1
|
Inzaule S, Silva R, Thwin SS, Waasila J, Zumla A, Rylance J, Appiah J, Diaz J, Bertagnolio S. In-hospital Mortality Among Children and Adults Hospitalized with COVID-19 in Africa Across Pre-Delta, Delta, and Omicron SARS-CoV-2 Waves. Int J Infect Dis 2025:107924. [PMID: 40345430 DOI: 10.1016/j.ijid.2025.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND This study examines in-hospital mortality among children and adults hospitalized with COVID-19 across the pre-Delta, Delta, and Omicron waves in the African region. METHOD We conducted a retrospective cohort study using individual-level data from 520,810 hospitalized children and adults in 13 African countries. Cox proportional hazards regression models were used to assess the impact of SARS-CoV-2 variants on in-hospital mortality. FINDINGS Among children, the risk of in-hospital mortality was comparable between pre-Delta and Delta waves (aHR 1.02, 95% CI 0.77-1.35). In adults, mortality increased by 6% during Delta wave compared with pre-Delta wave (aHR 1.06, 95% CI 1.04-1.09). During Omicron wave, mortality risk decreased significantly by 42% in children (aHR 0.58, 95% CI 0.43-0.80) and 59% in adults (aHR 0.41, 95% CI 0.40-0.43) compared to the Delta wave. Notably, the reduction in mortality risk during the Omicron wave was less pronounced for children with severe or critical COVID-19, those co-infected with HIV, and adults co-infected with both HIV and tuberculosis. CONCLUSION Despite a general reduction in mortality risk during Omicron wave, persistently high mortality in specific high-risk groups underscores the importance of prioritizing booster vaccinations and intensified treatment for vulnerable populations as per WHO recommendations.
Collapse
Affiliation(s)
| | | | | | - Jassat Waasila
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Alimuddin Zumla
- Division of Infection and Immunity, Center for Clinical Microbiology, University College London; and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | | | - John Appiah
- World Health Organization, Geneva, Switzerland
| | - Janet Diaz
- World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
2
|
Chen B, Farzan M, Choe H. SARS-CoV-2 spike protein: structure, viral entry and variants. Nat Rev Microbiol 2025:10.1038/s41579-025-01185-8. [PMID: 40328900 DOI: 10.1038/s41579-025-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a devastating global pandemic for 4 years and is now an endemic disease. With the emergence of new viral variants, COVID-19 is a continuing threat to public health despite the wide availability of vaccines. The virus-encoded trimeric spike protein (S protein) mediates SARS-CoV-2 entry into host cells and also induces strong immune responses, making it an important target for development of therapeutics and vaccines. In this Review, we summarize our latest understanding of the structure and function of the SARS-CoV-2 S protein, the molecular mechanism of viral entry and the emergence of new variants, and we discuss their implications for development of S protein-related intervention strategies.
Collapse
Affiliation(s)
- Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, and Department of Paediatrics, Harvard Medical School, Boston, MA, USA.
| | - Michael Farzan
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Paediatrics, Harvard Medical School, Boston, MA, USA.
- Center for Integrated Solutions for Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Hyeryun Choe
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Paediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Heydemann L, Ciurkiewicz M, Störk T, Zdora I, Hülskötter K, Gregor KM, Michaely LM, Reineking W, Schreiner T, Beythien G, Volz A, Tuchel T, Meyer Zu Natrup C, Schünemann LM, Clever S, Henneck T, von Köckritz-Blickwede M, Schaudien D, Rohn K, Schughart K, Geffers R, Kaneko MK, Kato Y, Gross C, Amanakis G, Pavlou A, Baumgärtner W, Armando F. Respiratory long COVID in aged hamsters features impaired lung function post-exercise with bronchiolization and fibrosis. Nat Commun 2025; 16:2080. [PMID: 40021627 PMCID: PMC11871369 DOI: 10.1038/s41467-025-57267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Long-term consequences of SARS-CoV-2 infection affect millions of people and strain public health systems. The underlying pathomechanisms remain unclear, necessitating further research in appropriate animal models. This study aimed to characterize the trajectory of lung regeneration over 112 days in the male hamster model by combining morphological, transcriptomic and functional readouts. We demonstrate that in the acute phase, SARS-CoV-2 Delta-infected, male, aged hamsters show a severe impairment of lung function at rest. In the chronic phase, similar impairments persisted up to 7 weeks post-infection but were only evident after exercise on a rodent treadmill. The male hamster model recapitulates chronic pulmonary fibrotic changes observed in many patients with respiratory long COVID, but lacks extra-pulmonary long-term lesions. We show that sub-pleural and interstitial pulmonary fibrosis as well as alveolar bronchiolization persist until 112 dpi. Interestingly, CK8+ alveolar differentiation intermediate (ADI) cells are becoming less prominent in the alveolar proliferation areas from 28 dpi on. Instead, CK14+ airway basal cells and SCGB1A1+ club cells, expressing cell proliferation markers, mainly populate alveolar bronchiolization areas at later time-points. We postulate that pulmonary fibrosis and SCGB1A1+ club cell-rich areas of alveolar bronchiolization represent potential risk factors for other diseases in long-COVID survivors.
Collapse
Affiliation(s)
- Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | | | | | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Asisa Volz
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Tamara Tuchel
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Christian Meyer Zu Natrup
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Lisa-Marie Schünemann
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Sabrina Clever
- Department of Virology, University of Veterinary Medicine Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hanover, Germany
- Department of Biochemistry, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Data Management, University of Veterinary Medicine Foundation, Hanover, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute of Virology Münster, University of Münster, Münster, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research (HZI), Brunswick, Germany
| | - Mika K Kaneko
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of antibody drug development, Tohoku University, Sendai, Miyagi, Japan
| | - Carina Gross
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Georgios Amanakis
- Department of Cardiology and Angiology, Hanover Medical School (MHH), Hanover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Foundation, Hanover, Germany.
| | - Federico Armando
- Pathology Unit, Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Schrell L, Fuchs HL, Dickmanns A, Scheibner D, Olejnik J, Hume AJ, Reineking W, Störk T, Müller M, Graaf-Rau A, Diederich S, Finke S, Baumgärtner W, Mühlberger E, Balkema-Buschmann A, Dobbelstein M. Inhibitors of dihydroorotate dehydrogenase synergize with the broad antiviral activity of 4'-fluorouridine. Antiviral Res 2025; 233:106046. [PMID: 39638153 DOI: 10.1016/j.antiviral.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
RNA viruses present a constant threat to human health, often with limited options for vaccination or therapy. Notable examples include influenza viruses and coronaviruses, which have pandemic potential. Filo- and henipaviruses cause more limited outbreaks, but with high case fatality rates. All RNA viruses rely on the activity of a virus-encoded RNA-dependent RNA polymerase (RdRp). An antiviral nucleoside analogue, 4'-Fluorouridine (4'-FlU), targets RdRp and diminishes the replication of several RNA viruses, including influenza A virus and SARS-CoV-2, through incorporation into nascent viral RNA and delayed chain termination. However, the effective concentration of 4'-FlU varied among different viruses, raising the need to fortify its efficacy. Here we show that inhibitors of dihydroorotate dehydrogenase (DHODH), an enzyme essential for pyrimidine biosynthesis, can synergistically enhance the antiviral effect of 4'-FlU against influenza A viruses, SARS-CoV-2, henipaviruses, and Ebola virus. Even 4'-FlU-resistant mutant influenza A virus was re-sensitized towards 4'-FlU by DHODH inhibition. The addition of uridine rescued influenza A virus replication, strongly suggesting uridine depletion as a mechanism of this synergy. 4'-FlU was also highly effective against SARS-CoV-2 in a hamster model of COVID. We propose that the impairment of endogenous uridine synthesis by DHODH inhibition enhances the incorporation of 4'-FlU into viral RNAs. This strategy may be broadly applicable to enhance the efficacy of pyrimidine nucleoside analogues for antiviral therapy.
Collapse
Affiliation(s)
- Leon Schrell
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Hannah L Fuchs
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Antje Dickmanns
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - David Scheibner
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Adam J Hume
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Theresa Störk
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Annika Graaf-Rau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Elke Mühlberger
- Department of Virology, Immunology & Microbiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02218, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Nakazawa Y, Tsukagoshi H, Shimada R, Kubota R, Saruki N. Comparison of viral load in the nasopharyngeal swabs of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different epidemic seasons in Gunma prefecture, Japan. Jpn J Infect Dis 2024:JJID.2024.301. [PMID: 39756959 DOI: 10.7883/yoken.jjid.2024.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has repeatedly undergone mutations since its emergence, based on which it has been assumed that there was a change in its characteristic, including virulence or antigenicity. In this study, we investigated the viral load in the nasopharyngeal samples of patients with SARS-CoV-2 in Gunma prefecture, Japan, from April 2, 2020, to April 1, 2023. The amount of virus in samples in the Omicron-variant-prevalent period was higher than that of strains detected in samples before week 50 of 2020, the B.1.1.284-prevalent period, the Alpha-variant-prevalent period, and the Delta-variant- prevalent period. Moreover, among Omicron variants, the sublineage BA.5-prevalent period showed higher amount of virus in the samples than BA.1-prevalent period and BA.2-prevalent period. Hence, the new variant may have been able to release more viruses into the nasopharyngeal samples during the process of repeated mutations, resulting in widespread infection. The amount of virus detected in the nasopharyngeal samples showed an increasing tendency with the evolution of the virus. Therefore, considering that the amount of virus in specimens is also vital factor contributing to the spread of infection, it is important to examine this factor in samples.
Collapse
Affiliation(s)
- Yuki Nakazawa
- Department of Health Science, Gunma Prefectural Institute of Public Health and Environmental Sciences, Japan
| | - Hiroyuki Tsukagoshi
- Department of Health Science, Gunma Prefectural Institute of Public Health and Environmental Sciences, Japan
| | - Ryo Shimada
- Department of Health Science, Gunma Prefectural Institute of Public Health and Environmental Sciences, Japan
| | - Rina Kubota
- Department of Health Science, Gunma Prefectural Institute of Public Health and Environmental Sciences, Japan
| | - Nobuhiro Saruki
- Department of Health Science, Gunma Prefectural Institute of Public Health and Environmental Sciences, Japan
| |
Collapse
|
6
|
Stein SC, Hansen G, Ssebyatika G, Ströh LJ, Ochulor O, Herold E, Schwarzloh B, Mutschall D, Zischke J, Cordes AK, Schneider T, Hinrichs I, Blasczyk R, Kleine-Weber H, Hoffmann M, Klein F, Kaiser FK, Gonzalez-Hernandez M, Armando F, Ciurkiewicz M, Beythien G, Pöhlmann S, Baumgärtner W, Osterhaus A, Schulz TF, Krey T. A human monoclonal antibody neutralizing SARS-CoV-2 Omicron variants containing the L452R mutation. J Virol 2024; 98:e0122324. [PMID: 39494911 DOI: 10.1128/jvi.01223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
The effectiveness of SARS-CoV-2 therapeutic antibodies targeting the spike (S) receptor-binding domain (RBD) has been hampered by the emergence of variants of concern (VOCs), which have acquired mutations to escape neutralizing antibodies (nAbs). These mutations are not evenly distributed on the RBD surface but cluster on several distinct surfaces, suggesting an influence of the targeted epitope on the capacity to neutralize a broad range of VOCs. Here, we identified a potent nAb from convalescent patients targeting the receptor-binding domain of a broad range of SARS-CoV-2 VOCs. Except for the Lambda and BA.2.86 variants, this nAb efficiently inhibited the entry of most tested VOCs, including Omicron subvariants BA.1, BA.2, XBB.1.5, and EG.5.1 and to a limited extent also BA.4/5, BA.4.6, and BQ.1.1. It bound recombinant S protein with picomolar affinity, reduced the viral load in the lung of infected hamsters, and prevented the severe lung pathology typical for SARS-CoV-2 infections. An X-ray structure of the nAb-RBD complex revealed an epitope that does not fall into any of the conventional classes and provided insights into its broad neutralization properties. Our findings highlight a conserved epitope within the SARS-CoV-2 RBD that should be preferably targeted by therapeutic antibodies and inform rational vaccine development.IMPORTANCETherapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection and constitute an important option in pandemic preparedness, but mutations within the S protein of virus variants (e.g., a mutation of L452) confer resistance to many of such antibodies. Here, we identify a human antibody targeting the S protein receptor-binding domain (RBD) with an elevated escape barrier and characterize its interaction with the RBD functionally and structurally at the atomic level. A direct comparison with reported antibodies targeting the same epitope illustrates important differences in the interface, providing insights into the breadth of antibody binding. These findings highlight the relevance of an extended neutralization profiling in combination with biochemical and structural characterization of the antibody-RBD interaction for the selection of future therapeutic antibodies, which may accelerate the control of potential future pandemics.
Collapse
Affiliation(s)
- Saskia C Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - George Ssebyatika
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Elisabeth Herold
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Britta Schwarzloh
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Doris Mutschall
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Jasmin Zischke
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
| | - Anne K Cordes
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Talia Schneider
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Imke Hinrichs
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Hannah Kleine-Weber
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Stefan Pöhlmann
- German Primate Center, Leibniz Institute for Primate Research, and Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- Global Virus Network, Center of Excellence, University of Veterinary Medicine, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Biochemistry, Center of Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Hannover, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hannover, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
7
|
Geller F, Wu X, Lammi V, Abner E, Valliere JT, Nastou K, Rasmussen M, Andersson NW, Quinn L, Aagaard B, Banasik K, Bliddal S, Boding L, Brunak S, Brøns N, Bybjerg-Grauholm J, Christoffersen LAN, Didriksen M, Dinh KM, Erikstrup C, Feldt-Rasmussen U, Grønbæk K, Kaspersen KA, Mikkelsen C, Nielsen CH, Nielsen HS, Nielsen SD, Nissen J, Sequeros CB, Tommerup N, Ullum H, FinnGen, Spiliopoulos L, Bager P, Hviid A, Sørensen E, Pedersen OB, Lane JM, Lassaunière R, Ollila HM, Ostrowski SR, Feenstra B. Central role of glycosylation processes in human genetic susceptibility to SARS-CoV-2 infections with Omicron variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.21.24317689. [PMID: 39606378 PMCID: PMC11601703 DOI: 10.1101/2024.11.21.24317689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The host genetics of SARS-CoV-2 has previously been studied based on cases from the earlier waves of the pandemic in 2020 and 2021, identifying 51 genomic loci associated with infection and/or severity. SARS-CoV-2 has shown rapid sequence evolution increasing transmissibility, particularly for Omicron variants, which raises the question whether this affected the host genetic factors. We performed a genome-wide association study of SARS-CoV-2 infection with Omicron variants including more than 150,000 cases from four cohorts. We identified 13 genome-wide significant loci, of which only five were previously described as associated with SARS-CoV-2 infection. The strongest signal was a single nucleotide polymorphism (SNP) intronic of ST6GAL1, a gene affecting immune development and function, and connected to three other associated loci (harboring MUC1, MUC5AC and MUC16) through O-glycan biosynthesis. We also found further evidence for an involvement of blood group systems in SARS-CoV-2 infection, as we observed association 1) for a different lead SNP in the ABO locus indicating a protective effect of blood group B against Omicron infection, 2) for the FUT2 SNP tagging secretor status also reported for SARS-CoV-2 infection with earlier variants, and 3) for the strongest expression quantitative trait locus (eQTL) for FUT3 (Lewis gene). Our study provides robust evidence for individual genetic variation related to glycosylation translating into susceptibility to SARS-CoV-2 infections with Omicron variants.
Collapse
Affiliation(s)
- Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xiaoping Wu
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vilma Lammi
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jesse Tyler Valliere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Molecular and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Katerina Nastou
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Liam Quinn
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | - Bitten Aagaard
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Banasik
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Amager & Hvidovre Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Bliddal
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Amager & Hvidovre Hospital, Copenhagen, Denmark
- Department of Nephrology and Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lasse Boding
- Danish National Biobank, Statens Serum Institut, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Brøns
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Lea Arregui Nordahl Christoffersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Maria Didriksen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Nephrology and Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christina Mikkelsen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henriette Svarre Nielsen
- Department of Obstetrics and Gynecology, Copenhagen University Hospital, Amager & Hvidovre Hospital, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Janna Nissen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celia Burgos Sequeros
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Lampros Spiliopoulos
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Bager
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Molecular and Population Genetics Program, Broad Institute, Cambridge, MA, USA
| | - Ria Lassaunière
- Virus Research and Development Laboratory, Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Beythien G, de le Roi M, Stanelle-Bertram S, Armando F, Heydemann L, Rosiak M, Becker S, Lamers MM, Kaiser FK, Haagmans BL, Ciurkiewicz M, Gabriel G, Osterhaus ADME, Baumgärtner W. Detection of Double-Stranded RNA Intermediates During SARS-CoV-2 Infections of Syrian Golden Hamsters with Monoclonal Antibodies and Its Implications for Histopathological Evaluation of In Vivo Studies. Int J Mol Sci 2024; 25:11425. [PMID: 39518980 PMCID: PMC11546166 DOI: 10.3390/ijms252111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the challenges posed by the emergence and rapid global spread of previously unknown viruses. Early investigations on the pathogenesis of newly identified viruses are often hampered by a lack of appropriate sample material and conventional detection methods. In this study, viral replication within the lungs of SARS-CoV-2-infected Syrian golden hamsters was assessed by immunolabeling dsRNA intermediates with three different monoclonal antibodies in formalin-fixed, paraffin-embedded tissue samples. The presence of dsRNA was compared to viral antigen levels, viral titers, and genomic RNA replicates using three different variants of concern and an ancestral virus strain at a single time point and during the course of infection with an ancestral variant, and then validated using fluorescent 2-plex in situ hybridization. The results indicate that the detection of viral infection using anti-dsRNA antibodies is restricted to an early phase of infection with high viral replication activity. Additionally, the combined detection of dsRNA intermediates and viral antigens may help to bridge the interpretation gaps between viral antigen levels and viral titers at a single time point. Further testing in other viral infections or species is needed to assess the potential of dsRNA as an early marker for viral infections.
Collapse
Affiliation(s)
- Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | | | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Pathology Unit, Department of Veterinary Science, University of Parma, 43121 Parma, Italy
| | - Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Svenja Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Mart M. Lamers
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Franziska K. Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Gülşah Gabriel
- Leibniz Institute of Virology, 20251 Hamburg, Germany; (S.S.-B.); (G.G.)
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
9
|
Wee LE, Tan JYJ, Chiew CJ, Abisheganaden JA, Chotirmall SH, Lye DCB, Tan KB. A Nationwide Cohort Study of Delta and Omicron SARS-CoV-2 Outcomes in Vaccinated Individuals With Chronic Lung Disease. Chest 2024; 166:685-696. [PMID: 38871281 DOI: 10.1016/j.chest.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Individuals with chronic lung disease (CLD) are more susceptible to respiratory viral infections; however, significant heterogeneity exists in the literature on CLD and COVID-19 outcomes. Data are lacking on outcomes with newer variants (eg, Omicron) and in vaccinated and boosted populations. RESEARCH QUESTION What are the outcomes of SARS-CoV-2 infection in individuals with CLD during Delta and Omicron transmission in a highly vaccinated and boosted population-based cohort? STUDY DESIGN AND METHODS Outcomes of Delta and Omicron SARS-CoV-2 infection in a highly vaccinated and boosted cohort of adult Singaporeans with CLD (including asthma, COPD, bronchiectasis, and pulmonary fibrosis) were contrasted against matched population control participants. Calendar time-scale Cox regressions were used to compare risk of infection, COVID-19-related hospitalizations, and severe COVID-19 disease, adjusting for sociodemographic factors and comorbidities. RESULTS Overall, 68,782 individual patients with CLD and 534,364 matched population control participants were included. By the end of the Omicron wave, 92.7% of patients with CLD were boosted. Compared with control participants, patients with CLD showed higher risk of SARS-CoV-2 infection, COVID-19-related hospitalization, and severe COVID-19 during both the Delta wave (infection: adjusted hazards ratio [aHR], 1.22 [95% CI, 1.17-1.28]; hospitalization: aHR, 1.76 [95% CI, 1.61-1.92]; severe COVID-19: aHR, 1.75 [95% CI, 1.50-2.05]) and Omicron wave (infection: aHR, 1.15 [95% CI, 1.14-1.17]; hospitalization: aHR, 1.82 [95% CI, 1.74-1.91]; severe COVID-19: aHR, 2.39 [95% CI, 2.18-2.63]). During Omicron, significantly higher risk of infection, hospitalization, and severe COVID-19 was observed among patients with asthma (severe COVID-19: aHR, 1.31 [95% CI, 1.10-1.55]) and COPD (severe COVID-19: aHR, 1.36 [95% CI, 1.12-1.66]) compared with control participants. Severe exacerbation (requiring hospitalization) in the preceding year was associated with higher risk of poorer outcomes (Delta, severe COVID-19: aHR, 9.84 [95% CI, 6.33-15.28]; Omicron, severe COVID-19: aHR, 19.22 [95% CI, 15.35-24.06]). Risk was attenuated in the boosted group, with numerically lower HRs against hospitalization and severe COVID-19 in the four-dose group compared with the three-dose group. INTERPRETATION Increased risk of COVID-19-related hospitalization and severe COVID-19 was observed among patients with CLD compared with matched population control participants during Delta and Omicron predominance. Boosting attenuated serious COVID-19 outcomes.
Collapse
Affiliation(s)
- Liang En Wee
- National Centre for Infectious Diseases, National University of Singapore, Singapore, Republic of Singapore; Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Republic of Singapore; Department of Infectious Diseases, Singapore General Hospital, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Janice Yu Jin Tan
- Ministry of Health, Tan Tock Seng Hospital, Nanyang Technological University, Singapore, Republic of Singapore
| | - Calvin J Chiew
- National Centre for Infectious Diseases, National University of Singapore, Singapore, Republic of Singapore; Ministry of Health, Tan Tock Seng Hospital, Nanyang Technological University, Singapore, Republic of Singapore
| | - John Arputhan Abisheganaden
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Nanyang Technological University, Singapore, Republic of Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - Sanjay H Chotirmall
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Nanyang Technological University, Singapore, Republic of Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - David Chien Boon Lye
- National Centre for Infectious Diseases, National University of Singapore, Singapore, Republic of Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Department of Infectious Diseases, Tan Tock Seng Hospital, Nanyang Technological University, Singapore, Republic of Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| | - Kelvin Bryan Tan
- National Centre for Infectious Diseases, National University of Singapore, Singapore, Republic of Singapore; Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Republic of Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Republic of Singapore; Ministry of Health, Tan Tock Seng Hospital, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
10
|
Cong Y, Dixit S, Perry DL, Huzella LM, Kollins E, Byrum R, Anthony SM, Drawbaugh D, Lembirik S, Postnikova E, Eaton B, Murphy M, Kocher G, Hadley K, Marketon AE, Bernbaum RM, Hischak AMW, Hart R, Vaughan N, Wada J, Qin J, St Claire MC, Schmaljohn CS, Holbrook MR. Characterization of therapeutic antibody efficacy against multiple SARS-CoV-2 variants in the hamster model. Antiviral Res 2024; 230:105987. [PMID: 39147143 PMCID: PMC11421207 DOI: 10.1016/j.antiviral.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and onset of the coronavirus disease-19 (COVID-19) pandemic led to an immediate need for therapeutic treatment options. Therapeutic antibodies were developed to fill a gap when traditional antivirals were not available. In late 2020, the United States Government undertook an effort to compare candidate therapeutic antibodies in virus neutralization assays and in the hamster model of SARS-CoV-2 infection. With the emergence of SARS-CoV-2 variants, the effort expanded to evaluate the efficacy of nearly 50 products against major variants. A subset of products was further evaluated for therapeutic efficacy in hamsters. Here we report results of the hamster studies, including pathogenicity with multiple variants, neutralization capacity of products, and efficacy testing of products against Delta and Omicron variants. These studies demonstrate the loss of efficacy of early products with variant emergence and support the use of the hamster model for evaluating therapeutics.
Collapse
Affiliation(s)
- Yu Cong
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Saurabh Dixit
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Donna L Perry
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Erin Kollins
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Russell Byrum
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Scott M Anthony
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - David Drawbaugh
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Sanae Lembirik
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Michael Murphy
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Gregory Kocher
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Kyra Hadley
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Anthony E Marketon
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Rebecca M Bernbaum
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Amanda M W Hischak
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Nick Vaughan
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Jing Qin
- Biostatistics Research Branch (BRB), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Marisa C St Claire
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Kotoku A, Horinouchi H, Nishii T, Fukuyama M, Ohta Y, Fukuda T. Evaluating the Accuracy of Chest CT in Detecting COVID-19 Through Tracheobronchial Wall Thickness: Insights From Emergency Department Patients in Mid-2023. Cureus 2024; 16:e69161. [PMID: 39398816 PMCID: PMC11467821 DOI: 10.7759/cureus.69161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background The post-pandemic phase of the coronavirus infectious disease that emerged in 2019 (COVID-19) has necessitated updates in radiology, with emerging evidence suggesting tracheobronchial wall thickness as a potential new diagnostic marker. Purpose To evaluate the accuracy of chest computed tomography (CT) scans in identifying COVID-19 by assessing tracheobronchial wall thickness in mid-2023. Material and methods A retrospective review was conducted on 60 patients who underwent thoracoabdominal CT and the severe acute respiratory syndrome coronavirus (SARS-CoV-2) antigen tests during emergency visits between June and August 2023. Tracheobronchial wall thickness was measured using a 4-point scale (1=no thickening, 2=mild, 3=moderate, 4=significant). Lung assessment employed the COVID-19 Reporting and Data System (CO-RADS). Patients were classified based on antigen test results. The Mann-Whitney U test and Fisher's exact test compared characteristics and CT findings. Diagnostic performance was evaluated using the area under the receiver operating characteristic curves (AUC). Results The SARS-CoV-2-positive group showed significantly thicker tracheobronchial walls (median 1.5 mm vs. 1.2 mm, P < 0.001), especially in the trachea's membranous wall (median 1.2 mm vs. 0.9 mm, P < 0.001) and higher scores (median 3 vs. 2, P < 0.001). CO-RADS scores showed no significant difference. Quantitative and qualitative wall thickness assessments demonstrated high diagnostic value, with AUCs of 0.90 and 0.94, and accuracies of 85% and 87%, respectively. Conclusion Tracheobronchial wall thickness on chest CT exhibited high diagnostic accuracy, establishing it as a reliable marker for COVID-19 detection in mid-2023.
Collapse
Affiliation(s)
- Akiyuki Kotoku
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | | | - Tatsuya Nishii
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Midori Fukuyama
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Yasutoshi Ohta
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| | - Tetsuya Fukuda
- Radiology, National Cerebral and Cardiovascular Center, Suita, JPN
| |
Collapse
|
12
|
Kircheis R. In Silico Analyses Indicate a Lower Potency for Dimerization of TLR4/MD-2 as the Reason for the Lower Pathogenicity of Omicron Compared to Wild-Type Virus and Earlier SARS-CoV-2 Variants. Int J Mol Sci 2024; 25:5451. [PMID: 38791489 PMCID: PMC11121871 DOI: 10.3390/ijms25105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The SARS-CoV-2 Omicron variants have replaced all earlier variants, due to increased infectivity and effective evasion from infection- and vaccination-induced neutralizing antibodies. Compared to earlier variants of concern (VoCs), the Omicron variants show high TMPRSS2-independent replication in the upper airway organs, but lower replication in the lungs and lower mortality rates. The shift in cellular tropism and towards lower pathogenicity of Omicron was hypothesized to correlate with a lower toll-like receptor (TLR) activation, although the underlying molecular mechanisms remained undefined. In silico analyses presented here indicate that the Omicron spike protein has a lower potency to induce dimerization of TLR4/MD-2 compared to wild type virus despite a comparable binding activity to TLR4. A model illustrating the molecular consequences of the different potencies of the Omicron spike protein vs. wild-type spike protein for TLR4 activation is presented. Further analyses indicate a clear tendency for decreasing TLR4 dimerization potential during SARS-CoV-2 evolution via Alpha to Gamma to Delta to Omicron variants.
Collapse
|
13
|
Tanneti NS, Patel AK, Tan LH, Marques AD, Perera RAPM, Sherrill-Mix S, Kelly BJ, Renner DM, Collman RG, Rodino K, Lee C, Bushman FD, Cohen NA, Weiss SR. Comparison of SARS-CoV-2 variants of concern in primary human nasal cultures demonstrates Delta as most cytopathic and Omicron as fastest replicating. mBio 2024; 15:e0312923. [PMID: 38477472 PMCID: PMC11005367 DOI: 10.1128/mbio.03129-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here, we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid interface were used to model upper respiratory infection and compared to cell lines derived from human lung epithelia. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses, including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation, and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN-stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper respiratory tract and least favorable in the lower respiratory cell line, and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals. IMPORTANCE Comparative analysis of infections by SARS-CoV-2 ancestral virus and variants of concern, including Alpha, Beta, Delta, and Omicron, indicated that variants were selected for efficiency in replication. In infections of patient-derived primary nasal cultures grown at air-liquid interface to model upper respiratory infection, Omicron reached the highest titers at early time points, a finding that was confirmed by parallel population sampling studies. While all infections overcame dsRNA-mediated host responses, infections with Omicron induced the strongest interferon and interferon-stimulated gene response. In both primary nasal cultures and lower respiratory cell line, infections by Delta were most damaging to the cells as indicated by syncytia formation, loss of cell barrier integrity, and nasal ciliary function.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anant K. Patel
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Li Hui Tan
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew D. Marques
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ranawaka A. P. M. Perera
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle Rodino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Lee
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology- Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Surgical Services, Philadelphia, Pennsylvania, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Kaiser FK, Hernandez MG, Krüger N, Englund E, Du W, Mykytyn AZ, Raadsen MP, Lamers MM, Rodrigues Ianiski F, Shamorkina TM, Snijder J, Armando F, Beythien G, Ciurkiewicz M, Schreiner T, Gruber-Dujardin E, Bleyer M, Batura O, Erffmeier L, Hinkel R, Rocha C, Mirolo M, Drabek D, Bosch BJ, Emalfarb M, Valbuena N, Tchelet R, Baumgärtner W, Saloheimo M, Pöhlmann S, Grosveld F, Haagmans BL, Osterhaus ADME. Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models. Nat Commun 2024; 15:2319. [PMID: 38485931 PMCID: PMC10940701 DOI: 10.1038/s41467-024-46443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Franziska K Kaiser
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Mariana Gonzalez Hernandez
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Nadine Krüger
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ellinor Englund
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anna Z Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathijs P Raadsen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Francine Rodrigues Ianiski
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Eva Gruber-Dujardin
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Martina Bleyer
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Olga Batura
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lena Erffmeier
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rabea Hinkel
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Cheila Rocha
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Monica Mirolo
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Stefan Pöhlmann
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany.
- Global Virus Network, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Clever S, Limpinsel L, Meyer zu Natrup C, Schünemann LM, Beythien G, Rosiak M, Hülskötter K, Gregor KM, Tuchel T, Kalodimou G, Freudenstein A, Kumar S, Baumgärtner W, Sutter G, Tscherne A, Volz A. Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection. Viruses 2024; 16:417. [PMID: 38543782 PMCID: PMC10974247 DOI: 10.3390/v16030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
The sudden emergence of SARS-CoV-2 demonstrates the need for new vaccines that rapidly protect in the case of an emergency. In this study, we developed a recombinant MVA vaccine co-expressing SARS-CoV-2 prefusion-stabilized spike protein (ST) and SARS-CoV-2 nucleoprotein (N, MVA-SARS-2-ST/N) as an approach to further improve vaccine-induced immunogenicity and efficacy. Single MVA-SARS-2-ST/N vaccination in K18-hACE2 mice induced robust protection against lethal respiratory SARS-CoV-2 challenge infection 28 days later. The protective outcome of MVA-SARS-2-ST/N vaccination correlated with the activation of SARS-CoV-2-neutralizing antibodies (nABs) and substantial amounts of SARS-CoV-2-specific T cells especially in the lung of MVA-SARS-2-ST/N-vaccinated mice. Emergency vaccination with MVA-SARS-2-ST/N just 2 days before lethal SARS-CoV-2 challenge infection resulted in a delayed onset of clinical disease outcome in these mice and increased titers of nAB or SARS-CoV-2-specific T cells in the spleen and lung. These data highlight the potential of a multivalent COVID-19 vaccine co-expressing S- and N-protein, which further contributes to the development of rapidly protective vaccination strategies against emerging pathogens.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Katharina Manuela Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (G.B.); (M.R.); (K.H.); (K.M.G.); (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany; (L.L.); (G.K.); (A.F.); (S.K.); (G.S.); (A.T.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany; (S.C.); (C.M.z.N.); (L.-M.S.)
| |
Collapse
|
16
|
Hsieh MS, Hsu CW, Liao HC, Lin CL, Chiang CY, Chen MY, Liu SJ, Liao CL, Chen HW. SARS-CoV-2 spike-FLIPr fusion protein plus lipidated FLIPr protects against various SARS-CoV-2 variants in hamsters. J Virol 2024; 98:e0154623. [PMID: 38299865 PMCID: PMC10878263 DOI: 10.1128/jvi.01546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Wu X, Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis 2024; 27:5-22. [PMID: 37103631 PMCID: PMC10134732 DOI: 10.1007/s10456-023-09878-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/16/2023] [Indexed: 04/28/2023]
Abstract
The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development. Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage. During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, 150001, Harbin, China.
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, MA, Boston, USA.
| |
Collapse
|
18
|
Hedberg P, Nauclér P. Post-COVID-19 Condition After SARS-CoV-2 Infections During the Omicron Surge vs the Delta, Alpha, and Wild Type Periods in Stockholm, Sweden. J Infect Dis 2024; 229:133-136. [PMID: 37665981 PMCID: PMC10786247 DOI: 10.1093/infdis/jiad382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Little is known about the post-COVID-19 condition (PCC) after infections with different SARS-CoV-2 variants. We investigated the risk of PCC diagnosis after primary omicron infections as compared with preceding variants in population-based cohorts in Stockholm, Sweden. When compared with omicron (n = 215 279, 0.2% receiving a PCC diagnosis), the adjusted hazard ratio (95% CI) was 3.26 (2.80-3.80) for delta (n = 52 182, 0.5% PCC diagnosis), 5.33 (4.73-5.99) for alpha (n = 97 978, 1.0% PCC diagnosis), and 6.31 (5.64-7.06) for the wild type (n = 107 920, 1.3% PCC diagnosis). These findings were consistent across all subgroup analyses except among those treated in the intensive care unit.
Collapse
Affiliation(s)
| | - Pontus Nauclér
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Clever S, Schünemann LM, Armando F, Meyer zu Natrup C, Tuchel T, Tscherne A, Ciurkiewicz M, Baumgärtner W, Sutter G, Volz A. Protective MVA-ST Vaccination Robustly Activates T Cells and Antibodies in an Aged-Hamster Model for COVID-19. Vaccines (Basel) 2024; 12:52. [PMID: 38250865 PMCID: PMC10819389 DOI: 10.3390/vaccines12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/24/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is associated with a decline in immune system functionality. So-called immunosenescence may impair the successful vaccination of elderly people. Thus, improved vaccination strategies also suitable for an aged immune system are required. Modified Vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient vaccinia virus that has been established as a multipurpose viral vector for vaccine development against various infections. We characterized a recombinant MVA expressing a prefusion-stabilized version of SARS-CoV-2 S protein (MVA-ST) in an aged-hamster model for COVID-19. Intramuscular MVA-ST immunization resulted in protection from disease and severe lung pathology. Importantly, this protection was correlated with a potent activation of SARS-CoV-2 specific T-cells and neutralizing antibodies. Our results suggest that MVA vector vaccines merit further evaluation in preclinical models to contribute to future clinical development as candidate vaccines in elderly people to overcome the limitations of age-dependent immunosenescence.
Collapse
Affiliation(s)
- Sabrina Clever
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Lisa-Marie Schünemann
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany (W.B.)
- Pathology Unit, Department of Veterinary Science, University of Parma, 43121 Parma, Italy
| | - Christian Meyer zu Natrup
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Tamara Tuchel
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany; (A.T.); (G.S.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany (W.B.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany (W.B.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, 80539 Munich, Germany; (A.T.); (G.S.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (S.C.); (L.-M.S.); (C.M.z.N.)
| |
Collapse
|
20
|
Hu B, Chan JFW, Liu Y, Liu H, Chen YX, Shuai H, Hu YF, Hartnoll M, Chen L, Xia Y, Hu JC, Yuen TTT, Yoon C, Hou Y, Huang X, Chai Y, Zhu T, Shi J, Wang Y, He Y, Cai JP, Zhou J, Yuan S, Zhang J, Huang JD, Yuen KY, To KKW, Zhang BZ, Chu H. Divergent trajectory of replication and intrinsic pathogenicity of SARS-CoV-2 Omicron post-BA.2/5 subvariants in the upper and lower respiratory tract. EBioMedicine 2024; 99:104916. [PMID: 38101297 PMCID: PMC10733096 DOI: 10.1016/j.ebiom.2023.104916] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING The full list of funding can be found at the Acknowledgements section.
Collapse
Affiliation(s)
- Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yan-Xia Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Madeline Hartnoll
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Li Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yao Xia
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jing-Chu Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Guangzhou Laboratory, Guangdong Province, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| |
Collapse
|
21
|
Aksu M, Kumar P, Güttler T, Taxer W, Gregor K, Mußil B, Rymarenko O, Stegmann KM, Dickmanns A, Gerber S, Reineking W, Schulz C, Henneck T, Mohamed A, Pohlmann G, Ramazanoglu M, Mese K, Groß U, Ben-Yedidia T, Ovadia O, Fischer DW, Kamensky M, Reichman A, Baumgärtner W, von Köckritz-Blickwede M, Dobbelstein M, Görlich D. Nanobodies to multiple spike variants and inhalation of nanobody-containing aerosols neutralize SARS-CoV-2 in cell culture and hamsters. Antiviral Res 2024; 221:105778. [PMID: 38065245 DOI: 10.1016/j.antiviral.2023.105778] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.
Collapse
Affiliation(s)
- Metin Aksu
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Priya Kumar
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Thomas Güttler
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany; Octapharma Biopharmaceuticals GmbH, Im Neuenheimer Feld 590, 69120 Heidelberg, Germany
| | - Waltraud Taxer
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kathrin Gregor
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bianka Mußil
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Oleh Rymarenko
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kim M Stegmann
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Sabrina Gerber
- University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Timo Henneck
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Ahmed Mohamed
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Gerhard Pohlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Mehmet Ramazanoglu
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Kemal Mese
- University Medical Center Göttingen, Dept. of Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- University Medical Center Göttingen, Dept. of Medical Microbiology and Virology, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Tamar Ben-Yedidia
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Oded Ovadia
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Dalit Weinstein Fischer
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Merav Kamensky
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Amir Reichman
- Scinai Immunotherapeutics Ltd., Jerusalem BioPark, Hadassah Ein Kerem, Jerusalem, 9112001, Israel
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Matthias Dobbelstein
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Dept. of Molecular Oncology, Justus von Liebig Weg 11, 37077 Göttingen, Germany.
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Dept. of Cellular Logistics, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
22
|
He Y, Henley J, Sell P, Comai L. Differential Outcomes of Infection by Wild-Type SARS-CoV-2 and the B.1.617.2 and B.1.1.529 Variants of Concern in K18-hACE2 Transgenic Mice. Viruses 2023; 16:60. [PMID: 38257760 PMCID: PMC10820160 DOI: 10.3390/v16010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND SARS-CoV-2 is a respiratory virus with neurological complications including the loss of smell and taste, headache, and confusion that can persist for months or longer. Severe neuronal cell damage has also been reported in some cases. The objective of this study was to compare the infectivity of the wild-type virus, Delta (B.1.617.2) and Omicron (B.1.1.529) variants in transgenic mice that express the human angiotensin-converting enzyme 2 (hACE2) receptor under the control of the keratin 18 promoter (K18) and characterize the progression of infection and inflammatory response in the lungs, brain, medulla oblongata, and olfactory bulbs of these animals. We hypothesized that wild type, Delta and Omicron differentially infect K18-hACE2 mice, thereby inducing distinct cellular responses. METHODS K18-hACE2 female mice were intranasally infected with wild-type, Delta, or Omicron variants and euthanized either at 3 days post-infection (dpi) or at the humane endpoint. None of the animals infected with the Omicron variant reached the humane endpoint and were euthanized at day 8 dpi. Virological and immunological analyses were performed in the lungs, brains, medulla oblongata and olfactory bulbs isolated from infected mice. RESULTS At 3 dpi, mice infected with wild type and Delta displayed significantly higher levels of viral RNA in the lungs than mice infected with Omicron, while in the brain, Delta and Omicron resulted in higher levels of viral RNA than with the wild type. Viral RNA was also detected in the medulla oblongata of mice infected by all these virus strains. At this time point, the mice infected with wild type and Delta displayed a marked upregulation of many inflammatory markers in the lungs. On the other hand, the upregulation of inflammatory markers was observed only in the brains of mice infected with Delta and Omicron. At the humane endpoint, we observed a significant increase in the levels of viral RNA in the lungs and brains of mice infected with wild type and Delta, which was accompanied by the elevated expression of many inflammatory markers. In contrast, mice which survived infection with the Omicron variant showed high levels of viral RNA and the upregulation of cytokine and chemokine expression only in the lungs at 8 dpi, suggesting that infection and inflammatory response by this variant is attenuated in the brain. Reduced RNA levels and the downregulation of inflammatory markers was also observed in the medulla oblongata and olfactory bulbs of mice infected with Omicron at 8 dpi as compared with mice infected with wild-type and Delta at the humane end point. Collectively, these data demonstrate that wild-type, Delta, and Omicron SARS-CoV-2 induce distinct levels of infection and inflammatory responses in K18-hACE2 mice. Notably, sustained brain infection accompanied by the upregulation of inflammatory markers is a critical outcome in mice infected with wild type and Delta but not Omicron.
Collapse
Affiliation(s)
- Yicheng He
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
| | - Jill Henley
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Philip Sell
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, 2011 Zonal Avenue, Los Angeles, CA 90089, USA
- Hastings Foundation and Wright Foundation BSL3 Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Tanneti NS, Patel AK, Tan LH, Marques AD, Perera RAPM, Sherrill-Mix S, Kelly BJ, Renner DM, Collman RG, Rodino K, Lee C, Bushman FD, Cohen NA, Weiss SR. Comparison of SARS-CoV-2 variants of concern in primary human nasal cultures demonstrates Delta as most cytopathic and Omicron as fastest replicating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.553565. [PMID: 37662273 PMCID: PMC10473756 DOI: 10.1101/2023.08.24.553565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The SARS-CoV-2 pandemic was marked with emerging viral variants, some of which were designated as variants of concern (VOCs) due to selection and rapid circulation in the human population. Here we elucidate functional features of each VOC linked to variations in replication rate. Patient-derived primary nasal cultures grown at air-liquid-interface (ALI) were used to model upper-respiratory infection and human lung epithelial cell lines used to model lower-respiratory infection. All VOCs replicated to higher titers than the ancestral virus, suggesting a selection for replication efficiency. In primary nasal cultures, Omicron replicated to the highest titers at early time points, followed by Delta, paralleling comparative studies of population sampling. All SARS-CoV-2 viruses entered the cell primarily via a transmembrane serine protease 2 (TMPRSS2)-dependent pathway, and Omicron was more likely to use an endosomal route of entry. All VOCs activated and overcame dsRNA-induced cellular responses including interferon (IFN) signaling, oligoadenylate ribonuclease L degradation and protein kinase R activation. Among the VOCs, Omicron infection induced expression of the most IFN and IFN stimulated genes. Infections in nasal cultures resulted in cellular damage, including a compromise of cell-barrier integrity and loss of nasal cilia and ciliary beating function, especially during Delta infection. Overall, Omicron was optimized for replication in the upper-respiratory system and least-favorable in the lower-respiratory cell line; and Delta was the most cytopathic for both upper and lower respiratory cells. Our findings highlight the functional differences among VOCs at the cellular level and imply distinct mechanisms of pathogenesis in infected individuals.
Collapse
Affiliation(s)
| | | | - Li Hui Tan
- Department of Otorhinolaryngology- Head and Neck Surgery
| | | | | | | | - Brendan J Kelly
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | - Ronald G Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Kyle Rodino
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | - Noam A Cohen
- Department of Otorhinolaryngology- Head and Neck Surgery
- Corporal Michael J. Crescenz VA Medical Center, Surgical Services, Philadelphia, USA
- Monell Chemical Senses Center, Philadelphia, USA
| | | |
Collapse
|
24
|
Vaira LA, Boscolo-Rizzo P, Lechien JR, Mayo-Yáñez M, Petrocelli M, Pistidda L, Salzano G, Maglitto F, Hopkins C, De Riu G. Olfactory recovery following omicron variant infection: a psychophysical prospective case-control study with six-month follow up. J Laryngol Otol 2023; 137:1395-1400. [PMID: 37194489 DOI: 10.1017/s0022215123000877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OBJECTIVE This study aimed to evaluate the recovery of olfactory function at six months in individuals infected with the coronavirus disease 2019 omicron variant, using psychophysical tests. METHODS A prospective case-control study that included severe acute respiratory syndrome coronavirus-2 patients infected in February and March 2022 was conducted. Patients underwent the Sniffin' Sticks test within 10 days of infection and again after at least 6 months. The olfactory scores were compared with those of a control group. RESULTS In all, 102 patients and 120 controls were enrolled in the study. At baseline, 26 patients (25.5 per cent) self-reported smell loss. The median threshold, discrimination and identification score was 33.6 (interquartile range, 12.5) for the cases and 36.5 (interquartile range, 4.38) for the controls (p < 0.001). Based on the threshold, discrimination and identification scores, 12 controls and 34 patients reported olfactory dysfunction (p < 0.001). Eighty cases underwent re-evaluation at six months; the median threshold, discrimination and identification score was 37.1 (interquartile range, 4.75) with no significant differences compared with the controls. CONCLUSION Six months after infection, the prevalence of olfactory dysfunction in patients did not differ significantly from the control population.
Collapse
Affiliation(s)
- Luigi Angelo Vaira
- Maxillofacial Surgery Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Biomedical Science Department, School of Biomedical Science, University of Sassari, Sassari, Italy
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Jerome R Lechien
- Department of Anatomy and Experimental Oncology, Mons School of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- Department of Otolaryngology - Head Neck Surgery, Elsan Polyclinic of Poitiers, Poitiers, France
| | - Miguel Mayo-Yáñez
- Otorhinolaryngology, Head and Neck Surgery Department, University Hospital Complex of A Coruña ('CHUAC'), A Coruña, Spain
| | - Marzia Petrocelli
- Maxillofacial Surgery Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Maxillofacial Surgery Unit, Bellaria-Maggiore Hospital, Azienda Unità Sanitaria Locale della ('AUSL') Bologna, Bologna, Italy
| | - Laura Pistidda
- Intensive Care Unit Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Salzano
- Maxillofacial Surgery Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Department of Maxillofacial Surgery, University of Naples 'Federico II', Naples, Italy
| | - Fabio Maglitto
- Maxillofacial Surgery Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
- Department of Maxillofacial Surgery, University of Naples 'Federico II', Naples, Italy
| | - Claire Hopkins
- Rhinology, King's College, London, UK
- British Rhinological Society, London, UK
| | - Giacomo De Riu
- Maxillofacial Surgery Operative Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
25
|
Flagg M, Goldin K, Pérez-Pérez L, Singh M, Williamson BN, Pruett N, Hoang CD, de Wit E. Low level of tonic interferon signalling is associated with enhanced susceptibility to SARS-CoV-2 variants of concern in human lung organoids. Emerg Microbes Infect 2023; 12:2276338. [PMID: 37883246 PMCID: PMC10732190 DOI: 10.1080/22221751.2023.2276338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
There is tremendous heterogeneity in the severity of COVID-19 disease in the human population, and the mechanisms governing the development of severe disease remain incompletely understood. The emergence of SARS-CoV-2 variants of concern (VOC) Delta (B.1.617.2) and Omicron (B.1.1.529) further compounded this heterogeneity. Virus replication and host cell damage in the distal lung is often associated with severe clinical disease, making this an important site to consider when evaluating pathogenicity of SARS-CoV-2 VOCs. Using distal human lung organoids (hLOs) derived from multiple human donors, we compared the fitness and pathogenicity of SARS-CoV-2 VOC Delta and Omicron, along with an ancestral clade B variant D614G, and evaluated donor-dependent differences in susceptibility to infection. We observed substantial attenuation of Omicron in hLOs and demonstrated enhanced susceptibility to Omicron and D614G replication in hLOs from one donor. Transcriptomic analysis revealed that increased susceptibility to SARS-CoV-2 infection in these hLOs was associated with reduced tonic interferon signaling activity at baseline. We show that hLOs can be used to model heterogeneity of SARS-CoV-2 pathogenesis in humans, and propose that variability in tonic interferon signaling set point may impact susceptibility to SARS-CoV-2 VOCs and subsequent COVID-19 disease progression.
Collapse
Affiliation(s)
- Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
26
|
Xia W, Jiang T, Tan Y, Li C, Wu S, Mei B. Characteristics of hematological parameters on admission in COVID-19 Omicron variant infected in Chinese population: a large-scale retrospective study. BMC Infect Dis 2023; 23:835. [PMID: 38012548 PMCID: PMC10683119 DOI: 10.1186/s12879-023-08771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The Omicron variant of SARS-CoV-2, currently the most prevalent strain, has rapidly spread in Jingzhou, China, due to changes in the country's epidemic prevention policy, resulting in an unprecedented increase in cases. Previous studies reported hematological parameters' predictive value in COVID-19 severity and prognosis, but their relevance for early diagnosis in patients infected by the Omicron variant, particularly in high-risk pneumonia cases, remains unclear. Our study aimed to evaluate these parameters as early warning indicators for Omicron-infected patients in fever clinics and those with pulmonary infections (PI). METHODS A total of 2,021 COVID-19 patients admitted to the fever clinic and infectious disease department of Jingzhou Hospital Affiliated to Yangtze University from November 1, 2022, to December 31, 2022, were retrospectively recruited. Demographic and hematological parameters were obtained from the electronic medical records of eligible patients. These hematological parameters were analyzed by receiver operating characteristic (ROC) curves to determine whether they can be used for early diagnosis of COVID-19 patients in fever clinics and the presence of PI in COVID-19 patients. RESULTS Statistical differences in hematological parameters were observed between COVID-19 patients with fever and PI and control groups (P < 0.01). The ROC curve further demonstrated that lymphocyte (LYM) counts, neutrophil (NEU) counts, monocyte-to-lymphocyte ratios (MLR), platelet-to-lymphocyte ratios (PLR), white blood cell counts (WBC), and mean corpuscular hemoglobin concentration (MCHC) were the top 6 indicators in diagnosing Omicron infection with fever, with area under the curve (AUC) values of 0.738, 0.718, 0.713, 0.702, 0.700, and 0.687, respectively (P < 0.01). Furthermore, the mean platelet volume (MPV) with an AUC of 0.764, red blood cell count (RBC) with 0.753, hematocrit (HCT) with 0.698, MLR with 0.694, mean corpuscular hemoglobin (MCH) with 0.676, and systemic inflammation response indexes (SIRI) with 0.673 were the top 6 indicators for the diagnosis of COVID-19 patients with PI (P < 0.01). CONCLUSIONS LYM, NEU, MLR, PLR, WBC, and MCHC can serve as potential prescreening indicators for Omicron infection in fever clinics. Additionally, MPV, RBC, HCT, MLR, MCH, and SIRI can predict the presence of PI in COVID-19 patients infected by the Omicron variant.
Collapse
Affiliation(s)
- Wei Xia
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Tao Jiang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Yafeng Tan
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Chengbin Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Song Wu
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China.
| |
Collapse
|
27
|
Kilpatrick AM. Ecological and Evolutionary Insights About Emerging Infectious Diseases from the COVID-19 Pandemic. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2023; 54:171-193. [DOI: 10.1146/annurev-ecolsys-102320-101234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic challenged the workings of human society, but in doing so, it advanced our understanding of the ecology and evolution of infectious diseases. Fluctuating transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrated the highly dynamic nature of human social behavior, often without government intervention. Evolution of SARS-CoV-2 in the first two years following spillover resulted primarily in increased transmissibility, while in the third year, the globally dominant virus variants had all evolved substantial immune evasion. The combination of viral evolution and the buildup of host immunity through vaccination and infection greatly decreased the realized virulence of SARS-CoV-2 due to the age dependence of disease severity. The COVID-19 pandemic was exacerbated by presymptomatic, asymptomatic, and highly heterogeneous transmission, as well as highly variable disease severity and the broad host range of SARS-CoV-2. Insights and tools developed during the COVID-19 pandemic could provide a stronger scientific basis for preventing, mitigating, and controlling future pandemics.
Collapse
Affiliation(s)
- A. Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| |
Collapse
|
28
|
Meehan GR, Herder V, Allan J, Huang X, Kerr K, Mendonca DC, Ilia G, Wright DW, Nomikou K, Gu Q, Molina Arias S, Hansmann F, Hardas A, Attipa C, De Lorenzo G, Cowton V, Upfold N, Palmalux N, Brown JC, Barclay WS, Filipe ADS, Furnon W, Patel AH, Palmarini M. Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning. PLoS Pathog 2023; 19:e1011589. [PMID: 37934791 PMCID: PMC10656012 DOI: 10.1371/journal.ppat.1011589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.
Collapse
Affiliation(s)
- Gavin R. Meehan
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Diogo Correa Mendonca
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Derek W. Wright
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Sergi Molina Arias
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Germany
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, North Mymms, United Kingdom
| | - Charalampos Attipa
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, United Kingdom
| | | | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Nicole Upfold
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | | |
Collapse
|
29
|
Radhakrishnan N, Liu M, Idowu B, Bansari A, Rathi K, Magar S, Mundhra L, Sarmiento J, Ghaffar U, Kattan J, Jones R, George J, Yang Y, Southwick F. Comparison of the clinical characteristics of SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) infected patients from a single hospitalist service. BMC Infect Dis 2023; 23:747. [PMID: 37907849 PMCID: PMC10617227 DOI: 10.1186/s12879-023-08714-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND While existing evidence suggests less severe clinical manifestations and lower mortality are associated with the Omicron variant as compared to the Delta variant. However, these studies fail to control for differences in health systems facilities and providers. By comparing patients hospitalized on a single medical service during the Delta and Omicron surges we were able to conduct a more accurate comparison of the two varaints' clinical manifestations and outcomes. METHODS We conducted a prospective study of 364 Omicron (BA.1) infected patients on a single hospitalist service and compared these findings to a retrospective analysis of 241 Delta variant infected patients managed on the same service. We examined differences in symptoms, laboratory measures, and clinical severity between the two variants and assessed potential risk drivers for case mortality. FINDINGS Patients infected with Omicron were older and had more underlying medical conditions increasing their risk of death. Although they were less severely ill and required less supplemental oxygen and dexamethasone, in-hospital mortality was similar to Delta cases, 7.14% vs. 4.98% for Delta (q-value = 0.38). Patients older than 60 years or with immunocompromised conditions had much higher risk of death during hospitalization, with estimated odds ratios of 17.46 (95% CI: 5.05, 110.51) and 2.80 (1.03, 7.08) respectively. Neither vaccine history nor variant type played a significant role in case fatality. The Rothman score, NEWS-2 score, level of neutrophils, level of care, age, and creatinine level at admission were highly predictive of in-hospital death. INTERPRETATION In hospitalized patients, the Omicron variant is less virulent than the Delta variant but is associated with a comparable mortality. Clinical and laboratory features at admission are informative about the risk of death.
Collapse
Affiliation(s)
- N Radhakrishnan
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - M Liu
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - B Idowu
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - A Bansari
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - K Rathi
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - S Magar
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - L Mundhra
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - J Sarmiento
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - U Ghaffar
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - J Kattan
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - R Jones
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - J George
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA
| | - Y Yang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, 310 Herty Drive, Athens, GA, 30602, Greece.
| | - F Southwick
- Division of Hospital Medicine, Department of Medicine, University of Florida College of Medicine, 6362 NW 41st Ave, Gainesville, FL, 32606, USA.
| |
Collapse
|
30
|
Routhu NK, Stampfer SD, Lai L, Akhtar A, Tong X, Yuan D, Chicz TM, McNamara RP, Jakkala K, Davis-Gardner ME, St Pierre EL, Smith B, Green KM, Golden N, Picou B, Jean SM, Wood J, Cohen J, Moore IN, Patel N, Guebre-Xabier M, Smith G, Glenn G, Kozlowski PA, Alter G, Ahmed R, Suthar MS, Amara RR. Efficacy of mRNA-1273 and Novavax ancestral or BA.1 spike booster vaccines against SARS-CoV-2 BA.5 infection in nonhuman primates. Sci Immunol 2023; 8:eadg7015. [PMID: 37191508 PMCID: PMC10451060 DOI: 10.1126/sciimmunol.adg7015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Samuel David Stampfer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lilin Lai
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Akil Akhtar
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Xin Tong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kishor Jakkala
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E. Davis-Gardner
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandon Smith
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Breanna Picou
- Tulane National Primate Research Center, Covington, LA, USA
| | - Sherrie M. Jean
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joyce Cohen
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Greg Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mehul S. Suthar
- Department of Pediatrics, Division of Infectious Diseases Vaccine Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Creisher PS, Perry JL, Zhong W, Lei J, Mulka KR, Ryan WH, Zhou R, Akin EH, Liu A, Mitzner W, Burd I, Pekosz A, Klein SL. Adverse outcomes in SARS-CoV-2-infected pregnant mice are gestational age-dependent and resolve with antiviral treatment. J Clin Invest 2023; 133:e170687. [PMID: 37581940 PMCID: PMC10575736 DOI: 10.1172/jci170687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
SARS-CoV-2 infection during pregnancy is associated with severe COVID-19 and adverse fetal outcomes, but the underlying mechanisms remain poorly understood. Moreover, clinical studies assessing therapeutics against SARS-CoV-2 in pregnancy are limited. To address these gaps, we developed a mouse model of SARS-CoV-2 infection during pregnancy. Outbred CD1 mice were infected at E6, E10, or E16 with a mouse-adapted SARS-CoV-2 (maSCV2) virus. Outcomes were gestational age-dependent, with greater morbidity, reduced antiviral immunity, greater viral titers, and impaired fetal growth and neurodevelopment occurring with infection at E16 (third trimester equivalent) than with infection at either E6 (first trimester equivalent) or E10 (second trimester equivalent). To assess the efficacy of ritonavir-boosted nirmatrelvir, which is recommended for individuals who are pregnant with COVID-19, we treated E16-infected dams with mouse-equivalent doses of nirmatrelvir and ritonavir. Treatment reduced pulmonary viral titers, decreased maternal morbidity, and prevented offspring growth restriction and neurodevelopmental impairments. Our results highlight that severe COVID-19 during pregnancy and fetal growth restriction is associated with heightened virus replication in maternal lungs. Ritonavir-boosted nirmatrelvir mitigated maternal morbidity along with fetal growth and neurodevelopment restriction after SARS-CoV-2 infection. These findings prompt the need for further consideration of pregnancy in preclinical and clinical studies of therapeutics against viral infections.
Collapse
Affiliation(s)
- Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie L. Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weizhi Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathleen R. Mulka
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - W. Hurley Ryan
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elgin H. Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anguo Liu
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Jordan R, Ford-Scheimer SL, Alarcon RM, Atala A, Borenstein JT, Brimacombe KR, Cherry S, Clevers H, Davis MI, Funnell SGP, Gehrke L, Griffith LG, Grossman AC, Hartung T, Ingber DE, Kleinstreuer NC, Kuo CJ, Lee EM, Mummery CL, Pickett TE, Ramani S, Rosado-Olivieri EA, Struble EB, Wan Z, Williams MS, Hall MD, Ferrer M, Markossian S. Report of the Assay Guidance Workshop on 3-Dimensional Tissue Models for Antiviral Drug Development. J Infect Dis 2023; 228:S337-S354. [PMID: 37669225 PMCID: PMC10547463 DOI: 10.1093/infdis/jiad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.
Collapse
Affiliation(s)
- Robert Jordan
- Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Stephanie L Ford-Scheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rodolfo M Alarcon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mindy I Davis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Simon G P Funnell
- UK Health Security Agency, Salisbury, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Abigail C Grossman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Thomas Hartung
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Donald E Ingber
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nicole C Kleinstreuer
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle, North Carolina, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Thames E Pickett
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Evi B Struble
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S Williams
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sarine Markossian
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
33
|
Wu L, Zheng A, Tang Y, Chai Y, Chen J, Cheng L, Hu Y, Qu J, Lei W, Liu WJ, Wu G, Zeng S, Yang H, Wang Q, Gao GF. A pan-coronavirus peptide inhibitor prevents SARS-CoV-2 infection in mice by intranasal delivery. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2201-2213. [PMID: 37574525 DOI: 10.1007/s11427-023-2410-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Coronaviruses (CoVs) have brought serious threats to humans, particularly severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which continually evolves into multiple variants. These variants, especially Omicron, reportedly escape therapeutic antibodies and vaccines, indicating an urgent need for new antivirals with pan-SARS-CoV-2 inhibitory activity. We previously reported that a peptide fusion inhibitor, P3, targeting heptad repeated-1 (HR1) of SARS-CoV-2 spike (S) protein, could inhibit viral infections. Here, we further designed multiple derivatives of the P3 based on structural analysis and found that one derivative, the P315V3, showed the most efficient antiviral activity against SARS-CoV-2 variants and several other sarbecoviruses, as well as other human-CoVs (HCoVs). P315V3 also exhibited effective prophylactic efficacy against the SARS-CoV-2 Delta and Omicron variants in mice via intranasal administration. These results suggest that P315V3, which is in Phase II clinical trial, is promising for further development as a nasal pan-SARS-CoV-2 or pan-CoVs inhibitor to prevent or treat CoV diseases.
Collapse
Affiliation(s)
- Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangming Tang
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiantao Chen
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yu Hu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Qu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - William Jun Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shaogui Zeng
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Hang Yang
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, 430299, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
| |
Collapse
|
34
|
Worp N, Subissi L, Perkins MD, Van Kerkhove MD, Agrawal A, Chand M, van Beek J, Oude Munnink BB, Koopmans MPG. Towards the development of a SARS-CoV-2 variant risk assessment tool: expert consultation on the assessment of scientific evidence on emerging variants. THE LANCET. MICROBE 2023; 4:e830-e836. [PMID: 37640039 DOI: 10.1016/s2666-5247(23)00179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 08/31/2023]
Abstract
A systematic approach is required for the development of an evidence-based risk assessment tool to robustly estimate the risks and implications of SARS-CoV-2 variants. We conducted a survey among experts involved in technical advisory roles for WHO to capture their assessment of the robustness of different study types that provide evidence for potential changes in transmissibility, antigenicity, virulence, treatability, and detectability of SARS-CoV-2 variants. The views of 62 experts indicated that studies could be grouped on the basis of robustness and reliability for the different risk indicators mentioned. Several study types that experts scored as providing reliable evidence and that can be performed in a timely manner were identified. Although experts from different technical areas had varying responses, there was agreement on the highest and lowest scoring study types. These findings can help to prioritise, harmonise, and optimise study designs for the further development of a systematic, evidence-based, SARS-CoV-2 variant risk assessment tool.
Collapse
Affiliation(s)
- Nathalie Worp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | | | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | | | - Janko van Beek
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
35
|
Tsukahara T, Brann DH, Datta SR. Mechanisms of SARS-CoV-2-associated anosmia. Physiol Rev 2023; 103:2759-2766. [PMID: 37342077 PMCID: PMC10625840 DOI: 10.1152/physrev.00012.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Anosmia, the loss of the sense of smell, is one of the main neurological manifestations of COVID-19. Although the SARS-CoV-2 virus targets the nasal olfactory epithelium, current evidence suggests that neuronal infection is extremely rare in both the olfactory periphery and the brain, prompting the need for mechanistic models that can explain the widespread anosmia in COVID-19 patients. Starting from work identifying the non-neuronal cell types that are infected by SARS-CoV-2 in the olfactory system, we review the effects of infection of these supportive cells in the olfactory epithelium and in the brain and posit the downstream mechanisms through which sense of smell is impaired in COVID-19 patients. We propose that indirect mechanisms contribute to altered olfactory system function in COVID-19-associated anosmia, as opposed to neuronal infection or neuroinvasion into the brain. Such indirect mechanisms include tissue damage, inflammatory responses through immune cell infiltration or systemic circulation of cytokines, and downregulation of odorant receptor genes in olfactory sensory neurons in response to local and systemic signals. We also highlight key unresolved questions raised by recent findings.
Collapse
Affiliation(s)
- Tatsuya Tsukahara
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
36
|
Wang L, Wang Y, Zhou H. Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. Int J Biol Macromol 2023; 249:125997. [PMID: 37499711 DOI: 10.1016/j.ijbiomac.2023.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The development of neutralizing antibodies (nAbs) is an important strategy to tackle the Omicron variant. Omicron N-terminal domain (NTD) mutations including A67V, G142D, and N212I alter the antigenic structure, and mutations in the spike (S) receptor binding domain (RBD), such as N501Y, R346K, and T478K enhance affinity between the RBD and angiotensin-converting enzyme 2 (ACE2), thus conferring Omicron powerful immune evasion. Most nAbs (COV2-2130, ZCB11, REGN10933) and combinations of nAbs (COV2-2196 + COV2-2130, REGN10933 + REGN10987, Brii-196 + Brii-198) have either greatly reduced or lost their neutralizing ability against Omicron, but several nAbs such as SA55, SA58, S309, LY-CoV1404 are still effective in neutralizing most Omicron subvariants. This paper focuses on Omicron subvariants mutations and mechanisms of current therapeutic antibodies that remain efficacious against Omicron subvariants, which will guide us in exploring a new generation of broad nAbs as key therapeutics to tackle SARS-CoV-2 and accelerate the exploration of novel clinical antiviral reagents.
Collapse
Affiliation(s)
- Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
37
|
Boscolo-Rizzo P, Tirelli G, Meloni P, Hopkins C, Lechien JR, Madeddu G, Bonini P, Gardenal N, Cancellieri E, Lazzarin C, Borsetto D, De Vito A, De Riu G, Vaira LA. Recovery from olfactory and gustatory dysfunction following COVID-19 acquired during Omicron BA.1 wave in Italy. Am J Otolaryngol 2023; 44:103944. [PMID: 37354725 PMCID: PMC10247593 DOI: 10.1016/j.amjoto.2023.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Despite alterations in the sense of smell and taste have dominated the symptoms of SARS-CoV-2 infection, the prevalence and the severity of self-reporting COVID-19 associated olfactory and gustatory dysfunction has dropped significantly with the advent of the Omicron BA.1 subvariant. However, data on the evolution of Omicron-related chemosensory impairment are still lacking. OBJECTIVE The aim of the present study was to estimate the prevalence and the recovery rate of self-reported chemosensory dysfunction 6-month after SARS-CoV-2 infection acquired during the predominance of the Omicron BA.1 subvariant in Italy. METHODS Prospective observational study based on the sino-nasal outcome tool 22 (SNOT-22), item "sense of smell or taste" and additional outcomes conducted in University hospitals and tertiary referral centers in Italy. RESULTS Of 338 patients with mild-to-moderate COVID-19 completing the baseline survey, 294 (87.0 %) responded to the 6-month follow-up interview. Among them, 101 (34.4 %) and 4 (1.4 %) reported an altered sense of smell or taste at baseline and at 6 months, respectively. Among the 101 patients with COVID-19-associated smell or taste dysfunction during the acute phase of the disease, 97 (96.0 %) reported complete resolution at 6 months. The duration of smell or taste impairment was significantly shorter in vaccinated patients (p = 0.007). CONCLUSIONS Compared with that observed in subjects infected during the first wave of the pandemic, the recovery rate from chemosensory dysfunctions reported in the present series of patients infected during the predominance of the Omicron BA.1 subvariant was more favorable with a shorter duration being positively influenced by vaccination.
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy.
| | - Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Pierluigi Meloni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | | | - Jerome R Lechien
- Department of Otolaryngology-Head Neck Surgery, Elsan Hospital, Paris, France
| | - Giordano Madeddu
- Department of Medical, Surgical and Experimental Sciences, Infectious Disease Unit, University of Sassari, Sassari, Italy
| | - Pierluigi Bonini
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Nicoletta Gardenal
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Emilia Cancellieri
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Chiara Lazzarin
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Daniele Borsetto
- Department of ENT, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Andrea De Vito
- Department of Medical, Surgical and Experimental Sciences, Infectious Disease Unit, University of Sassari, Sassari, Italy
| | - Giacomo De Riu
- Department of Medical, Surgical and Experimental Sciences, Maxillofacial Surgery Operative Unit, University of Sassari, Sassari, Italy
| | - Luigi Angelo Vaira
- Department of Medical, Surgical and Experimental Sciences, Maxillofacial Surgery Operative Unit, University of Sassari, Sassari, Italy; PhD School of Biomedical Sciences, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
38
|
Kojima N, Adams K, Self WH, Gaglani M, McNeal T, Ghamande S, Steingrub JS, Shapiro NI, Duggal A, Busse LW, Prekker ME, Peltan ID, Brown SM, Hager DN, Ali H, Gong MN, Mohamed A, Exline MC, Khan A, Wilson JG, Qadir N, Chang SY, Ginde AA, Withers CA, Mohr NM, Mallow C, Martin ET, Lauring AS, Johnson NJ, Casey JD, Stubblefield WB, Gibbs KW, Kwon JH, Baughman A, Chappell JD, Hart KW, Jones ID, Rhoads JP, Swan SA, Womack KN, Zhu Y, Surie D, McMorrow ML, Patel MM, Tenforde MW. Changing Severity and Epidemiology of Adults Hospitalized With Coronavirus Disease 2019 (COVID-19) in the United States After Introduction of COVID-19 Vaccines, March 2021-August 2022. Clin Infect Dis 2023; 77:547-557. [PMID: 37255285 PMCID: PMC10526883 DOI: 10.1093/cid/ciad276] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Indexed: 06/01/2023] Open
Abstract
INTRODUCTION Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24 hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0 mg/L (9.9-122.0) to 11.5 mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death.
Collapse
Affiliation(s)
- Noah Kojima
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine Adams
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wesley H Self
- Department of Emergency Medicine and Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Manjusha Gaglani
- Department of Pediatrics, Baylor Scott & White Health and Texas A&M University College of Medicine, Temple and Dallas, Texas, USA
| | - Tresa McNeal
- Department of Medical Education, Baylor Scott & White Health, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Shekhar Ghamande
- Department of Medical Education, Baylor Scott & White Health, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Jay S Steingrub
- Department of Medicine, Baystate Medical Center, Springfield, Massachusetts, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Abhijit Duggal
- Department of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Matthew E Prekker
- Department of Emergency Medicine and Medicine, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Ithan D Peltan
- Department of Medicine, Intermountain Medical Center, Murray, Utah and University of Utah, Salt Lake City, Utah, USA
| | - Samuel M Brown
- Department of Medicine, Intermountain Medical Center, Murray, Utah and University of Utah, Salt Lake City, Utah, USA
| | - David N Hager
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harith Ali
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michelle N Gong
- Department of Medicine, Montefiore Health System, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amira Mohamed
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Matthew C Exline
- Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Akram Khan
- Department of Medicine, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Jennifer G Wilson
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nida Qadir
- Department of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Steven Y Chang
- Department of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cori A Withers
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nicholas M Mohr
- Department of Emergency Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam S Lauring
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas J Johnson
- Department of Emergency Medicine and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Jonathan D Casey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William B Stubblefield
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin W Gibbs
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennie H Kwon
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kimberly W Hart
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ian D Jones
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jillian P Rhoads
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sydney A Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelsey N Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Diya Surie
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Meredith L McMorrow
- Coronavirus and Other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Manish M Patel
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark W Tenforde
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
39
|
de Melo GD, Perraud V, Alvarez F, Vieites-Prado A, Kim S, Kergoat L, Coleon A, Trüeb BS, Tichit M, Piazza A, Thierry A, Hardy D, Wolff N, Munier S, Koszul R, Simon-Lorière E, Thiel V, Lecuit M, Lledo PM, Renier N, Larrous F, Bourhy H. Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants. Nat Commun 2023; 14:4485. [PMID: 37495586 PMCID: PMC10372078 DOI: 10.1038/s41467-023-40228-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Anosmia was identified as a hallmark of COVID-19 early in the pandemic, however, with the emergence of variants of concern, the clinical profile induced by SARS-CoV-2 infection has changed, with anosmia being less frequent. Here, we assessed the clinical, olfactory and neuroinflammatory conditions of golden hamsters infected with the original Wuhan SARS-CoV-2 strain, its isogenic ORF7-deletion mutant and three variants: Gamma, Delta, and Omicron/BA.1. We show that infected animals develop a variant-dependent clinical disease including anosmia, and that the ORF7 of SARS-CoV-2 contributes to the induction of olfactory dysfunction. Conversely, all SARS-CoV-2 variants are neuroinvasive, regardless of the clinical presentation they induce. Taken together, this confirms that neuroinvasion and anosmia are independent phenomena upon SARS-CoV-2 infection. Using newly generated nanoluciferase-expressing SARS-CoV-2, we validate the olfactory pathway as a major entry point into the brain in vivo and demonstrate in vitro that SARS-CoV-2 travels retrogradely and anterogradely along axons in microfluidic neuron-epithelial networks.
Collapse
Affiliation(s)
- Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Victoire Perraud
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Flavio Alvarez
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Alba Vieites-Prado
- Institut du Cerveau et de la Moelle Épinière, Laboratoire de Plasticité Structurale, , Sorbonne Université, INSERM U1127, CNRS UMR7225, 75013, Paris, France
| | - Seonhee Kim
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Anthony Coleon
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Bettina Salome Trüeb
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Magali Tichit
- Institut Pasteur, Université Paris Cité, Histopathology Platform, F-75015, Paris, France
| | - Aurèle Piazza
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Laboratory, F-75015, Paris, France
| | - Agnès Thierry
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Laboratory, F-75015, Paris, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Platform, F-75015, Paris, France
| | - Nicolas Wolff
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, F-75015, Paris, France
| | - Sandie Munier
- Institut Pasteur, Université Paris Cité, Molecular Genetics of RNA viruses Unit, F-75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Laboratory, F-75015, Paris, France
| | - Etienne Simon-Lorière
- Institut Pasteur, Université Paris Cité, Evolutionary Genomics of RNA Viruses Group, F-75015, Paris, France
| | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, 75015, Paris, France
- Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, Perception and Memory Unit, F-75015 Paris, France; CNRS UMR3571, 75015, Paris, France
| | - Nicolas Renier
- Institut du Cerveau et de la Moelle Épinière, Laboratoire de Plasticité Structurale, , Sorbonne Université, INSERM U1127, CNRS UMR7225, 75013, Paris, France
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France.
| |
Collapse
|
40
|
Li Y, Wang Y, Li Y, de Vries AC, Li P, Peppelenbosch MP, Pan Q. Seasonal coronavirus infections trigger NLRP3 inflammasome activation in macrophages but is therapeutically targetable. Antiviral Res 2023; 216:105674. [PMID: 37459896 DOI: 10.1016/j.antiviral.2023.105674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Seasonal coronaviruses widely circulate in the global population, and severe complications can occur in specific vulnerable populations. Little is known on their pathogenic mechanisms and no approved treatment is available. Here, we present anecdotal evidence that the level of IL-1β, a hallmark of inflammasome activation, appears elevated in a subset of seasonal coronavirus infected patients. We found that cultured human macrophages support the full life cycle of three cultivatable seasonal coronaviruses. Their infections effectively activate NLRP3 inflammasome activation through TLR4 ligation and NF-κB activation. This activation can be attenuated by specific pharmacological inhibitors and clinically used medications including dexamethasone and flufenamic acid. Interestingly, combination of antiviral and anti-inflammatory drugs simultaneously inhibit seasonal coronavirus-triggered inflammatory response and viral replication. Collectively, these findings show that the TLR4/NF-κB/NLRP3 axis drives seasonal coronavirus triggered-inflammatory response, which in turn represents a viable therapeutic target.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Annemarie C de Vries
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
41
|
Creisher PS, Perry JL, Zhong W, Lei J, Mulka KR, Ryan H, Zhou R, Akin EH, Liu A, Mitzner W, Burd I, Pekosz A, Klein SL. Adverse outcomes in SARS-CoV-2 infected pregnant mice are gestational age-dependent and resolve with antiviral treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533961. [PMID: 36993658 PMCID: PMC10055386 DOI: 10.1101/2023.03.23.533961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
SARS-CoV-2 infection during pregnancy is associated with severe COVID-19 and adverse fetal outcomes, but the underlying mechanisms remain poorly understood. Moreover, clinical studies assessing therapeutics against SARS-CoV-2 in pregnancy are limited. To address these gaps, we developed a mouse model of SARS-CoV-2 infection during pregnancy. Outbred CD1 mice were infected at embryonic day (E) 6, E10, or E16 with a mouse adapted SARS-CoV-2 (maSCV2) virus. Outcomes were gestational age-dependent, with greater morbidity, reduced anti-viral immunity, greater viral titers, and more adverse fetal outcomes occurring with infection at E16 (3rd trimester-equivalent) than with infection at either E6 (1st trimester-equivalent) or E10 (2nd trimester-equivalent). To assess the efficacy of ritonavir-boosted nirmatrelvir (recommended for pregnant individuals with COVID-19), we treated E16-infected dams with mouse equivalent doses of nirmatrelvir and ritonavir. Treatment reduced pulmonary viral titers, decreased maternal morbidity, and prevented adverse offspring outcomes. Our results highlight that severe COVID-19 during pregnancy and adverse fetal outcomes are associated with heightened virus replication in maternal lungs. Ritonavir-boosted nirmatrelvir mitigated adverse maternal and fetal outcomes of SARS-CoV-2 infection. These findings prompt the need for further consideration of pregnancy in preclinical and clinical studies of therapeutics against viral infections.
Collapse
|
42
|
Gonzalez-Hernandez M, Kaiser FK, Steffen I, Ciurkiewicz M, van Amerongen G, Tchelet R, Emalfarb M, Saloheimo M, Wiebe MG, Vitikainen M, Albulescu IC, Bosch BJ, Baumgärtner W, Haagmans BL, Osterhaus ADME. Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD-based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica C1. Front Immunol 2023; 14:1204834. [PMID: 37359531 PMCID: PMC10289020 DOI: 10.3389/fimmu.2023.1204834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.
Collapse
Affiliation(s)
- Mariana Gonzalez-Hernandez
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franziska Karola Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Ronen Tchelet
- Dyadic International, Inc., Jupiter, FL, United States
| | - Mark Emalfarb
- Dyadic International, Inc., Jupiter, FL, United States
| | | | | | | | - Irina C. Albulescu
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
43
|
Heydemann L, Ciurkiewicz M, Beythien G, Becker K, Schughart K, Stanelle-Bertram S, Schaumburg B, Mounogou-Kouassi N, Beck S, Zickler M, Kühnel M, Gabriel G, Beineke A, Baumgärtner W, Armando F. Hamster model for post-COVID-19 alveolar regeneration offers an opportunity to understand post-acute sequelae of SARS-CoV-2. Nat Commun 2023; 14:3267. [PMID: 37277327 PMCID: PMC10241385 DOI: 10.1038/s41467-023-39049-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023] Open
Abstract
COVID-19 survivors often suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Current evidence suggests dysregulated alveolar regeneration as a possible explanation for respiratory PASC, which deserves further investigation in a suitable animal model. This study investigates morphological, phenotypical and transcriptomic features of alveolar regeneration in SARS-CoV-2 infected Syrian golden hamsters. We demonstrate that CK8+ alveolar differentiation intermediate (ADI) cells occur following SARS-CoV-2-induced diffuse alveolar damage. A subset of ADI cells shows nuclear accumulation of TP53 at 6- and 14-days post infection (dpi), indicating a prolonged arrest in the ADI state. Transcriptome data show high module scores for pathways involved in cell senescence, epithelial-mesenchymal transition, and angiogenesis in cell clusters with high ADI gene expression. Moreover, we show that multipotent CK14+ airway basal cell progenitors migrate out of terminal bronchioles, aiding alveolar regeneration. At 14 dpi, ADI cells, peribronchiolar proliferates, M2-macrophages, and sub-pleural fibrosis are observed, indicating incomplete alveolar restoration. The results demonstrate that the hamster model reliably phenocopies indicators of a dysregulated alveolar regeneration of COVID-19 patients. The results provide important information on a translational COVID-19 model, which is crucial for its application in future research addressing pathomechanisms of PASC and in testing of prophylactic and therapeutic approaches for this syndrome.
Collapse
Affiliation(s)
- Laura Heydemann
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Małgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Institute of Virology Münster, University of Münster, Münster, Germany
| | | | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Nancy Mounogou-Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Mark Kühnel
- Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Hannover, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute for Virology, Hamburg, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany.
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| |
Collapse
|
44
|
Davies ER, Ryan KA, Bewley KR, Coombes NS, Salguero FJ, Carnell OT, Biddlecombe S, Charlton M, Challis A, Cross ES, Handley A, Ngabo D, Weldon TM, Hall Y, Funnell SGP. The Omicron Sub-Variant BA.4 Displays a Remarkable Lack of Clinical Signs in a Golden Syrian Hamster Model of SARS-CoV-2 Infection. Viruses 2023; 15:1133. [PMID: 37243219 PMCID: PMC10224153 DOI: 10.3390/v15051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.2.1), a BA.4 isolate lacked all the typical disease characteristics of other isolates seen in the Golden Syrian hamster model despite replicating almost as effectively. Animals infected with BA.4 had similar viral shedding profiles to those seen with BA.5.2.1 (up to day 6 post-infection), but they all failed to lose weight or present with any other significant clinical signs. We hypothesize that this lack of detectable signs of disease during infection with BA.4 was due to a small (nine nucleotide) deletion (∆686-694) in the viral genome (ORF1ab) responsible for the production of non-structural protein 1, which resulted in the loss of three amino acids (aa 141-143).
Collapse
Affiliation(s)
- Elizabeth R. Davies
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Kathryn A. Ryan
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Kevin R. Bewley
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Naomi S. Coombes
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Francisco J. Salguero
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Oliver T. Carnell
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Sarah Biddlecombe
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Michael Charlton
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Amy Challis
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Eleanor S. Cross
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Alastair Handley
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Didier Ngabo
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Thomas M. Weldon
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Yper Hall
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Simon G. P. Funnell
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- World Health Organization, Appia 20, 1211 Geneva, Switzerland
| |
Collapse
|
45
|
Lee NY, Lee YW, Hong SM, On D, Yoon GM, An SH, Nam KT, Seo JY, Shin JS, Choi YK, Oh SH, Yun JW, Lee HY, Choi KS, Seong JK, Park JW. SARS-CoV-2 Omicron variant causes brain infection with lymphoid depletion in a mouse COVID-19 model. Lab Anim Res 2023; 39:8. [PMID: 37161442 PMCID: PMC10169124 DOI: 10.1186/s42826-023-00157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The Omicron variant has become the most prevalent SARS-CoV-2 variant. Omicron is known to induce milder lesions compared to the original Wuhan strain. Fatal infection of the Wuhan strain into the brain has been well documented in COVID-19 mouse models and human COVID-19 cases, but apparent infections into the brain by Omicron have not been reported in human adult cases or animal models. In this study, we investigated whether Omicron could spread to the brain using K18-hACE2 mice susceptible to SARS-CoV-2 infection. RESULTS K18-hACE2 mice were intranasally infected with 1 × 105 PFU of the original Wuhan strain and the Omicron variant of SARS-CoV-2. A follow-up was conducted 7 days post infection. All Wuhan-infected mice showed > 20% body weight loss, defined as the lethal condition, whereas two out of five Omicron-infected mice (40%) lost > 20% body weight. Histopathological analysis based on H&E staining revealed inflammatory responses in the brains of these two Omicron-infected mice. Immunostaining analysis of viral nucleocapsid protein revealed severe infection of neuron cells in the brains of these two Omicron-infected mice. Lymphoid depletion and apoptosis were observed in the spleen of Omicron-infected mice with brain infection. CONCLUSION Lethal conditions, such as severe body weight loss and encephalopathy, can occur in Omicron-infected K18-hACE2 mice. Our study reports, for the first time, that Omicron can induce brain infection with lymphoid depletion in the mouse COVID-19 model.
Collapse
Affiliation(s)
- Na Yun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-Gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Seung-Min Hong
- Laboratory of Avian Diseases, BK21 Plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dain On
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, South Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Gyeong Min Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-Gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - See-He An
- Avian Influenza Research and Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, South Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Kore a 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Kore a 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jeon-Soo Shin
- Severance Biomedical Science Institute, Brain Kore a 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Ho Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, South Korea.
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, BK21 Plus Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, South Korea.
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-Gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
| |
Collapse
|
46
|
Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma SK, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023; 212:105580. [PMID: 36940916 PMCID: PMC10027296 DOI: 10.1016/j.antiviral.2023.105580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.
Collapse
Affiliation(s)
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen M Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fernanda Ana Sosa Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Suzie Alarcon
- Sequencing Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jenny Rowe
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathryn Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Stephen Festin
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
47
|
Xia L, Yuan LZ, Hu YH, Liu JY, Hu GS, Qi RY, Zhang TY, Xiong HL, Zheng ZZ, Lin HW, Zhang JM, Yu C, Zhou M, Ma J, Cheng T, Chen RR, Guan Y, Xia NS, Liu W. A SARS-CoV-2-specific CAR-T-cell model identifies felodipine, fasudil, imatinib, and caspofungin as potential treatments for lethal COVID-19. Cell Mol Immunol 2023; 20:351-364. [PMID: 36864189 PMCID: PMC9979130 DOI: 10.1038/s41423-023-00985-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Lun-Zhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ya-Hong Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jun-Yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ruo-Yao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zao-Zao Zheng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Hong-Wei Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jia-Mo Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Chao Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ri-Rong Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| |
Collapse
|
48
|
Swart M, van der Lubbe J, Schmit-Tillemans S, van Huizen E, Verspuij J, Gil AI, Choi Y, Daal C, Perkasa A, de Wilde A, Claassen E, de Jong R, Wiese KE, Cornelissen L, van Es M, van Heerden M, Kourkouta E, Tahiri I, Mulders M, Vreugdenhil J, Feddes-de Boer K, Muchene L, Tolboom J, Dekking L, Juraszek J, Vellinga J, Custers J, Bos R, Schuitemaker H, Wegmann F, Roozendaal R, Kuipers H, Zahn R. Booster vaccination with Ad26.COV2.S or an Omicron-adapted vaccine in pre-immune hamsters protects against Omicron BA.2. NPJ Vaccines 2023; 8:40. [PMID: 36927774 PMCID: PMC10018069 DOI: 10.1038/s41541-023-00633-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Since the original outbreak of the SARS-CoV-2 virus, several rapidly spreading SARS-CoV-2 variants of concern (VOC) have emerged. Here, we show that a single dose of Ad26.COV2.S (based on the Wuhan-Hu-1 spike variant) protects against the Gamma and Delta variants in naive hamsters, supporting the observed maintained vaccine efficacy in humans against these VOC. Adapted spike-based booster vaccines targeting Omicron variants have now been authorized in the absence of human efficacy data. We evaluated the immunogenicity and efficacy of Ad26.COV2.S.529 (encoding a stabilized Omicron BA.1 spike) in naive mice and in hamsters with pre-existing immunity to the Wuhan-Hu-1 spike. In naive mice, Ad26.COV2.S.529 elicited higher neutralizing antibody titers against SARS-CoV-2 Omicron BA.1 and BA.2, compared with Ad26.COV2.S. However, neutralizing titers against the SARS-CoV-2 B.1 (D614G) and Delta variants were lower after primary vaccination with Ad26.COV2.S.529 compared with Ad26.COV2.S. In contrast, we found comparable Omicron BA.1 and BA.2 neutralizing titers in hamsters with pre-existing Wuhan-Hu-1 spike immunity after vaccination with Ad26.COV2.S, Ad26.COV2.S.529 or a combination of the two vaccines. Moreover, all three vaccine modalities induced equivalent protection against Omicron BA.2 challenge in these animals. Overall, our data suggest that an Omicron BA.1-based booster in rodents does not improve immunogenicity and efficacy against Omicron BA.2 over an Ad26.COV2.S booster in a setting of pre-existing immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Maarten Swart
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | - Ying Choi
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | - Erwin Claassen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Rineke de Jong
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Katrin E Wiese
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Lisette Cornelissen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Marieke van Es
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Marjolein van Heerden
- Janssen Research and Development, Preclinical Sciences and Translational Safety, Beerse, Belgium
| | | | - Issam Tahiri
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | | | | | - Jort Vellinga
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Rinke Bos
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Frank Wegmann
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
| |
Collapse
|
49
|
Canelli E, Ferrari L, Borghetti P, Candela F, Abiakam NS, Bianchera A, Buttini F, Magi GE, Sonvico F, Martelli P, Bettini R. Nano-adjuvanted dry powder vaccine for the mucosal immunization against airways pathogens. Front Vet Sci 2023; 10:1116722. [PMID: 36998637 PMCID: PMC10043307 DOI: 10.3389/fvets.2023.1116722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
Nasal vaccination has been shown to provide optimal protection against respiratory pathogens. However, mucosal vaccination requires the implementation of specific immunization strategies to improve its effectiveness. Nanotechnology appears a key approach to improve the effectiveness of mucosal vaccines, since several nanomaterials provide mucoadhesion, enhance mucosal permeability, control antigen release and possess adjuvant properties. Mycoplasma hyopneumoniae is the main causative agent of enzootic pneumonia in pigs, a respiratory disease responsible for considerable economic losses in the pig farming worldwide. The present work developed, characterized, and tested in vivo an innovative dry powder nasal vaccine, obtained from the deposition on a solid carrier of an inactivated antigen and a chitosan-coated nanoemulsion, as an adjuvant. The nanoemulsion was obtained through a low-energy emulsification technique, a method that allowed to achieve nano droplets in the order of 200 nm. The oil phase selected was alpha-tocopherol, sunflower oil, and poly(ethylene glycol) hydroxystearate used as non-ionic tensioactive. The aqueous phase contained chitosan, which provides a positive charge to the emulsion, conferring mucoadhesive properties and favoring interactions with inactivated M. hyopneumoniae. Finally, the nanoemulsion was layered with a mild and scalable process onto a suitable solid carrier (i.e., lactose, mannitol, or calcium carbonate) to be transformed into a solid dosage form for administration as dry powder. In the experimental study, the nasal vaccine formulation with calcium carbonate was administered to piglets and compared to intramuscular administration of a commercial vaccine and of the dry powder without antigen, aimed at evaluating the ability of IN vaccination to elicit an in vivo local immune response and a systemic immune response. Intranasal vaccination was characterized by a significantly higher immune response in the nasal mucosa at 7 days post-vaccination, elicited comparable levels of Mycoplasma-specific IFN-γ secreting cells and comparable, if not higher, responsiveness of B cells expressing IgA and IgG in peripheral blood mononuclear cells, with those detected upon a conventional intramuscular immunization. In conclusion, this study illustrates a simple and effective strategy for the development of a dry powder vaccine formulation for nasal administration which could be used as alternative to current parenteral commercial vaccines.
Collapse
Affiliation(s)
- Elena Canelli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Francesco Candela
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
| | - Nkemjika Sopuru Abiakam
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
| | - Annalisa Bianchera
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Francesca Buttini
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Fabio Sonvico
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
- *Correspondence: Fabio Sonvico
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Ruggero Bettini
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
50
|
Beukenhorst AL, Koch CM, Hadjichrysanthou C, Alter G, de Wolf F, Anderson RM, Goudsmit J. SARS-CoV-2 elicits non-sterilizing immunity and evades vaccine-induced immunity: implications for future vaccination strategies. Eur J Epidemiol 2023; 38:237-242. [PMID: 36738380 PMCID: PMC9898703 DOI: 10.1007/s10654-023-00965-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/07/2023] [Indexed: 02/05/2023]
Abstract
Neither vaccination nor natural infection result in long-lasting protection against SARS-COV-2 infection and transmission, but both reduce the risk of severe COVID-19. To generate insights into optimal vaccination strategies for prevention of severe COVID-19 in the population, we extended a Susceptible-Exposed-Infectious-Removed (SEIR) mathematical model to compare the impact of vaccines that are highly protective against severe COVID-19 but not against infection and transmission, with those that block SARS-CoV-2 infection. Our analysis shows that vaccination strategies focusing on the prevention of severe COVID-19 are more effective than those focusing on creating of herd immunity. Key uncertainties that would affect the choice of vaccination strategies are: (1) the duration of protection against severe disease, (2) the protection against severe disease from variants that escape vaccine-induced immunity, (3) the incidence of long-COVID and level of protection provided by the vaccine, and (4) the rate of serious adverse events following vaccination, stratified by demographic variables.
Collapse
Affiliation(s)
- Anna L Beukenhorst
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- Leyden Laboratories BV, Amsterdam, The Netherlands.
| | | | | | - Galit Alter
- Ragon Institute of MGH MIT and Harvard, Cambridge, MA, USA
| | - Frank de Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Jaap Goudsmit
- Leyden Laboratories BV, Amsterdam, The Netherlands
- Departments of Epidemiology, Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|