1
|
Teck Tan T, Kiang Lim S. Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles. RNA Biol 2025; 22:1-7. [PMID: 39719370 PMCID: PMC12064053 DOI: 10.1080/15476286.2024.2446868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response. Several RNA sequencing studies reveal that miRNAs are underrepresented in the small RNA population of MSC-sEVs compared to the parent MSCs. Additionally, the majority of miRNAs are mature forms that are not associated with Argonaute (AGO) proteins, essential for their function in RNA-induced silencing complexes (RISCs). Compounding this, cellular uptake of EVs is generally inefficient, with less than 1% being internalized, and only a fraction of these reaching the cytosol. This suggests that EVs may not deliver miRNAs in sufficient quantities to meaningfully interact with AGO proteins, either through canonical or non-canonical pathways, or with other proteins like Toll-like receptors (TLRs). Further, MSC-sEV RNAs are generally small, with sizes less than 500 nucleotides indicating that any mRNA present is likely fragmented as the average mammalian mRNA is approximately 2000 nucleotides, a fact confirmed by RNA sequencing data. Together, these findings challenge the notion that RNA, particularly miRNAs and mRNAs, are primary therapeutic attributes of MSC-sEVs.
Collapse
Affiliation(s)
- Thong Teck Tan
- Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore
| | - Sai Kiang Lim
- Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore C/O NUHS Tower Block, Singapore, Republic of Singapore
| |
Collapse
|
2
|
Cho H, Ju H, Ahn Y, Jang J, Cho J, Park E, Kang SM, Lee J, Seo D, Baek MC, Yea K. Engineered extracellular vesicles with surface FGF21 and enclosed miR-223 for treating metabolic dysfunction-associated steatohepatitis. Biomaterials 2025; 321:123321. [PMID: 40209593 DOI: 10.1016/j.biomaterials.2025.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/22/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disorder with a complex pathogenesis that requires combination therapies rather than monotherapies. Extracellular vesicles (EVs) exhibit inherently efficient delivery to the liver and can be engineered to carry various therapeutic substances, making them promising agents. In this study, EVs were engineered to display fibroblast growth factor 21 (FGF21) on their surface and encapsulate miR-223 (223/F-EVs), aiming to improve steatosis and alleviate inflammation and fibrosis, respectively. Introducing the 223/F-EVs into human liver cell lines significantly reduced both basal and induced levels of lipid storage, inflammation, and fibrosis markers. Furthermore, using an FGF21-blocking antibody or miR-223 inhibitor effectively diminished the efficacy of the 223/F-EVs, confirming the essential roles of FGF21 and miR-223 in these processes. In a Choline-Deficient, l-Amino acid-defined, High-Fat Diet (CDAHFD)-fed mouse model, intravenously administered 223/F-EVs demonstrated liver-preferential delivery and a marked reduction in the MASH phenotype without compromising bone density, unlike conventional FGF21 treatment. Collectively, 223/F-EVs convey FGF21 and miR-223 exclusively to the liver, offering strategic advantages by mitigating MASH progression via multiple pathways. This study lays a solid foundation for further investigation of engineered EVs as a transformative therapeutic approach for treating MASH.
Collapse
Affiliation(s)
- Hanchae Cho
- Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Hyunji Ju
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Juhyeong Cho
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Eunju Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Sung-Min Kang
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea.
| | - Kyungmoo Yea
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea; New Biology Research Center, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 43024, Republic of Korea.
| |
Collapse
|
3
|
Zhu Y, Liu Y, Yang K, Wu W, Cheng Y, Ding Y, Gu R, Liu H, Zhang X, Liu Y. Apoptotic vesicles inhibit bone marrow adiposity via wnt/β-catenin signaling. Regen Ther 2025; 29:262-270. [PMID: 40230357 PMCID: PMC11994938 DOI: 10.1016/j.reth.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Background There is currently increasing focus on aging-related diseases. Osteoporosis is a common disease the incidence of which increases with age. In older patients with osteoporosis, bone marrow mesenchymal stem cells (BMMSCs) have a decreased capacity for osteogenesis and an increased capacity for adipogenesis, causing excessive accumulation of adipose tissue in the bone marrow. Therefore, means of reducing bone marrow adiposity may have therapeutic potential for osteoporosis. Apoptotic vesicles (apoVs) participate in a wide range of physiological processes and have been shown to have therapeutic effects in a variety of diseases. The principal objective of this study was to examine the special properties and regulatory mechanisms of BMMSC-derived apoVs in the treatment of bone marrow adiposity. Results The results showed that apoVs could decrease bone marrow adiposity in osteoporotic mice and prevent adipogenic differentiation of MSCs by activating the Wnt/β-catenin pathway. Conclusion New apoV-based therapies have potential for the treatment of bone marrow adiposity in patients with aging-related osteoporosis and may be further applicable to the treatment of obesity and aging-related diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
| | - Yaoshan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Weiliang Wu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yawen Cheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanan Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing 100081, China
- National Center of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
4
|
Wang M, Liu H, Huang J, Cai T, Xu ZP, Zhang L. Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems. J Nanobiotechnology 2025; 23:362. [PMID: 40394591 PMCID: PMC12090605 DOI: 10.1186/s12951-025-03433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
Gene therapy holds immense potential due to its ability to precisely target oncogenes, making it a promising strategy for cancer treatment. Advances in genetic science and bioinformatics have expanded the applications of gene delivery technologies beyond detection and diagnosis to potential therapeutic interventions. However, traditional gene therapy faces significant challenges, including limited therapeutic efficacy and the rapid degradation of genetic materials in vivo. To address these limitations, multifunctional nanoparticles have been engineered to encapsulate and protect genetic materials, enhancing their stability and therapeutic effectiveness. Nanoparticles are being extensively explored for their ability to deliver various genetic payloads-including plasmid DNA, messenger RNA, and small interfering RNA-directly to cancer cells. This review highlights key gene modulation strategies such as RNA interference, gene editing systems, and chimeric antigen receptor (CAR) technologies, alongside a diverse array of nanoscale delivery systems composed of polymers, lipids, and inorganic materials. These nanoparticle-based delivery platforms aim to improve targeted transport of genetic material into cancer cells, ultimately enhancing the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Maoze Wang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
| | - Jinling Huang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
| | - Zhi Ping Xu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| | - Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
5
|
Tu C, Gao X, Zheng H, Huang R, Yang F, Dong Y, Jing K, Groth T, Zhao M. Innovative injectable, self-healing, exosome cross-linked biomimetic hydrogel for cartilage regeneration. J Control Release 2025; 381:113608. [PMID: 40054632 DOI: 10.1016/j.jconrel.2025.113608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
The limited self-healing capacity of cartilage hinders its repair and regeneration at the defect sites. Recent research into small-molecular compounds has shown promise in achieving a better regeneration of cartilage. In this study, we encapsulate kartogenin (KGN) and transforming growth factor β1 (TGF-β1) within mesenchymal stem cells derived exosomes (EKT), and then coated them with succinylated chitosan (sCH) to create positively charged exosomes, termed CEKT. These CEKT exhibit exceptional chondrogenic promoting capabilities shown during in vitro studies with bone marrow derived mesenchymal stem cells (BMSCs). They also can penetrate deep into cartilage tissue derived from porcine knee joints guided by their positive charge. Subsequently, a dynamic exosomes-crosslinked hydrogel (Gel-CEKT) is fabricated by crosslinking CEKT with oxidized chondroitin sulfate (oCS) and Wharton's jelly (WJ) through imine bond formation. Physicochemical studies revealed the injectability, excellent adhesive, and self-healing abilities of this hydrogel, which enables minimally invasive and precise treatment of cartilage defects, assisted by the enriched and sustained administration of CEKT. In vitro cell experiments show that Gel-CEKT can efficiently recruit BMSCs and significantly promote the gene expression of Sox9 and protein expression of collagen II and aggrecan. Furthermore, we show in a rat model of cartilage defect that the Gel-CEKT demonstrates superior performance compared to Gel@EKT, which has freely encapsulated exosomes in the hydrogel. The freely encapsulated exosomes are rapidly released, whereas the exosome-crosslinked gel structure ensures sustained retention and functionality at the site of defect. This leads to impressive outcomings, including extensive new cartilage tissue formation, a smoother cartilage surface, significant chondrocyte production, and seamless integration with orderly and continuous structure formation between cartilage and subchondral bone. This study underscores the potential of exosomes-crosslinked hydrogels as a novel and promising therapeutic approach for clinical cartilage regeneration.
Collapse
Affiliation(s)
- Chenlin Tu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hong Zheng
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Rui Huang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Fengkai Yang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yeying Dong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kaipeng Jing
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Zhanjiang 524001, China
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 0699 Halle (Saale), Germany
| | - Mingyan Zhao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
6
|
Liu S, Feng A, Li Z. Neuron-Derived Extracellular Vesicles: Emerging Regulators in Central Nervous System Disease Progression. Mol Neurobiol 2025:10.1007/s12035-025-05010-4. [PMID: 40325332 DOI: 10.1007/s12035-025-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The diagnosis and exploration of central nervous system (CNS) diseases remain challenging due to the blood-brain barrier (BBB), complex signaling pathways, and heterogeneous clinical manifestations. Neurons, as the core functional units of the CNS, play a pivotal role in CNS disease progression. Extracellular vesicles (EVs), capable of crossing the BBB, facilitate intercellular and cell-extracellular matrix (ECM) communication, making neuron-derived extracellular vesicles (NDEVs) a focal point of research. Recent studies reveal that NDEVs, carrying various bioactive substances, can exert either pathogenic or protective effects in numerous CNS diseases. Additionally, NDEVs show significant potential as biomarkers for CNS diseases. This review summarizes the emerging roles of NDEVs in CNS diseases, including Alzheimer's disease, depression, traumatic brain injury, schizophrenia, ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. It aims to provide a novel perspective on developing therapeutic and diagnostic strategies for CNS diseases through the study of NDEVs.
Collapse
Affiliation(s)
- Sitong Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Aitong Feng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Chang X, Wang WX. Passing the Parcels: Intercellular Nanoplastics Transfer in Mussels Perna viridis with Activated Immunomodulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8177-8188. [PMID: 40238681 DOI: 10.1021/acs.est.4c14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Nanoplastics (NPs) are generally considered to have a defined intracellular fate, being difficult to excrete or transport due to their stability. This study provides the first evidence of NPs intercellular transfer in the hemocytes of green mussels (Perna viridis), which subsequently activated the immunomodulation process. NPs were predominantly internalized by granulocytes, with a portion being translocated and deposited in lysosomes, whereas those retained in endosomes were subsequently transferred to new hemocytes (mainly granulocytes). The transfer direction was driven by the intracellular NP concentration gradients. Transfer kinetics was size-dependent, with smaller-sized NPs exhibiting greater potential but a lower rate, primarily due to their specific extracellular vesicle-mediated transfer pathway. Tunneling nanotubes provided the most efficient pathway for the intercellular transfer of NPs, as their continuous membrane structure allowed direct substance exchange. Crucially, NP redistribution was accompanied by a gradient-driven transfer of mitochondria to injured hemocytes. This process alleviated stress on the overburdened hemocytes and regulated reactive oxygen species production, subsequently enhancing phagocytic activity and promoting immune responses. These findings underscore that NPs exhibit far more active behavior in the immune system than previously understood and provide new insights into how immune cells maintain the health of marine organisms in the face of NP challenges.
Collapse
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
8
|
Lorico A, Santos MF, Karbanová J, Corbeil D. Extracellular membrane particles en route to the nucleus - exploring the VOR complex. Biochem Soc Trans 2025:BST20253005. [PMID: 40366329 DOI: 10.1042/bst20253005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025]
Abstract
Intercellular communication is an essential hallmark of multicellular organisms for their development and adult tissue homeostasis. Over the past two decades, attention has been focused on communication mechanisms based on various membrane structures, as illustrated by the burst of scientific literature in the field of extracellular vesicles (EVs). These lipid bilayer-bound nano- or microparticles, as vehicle-like devices, act as regulators in various biological and physiological processes. When EVs are internalized by recipient cells, their membrane and cytoplasmic cargoes can interfere with cellular activities, affecting pathways that regulate cell proliferation, differentiation, and migration. In cancer, EVs can transfer oncogenic factors, stimulate neo-angiogenesis and immunosuppression, reprogram stromal cells, and confer drug resistance traits, thereby remodeling the surrounding microenvironment. Although the mechanisms underlying EV biogenesis and uptake are now better understood, little is known about the spatiotemporal mechanism(s) of their actions after internalization. In this respect, we have shown that a fraction of endocytosed EVs reaches the nuclear compartment via the VOR (VAP-A-ORP3-Rab7) complex-mediated docking of late endosomes to the outer nuclear membrane in the nucleoplasmic reticulum, positioning and facilitating the transfer of EV cargoes into the nucleoplasm via nuclear pores. Here, we highlight the EV heterogeneity, the cellular pathways governing EV release and uptake by donor and recipient cells, respectively, and focus on a novel intracellular pathway leading to the nuclear transfer of EV cargoes. We will discuss how to intercept it, which could open up new avenues for clinical applications in which EVs and other small extracellular particles (e.g., retroviruses) are implicated.
Collapse
Affiliation(s)
- Aurelio Lorico
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, U.S.A
| | - Mark F Santos
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, U.S.A
| | - Jana Karbanová
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Saxony, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Saxony, Germany
| | - Denis Corbeil
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Saxony, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Saxony, Germany
| |
Collapse
|
9
|
Lundy DJ, Liao CT. Extracellular Vesicles in Aging and Age-Related Diseases. How Important Are They? Adv Biol (Weinh) 2025:e2400656. [PMID: 40202045 DOI: 10.1002/adbi.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs), lipid bilayer-bound particles secreted by cells, have attracted significant research attention for their roles in aging-related disorders, including cardiovascular disease, metabolic dysfunction, cancer, and neurodegeneration. Research shows that EV cargo and function are influenced by factors including age, disease state, exercise, nutrition and sleep, and they may modulate various aging-associated processes such as stem cell renewal, nutrient sensing, cell senescence, mitochondrial function, and insulin resistance. This perspective highlights, for a general audience, a selection of studies of EVs in aging and age-related diseases, and their diverse roles in organ crosstalk. While current evidence indicates that EVs play multiple roles in aging, there are numerous challenges including methodological challenges and limitations, heterogeneous reports of EV cargo, limited reproducibility, and apparent context-dependent effects of EVs and their cargo. Together, this limits the interpretation of these studies. This is proposed that EVs may act as fine-tuners of cellular communication within the broader aging-associated secretome and the importance of standardizing methods are emphasized. Last, future directions for EV research are suggested.
Collapse
Affiliation(s)
- David J Lundy
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
- Cell Therapy Center, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 235603, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
10
|
Bare Y, Defourny K, Bretou M, Van Niel G, Nolte-'t Hoen E, Gaudin R. The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion. Trends Cell Biol 2025; 35:282-293. [PMID: 39730274 DOI: 10.1016/j.tcb.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024]
Abstract
Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections. We propose that ERAPs play an active role in the release of EVs and viral particles, and we present views on whether viruses hijack or enhance pre-existing ERAP-dependent secretory machineries or whether they repurpose ERAPs to create new secretory pathways.
Collapse
Affiliation(s)
- Yonis Bare
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| | - Kyra Defourny
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marine Bretou
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM U1266, Paris, France
| | - Guillaume Van Niel
- CRCI2NA, Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d'Angers, Nantes, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Esther Nolte-'t Hoen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Cheung TH, Shoichet MS. The Interplay of Endosomal Escape and RNA Release from Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7174-7190. [PMID: 40080875 DOI: 10.1021/acs.langmuir.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ribonucleic acid (RNA) nanocarriers, specifically lipid nanoparticles and polymeric nanoparticles, enable RNA transfection both in vitro and in vivo; however, only a small percentage of RNA endocytosed by a cell is delivered to the cytosolic machinery, minimizing its effect. RNA nanocarriers face two major obstacles after endocytosis: endosomal escape and RNA release. Overcoming both obstacles simultaneously is challenging because endosomal escape is usually achieved by using high positive charge to disrupt the endosomal membrane. However, this high positive charge typically also inhibits RNA release because anionic RNA is strongly bound to the nanocarrier by electrostatic interactions. Many nanocarriers address one over the other despite a growing body of evidence demonstrating that both are crucial for RNA transfection. In this review, we survey the various strategies that have been employed to accomplish both endosomal escape and RNA release with a focus on polymeric nanomaterials. We first consider the various requirements a nanocarrier must achieve for RNA delivery including protection from degradation, cellular internalization, endosomal escape, and RNA release. We then discuss current polymers used for RNA delivery and examine the strategies for achieving both endosomal escape and RNA release. Finally, we review various stimuli-responsive strategies for RNA release. While RNA release continues to be a challenge in achieving efficient RNA transfection, many new innovations in polymeric materials have elucidated promising strategies.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
12
|
Giebel B, Lim SK. Overcoming challenges in MSC-sEV therapeutics: insights and advances after a decade of research. Cytotherapy 2025:S1465-3249(25)00591-2. [PMID: 40243980 DOI: 10.1016/j.jcyt.2025.03.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Over the past decade, mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) have emerged as promising therapeutics, shifting the focus from MSC engraftment or differentiation to their secretion of sEVs-particularly those under 200 nm-that mediate regenerative and immunomodulatory functions. Transitioning from cell therapies to sEV-based therapies offers clinical advantages, including reduced challenges with cell viability, storage, and administration, and improved pharmacological predictability. However, manufacturing MSC-sEV products faces challenges in defining critical quality attributes (CQAs) for consistent identity and potency. Variability arises from differences in cell sources, culture conditions, enrichment techniques, and the inherent heterogeneity of MSCs. Even the use of immortalized clonal MSC lines may not fully eliminate variability, as factors such as developmental processes, epigenetic modifications, or genetic drift could lead to the re-emergence of heterogeneity. Establishing robust potency CQAs is further complicated by the complex, multimodal modes of action of MSC-sEV products, which involve diverse mechanisms impacting various cell types and processes. Traditional models of EV mediated signalling suggesting direct internalization of sEVs by target cells are increasingly challenged due to inefficient EV-uptake and the high therapeutic efficacy observed. Instead, the Extracellular Modulation of Cells by EVs (EMCEV) model proposes that MSC-sEVs exert their effects by modulating the extracellular environment, enabling a "one EV to many cells" interaction. In conclusion, while MSC-sEV products hold significant therapeutic promise due to their multimodal action and functional redundancy, manufacturing challenges and the complexity of defining potency CQAs remain hurdles to clinical translation. A pragmatic approach focusing on identifying key potency-related CQAs based on specific mechanisms of action-while recognizing that "the process defines the product"-may facilitate the advancement of MSC-sEV therapeutics into clinical applications.
Collapse
Affiliation(s)
- Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sai Kiang Lim
- Paracrine Therapeutics Pte. Ltd., Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
13
|
Alfandari D, Rosenhek-Goldian I, Kozela E, Nevo R, Senprún MB, Moisieiev A, Sogauker N, Azuri I, Gelman S, Kiper E, Ben Hur D, Dharan R, Sorkin R, Porat Z, Morandi MI, Regev-Rudzki N. Host Immune Cell Membrane Deformability Governs the Uptake Route of Malaria-Derived Extracellular Vesicles. ACS NANO 2025; 19:9760-9778. [PMID: 40030053 PMCID: PMC11924330 DOI: 10.1021/acsnano.4c07503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The malaria parasite, Plasmodium falciparum, secretes extracellular vesicles (EVs) to facilitate its growth and to communicate with the external microenvironment, primarily targeting the host's immune cells. How parasitic EVs enter specific immune cell types within the highly heterogeneous pool of immune cells remains largely unknown. Using a combination of imaging flow cytometry and advanced fluorescence analysis, we demonstrated that the route of uptake of parasite-derived EVs differs markedly between host T cells and monocytes. T cells, which are components of the adaptive immune system, internalize parasite-derived EVs mainly through an interaction with the plasma membrane, whereas monocytes, which function in the innate immune system, take up these EVs via endocytosis. The membranal/endocytic balance of EV internalization is driven mostly by the amount of endocytic incorporation. Integrating atomic force microscopy with fluorescence data analysis revealed that internalization depends on the biophysical properties of the cell membrane rather than solely on molecular interactions. In support of this, altering the cholesterol content in the cell membrane tilted the balance in favor of one uptake route over another. Our results provide mechanistic insights into how P. falciparum-derived EVs enter into diverse host cells. This study highlights the sophisticated cell-communication tactics used by the malaria parasite.
Collapse
Affiliation(s)
- Daniel Alfandari
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Rosenhek-Goldian
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ewa Kozela
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcela Bahlsen Senprún
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anton Moisieiev
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noam Sogauker
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Azuri
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Samuel Gelman
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Edo Kiper
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raviv Dharan
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Raya Sorkin
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ziv Porat
- Flow
cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mattia I. Morandi
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague 160-00, Czech Republic
- IMol
Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Garcia LFC, Cavalari VC, Wowk PF, Albrecht L. Human Brain Endothelial Cell-Derived Extracellular Vesicles Reduce Toxoplasma gondii Infection In Vitro in Human Brain and Umbilical Cord Vein Endothelial Cells. Int J Mol Sci 2025; 26:2640. [PMID: 40141288 PMCID: PMC11942338 DOI: 10.3390/ijms26062640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
The endothelial layer, formed by endothelial cells, performs crucial functions in maintaining homeostasis. The endothelial integrity and function might be compromised due to various causes, including infection by Toxoplasma gondii, leading to an endothelial dysfunction. Toxoplasma gondii is an Apicomplexa parasite that infects a broad range of animals, including humans. This parasite can invade all nucleated cells, as well as endothelial cells. The interaction between this protozoan and endothelial cells can be mediated by different molecules, such as extracellular vesicles (EVs), which may either favor or hinder the infectious process. To investigate this interaction, we evaluated the infection of T. gondii on human brain microvascular endothelial cells (HBMEC) and human umbilical vein endothelial cells (HUVEC), in addition to assessing transcriptional changes. We also featured the EVs secreted by T. gondii and by infected and non-infected HBMEC and HUVEC. Finally, we evaluated the infection of cells stimulated with EVs of parasitic or cellular origin. Our results demonstrated that HUVEC not only exhibit a higher infection rate than HBMEC but also display a more pro-inflammatory transcriptional profile, with increased expression of interleukin-6 (IL6), interleukin-8 (IL8), and monocyte chemotactic protein-1 (MCP1) following infection. Additionally, we observed few differences in the concentration, distribution, and morphology of EVs secreted by both cell types, although their properties in modulating infection varied significantly. When cells were EVs stimulated, EVs from T. gondii promoted an increase in the HBMEC infection, EVs from infected or uninfected HBMEC reduced the infection, whereas EVs from HUVEC had no effect on the infectious process. In conclusion, our data indicate that T. gondii infection induces distinct changes in different endothelial cell types, and EVs from these cells can contribute to the resolution of the infection.
Collapse
Affiliation(s)
- Luiz Fernando Cardoso Garcia
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (L.F.C.G.); (V.C.C.)
| | - Victoria Cruz Cavalari
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (L.F.C.G.); (V.C.C.)
| | - Pryscilla Fanini Wowk
- Grupo de Imunologia Molecular, Celular e Inteligência Artificial, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil;
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (L.F.C.G.); (V.C.C.)
| |
Collapse
|
15
|
Riazanski V, Purvina L, Cavinato L, Sui Z, Sun L, Nelson DJ. Functional interaction of hybrid extracellular vesicle-liposome nanoparticles with target cells: absence of toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642711. [PMID: 40161690 PMCID: PMC11952422 DOI: 10.1101/2025.03.11.642711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug delivery platforms, complex lipid nanoparticles (LNPs) and extracellular vesicles (EVs) have both faced a number of key challenges ranging from organ specificity to loading capacity and stability. A key challenge in EV biology as well as LNP design remains vesicle to cell interaction and the creation of a polar permeability pathway necessary for cargo exchange. Membrane to membrane recognition and intercalation are tantamount to delivery and integral to function of both EVs and LNPs, both complex and single component. We reasoned that the overlapping advantages of both nanoparticles centered on compositional lipids. EVs are encapsulations using biological membrane lipids and expressed proteins and have a larger carrier capacity. LNPs are composed of synthetic lipids differing in charge and amount mimicking those present in biological membranes and include a synthetic lipid of choice that carries a charge, designed to enhance biological membrane disruption and subsequent cargo off-loading. Our goal was to design hybrid EVs (HEVs) that combined both elements. We manufactured positively charged liposomes (Lip) carrying mRNA coding for fluorescent proteins to load isolated EVs in order to create a combinatorial delivery platform. Using knowledge from LNP-based mRNA vaccine delivery, we have formulated and characterized HEVs. Future therapeutic strategies could involve isolating EVs from patients, hybridizing them with synthetic lipids loaded with desired payloads, and reintroducing them to the patient. This approach is particularly relevant for enhancing the function of pulmonary innate immunity in diseases like cystic fibrosis, chronic granulomatous disease, and pulmonary fibrosis. By conducting both in-vitro and in-vivo assays, we demonstrate that HEVs exhibit comparable transfection efficacy to LNPs composed of complex synthetic lipids, while significantly reducing cytotoxicity. This highlights their potential as safer and more efficient delivery vehicles.
Collapse
|
16
|
Erana-Perez Z, Igartua M, Santos-Vizcaino E, Hernandez RM. Differential protein and mRNA cargo loading into engineered large and small extracellular vesicles reveals differences in in vitro and in vivo assays. J Control Release 2025; 379:951-966. [PMID: 39892179 DOI: 10.1016/j.jconrel.2025.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Extracellular vesicles (EV) represent an advanced platform for genetic material and protein delivery, particularly when they are loaded through the so-called endogenous loading method. This study investigates the differences between large EV (lEV) and small EV (sEV) obtained from genetically engineered C2C12 myoblasts overexpressing two different model biomolecules. Erythropoietin (EPO) is a secretory protein with anti-inflammatory, angiogenic and hematopoietic effects, while TGL is a chimeric cytosolic protein containing green fluorescent protein (GFP) and luciferase, used for imaging. We compared these EV subtypes in terms of protein and nucleic acid loading, intercellular cargo transfer capacity, and subsequent functional effects both in vitro and in vivo. Our results demonstrated that lEV exhibited higher protein and mRNA cargo content than sEV, which also translated into increased intercellular cargo transfer capacity, even when dosing according to the constitutive sEV and lEV secretion ratio (10,1). Indeed, we showed that, although receptor cells successfully internalized both EV subtypes, cells treated with lEV displayed stronger intracellular luciferase signals and higher EPO protein secretion compared to those treated with sEV. In terms of functional effects, both EV subtypes exerted anti-inflammatory and antioxidant effects in lipopolysaccharide-activated macrophages, as well as angiogenic effects in human umbilical vein endothelial cells. Finally, in vivo studies evidenced that subcutaneously administered lEV led to a more significant increase in hematocrit levels and red blood cell counts than sEV. Taken together, these findings suggest that the protein and mRNA cargo differ between endogenously loaded EV subtypes, and that this variation in cargo loading leads to differences in their functional outcomes. Therefore, the choice of EV subtype could be critical for optimizing EV-based delivery strategies for biologic drugs.
Collapse
Affiliation(s)
- Zuriñe Erana-Perez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
17
|
Hu W, Li M, Feng Y, Wang X, Yang S, Gao Y, Jiang D, Lan X. Molecular Imaging for Biomimetic Nanomedicine in Cancer Therapy: Current Insights and Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10231-10245. [PMID: 39878693 DOI: 10.1021/acsami.4c19720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies. We also briefly discuss current applications of molecular imaging in synergistic cancer therapies and future perspectives. Finally, we offer insights into the potential of integrating biomimetic nanomedicine with molecular imaging for clinical translation.
Collapse
Affiliation(s)
- Wenzhu Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xingyi Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shaowen Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| |
Collapse
|
18
|
Pachane BC, Rodriguez BV, Shirk EN, Gololobova O, Carlson B, Queen SE, Erickson LD, Selistre-de-Araujo HS, Witwer KW. An ex vivo and in vitro investigation of extracellular vesicle interactions with B cells of Macaca nemestrina and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637883. [PMID: 39990430 PMCID: PMC11844526 DOI: 10.1101/2025.02.12.637883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles may modify recipient cell behavior through multiple mechanisms, including interacting with the cell surface or internal membrane components and delivering luminal cargo to the cytoplasm. Here, we use a previously established ex vivo approach to investigate the cellular fate of EVs spiked into whole blood samples from nonhuman primate (NHP) and human donors and contrast these findings with results from in vitro assays. We report that EVs are internalized by NHP and human B cells while also associating to some degree with other PBMCs. EVs exhibit greater association with B cells in ex vivo whole blood compared to isolated B cells, suggesting that blood components may promote EV interactions or that cell isolation factors may inhibit this association. Cellular uptake of EVs involves clathrin-dependent endocytosis and may be aided by other pathways, including direct EV-cell membrane fusion. Overall, our data suggest that EV association, including uptake, by B cells occurs in at least two primate species. These findings highlight the potential to develop new strategies to either enhance or inhibit EV tropism toward B cells.
Collapse
Affiliation(s)
- Bianca C. Pachane
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos – UFSCar, São Carlos, SP, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Blanca V. Rodriguez
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin N. Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bess Carlson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suzanne E. Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Loren D. Erickson
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Center for Immunology University of Virginia, Charlottesville, VA, USA
| | - Heloisa S. Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Universidade Federal de São Carlos – UFSCar, São Carlos, SP, Brazil
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Margolis LB, Sadovsky Y. When Extracellular Vesicles Go Viral: A Bird's Eye View. Pathog Immun 2025; 10:140-158. [PMID: 40017586 PMCID: PMC11867185 DOI: 10.20411/pai.v10i1.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
The science of extracellular vesicles (EVs) is a rapidly growing field that spans multiple aspects of normal physiology and pathophysiology. EVs play a critical role in most basic biological processes of cell-cell communications under normal conditions and in disease. EVs have "gone viral" not only in terms of research popularity, but also in our realization that they exhibit an elaborate crosstalk with viruses, particularly with the enveloped ones, which are also extracellular vesicles that are released by cells as a part of their virulence cycle yet are replicative. Here, we highlight some of the complexities underlying EV-virus crosstalk and pathways and provide our insights on key challenges from the viewpoint of EV biology.
Collapse
Affiliation(s)
- Leonid B. Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Talatapeh SP, Rezaie J, Nejati V. Extracellular Vesicle-based Delivery of Paclitaxel to Lung Cancer Cells: Uptake, Anticancer Effects, Autophagy and Mitophagy Pathways. Arch Med Res 2025; 56:103194. [PMID: 39922153 DOI: 10.1016/j.arcmed.2025.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Due to their unique properties, extracellular vesicles (EVs) are promising nanocarriers for exogenous drug delivery. AIM We prepared a drug delivery system based on large EVs (LEVs) containing paclitaxel (PTX) (LEVs-PTX) to investigate anticancer effects on lung cancer cells with a focus on autophagy. METHODS LEVs-PTX were isolated from lung cancer cells by ultracentrifugation and characterized using different techniques. Rhodamine B dye (Rh B) was used to label LEVs-PTX for cell tracking. MTT assay was performed to investigate the cellular toxicity of PTX and LEVs-PTX for 24 h and 48 h. The uptake of LEVs-PTX was monitored by immunofluorescence microscopy in breast and lung cancer cells. A colorimetric assay was performed to evaluate apoptosis, while Western blotting assays were used to investigate autophagy proteins. Real-time PCR was used to measure mitophagy genes. RESULTS Characterization techniques showed that LEVs were isolated and loaded with PTX. Rh B labeled LEVs, which was confirmed by a fluorescence spectrophotometer. Immunofluorescence microscopy showed that the lung and breast cancer cells had captured LEVs. Cell viability was decreased in LEVs-PTX cells which coincided with an increase in caspase-3 activity in LEVs-PTX cells. The Beclin-1 protein level and LC3 II/I ratio decreased, while the P62 protein level was increased in LEVs-PTX cells. The mitophagy genes such as Pink-1 and Parkin were upregulated in LEVs-PTX cells. CONCLUSION The data show that LEVs-PTX induced apoptosis, which inhibited the autophagy pathway and increased mitophagy markers, suggesting damage to cell organelles through intracellular delivery of PTX.
Collapse
Affiliation(s)
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia, Iran.
| | - Vahid Nejati
- Department of Biology, Urmia University, Urmia, Iran
| |
Collapse
|
21
|
Zhu W, Dong C, Wei L, Kim JK, Wang BZ. Inverted HA-EV immunization elicits stalk-specific influenza immunity and cross-protection in mice. Mol Ther 2025; 33:485-498. [PMID: 39741410 PMCID: PMC11852689 DOI: 10.1016/j.ymthe.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Enhancing protective immunity in the respiratory tract is crucial to combat influenza infection and transmission. Developing mucosal universal influenza vaccines requires effective delivery platforms to overcome the respiratory mucosal barrier and stimulate appropriate innate immune reactions, thereby bridging adaptive immune responses with minimal necessary inflammation. Meanwhile, the vaccine platforms must be biocompatible. This study employed cell-derived extracellular vesicles (EVs) as a mucosal universal influenza vaccine platform. By conjugating influenza hemagglutinin (HA) onto EV surfaces through HA-receptor interaction, we achieved an upside-down (inverted) influenza HA configuration that exposed the conserved HA stalk region while partially hiding the globular head domain. Intranasal immunization with the resulting EVs induced robust HA stalk- and virus-specific serum antibody and mucosal immune responses in mice, protecting against heterologous virus infection. Notably, EVs derived from the lung epithelial cell line A549 induced superior cross-reactive antibodies and enhanced protection upon intranasal immunization. EVs conjugating multivalent HA elicited broadly cross-reactive antibody and cellular responses against different influenza strains. Our results demonstrated that EVs conjugating multiple inverted HAs represented an effective strategy for developing a mucosal universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
22
|
Wen X, Hao Z, Yin H, Min J, Wang X, Sun S, Ruan G. Engineered Extracellular Vesicles as a New Class of Nanomedicine. CHEM & BIO ENGINEERING 2025; 2:3-22. [PMID: 39975802 PMCID: PMC11835263 DOI: 10.1021/cbe.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 02/21/2025]
Abstract
Extracellular vesicles (EVs) are secreted from biological cells and contain many molecules with diagnostic values or therapeutic functions. There has been great interest in academic and industrial communities to utilize EVs as tools for diagnosis or therapeutics. In addition, EVs can also serve as delivery vehicles for therapeutic molecules. An indicator of the enormous interest in EVs is the large number of review articles published on EVs, with the focus ranging from their biology to their applications. An emerging trend in EV research is to produce and utilize "engineered EVs", which are essentially the enhanced version of EVs. EV engineering can be conducted by cell culture condition control, genetic engineering, or chemical engineering. Given their nanometer-scale sizes and therapeutic potentials, engineered EVs are an emerging class of nanomedicines. So far, an overwhelming majority of the research on engineered EVs is preclinical studies; there are only a very small number of reported clinical trials. This Review focuses on engineered EVs, with a more specific focus being their applications in therapeutics. The various approaches to producing engineered EVs and their applications in various diseases are reviewed. Furthermore, in vivo imaging of EVs, the mechanistic understandings, and the clinical translation aspects are discussed. The discussion is primarily on preclinical studies while briefly mentioning the clinical trials. With continued interdisciplinary research efforts from biologists, pharmacists, physicians, bioengineers, and chemical engineers, engineered EVs could become a powerful solution for many major diseases such as neurological, immunological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaowei Wen
- Institute
of Analytical Chemistry and Instrument for Life Science, The Key Laboratory
of Biomedical Information Engineering of Ministry of Education, School
of Life Science and Technology, Xi’an
Jiaotong University, Xi’an, China 710049
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Zerun Hao
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Haofan Yin
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Jie Min
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Xueying Wang
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Sihan Sun
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| | - Gang Ruan
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Jiangsu
Province Higher Education Key Laboratory of Cell Therapy Nanoformulation
(Construction), Xi’an Jiaotong-Liverpool
University, Suzhou, China 215123
- Xi’an
Jiaotong-Liverpool University & University of Liverpool Joint
Center of Pharmacology and Therapeutics, Suzhou, China 215123
| |
Collapse
|
23
|
Ahmad S, Christova T, Pye M, Narimatsu M, Song S, Wrana JL, Attisano L. Small Extracellular Vesicles Promote Axon Outgrowth by Engaging the Wnt-Planar Cell Polarity Pathway. Cells 2025; 14:56. [PMID: 39791757 PMCID: PMC11720052 DOI: 10.3390/cells14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear. Here, we show that fibroblast-derived sEVs promote axon outgrowth and a polarized neuronal morphology in mouse primary embryonic cortical neurons. Mechanistically, we demonstrate that the sEV-induced increase in axon outgrowth requires endogenous Wnts and core PCP components including Prickle, Vangl, Frizzled, and Dishevelled. We demonstrate that sEVs are internalized by neurons, colocalize with Wnt7b, and induce relocalization of Vangl2 to the distal axon during axon outgrowth. In contrast, sEVs derived from neurons or astrocytes do not promote axon outgrowth, while sEVs from activated astrocytes inhibit elongation. Thus, our data reveal that fibroblast-derived sEVs promote axon elongation through the Wnt-PCP pathway in a manner that is dependent on endogenous Wnts.
Collapse
Affiliation(s)
- Samar Ahmad
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Tania Christova
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Melanie Pye
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Masahiro Narimatsu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
| | - Siyuan Song
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| | - Jeffrey L. Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; (M.P.); (M.N.); (J.L.W.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Liliana Attisano
- Department of Biochemistry, Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; (S.A.); (T.C.); (S.S.)
| |
Collapse
|
24
|
Carney RP, Mizenko RR, Bozkurt BT, Lowe N, Henson T, Arizzi A, Wang A, Tan C, George SC. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. NATURE NANOTECHNOLOGY 2025; 20:14-25. [PMID: 39468355 PMCID: PMC11781840 DOI: 10.1038/s41565-024-01774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/11/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation-hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Batuhan T Bozkurt
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Neona Lowe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
25
|
Bhom N, Somandi K, Ramburrun P, Choonara YE. Extracellular nanovesicles as neurotherapeutics for central nervous system disorders. Expert Opin Drug Deliv 2025; 22:69-84. [PMID: 39644485 DOI: 10.1080/17425247.2024.2440099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a highly selective structure that protects the central nervous system (CNS) while hindering the delivery of many therapeutic agents. This presents a major challenge in treating neurological disorders, such as multiple sclerosis, where effective drug delivery to the brain is crucial for improving patient outcomes. Innovative strategies are urgently needed to address this limitation. AREAS COVERED This review explores the potential of extracellular vesicles (EVs) as innovative drug delivery systems capable of crossing the BBB. EVs are membrane-bound vesicles derived from cells, tissues, or plant materials, offering natural biocompatibility and therapeutic potential. Recent studies investigating the permeability of EVs and their mechanisms for crossing the BBB, such as transcytosis, are summarized. Special emphasis is placed on plant-derived EVs (PDEVs) due to their unique advantages in drug delivery. Challenges related to the large-scale production and therapeutic consistency of EVs are also discussed. EXPERT OPINION EVs, particularly PDEVs, hold significant promise as scalable and noninvasive systems for CNS drug delivery. However, critical barriers such as improving standardization techniques, manufacturing processes and addressing scalability must be overcome to facilitate clinical translation. Collaborative efforts in research and innovation will be pivotal in realizing the therapeutic potential of EVs for neurological conditions.
Collapse
Affiliation(s)
- Naznin Bhom
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Khonzisizwe Somandi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
26
|
Tan TT, Lai RC, Sim WK, Zhang B, Lim SK. Enhancing EV-cell communication through "External Modulation of Cell by EV" (EMCEV). Cytotherapy 2025; 27:1-6. [PMID: 39177523 DOI: 10.1016/j.jcyt.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Mesenchymal stem/stromal cells (MSC) have displayed promising therapeutic potential. Nonetheless, no United States Food and Drug Administration (FDA)-approved MSC product exists due largely to the absence of a reliable potency assay based on the mechanisms of action to ensure consistent efficacy. MSCs are now thought to exert their effects primarily by releasing small extracellular vesicles (sEVs) of 50-200 nm. While non-living MSC-sEV drugs offer distinct advantages over larger, living MSC drugs, elucidating their mechanism of action to develop robust potency assays remains a challenge. A pivotal prelude to elucidating the mechanism of action for MSC-sEVs is how extracellular vesicles (EVs) engage their primary target cells. Given the inherent inefficiencies of processes such as endocytosis, endosomal escape and EV uncoating during cellular internalization, we propose an alternative EV-cell engagement: EMCEV (Extracellular Modulation of Cells by EV). This approach involves extracellular modulation by EV attributes to generate signaling/inhibitory molecules that have the potential to affect many cells within the vicinity, thereby eliciting a more widespread tissue response.
Collapse
Affiliation(s)
| | | | | | - Bin Zhang
- Paracrine Therapeutics Pte. Ltd., Singapore
| | - Sai Kiang Lim
- Paracrine Therapeutics Pte. Ltd., Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Republic of Singapore.
| |
Collapse
|
27
|
Hirigoyen U, Guilbaud C, Krejbich M, Fouet M, Fresquet J, Arnaud B, Com E, Pineau C, Cadiou G, Burlaud-Gaillard J, Erbs P, Fradin D, Labarrière N, Fonteneau JF, Petithomme T, Boisgerault N. Oncolytic viruses alter the biogenesis of tumor extracellular vesicles and influence their immunogenicity. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200887. [PMID: 39492948 PMCID: PMC11530755 DOI: 10.1016/j.omton.2024.200887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/19/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication in the tumor microenvironment. Tumor EVs are commonly associated with metastasis, immunosuppression or drug resistance. Viral infections usually increase EV secretion, but little is known about the effect of oncolytic viruses (OVs) on tumor EVs. Here, we investigated the impact of oncolytic vesicular stomatitis virus (VSV) and vaccinia virus on EVs secreted by human melanoma and thoracic cancer cells. We found that OV infection increases the production of EVs by tumor cells. These EVs contain proteins of viral origin, such as VSV-G, thus creating a continuum of particles sharing markers of both canonical EVs and viruses. As such, the presence of VSV-G on EVs improves the transfer of their protein content to cell types commonly found in the tumor microenvironment. A proteomic analysis also revealed that EVs-OV secreted during VSV infection are enriched in immunity-related proteins. Finally, CD8+ T cells incubated with EVs-OV from infected cells display slightly enhanced cytotoxic functions. Taken together, these data suggest that OVs enhance the communication mediated by tumor EVs, which could participate in the therapeutic efficacy of OVs. These results also provide rationale for engineering OVs to exploit EVs and disseminate therapeutic proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Ugo Hirigoyen
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Coraly Guilbaud
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Morgane Krejbich
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Morgane Fouet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Judith Fresquet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Bastien Arnaud
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Emmanuelle Com
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Gwenann Cadiou
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, Inserm UMR 1302, CNRS EMR 6001, Université d’Angers, INCIT, 44000 Nantes, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, 37000 Tours, France
| | | | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Nathalie Labarrière
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, Inserm UMR 1302, CNRS EMR 6001, Université d’Angers, INCIT, 44000 Nantes, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Tacien Petithomme
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, CHU Nantes, 44000 Nantes, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| |
Collapse
|
28
|
Diez-Roda P, Perez-Navarro E, Garcia-Martin R. Adipose Tissue as a Major Launch Spot for Circulating Extracellular Vesicle-Carried MicroRNAs Coordinating Tissue and Systemic Metabolism. Int J Mol Sci 2024; 25:13488. [PMID: 39769251 PMCID: PMC11677924 DOI: 10.3390/ijms252413488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain. Here, we review the most recent findings regarding miRNAs transported by adipose-derived EVs (AdEVs) targeting other major metabolic organs and the implications of this dialog for physiology and pathology. We also review here the current and potential future diagnostic and therapeutic applications of AdEV-carried miRNAs.
Collapse
Affiliation(s)
| | | | - Ruben Garcia-Martin
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain; (P.D.-R.); (E.P.-N.)
| |
Collapse
|
29
|
Zhang HJ, Zhu L, Xie QH, Zhang LZ, Liu JY, Feng YYF, Chen ZK, Xia HF, Fu QY, Yu ZL, Chen G. Extracellular vesicle-packaged PD-L1 impedes macrophage-mediated antibacterial immunity in preexisting malignancy. Cell Rep 2024; 43:114903. [PMID: 39489940 DOI: 10.1016/j.celrep.2024.114903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malignancies can compromise systemic innate immunity, but the underlying mechanisms are largely unknown. Here, we find that tumor-derived small extracellular vesicles (sEVs; TEVs) deliver PD-L1 to host macrophages, thereby impeding antibacterial immunity. Mice implanted with Rab27a-knockdown tumors are more resistant to bacterial infection than wild-type controls. Injection of TEVs into mice impairs macrophage-mediated bacterial clearance, increases systemic bacterial dissemination, and enhances sepsis score in a PD-L1-dependent manner. Mechanistically, TEV-packaged PD-L1 inhibits Bruton's tyrosine kinase/PLCγ2 signaling-mediated cytoskeleton reorganization and reactive oxygen species generation, impacting bacterial phagocytosis and killing by macrophages. Neutralizing PD-L1 markedly normalizes macrophage-mediated bacterial clearance in tumor-bearing mice. Importantly, circulating sEV PD-L1 levels in patients with tumors can predict bacterial infection susceptibility, while patients with tumors treated with αPD-1 exhibit fewer postoperative infections. These findings identify a mechanism by which cancer cells dampen host innate immunity-mediated bacterial clearance and suggest targeting TEV-packaged PD-L1 to reduce bacterial infection susceptibility in tumor-bearing conditions.
Collapse
Affiliation(s)
- He-Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi-Hui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Yuan Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang-Ying-Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
30
|
Oh C, Mazan-Mamczarz K, Gorospe M, Noh JH, Kim KM. Impact of UPF2 on the levels of CD81 on extracellular vesicles. Front Cell Dev Biol 2024; 12:1469080. [PMID: 39655046 PMCID: PMC11625909 DOI: 10.3389/fcell.2024.1469080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Extracellular vesicles (EVs) are involved in cell-to-cell communication. Following uptake, EV cargo molecules, including DNA, RNA, lipids, and proteins, influence gene expression and molecular signaling in recipient cells. Although various studies have identified disease-specific EV molecules, further research into their biogenesis and secretion mechanisms is needed for clinical application. Here, we investigated the role of UPF2 in regulating the biogenesis and components of EVs. Notably, UPF2 promoted the expression of CD81, a membrane protein marker of EVs, as UPF2 silencing decreased CD81 levels in EVs, both inside the cell and secreted. In contrast, the expression levels of CD63 increased, without altering the size or numbers of EVs. In addition, reducing UPF2 levels did not affect the total number of EVs but lowered production of CD81-positive EVs and reduced the efficiency of uptake by recipient cells. Collectively, our findings uncover a novel function for UPF2 in regulating the production of CD81 and changing EV properties.
Collapse
Affiliation(s)
- Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Ji Heon Noh
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
31
|
Rayamajhi S, Gibbs BK, Sipes J, Pathak HB, Bossmann SH, Godwin AK. Tracking Small Extracellular Vesicles Using a Minimally Invasive PicoGreen Labeling Strategy. ACS APPLIED BIO MATERIALS 2024; 7:7770-7783. [PMID: 39482871 PMCID: PMC11577420 DOI: 10.1021/acsabm.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted lipid bilayer delimited particles that mediate cellular communication. These tiny sacs of cellular information play an important role in cell communication and alter the physiological process under both normal and pathological conditions. As such, tracking EVs can provide valuable information regarding the basic understanding of cell communication, the onset of early malignancy, and biomarker discovery. Most of the current EV-tracking strategies are invasive, altering the natural characteristics of EVs by modifying the lipid bilayer with lipophilic dyes or surface proteins with fluorescent reporters. The invasive labeling strategies could alter the natural processes of EVs and thereby have major limitations for functional studies. Here, we report an alternative minimally invasive EV labeling strategy using PicoGreen (PG), a small molecule that fluoresces at 520 nm when bound to dsDNA. We show that PG binds to dsDNA associated with small EVs (50-200 nm), forming a stable and highly fluorescent PG-DNA complex in EVs (PG-EVs). In both 2D cell culture and 3D organoid models, PG-EV showed efficient tracking properties, including a high signal-to-noise ratio, time- and concentration-dependent uptake, and the ability to traverse a 3D environment. We further validated PG-EV tracking using dual-labeled EVs following two orthogonal labeling strategies: (1) Bioconjugation via surface amine labeling and (2) donor cell engineering via endogenously expressing mCherry-tetraspanin (CD9/CD63/CD81) reporter proteins. Our study has shown the feasibility of using PG-EV as an effective EV tracking strategy that can be applied for studying the functional role of EVs across multiple model systems.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department
of Pathology and Laboratory Medicine, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
| | - Benjamin K. Gibbs
- Department
of Pathology and Laboratory Medicine, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
| | - Jared Sipes
- Department
of Pathology and Laboratory Medicine, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
| | - Harsh B. Pathak
- Department
of Pathology and Laboratory Medicine, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
| | - Stefan H. Bossmann
- Department
of Cancer Biology, University of Kansas
Medical Center, Kansas City, Kansas 66160, United States
| | - Andrew K. Godwin
- Department
of Pathology and Laboratory Medicine, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
- Kansas
Institute for Precision Medicine, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
| |
Collapse
|
32
|
Visser C, Rivieccio F, Krüger T, Schmidt F, Cseresnyés Z, Rohde M, Figge MT, Kniemeyer O, Blango MG, Brakhage AA. Tracking the uptake of labelled host-derived extracellular vesicles by the human fungal pathogen Aspergillus fumigatus. MICROLIFE 2024; 5:uqae022. [PMID: 39660046 PMCID: PMC11631206 DOI: 10.1093/femsml/uqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Extracellular vesicles (EVs) have gained attention as facilitators of intercellular as well as interkingdom communication during host-microbe interactions. Recently we showed that upon infection, host polymorphonuclear leukocytes produce antifungal EVs targeting the clinically important fungal pathogen Aspergillus fumigatus; however, the small size of EVs (<1 µm) complicates their functional analysis. Here, we employed a more tractable, reporter-based system to label host alveolar epithelial cell-derived EVs and enable their visualization during in vitro A. fumigatus interaction. Fusion of EV marker proteins (CD63, CD9, and CD81) with a Nanoluciferase (NLuc) and a green fluorescent protein (GFP) facilitated their relative quantification by luminescence and visualization by a fluorescence signal. The use of an NLuc fused with a GFP is advantageous as it allows for quantification and visualization of EVs simultaneously without additional external manipulation and to distinguish subpopulations of EVs. Using this system, visualization and tracking of EVs was possible using confocal laser scanning microscopy and advanced imaging analysis. These experiments revealed the propensity of host cell-derived EVs to associate with the fungal cell wall and ultimately colocalize with the cell membrane of A. fumigatus hyphae in large numbers. In conclusion, we have created a series of tools to better define the complex interplay of host-derived EVs with microbial pathogens.
Collapse
Affiliation(s)
- Corissa Visser
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Flora Rivieccio
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Zoltán Cseresnyés
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany
- Excellence Cluster Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Excellence Cluster Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
33
|
Papoutsoglou P, Morillon A. Extracellular Vesicle lncRNAs as Key Biomolecules for Cell-to-Cell Communication and Circulating Cancer Biomarkers. Noncoding RNA 2024; 10:54. [PMID: 39585046 PMCID: PMC11587107 DOI: 10.3390/ncrna10060054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted by almost every cell type and are considered carriers of active biomolecules, such as nucleic acids, proteins, and lipids. Their content can be uptaken and released into the cytoplasm of recipient cells, thereby inducing gene reprogramming and phenotypic changes in the acceptor cells. Whether the effects of EVs on the physiology of recipient cells are mediated by individual biomolecules or the collective outcome of the total transferred EV content is still under debate. The EV RNA content consists of several types of RNA, such as messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA), the latter defined as transcripts longer than 200 nucleotides that do not code for proteins but have important established biological functions. This review aims to update our insights on the functional roles of EV and their cargo non-coding RNA during cancer progression, to highlight the utility of EV RNA as novel diagnostic or prognostic biomarkers in cancer, and to tackle the technological advances and limitations for EV RNA identification, integrity assessment, and preservation of its functionality.
Collapse
Affiliation(s)
| | - Antonin Morillon
- ncRNA, Epigenetics and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, F-75248 Paris, France;
| |
Collapse
|
34
|
Fang L, Gu W, Li R, Chen C, Cai S, Luozhong S, Chen M, Hsu A, Tsai YC, Londhe K, Jiang S. Controlling Circular RNA Encapsulation within Extracellular Vesicles for Gene Editing and Protein Replacement. ACS NANO 2024; 18:30378-30387. [PMID: 39445782 DOI: 10.1021/acsnano.4c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are a population of vesicular bodies originating from cells, and EVs have been proven to have the potential to deliver different cargos, such as RNAs. However, conventional methods are not able to encapsulate long RNAs into EVs efficiently or may compromise the integrity of EVs. In this study, we have devised a strategy to encapsulate long circRNAs (>1000 nt) into EVs by harnessing the sorting mechanisms of cells. This strategy utilizes the inherent richness of circular RNAs in EVs and a genetic engineering method to increase the cytoplasmic concentration of target circRNAs, facilitating highly efficient RNA back-splicing to drive the circularization of RNAs. This allows target circRNAs to load into EVs with high efficiency. Furthermore, we demonstrate the practical applications of this strategy, showing that these circRNAs can be delivered by EVs to recipient cells for protein expression and to mice for gene editing.
Collapse
Affiliation(s)
- Liang Fang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Wenchao Gu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chaoxin Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Simian Cai
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | - Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Annie Hsu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yi-Chih Tsai
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ketaki Londhe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
36
|
Jhaveri JR, Khare P, Paul Pinky P, Kamte YS, Chandwani MN, Milosevic J, Abraham N, Sun M, Stolz DB, Dave KM, Zheng SY, O'Donnell L, Manickam DS. Low pinocytic brain endothelial cells primarily utilize membrane fusion to internalize extracellular vesicles. Eur J Pharm Biopharm 2024; 204:114500. [PMID: 39303949 DOI: 10.1016/j.ejpb.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicles (EVs) are an emerging class of drug carriers and are primarily reported to be internalized into recipient cells via a combination of endocytic routes such as clathrin-mediated, caveolae-mediated and macropinocytosis pathways. In this work, (1) we investigated potential effects of homotypic vs. heterotypic interactions by studying the cellular uptake of homologous EVs (EV donor cells and recipient cells of the same type) vs. heterologous EVs (EV donor cells and recipient cells of different types) and (2) determined the route of EV internalization into low pinocytic/hard-to-deliver cell models such as brain endothelial cells (BECs). Homotypic interactions led to a greater extent of uptake into the recipient BECs compared to heterotypic interactions. However, we did not see a complete reduction in EV uptake into recipient BECs when endocytic pathways were blocked using pharmacological inhibitors and our findings from a R18-based fusion assay suggest that EVs primarily use membrane fusion to enter low-pinocytic recipient BECs instead of relying on endocytosis. Lipophilic PKH67 dye-labeled EVs but not intravesicular esterase-activated calcein ester-labeled EVs severely reduced particle uptake into BECs while phagocytic macrophages internalized EVs labeled with both dyes to comparable extents. Our results also highlight the importance of carefully choosing labeling dye chemistry to study EV uptake, especially in the case of low pinocytic cells such as BECs.
Collapse
Affiliation(s)
- Jhanvi R Jhaveri
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Paromita Paul Pinky
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yashika S Kamte
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Captis Diagnostics Inc., Pittsburgh, PA, United States
| | - Nevil Abraham
- Unified Flow Core, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ming Sun
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Lauren O'Donnell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.
| |
Collapse
|
37
|
Jin B, Liao Y, Ding Z, Zou R, Xu F, Li Y, Cheng B, Niu L. The role of biophysical cues and their modulated exosomes in dental diseases: from mechanism to therapy. Stem Cell Res Ther 2024; 15:373. [PMID: 39427216 PMCID: PMC11491033 DOI: 10.1186/s13287-024-03990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Dental diseases such as caries and periodontitis have been common public health problems. Dental disease treatment can be achieved through stem cell-based dental regeneration. Biophysical cues determine the fate of stem cells and govern the success of dental regeneration. Some studies have manifested exosomes derived from stem cells could not only inherit biophysical signals in microenvironment but also evade some issues in the treatment with stem cells. Nowadays, biophysical cue-regulated exosomes become another promising therapy in dental regenerative medicine. However, methods to improve the efficacy of exosome therapy and the underlying mechanisms are still unresolved. In this review, the association between biophysical cues and dental diseases was summarized. We retrospected the role of exosomes regulated by biophysical cues in curing dental diseases and promoting dental regeneration. Our research also delved into the mechanisms by which biophysical cues control the biogenesis, release, and uptake of exosomes, as well as potential methods to enhance the effectiveness of exosomes. The aim of this review was to underscore the important place biophysical cue-regulated exosomes occupy in the realm of dentistry, and to explore novel targets for dental diseases.
Collapse
Affiliation(s)
- Bilun Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Yuxin Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhaojing Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
38
|
Ikezu T, Yang Y, Verderio C, Krämer-Albers EM. Extracellular Vesicle-Mediated Neuron-Glia Communications in the Central Nervous System. J Neurosci 2024; 44:e1170242024. [PMID: 39358029 PMCID: PMC11450539 DOI: 10.1523/jneurosci.1170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
Communication between neurons and glia significantly influences the development maturation, plasticity, and disease progressions of the nervous system. As a new signaling modality, extracellular vesicles display a diverse role for robust functional regulation of neurons through their protein and nucleic acid cargoes. This review highlights recent breakthroughs in the research of signaling mechanisms between glia and neurons mediated by extracellular vesicles that are important for neural development, axonal maintenance, synaptic functions, and disease progression in the mammalian nervous system. We will discuss the biological roles of extracellular vesicles released from neurons, astroglia, microglia, and oligodendroglia in the nervous system and their implications in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Claudia Verderio
- Department of Biomedical Sciences, CNR Institute of Neuroscience, Università Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Rhineland Palatinate, Germany
| |
Collapse
|
39
|
Witwer KW. Minimal information for studies of extracellular vesicles 2023: relevance to cell and gene therapies. Cytotherapy 2024; 26:1119-1121. [PMID: 39046387 DOI: 10.1016/j.jcyt.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
40
|
Zheng X, Gong T, Luo W, Hu B, Gao J, Li Y, Liu R, Xie N, Yang W, Xu X, Cheng L, Zhou C, Yuan Q, Huang C, Peng X, Zhou X. Fusobacterium nucleatum extracellular vesicles are enriched in colorectal cancer and facilitate bacterial adhesion. SCIENCE ADVANCES 2024; 10:eado0016. [PMID: 39303027 PMCID: PMC11414721 DOI: 10.1126/sciadv.ado0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Fusobacterium nucleatum in colorectal cancer (CRC) tissue is implicated at multiple stages of the disease, while the mechanisms underlying bacterial translocation and colonization remain incompletely understood. Herein, we investigated whether extracellular vesicles derived from F. nucleatum (FnEVs) have impacts on bacterial colonization. In mice with colitis-related CRC, a notable enrichment of FnEVs was observed, leading to a significant increase in intratumor colonization by F. nucleatum and accelerated progression of CRC. The enrichment of FnEVs in clinical CRC tissues was demonstrated. Subsequently, we revealed that FnEVs undergo membrane fusion with CRC cells, leading to the transfer and retention of FomA on recipient cell surfaces. Given its ability to facilitate F. nucleatum autoaggregation through interaction with FN1441, the presence of FomA on CRC cell surfaces presents a target for bacterial adhesion. Collectively, the findings unveil a mechanism used by EVs to prepare a niche conducive for bacterial colonization in distal organs.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Wanyi Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P.R. China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
41
|
Geng T, Tian L, Paek SY, Leung E, Chamley LW, Wu Z. Characterizing Extracellular Vesicles Generated from the Integra CELLine Culture System and Their Endocytic Pathways for Intracellular Drug Delivery. Pharmaceutics 2024; 16:1206. [PMID: 39339242 PMCID: PMC11434853 DOI: 10.3390/pharmaceutics16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Extracellular vesicles (EVs) have attracted great attention as promising intracellular drug delivery carriers. While the endocytic pathways of small EVs (sEVs, <200 nm) have been reported, there is limited understanding of large EVs (lEVs, >200 nm), despite their potential applications for drug delivery. Additionally, the low yield of EVs during isolation remains a major challenge in their application. Herein, we aimed to compare the endocytic pathways of sEVs and lEVs using MIA PaCa-2 pancreatic cancer cell-derived EVs as models and to explore the efficiency of their production. The cellular uptake of EVs by MIA PaCa-2 cells was assessed and the pathways were investigated with the aid of endocytic inhibitors. The yield and protein content of sEVs and lEVs from the Integra CELLine culture system and the conventional flasks were compared. Our findings revealed that both sEVs and lEVs produced by the Integra CELLine system entered their parental cells via multiple routes, including caveolin-mediated endocytosis, clathrin-mediated endocytosis, and actin-dependent phagocytosis or macropinocytosis. Notably, caveolin- and clathrin-mediated endocytosis were more prominent in the uptake of sEVs, while actin-dependent phagocytosis and macropinocytosis were significant for both sEVs and lEVs. Compared with conventional flasks, the Integra CELLine system demonstrated a 9-fold increase in sEVs yield and a 6.5-fold increase in lEVs yield, along with 3- to 4-fold higher protein content per 1010 EVs. Given that different endocytic pathways led to distinct intracellular trafficking routes, this study highlights the unique potentials of sEVs and lEVs for intracellular cargo delivery. The Integra CELLine proves to be a highly productive and cost-effective system for generating EVs with favourable properties for drug delivery.
Collapse
Affiliation(s)
- Tianjiao Geng
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
- Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Tian
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
| | - Song Yee Paek
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicles Investigations, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (S.Y.P.); (L.W.C.)
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicles Investigations, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (S.Y.P.); (L.W.C.)
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand; (T.G.); (L.T.)
| |
Collapse
|
42
|
Ikari A, Ito Y, Taniguchi K, Shibata MA, Kimura K, Iwamoto M, Lee SW. Role of CD44-Positive Extracellular Vesicles Derived from Highly Metastatic Mouse Mammary Carcinoma Cells in Pre-Metastatic Niche Formation. Int J Mol Sci 2024; 25:9742. [PMID: 39273689 PMCID: PMC11395953 DOI: 10.3390/ijms25179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Malignant breast cancers pose a notable challenge when it comes to treatment options. Recently, research has implicated extracellular vesicles (EVs) secreted by cancer cells in the formation of a pre-metastatic niche. Small clumps of CD44-positive breast cancer cells are efficiently transferred through CD44-CD44 protein homophilic interaction. This study aims to examine the function of CD44-positive EVs in pre-metastatic niche formation in vitro and to suggest a more efficacious EV formulation. We used mouse mammary carcinoma cells, BJMC3879 Luc2 (Luc2 cells) as the source of CD44-positive EVs and mouse endothelial cells (UV2 cells) as the recipient cells in the niche. Luc2 cells exhibited an enhanced secretion of EVs expressing CD44 and endothelial growth factors (VEGF-A, -C) under 20% O2 (representative of the early stage of tumorigenesis) compared to its expression under 1% O2 (in solid tumor), indicating that pre-metastatic niche formation occurs in the early stage. Furthermore, UV2 endothelial cells expressing CD44 demonstrated a high level of engulfment of EVs that had been supplemented with hyaluronan, and the proliferation of UV2 cells occurred following the engulfment of EVs. These results suggest that anti-VEGF-A and -C encapsulated, CD44-expressing, and hyaluronan-coated EVs are more effective for tumor metastasis.
Collapse
Affiliation(s)
- Ayana Ikari
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| | - Masa-Aki Shibata
- Department of Anatomy & Cell Biology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Kosei Kimura
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Mitsuhiko Iwamoto
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| |
Collapse
|
43
|
Kang SJ, Lee JH, Rhee WJ. Engineered plant-derived extracellular vesicles for targeted regulation and treatment of colitis-associated inflammation. Theranostics 2024; 14:5643-5661. [PMID: 39310109 PMCID: PMC11413791 DOI: 10.7150/thno.97139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Inflammatory bowel disease (IBD) is a chronic disorder characterized by persistent inflammation of the gastrointestinal tract. Due to the elusive causes and complex mechanisms of this disorder, the development of highly effective therapeutic drugs is crucial. Extracellular vesicles (EVs) are small membrane-bound structures released by cells into the surrounding environment. Recent research has witnessed a substantial surge in the utilization of plant-derived EVs that offer advantages such as high productivity, low production costs, diverse biological functions, and low cytotoxicity. Herein, Red cabbage-derived EVs (Rabex) were investigated and engineered as potential therapeutic agents for IBD. Methods: Rabex was engineered by surface conjugation with hyaluronic acid (t-Rabex) to simultaneously enhance the targeting of intestinal epithelial and immune cells, thereby improving their therapeutic targeting and efficacy. The properties and therapeutic potential of t-Rabex were assessed through both in vitro studies and in vivo experiments, focusing on their capacity to reach the gastrointestinal tract and exert a therapeutic effect compared to unmodified Rabex. Results: Rabex exhibited dual functions, including the suppression of inflammation in macrophages and promotion of colon epithelial cell regeneration, both of which are critical for effective IBD treatment. In vitro and in vivo studies of t-Rabex have demonstrated its superior targeting efficiency to the gastrointestinal tract and therapeutic efficacy compared to Rabex, making it a promising and more effective IBD treatment. Understanding the mechanism of action of t-Rabex in colonic tissues highlighted its anti-inflammatory, antioxidative, and tight-junction maintenance properties. Conclusions: These findings underscore the potential of t-Rabex as a precise therapeutic agent for IBD and shed light on the diverse applications of plant-derived EVs.
Collapse
Affiliation(s)
- Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon 22012, Republic of Korea
| | - Jeong Hyun Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University Incheon 22012, Republic of Korea
- Division of Bioengineering, Incheon National University Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
44
|
Carrillo Sanchez B, Hinchliffe M, Ellis M, Simpson C, Humphreys D, Sweeney B, Bracewell DG. Chinese hamster ovary cell line engineering strategies for modular production of custom extracellular vesicles. Biotechnol Bioeng 2024; 121:2907-2923. [PMID: 38924052 DOI: 10.1002/bit.28776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Continuously secreted by all cell types, extracellular vesicles (EVs) are small membrane-bound structures which shuttle bioactive cargo between cells across their external environment. Their central role as natural molecular messengers and ability to cross biological barriers has garnered significant attention in the use of EVs as therapeutic delivery vehicles. Still, harnessing the potential of EVs is faced with many obstacles. A cell line engineering approach can be used to exploit EVs to encapsulate a bespoke cargo of interest. However, full details regarding native EV-loading mechanisms remain under debate, making this a challenge. While Chinese hamster ovary (CHO) cells are well known to be the preferred host for recombinant therapeutic protein production, their application as an EV producer cell host has been largely overlooked. In this study, we engineered CHO DG44 cells to produce custom EVs with bespoke cargo. To this end, genetic constructs employing split green fluorescent protein technology were designed for tagging both CD81 and protein cargoes to enable EV loading via self-assembling activity. To demonstrate this, NanoLuc and mCherry were used as model reporter cargoes to validate engineered loading into EVs. Experimental findings indicated that our custom EV approach produced vesicles with up to 15-fold greater cargo compared with commonly used passive loading strategies. When applied to recipient cells, we observed a dose-dependent increase in cargo activity, suggesting successful delivery of engineered cargo via our custom CHO EVs.
Collapse
Affiliation(s)
- Braulio Carrillo Sanchez
- Department of Biochemical Engineering, University College London, London, UK
- UCB Pharma, Slough, Berkshire, UK
| | | | | | | | | | | | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
45
|
Park DJ, Choi W, Zhang H, Eliceiri BP. Lineage Mapping of Extracellular Vesicles: What Cells Do They Come from And Where Do They Go? Adv Wound Care (New Rochelle) 2024. [PMID: 39099339 DOI: 10.1089/wound.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Significance: Release of extracellular vesicles (EVs) by various cell types has been shown to mediate the delivery of biologically active payloads from donor cells to recipient cells; however, it remains unclear what cell types these EVs come from. With a focus on fluorescent reporters to monitor the release of EVs, especially those under the control of cell type-specific promoters, we address the translational relevance of genetic tools in cultured cells, normal tissues, and in models of development, injury, cancer, and wound healing. Recent Advances: It is well established that EVs are released by many cell types in the body via fusion and release processes at the plasma membrane. Since there remains debate about what fraction of EVs are released through regulated endosomal trafficking pathways versus nonspecific mechanisms, the development and validation of novel molecular tools are important to address the cellular source of EVs. Critical Issues: There is a need to develop and characterize new cell type-specific reporter mouse models that build upon the examples detailed here to identify the cellular source of EVs with genetic approaches being useful in addressing these critical limitations. Future Directions: Advances in reporter systems will drive a better understanding of EV subsets to identify compartment-specific EV localization to guide the development of more translationally relevant models for the wound healing field.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Hanan Zhang
- Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, California, USA
- Department of Dermatology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
46
|
Renò F, De Andrea M, Raviola S, Migliario M, Invernizzi M. Clodronate Reduces ATP-Containing Microvesicle Releasing Induced by Nociceptive Stimuli in Human Keratinocytes. Int J Mol Sci 2024; 25:8435. [PMID: 39126004 PMCID: PMC11312912 DOI: 10.3390/ijms25158435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Clodronate (Clod), a first-generation bisphosphonate, acts as a natural analgesic inhibiting vesicular storage of the nociception mediator ATP by vesicular nucleotide transporter (VNUT). Epidermal keratinocytes participate in cutaneous nociception, accumulating ATP within vesicles, which are released following different stimulations. Under stress conditions, keratinocytes produce microvesicles (MVs) by shedding from plasma membrane evagination. MV secretion has been identified as a novel and universal mode of intercellular communication between cells. The aim of this project was to evaluate if two nociceptive stimuli, Capsaicin and Potassium Hydroxide (KOH), could stimulate MV shedding from human keratinocytes, if these MVs could contain ATP, and if Clod could inhibit this phenomenon. In our cellular model, the HaCaT keratinocyte monolayer, both Capsaicin and KOH stimulated MV release after 3 h incubation, and the released MVs contained ATP. Moreover, Clod (5 µM) was able to reduce Caps-induced MV release and abolish the one KOH induced, while the Dansylcadaverine, an endocytosis inhibitor of Clod uptake, partially failed to block the bisphosphonate activity. Based on these new data and given the role of the activation of ATP release by keratinocytes as a vehicle for nociception and pain, the "old" bisphosphonate Clodronate could provide the pharmacological basis to develop new local analgesic drugs.
Collapse
Affiliation(s)
- Filippo Renò
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Eastern Piedmont, Corso Trieste, 15/A, 28100 Novara, Italy; (M.D.A.); (S.R.)
- Department of Public Health and Pediatric Sciences, University of Turin, Via Verdi 8, 10124 Turin, Italy
| | - Stefano Raviola
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Eastern Piedmont, Corso Trieste, 15/A, 28100 Novara, Italy; (M.D.A.); (S.R.)
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Mario Migliario
- Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
| |
Collapse
|
47
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
48
|
Hagedorn L, Jürgens DC, Merkel OM, Winkeljann B. Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:344-357. [PMID: 39697635 PMCID: PMC11648457 DOI: 10.20517/evcna.2024.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 12/20/2024]
Abstract
The rise of biologics and RNA-based therapies challenges the limitations of traditional drug treatments. However, these potent new classes of therapeutics require effective delivery systems to reach their full potential. Lipid nanoparticles (LNPs) have emerged as a promising solution for RNA delivery, but endosomal entrapment remains a critical barrier. In contrast, natural extracellular vesicles (EVs) possess innate mechanisms to overcome endosomal degradation, demonstrating superior endosomal escape (EE) compared to conventional LNPs. This mini review explores the challenges of EE for lipid nanoparticle-based drug delivery, and offers insights into EV escape mechanisms to advance LNP design for RNA therapeutics. We compare the natural EE strategies of EVs with those used in LNPs and highlight contemporary LNP design approaches. By understanding the mechanisms of EE, we will be able to develop more effective drug delivery vehicles, enhancing the delivery and efficacy of RNA-based therapies.
Collapse
Affiliation(s)
- Lasse Hagedorn
- Department of Pharmacy, Ludwig-Maximilians-Universität München, München 81377, Germany
| | - David C. Jürgens
- Department of Pharmacy, Ludwig-Maximilians-Universität München, München 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany
- RNhale GmbH, München 81371, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, München 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany
- RNhale GmbH, München 81371, Germany
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität München, München 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany
- RNhale GmbH, München 81371, Germany
| |
Collapse
|
49
|
Chen H, Ding Q, Li L, Wei P, Niu Z, Kong T, Fu P, Wang Y, Li J, Wang K, Zheng J. Extracellular Vesicle Spherical Nucleic Acids. JACS AU 2024; 4:2381-2392. [PMID: 38938802 PMCID: PMC11200237 DOI: 10.1021/jacsau.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are naturally occurring vesicles secreted by cells that can transport cargo between cells, making them promising bioactive nanomaterials. However, due to the complex and heterogeneous biological characteristics, a method for robust EV manipulation and efficient EV delivery is still lacking. Here, we developed a novel class of extracellular vesicle spherical nucleic acid (EV-SNA) nanostructures with scalability, programmability, and efficient cellular delivery. EV-SNA was constructed through the simple hydrophobic coassembly of natural EVs with cholesterol-modified oligonucleotides and can be stable for 1 month at room temperature. Based on programmable nucleic acid shells, EV-SNA can respond to AND logic gates to achieve vesicle assembly manipulation. Importantly, EV-SNA can be constructed from a wide range of biological sources EV, enhancing cellular delivery capability by nearly 10-20 times. Compared to artificial liposomal SNA, endogenous EV-SNA exhibited better biocompatibility and more effective delivery of antisense oligonucleotides in hard-to-transfect primary stem cells. Additionally, EV-SNA can deliver functional EVs for immune regulation. As a novel material form, EV-SNA may provide a modular and programmable framework paradigm for EV-based applications in drug delivery, disease treatment, nanovaccines, and other fields.
Collapse
Affiliation(s)
- Hao Chen
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaojiao Ding
- Cixi
Biomedical Research Institute, Wenzhou Medical
University, Wenzhou 325035, China
| | - Lin Li
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
| | - Pengyao Wei
- Cixi
Biomedical Research Institute, Wenzhou Medical
University, Wenzhou 325035, China
| | - Zitong Niu
- Cixi
Biomedical Research Institute, Wenzhou Medical
University, Wenzhou 325035, China
| | - Tong Kong
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
| | - Pan Fu
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
| | - Yuhui Wang
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Kaizhe Wang
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Zheng
- Ningbo
Key Laboratory of Biomedical Imaging Probe Materials and Technology,
Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese
Academy of Sciences, Ningbo 315300, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Fazeli A, Godakumara K. The evolving roles of extracellular vesicles in embryo-maternal communication. Commun Biol 2024; 7:754. [PMID: 38906986 PMCID: PMC11192758 DOI: 10.1038/s42003-024-06442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Mammalian reproduction relies on precise maternal-fetal communication, wherein immune modifications foster tolerance toward the semi-allogeneic embryo. Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as crucial mediators, transporting molecules like microRNAs securely. EVs influence various reproductive stages, from gamete maturation to implantation, and impact pathologies like pregnancy loss. In the embryo-maternal dialogue, EVs notably affect oviductal interactions, gene expression, and the embryo-endometrial interface, crucial for successful implantation. Key queries persist about EV uptake, cargo delivery, and the specific biomolecules driving communication. Their potential in diagnostics, therapeutics, and understanding environmental impacts on fertility signals an exciting future, reliant on collaborative efforts for transformative strides in reproductive health.
Collapse
Affiliation(s)
- Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, Tartu, Estonia.
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, UK.
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|