, Madrid 28805, Spain.
| |
Collapse
|
38
|
Bullock JM, Jarvis SG, Fincham WNW, Risser H, Schultz C, Spurgeon DJ, Redhead JW, Storkey J, Pywell RF. Mapping the ratio of agricultural inputs to yields reveals areas with potentially less sustainable farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168491. [PMID: 37952662 DOI: 10.1016/j.scitotenv.2023.168491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Fertilisers and pesticides are major sources of the environmental harm that results from farming, yet it remains difficult to target reductions in their impacts without compromising food production. We suggest that calculating the ratio of agrochemical inputs to yield can provide an indication of the potential sustainability of farmland, with those areas that have high input relative to yield being considered as less sustainable. Here we design an approach to characterise such Input to Yield Ratios (IYR) for four inputs that can be plausibly linked to environmental impacts: the cumulative risk resulting from pesticide exposure for honeybees and for earthworms, and the amount of nitrogen or phosphorus fertiliser applied per unit area. We capitalise on novel national-scale data to assess IYR for wheat farming across all of England. High-resolution spatial patterns of IYR differed among the four inputs, but hotspots, where all four IYRs were high, were in key agricultural regions not usually characterised as having low suitability for cropping. By scaling the magnitude of each input against crop yield, the IYR does not penalise areas of high yield with higher inputs (important for food production), or areas with low yields but which are achieved with low inputs (important as low impact areas). Instead, the IYR provides a globally applicable framework for evaluating the broad patterns of trade-offs between production and environmental risk, as an indicator of the potential for harm, over large scales. Its use can thus inform targeting to improve agricultural sustainability, or where one might switch to other land uses such as ecosystem restoration.
Collapse
Affiliation(s)
| | - Susan G Jarvis
- UK Centre for Ecology & Hydrology, Bailrigg, Lancaster, UK
| | | | - Hannah Risser
- UK Centre for Ecology & Hydrology, Bailrigg, Lancaster, UK
| | | | | | | | | | | |
Collapse
|
39
|
Agathokleous E, Blande JD, Masui N, Calabrese EJ, Zhang J, Sicard P, Guedes RNC, Benelli G. Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance. ENVIRONMENTAL RESEARCH 2023; 237:116876. [PMID: 37573021 DOI: 10.1016/j.envres.2023.116876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
An increasing number of studies have reported stimulation of various organisms in the presence of environmental contaminants. This has created a need to critically evaluate sublethal stimulation and hormetic responses of arthropod parasitoids and parasites following exposure to pesticides and other contaminants. Examining this phenomenon with a focus on arthropods of agricultural and environmental importance serves as the framework for this literature review. This review shows that several pesticides, with diverse chemical structures and different modes of action, applied individually or in combination at sublethal doses, commonly stimulate an array of arthropod parasitoids and parasites. Exposure at sublethal doses can enhance responses related to physiology (e.g., respiration, total lipid content, and total protein content), behavior (e.g., locomotor activity, antennal drumming frequency, host location, and parasitization), and fitness (longevity, growth, fecundity, population net and gross reproduction). Concordantly, the parasitic potential (e.g., infestation efficacy, parasitization rate, and parasitoid/parasite emergence) can be increased, and as a result host activities inhibited. There is some evidence illustrating hormetic dose-responses, but the relevant literature commonly included a limited number and range of doses, precluding a robust differentiation between sub- and superNOAEL (no-observed-adverse-effect level) stimulation. These results reveal a potentially significant threat to ecological health, through stimulation of harmful parasitic organisms by environmental contaminants, and highlight the need to include sublethal stimulation and hormetic responses in relevant ecological pesticide risk assessments. Curiously, considering a more utilitarian view, hormesis may also assist in optimizing mass rearing of biological control agents for field use, a possibility that also remains neglected.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Noboru Masui
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 4228526, Japan
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | | | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
40
|
Li Y, Feng F, Mu Q, Li M, Ma L, Wan Q, Jousset A, Liu C, Yu X. Foliar Spraying of Chlorpyrifos Triggers Plant Production of Linolenic Acid Recruiting Rhizosphere Bacterial Sphingomonas sp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17312-17323. [PMID: 37907425 DOI: 10.1021/acs.est.3c04593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Plants have developed an adaptive strategy for coping with biotic or abiotic stress by recruiting specific microorganisms from the soil pool. Recent studies have shown that the foliar spraying of pesticides causes oxidative stress in plants and leads to changes in the rhizosphere microbiota, but the mechanisms by which these microbiota change and rebuild remain unclear. Herein, we provide for the first-time concrete evidence that rice plants respond to the stress of application of the insecticide chlorpyrifos (CP) by enhancing the release of amino acids, lipids, and nucleotides in root exudates, leading to a shift in rhizosphere bacterial community composition and a strong enrichment of the genus Sphingomonas sp. In order to investigate the underlying mechanisms, we isolated a Sphingomonas representative isolate and demonstrated that it is both attracted by and able to consume linolenic acid, one of the root exudates overproduced after pesticide application. We further show that this strain selectively colonizes roots of treated plants and alleviates pesticide stress by degrading CP and releasing plant-beneficial metabolites. These results indicate a feedback loop between plants and their associated microbiota allowing to respond to pesticide-induced stress.
Collapse
Affiliation(s)
- Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Fayun Feng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qi'er Mu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Mei Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Liya Ma
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qun Wan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Alexandre Jousset
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Bio-interaction and Plant Health, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Changhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| |
Collapse
|
41
|
Almeida RA, Fajgenblat M, Lemmens P, De Meester L. Pesticide exposure enhances dominance patterns in a zooplankton community. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2900. [PMID: 37335538 DOI: 10.1002/eap.2900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Exposure to pesticides can profoundly alter community dynamics. It is expected that dominance patterns will be enhanced or reduced depending on whether the dominant species is less or more sensitive to the pesticide than the subdominant species. Community dynamics are, however, also determined by processes linked to population growth as well as competition at carrying capacity. Here, we used a mesocosm experiment to quantify the effect of chlorpyrifos exposure on the population dynamics of four cladoceran species (Daphnia magna, Daphnia pulicaria, Daphnia galeata and Scapholeberis mucronata) in mixed cultures, testing for direct effects of chlorpyrifos and indirect effects mediated by interactions with other species on the timing of population growth and dominance at carrying capacity. We also quantified whether the pesticide-induced changes in community dynamics affected top-down control of phytoplankton. By adding a treatment in which we used different genotype combinations of each species, we also tested to what extent genetic composition affects community responses to pesticide exposure. Immobilization tests showed that D. magna is the least sensitive to chlorpyrifos of the tested species. Chlorpyrifos exposure first leads to a reduction in the abundance of D. galeata to the benefit of D. pulicaria, and subsequently to a reduction in densities of D. pulicaria to the benefit of D. magna. This resulted in D. magna being more dominant in the pesticide than in the control treatment by the end of the experiment. There was no effect of genotypic differences on community patterns, and top-down control of phytoplankton was high in all treatments. Our results suggest that in this community dominance patterns are enhanced in line with the observed among-species differences in sensitivity to the pesticide. Our results also show that the development of the community in pesticide treatment is a complex interaction between direct and indirect effects of the pesticide.
Collapse
Affiliation(s)
- Rafaela A Almeida
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Maxime Fajgenblat
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- Data Science Institute (DSI), Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Hasselt, Belgium
| | - Pieter Lemmens
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- Leibniz Institute für Gewasserökologie und Binnenfischerei (IGB), Berlin, Germany
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
- Leibniz Institute für Gewasserökologie und Binnenfischerei (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
42
|
Kumar V, Sharma N, Sharma P, Pasrija R, Kaur K, Umesh M, Thazeem B. Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol Appl Pharmacol 2023; 474:116623. [PMID: 37414290 DOI: 10.1016/j.taap.2023.116623] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Endocrine disrupting compounds are the chemicals which mimics the natural endocrine hormones and bind to the receptors made for the hormones. Upon binding they activate the cascade of reaction which leads to permanent activating of the signalling cycle and ultimately leads to uncontrolled growth. Pesticides are one of the endocrine disrupting chemicals which cause cancer, congenital birth defects, and reproductive defects in non-target organisms. Non-target organisms are keen on exposing to these pesticides. Although several studies have reported about the pesticide toxicity. But a critical analysis of pesticide toxicity and its role as endocrine disruptor is lacking. Therefore, the presented review literature is an endeavour to understand the role of the pesticides as endocrine disruptors. In addition, it discusses about the endocrine disruption, neurological disruption, genotoxicity, and ROS induced pesticide toxicity. Moreover, biochemical mechanisms of pesticide toxicity on non-target organisms have been presented. An insight on the chlorpyrifos toxicity on non-target organisms along with species names have been presented.
Collapse
Affiliation(s)
- Vinay Kumar
- Bioconversion and Tissue Engineering Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India.
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur 143521, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad 678592, Kerala, India
| |
Collapse
|
43
|
Lopez LK, Gil MA, Crowley PH, Trimmer PC, Munson A, Ligocki IY, Michelangeli M, Sih A. Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biol Rev Camb Philos Soc 2023; 98:1345-1364. [PMID: 37004993 DOI: 10.1111/brv.12956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
While a large body of research has focused on the physiological effects of multiple environmental stressors, how behavioural and life-history plasticity mediate multiple-stressor effects remains underexplored. Behavioural plasticity can not only drive organism-level responses to stressors directly but can also mediate physiological responses. Here, we provide a conceptual framework incorporating four fundamental trade-offs that explicitly link animal behaviour to life-history-based pathways for energy allocation, shaping the impact of multiple stressors on fitness. We first address how small-scale behavioural changes can either mediate or drive conflicts between the effects of multiple stressors and alternative physiological responses. We then discuss how animal behaviour gives rise to three additional understudied and interrelated trade-offs: balancing the benefits and risks of obtaining the energy needed to cope with stressors, allocation of energy between life-history traits and stressor responses, and larger-scale escape from stressors in space or time via large-scale movement or dormancy. Finally, we outline how these trade-offs interactively affect fitness and qualitative ecological outcomes resulting from multiple stressors. Our framework suggests that explicitly considering animal behaviour should enrich our mechanistic understanding of stressor effects, help explain extensive context dependence observed in these effects, and highlight promising avenues for future empirical and theoretical research.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children's Hospitals Network, Corner Hawkesbury Road & Hainsworth Street, Westmead, New South Wales, 2145, Australia
| | - Michael A Gil
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122/Campus Box 334, Boulder, CO, 80309-0334, USA
| | - Philip H Crowley
- Department of Biology, University of Kentucky, 195 Huguelet Drive, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506-0225, USA
| | - Pete C Trimmer
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Amelia Munson
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University of Pennsylvania, Roddy Science Hall, PO Box 1002, Millersville, PA, 17551, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Marcus Michelangeli
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
44
|
Bai F, Gao G, Li T, Liu J, Li L, Jia Y, Song L. Integrated physiological and metabolomic analysis reveals new insights into toxicity pathways of paraquat to Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106521. [PMID: 37061422 DOI: 10.1016/j.aquatox.2023.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2023] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
Chemical pollutants, such as herbicides, released into the aquatic environment adversely affect the phytoplankton community structure. While majority of herbicides are specifically designed to target photosynthetic processes, they also can be toxic to phytoplankton; however, despite the photosynthetic toxicity, some herbicides can target multiple physiological processes. Therefore, a full picture of toxicity pathway of herbicide to phytoplankton is necessary. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to two levels (17 μg L-1 (EC10) and 65 μg L-1 (EC50)) of paraquat for 72 h. The physiological and metabolic responses were analyzed to elucidate the toxicity pathway and establish the adverse outcome pathway of paraquat to M. aeruginosa. The results revealed that enhanced glycolysis (upregulation of pyruvic acid level) and tricarboxylic acid cycle (upregulation of the levels of malic acid, isocitric acid and citric acid) exposed to EC10 level of paraquat, which probably acted as a temporary strategy to maintain a healthy energy status in M. aeruginosa cells. Meanwhile, the expressions of glutathione and benzoic acid were enhanced to scavenge the excessive reactive oxygen species (ROS). Additionally, the accumulation of pigments (chlorophyll a and carotenoid) might play a supplementary role in the acclimation to EC10 level paraquat treatment. In cells exposed to paraquat by EC50 level, the levels of SOD, CAT, glutathione and benzoic acid increased significantly; however, the ROS exceeded the tolerance level of antioxidant system in M. aeruginosa. The adverse effects were revealed by inhibition of chlorophyll a fluorescence, the decreases in several carbohydrates (e.g., glucose 1-phosphate, fructose and galactose) and total protein content. Consequently, paraquat-induced oxidative stress caused the growth inhibition of M. aeruginosa. These findings provide new insights into the mode of action of paraquat in M. aeruginosa.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangbin Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tianli Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
45
|
Sumudumali I, Jayawardana CK, Malavipathirana S, Gunatilake SK, Udayakumara N. Effects of fungicide chlorothalonil on freshwater plankton communities: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52062-52072. [PMID: 36826773 DOI: 10.1007/s11356-023-25995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Direct and indirect effects of the fungicide chlorothalonil on aquatic plankton community structure were investigated by exposing plankton to chlorothalonil concentrations of 0.010, 0.025, 0.100, 0.250 and 1.000 mg/L over 20 days in 18 microcosms (glass tanks having 8 L of pond water). Each treatment was executed in three replicates. Total phytoplankton and zooplankton abundance and chlorophyll-a concentrations in microcosms were measured 5, 10 and 20 days after pesticide exposure. Plankton community and taxa response to pesticide concentrations were analyzed using the similarity of percentages procedure (SIMPER) and one-way ANOVA test. The results of the study indicated that highest concentration levels of chlorothalonil exposure had a significant impact on phytoplankton and zooplankton taxa. Phytoplankton taxa Amphora sp. and Staurastrum sp. and zooplankton taxa Moina sp. and copepod Nauplius were highly sensitive to chlorothalonil exposure. Phytoplankton taxa Mougeotia sp. increased with increased chlorothalonil (0.1-1.0 mg/L) concentrations, and zooplankton taxa of Aeolosoma sp. showed no significant reduction of individuals in response to pesticide exposure. Results showed that pesticide residues have a direct and rapid impact on phytoplankton and zooplankton community structure. Changes in diversity and species composition induced by pesticides indicate the importance of considering indirect effects of pesticides on the ecological food chain in the aquatic environment.
Collapse
Affiliation(s)
- Iresha Sumudumali
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihiloya, Sri Lanka
| | - Chandramali Kumari Jayawardana
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka.
| | - Sarath Malavipathirana
- Department of Physical Science and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Sunethra Kanthi Gunatilake
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Nimal Udayakumara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| |
Collapse
|
46
|
Sánchez-Domene D, da Silva FR, Provete DB, Navarro-Lozano A, Acayaba RD, Montagner CC, Rossa-Feres DDC, López-Iborra GM, Almeida EA. Combined effects of landscape composition and agrochemicals on frog communities amid sugarcane-dominated agroecosystems. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2781. [PMID: 36398791 DOI: 10.1002/eap.2781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Global demand for crops will continue increasing over the next few decades to cover both food and biofuel needs. This demand will put further pressure to expand arable land and replace natural habitats. However, we are only beginning to understand the combined effects of agrochemicals and land-use change on tropical freshwater biodiversity. In this study, we analyzed how pond-dwelling anuran larvae responded to pond characteristics, landscape composition, and agrochemical contamination in a sugarcane-dominated agroecosystem in Brazil. Then we used an information theoretical approach with generalized linear models to relate species richness and abundance to predictor variables. The variation in tadpole abundance was associated with both agrochemical concentration (e.g., ametryn, diuron, and malathion) and landscape variables (e.g., percentage of forest, percentage of agriculture, and distance to closest forest). The relationship between species abundance and agrochemicals was species-specific. For example, the abundances of Scinax fuscovarius and Physalaemus nattereri were negatively associated with ametryn, and Dendropsophus nanus was negatively associated with tebuthiuron, whereas that of Leptodactylus fuscus was positively associated with malathion. Conversely, species richness was associated with distance to forest fragments and aquatic vegetation heterogeneity, but not agrochemicals. Although we were unable to assign a specific mechanism to the variation in tadpole abundance based on field observations, the lower abundance of three species in ponds with high concentrations of agrochemicals suggest they negatively impact some frog species inhabiting agroecosystems. We recommend conserving ponds near forest fragments, with abundant stratified vegetation, and far from agrochemical runoffs to safeguard more sensitive pond-breeding species.
Collapse
Affiliation(s)
- David Sánchez-Domene
- Instituto de Pesquisa em Bioenergia, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Fernando R da Silva
- Laboratório de Ecologia Teórica: Integrando Tempo, Biologia e Espaço (LET.IT.BE), Departamento de Ciências Ambientais, Universidade Federal de São Carlos - UFSCAr, Sorocaba, Brazil
| | - Diogo B Provete
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Alba Navarro-Lozano
- Laboratório de Ecologia Teórica, Departamento de Zoologia e Botânica, Universidade Estadual Paulista - UNESP, São José do Rio Preto, Brazil
| | - Raphael D Acayaba
- Laboratório de Química Ambiental, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Campinas, Brazil
| | - Cassiana C Montagner
- Laboratório de Química Ambiental, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Cidade Universitária "Zeferino Vaz", Campinas, Brazil
| | - Denise de C Rossa-Feres
- Laboratório de Ecologia Teórica, Departamento de Zoologia e Botânica, Universidade Estadual Paulista - UNESP, São José do Rio Preto, Brazil
| | - Germán M López-Iborra
- Departamento de Ecologia/IMEM Ramon Margalef, Universidad de Alicante, Campus de San Vicente del Raspeig, Alicante, Spain
| | - Eduardo A Almeida
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Brazil
| |
Collapse
|
47
|
Haggerty CJE, Delius BK, Jouanard N, Ndao PD, De Leo GA, Lund AJ, Lopez-Carr D, Remais JV, Riveau G, Sokolow SH, Rohr JR. Pyrethroid insecticides pose greater risk than organophosphate insecticides to biocontrol agents for human schistosomiasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120952. [PMID: 36586553 DOI: 10.1016/j.envpol.2022.120952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Use of agrochemicals, including insecticides, is vital to food production and predicted to increase 2-5 fold by 2050. Previous studies have shown a positive association between agriculture and the human infectious disease schistosomiasis, which is problematic as this parasitic disease infects approximately 250 million people worldwide. Certain insecticides might runoff fields and be highly toxic to invertebrates, such as prawns in the genus Macrobrachium, that are biocontrol agents for snails that transmit the parasites causing schistosomiasis. We used a laboratory dose-response experiment and an observational field study to determine the relative toxicities of three pyrethroid (esfenvalerate, λ-cyhalothrin, and permethrin) and three organophosphate (chlorpyrifos, malathion, and terbufos) insecticides to Macrobrachium prawns. In the lab, pyrethroids were consistently several orders of magnitude more toxic than organophosphate insecticides, and more likely to runoff fields at lethal levels according to modeling data. At 31 water contact sites in the lower basin of the Senegal River where schistosomiasis is endemic, we found that Macrobrachium prawn survival was associated with pyrethroid but not organophosphate application rates to nearby crop fields after controlling for abiotic and prawn-level factors. Our laboratory and field results suggest that widely used pyrethroid insecticides can have strong non-target effects on Macrobrachium prawns that are biocontrol agents where 400 million people are at risk of human schistosomiasis. Understanding the ecotoxicology of high-risk insecticides may help improve human health in schistosomiasis-endemic regions undergoing agricultural expansion.
Collapse
Affiliation(s)
- Christopher J E Haggerty
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Bryan K Delius
- Duquesne University, Department of Biological Sciences, Pittsburgh, PA, USA
| | - Nicolas Jouanard
- Centre de Recherche Biomédicale Espoir pour La Santé, Saint-Louis, Senegal; Station D'Innovation Aquacole, Saint-Louis, Senegal
| | - Pape D Ndao
- Station D'Innovation Aquacole, Saint-Louis, Senegal; Université Gaston Berger (UGB), Route de Ngallèle, BP 234, Saint-Louis, Senegal
| | - Giulio A De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, USA
| | - David Lopez-Carr
- Human-Environment Dynamics Lab, Department of Environmental Studies, UCSB, Santa Barbara, CA, USA
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Gilles Riveau
- Centre de Recherche Biomédicale Espoir pour La Santé, Saint-Louis, Senegal; University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL, Center for Infection and Immunity of Lille, Lille, France
| | - Susanne H Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, Eck Institute of Global Health, University of Notre Dame, Notre Dame, IN, USA; Marine Science Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
48
|
Huangfu N, Zhu X, Wang L, Zhang K, Li D, Chen L, Gao X, Niu L, Gao M, Ji J, Luo J, Cui J. Insulin Receptor Substrate-1 ( IRS1) Regulates Oogenesis and Vitellogenesis in Propylea japonica by Mediating the FOXO Transcription Factor Expression, Independent of JH and 20E Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:300-310. [PMID: 36538395 DOI: 10.1021/acs.jafc.2c07433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The insulin receptor substrate (IRS), as the core cytoplasmic adapter protein in the insulin/insulin-like signaling (IIS) pathway, is an important mediator of cellular signaling. However, it is still unknown how IRS crosstalk with hormone signaling regulates insect growth, development, and reproduction. In this study, we demonstrated that knockdown of IRS1 significantly inhibited oogenesis, vitellogenesis, and the development of nurse cells and follicular epithelial cells. In addition, qRT-PCR results showed that FOXO transcription factors significantly responded to silencing of the IRS1 gene. However, IRS1 silencing had no significant effect on the expression of juvenile hormone/20-hydroxyecdysone (JH/20E)-signaling genes, JH synthesis, and degradation enzyme-related genes and the JH/20E titers. Our results suggested that the IIS pathway regulated ovarian development and Vg production through FOXO, independent of JH and 20E signaling pathways. This study revealed the reproductive regulation mechanism in Propylea japonica, which provides a theoretical basis for large-scale expansion of P. japonica as an environment-friendly biological control strategy.
Collapse
Affiliation(s)
- Ningbo Huangfu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lulu Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengxue Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
49
|
Oginah SA, Posthuma L, Maltby L, Hauschild M, Fantke P. Linking freshwater ecotoxicity to damage on ecosystem services in life cycle assessment. ENVIRONMENT INTERNATIONAL 2023; 171:107705. [PMID: 36549223 PMCID: PMC9875201 DOI: 10.1016/j.envint.2022.107705] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Freshwater ecosystems provide major benefits to human wellbeing-so-called ecosystem services (ES)-but are currently threatened among others by ecotoxicological pressure from chemicals reaching the environment. There is an increased motivation to incorporate ES in quantification tools that support decision-making, such as life cycle assessment (LCA). However, mechanistic models and frameworks that can systematically translate ecotoxicity effect data from chemical tests into eventual damage on species diversity, functional diversity, and ES in the field are still missing. While current approaches focus on translating predicted ecotoxicity impacts to damage in terms of species loss, no approaches are available in LCA and other comparative assessment frameworks for linking ecotoxicity to damage on ecosystem functioning or ES. To overcome this challenge, we propose a way forward based on evaluating available approaches to characterize damage of chemical pollution on freshwater ES. We first outline an overall framework for linking freshwater ecotoxicity effects to damage on related ES in compliance with the boundary conditions of quantitative, comparative assessments. Second, within the proposed framework, we present possible approaches for stepwise linking ecotoxicity effects to species loss, functional diversity loss, and damage on ES. Finally, we discuss strengths, limitations, and data availability of possible approaches for each step. Although most approaches for directly deriving damage on ES from either species loss or damage to functional diversity have not been operationalized, there are some promising ways forward. The Threshold Indicator Taxa ANalysis (TITAN) seems suitable to translate predicted ecotoxicity effects to a metric of quantitative damage on species diversity. A Trait Probability Density Framework (TPD) approach that incorporates various functional diversity components and functional groups could be adapted to link species loss to functional diversity loss. An Ecological Production Function (EPF) approach seems most promising for further linking functional diversity loss to damage on ES flows for human wellbeing. However, in order to integrate the entire pathway from predicted freshwater ecotoxicity to damage on ES into LCA and other comparative frameworks, the approaches adopted for each step need to be harmonized in terms of assumptions, boundary conditions and consistent interfaces with each other.
Collapse
Affiliation(s)
- Susan A Oginah
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Leo Posthuma
- National Institute for Public Health and the Environment, PO Box 1, 3720 Bilthoven, the Netherlands; Department of Environmental Science, Radboud University Nijmegen, Heyendaalseweg, Nijmegen, the Netherlands
| | - Lorraine Maltby
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Michael Hauschild
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
50
|
Yang Q, Zhao S, Li H, Li F. Acidic pH and thiol-driven homogeneous cathodic electrochemiluminescence strategy for determining the residue of organophosphorus pesticide in Chinese cabbage. Food Chem 2022; 393:133349. [PMID: 35691064 DOI: 10.1016/j.foodchem.2022.133349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/19/2022]
Abstract
Electrochemiluminescent (ECL) sensors for organophosphorus pesticides (OPs) have received considerable attention, whereas complicated electrode's immobilization, response to single hydrolysate and anodic emission correlated with ECL assays restrict their potential utilization. Herein, we developed a homogeneous dual-response cathodic ECL system for highly sensitive and reliable analysis of OP using CdTe QDs as emitters. CdTe QDs, emitting red light, were fabricated through a hydrothermal reaction and generated anodic and cathodic ECL emission upon stimulation of tripropyl amine and K2S2O8, respectively. Notably, CdTe QDs-K2S2O8 showed a simultaneous response to thiol and acidic pH, and were regarded as a ECL sensor for methidathion with limit of detection of 0.016 ng/mL based on hydrolysis of acetylthiocholine into thiocholine and CH3COOH by acetylcholinesterase (AChE) and OPs' inhibition on AChE activity. This sensor also exhibited good practicability to detect methidathion in Chinese cabbage. Overall, the sensor will supply more useful information for ensuring OPs-related food safety.
Collapse
Affiliation(s)
- Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|