1
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. Commun Biol 2025; 8:716. [PMID: 40341772 PMCID: PMC12062209 DOI: 10.1038/s42003-025-08088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
The motor stage of Parkinson's disease (PD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD), hyposmia, and constipation. Here, we show that multiple stages of idiopathic PD, including the pre-motor prodromal stage, can be stratified according to the inflammatory responses to stimulation of peripheral blood mononuclear cells ex vivo. IFNγ stimulation of isolated monocytes reveals increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in prodromal PD relative to moderate stage PD. Additionally, T cells stimulated with CD3/CD28 co-stimulatory beads show diminished proinflammatory cytokine secretion in early-moderate PD relative to prodromal. Receiver operating characteristic curves demonstrate that several cytokines produced by stimulated monocytes show high predictive utility for distinguishing prodromal PD individuals from neurologically healthy controls. Moreover, immune stimulation reveals deficits in CD8+ T-cell mitochondrial health in moderate PD, with relative mitochondrial health in CD8+ T cells being positively correlated with stimulation-dependent secretion of IL-1β, IL-8, and IL-10 in T cells from prodromal PD subjects. Dysregulated mitochondrial health in immune cells may contribute to peripheral inflammation and PD progression, and ex vivo stimulation-based assays have the potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Liu H, Hua M, Han Y, Yang L, Huang Z, Ran J, Wang H, Ren F, Yang C, Li Z. Hijacking endogenous iron to amplify lysosomal-mitochondrial cascade damage for boosting anti-tumor immunotherapy. Biomaterials 2025; 316:122983. [PMID: 39700535 DOI: 10.1016/j.biomaterials.2024.122983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024]
Abstract
The cross-talk between lysosomes and mitochondria is crucial for keeping intracellular homeostasis and metabolic function, providing a promising approach for tumor therapy. Herein, we employed polyvinylpyrrolidone (PVP)-modified Cu-gallic acid (CuGA) complex nano-boosters for amplifying lysosomes-mitochondria cascaded damage, and thereby effectively inducing cuproptosis and pyroptosis of breast tumor cells to boost anti-tumor immunotherapy. The CuGA nano-boosters could hijack lysosomal iron to form a bimetallic catalyst Cu(Fe)GA in situ through ion-exchange reaction, and cause the release of Cu+/2+ and metal ion dysregulation (i.e., Fe2+/3+, Cu+/2+, Ca2+) in tumor cells. The released Cu+ further led to metabolic disturbances of mitochondrial tricarboxylic acid (TCA) cycle (i.e., cuproptosis), and ultimately led to caspase-3/GSDME-dependent pyroptosis. In vivo results revealed that this lysosomal-mitochondrial cascade damage strategy not only induced tumor cell death, but also activated the immune response, thereby effectively suppressed tumor metastasis. This research provides a novel approach of triggering cascade damage to subcellular organelles for boosting tumor immunotherapy by disrupting metal ion intracellular homeostasis.
Collapse
Affiliation(s)
- Hanghang Liu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Menglong Hua
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Li Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhongshi Huang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Jiabing Ran
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Huimin Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Changying Yang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Liu H, Yin G, Franco Leonardi B, Lan T, Ait Ahmed Y, Berger H, Kohlhepp MS, Amiridze N, Martagón Calderón N, Frau C, Vallier L, Rezvani M, Tacke F, Guillot A. Reactive cholangiocyte-derived ORM2 drives a pathogenic modulation of the injured biliary niche through macrophage reprogramming. Gut 2025:gutjnl-2024-334425. [PMID: 40199572 DOI: 10.1136/gutjnl-2024-334425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Injured or reactive biliary epithelial cells participate in most chronic liver injuries in a process referred to as ductular reaction, which involves multicellular interactions with marked local infiltration of macrophages and fibrogenic cell activation. The direct roles of biliary epithelial cells in shaping their cellular niche remain unknown. OBJECTIVE We aimed at investigating the effects of biliary epithelial cell-derived acute phase response protein orosomucoid 2 (ORM2) in shaping monocyte/macrophage response to liver injury. DESIGN Transcriptome data sets from human and mouse livers were used, results were confirmed with multiplex immunofluorescence. A multicellular biliary-niche-on-a-chip derived from primary liver and blood cells (wild-type, Mdr2 -/- mice) was established to model ductular reaction. Human blood cells collected from healthy donors and intrahepatic cholangiocyte organoids derived from normal and cirrhotic liver patients were used. RESULTS Our transcriptome data set and multiplex immunofluorescence analyses indicated a previously unrecognised involvement of the acute phase response protein ORM2 in ductular reactions in both human and mouse livers. ORM2 gene expression was increased in biliatresone-challenged, bile acid-challenged and acetaminophen-challenged cholangiocytes. Cholangiocyte-derived ORM2 induced unique transcriptome changes and functional adaptation of liver macrophages. ORM2-activated macrophages exacerbated cholangiocyte cell stress and Orm2 expression, but also tended to promote fibrogenic activation of hepatic stellate cells. Mechanistically, ORM2 effects were mediated by an inositol 1,4,5-trisphosphate receptor type 2-dependent calcium pathway. CONCLUSION This study reveals a paracrine communication circuit during ductular reaction, in which reactive cholangiocyte-derived ORM2 reprogrammes liver macrophages, participating in a pathogenic remodelling of the immune biliary niche.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guo Yin
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Bianca Franco Leonardi
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tian Lan
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yeni Ait Ahmed
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Natalja Amiridze
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Natalia Martagón Calderón
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carla Frau
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ludovic Vallier
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Milad Rezvani
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| |
Collapse
|
4
|
DeAguero J, Howard T, Escobar GP, Dokladny K, Wagner B. Early endolysosomal dysfunction is a contributing factor to gadolinium-based contrast agent mouse renal proximal tubule epithelial cell injury. Cell Biol Toxicol 2025; 41:65. [PMID: 40175829 PMCID: PMC11965215 DOI: 10.1007/s10565-025-10014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The prevalence of contrast-enhanced magnetic resonance imaging (MRI) examinations and the absence of safer alternatives to gadolinium-based contrast agents (GBCAs) make the associated adverse effects of GBCAs much more concerning. Safety concerns arise from the toxic behavior of heavy metal gadolinium (Gd3+) and the potential release of the metal from the chelating ligand. Renal insufficiency and other patient factors increase the susceptibility to the toxic effects of GBCAs. It is, therefore, imperative that the molecular and cellular mechanisms underlying GBCA toxicity be defined. This study aims to determine GBCA-induced endolysosomal dysfunction in mouse renal proximal tubule epithelial cells. Loss of cell viability was agent- and time-dependent, and proximal tubule injury was detectable following 24 h linear GBCA exposure. Both classes of GBCAs displayed lysosomotropic behaviors, characterized by early lysosomal enlargement and lysosomal injury. Hijacking of the endolysosomal system by these agents inhibited cathepsin processing by blocking the transport and maturation of cathepsin B (CTSB) and cathepsin D (CTSD). Lysosomal enlargement coincided with the translocation of CTSB and CTSD from the lysosomal lumen to the cytosol, suggesting lysosomal membrane destabilization. Even though both agents displayed a similar response, linear exposures appeared to exhibit a greater effect. Disturbance of mitochondrial activity and loss of cell viability occurs downstream of early lysosome damage. This effect was partially restored by lysosomal protease inhibitor co-treatment. This data suggests that GBCA exposures induce a lysosomal stress response, and partial LMP occurs upstream of mitochondrial dysfunction and resultant cellular injury.
Collapse
Affiliation(s)
- Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Tamara Howard
- Department of Cell Biology & Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Research Service, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Zhang J, Hu Y, Wen X, Yang Z, Wang Z, Feng Z, Bai H, Xue Q, Miao Y, Tian T, Zheng P, Zhang J, Li J, Qiu L, Xu JJ, Ye D. Tandem-controlled lysosomal assembly of nanofibres induces pyroptosis for cancer immunotherapy. NATURE NANOTECHNOLOGY 2025; 20:563-574. [PMID: 39966684 DOI: 10.1038/s41565-025-01857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Pyroptosis has emerged as a promising approach for cancer immunotherapy. However, current pyroptosis inducers lack specificity for cancer cells and have a weak antitumour immune response. Here we report a tumour-specific nanoparticle (NP-NH-D5) that activates pyroptosis by disrupting lysosomes for cancer immunotherapy. NP-NH-D5 undergoes negative-to-positive charge reversal and nanoparticle-to-nanofibre transformation within tumour cell lysosomes through tandem response to extracellular matrix metallopeptidase-2 and intracellular reducing agents. The as-formed non-peptide nanofibres efficiently break the lysosomes and trigger gasdermin-D-mediated pyroptosis, leading to strong immunogenic cell death and alleviation of the immunosuppressive tumour microenvironment. In vivo, NP-NH-D5 inhibits orthotopic 4T1 breast tumours, prevents metastasis and recurrence, and prolongs survival without systemic side effects. Furthermore, it greatly enhances the effectiveness of PD-L1 antibody immunotherapy in the 4T1 late-stage lung metastasis and aggressive orthotopic Pan02 pancreatic tumour models. Our research may open pathways for developing stimuli-responsive pyroptosis inducers for precise cancer immunotherapy.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zeyue Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhiyuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - He Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Gopalkrishnan A, Wang N, Cruz-Rangel S, Yassin-Kassab A, Shiva S, Kurukulasuriya C, Monga SP, DeBerardinis RJ, Skinner HD, Kiselyov K, Duvvuri U. Lysosomal-Mitochondrial Interaction Promotes Tumor Growth in Squamous Cell Carcinoma of the Head and Neck. Mol Cancer Res 2025; 23:339-349. [PMID: 39699311 PMCID: PMC11961326 DOI: 10.1158/1541-7786.mcr-24-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/26/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Communication between intracellular organelles including lysosomes and mitochondria has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other [lysosomal-mitochondrial interaction (LMI)] is emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas [including squamous cell carcinoma of the head and neck (SCCHN)] overexpress transmembrane member 16A (TMEM16A), a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. We have recently shown that TMEM16A drives lysosomal biogenesis; however, its impact on mitochondrial function has not been explored. In this study, we show that in the context of high-TMEM16A SCCHN, (i) patients display increased mitochondrial content, specifically complex I; (ii) in vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (iii) NRF2 signaling is a critical linchpin that drives mitochondrial function, and (iv) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that coordinated lysosomal and mitochondrial activity and biogenesis via LMI drive tumor proliferation and facilitate a functional interaction between lysosomal and mitochondrial networks. Therefore, inhibition of LMI instauration may serve as a therapeutic strategy for patients with SCCHN. Implications: Intervention of LMI may serve as a therapeutic approach for patients with high TMEM16A-expressing SCCHN.
Collapse
Affiliation(s)
- Avani Gopalkrishnan
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Nathaniel Wang
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Silvia Cruz-Rangel
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Abdul Yassin-Kassab
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sruti Shiva
- Dept of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ralph J DeBerardinis
- Children’s Medical Research Institute and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, PA
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Zhang S, Lv J, Cheng X, Chen K, Wei Q, Gong X, Xiao W, Huang X, Du E, Xiu L, Ji W, Li JL. Provoking Lysosome Disruption via In Situ Engineered Double-Network Assemblies for Targeted Cancer Cell Death. ACS NANO 2025; 19:12208-12221. [PMID: 40114430 DOI: 10.1021/acsnano.5c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Increasing evidence has demonstrated the critical role of lysosomes in tumor progression, as well as their involvement in drug resistance during cancer treatment. However, the exploitation of lysosome-targeting agents to inhibit malignant cell growth is still in high demand. Herein, we report an alkaline phosphatase (ALP)-responsive peptide-based precursor (C1) that selectively induced lysosome dysfunction in uveal melanoma cells via noncontact light manipulation. We demonstrated that C1 was dephosphorylated upon close contact with ALP-upregulated tumor cells, endocytosed, and accumulated in lysosomes. Further light irradiation facilitated the generation of two self-sorting components that self-assembled to form nanofibrils and nanorods, respectively. Mesoscale interactions between these two nanostructures triggered the formation of robust double-network assemblies within lysosomes, resulting in lysosomal membrane permeabilization and tumor cell death. By strategically utilizing ALP activity, light responsiveness, and lysosomal acidity in the design of a self-assembling precursor, we have developed double-network assemblies capable of selectively disrupting lysosomal membrane integrity and effectively inhibiting tumor cells. These findings provide valuable insights for the advancement of lysosome-targeting therapeutic agents.
Collapse
Affiliation(s)
- Shijin Zhang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiarong Lv
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinglan Cheng
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ke Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinchuan Wei
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xuewen Gong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Xiao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyuan Huang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University of School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Linyun Xiu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ji-Liang Li
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou 325001, China
| |
Collapse
|
8
|
Chow SH, Jeon Y, Deo P, Yeung ATY, Hale C, Sridhar S, Abraham G, Nickson J, Olivier FAB, Jiang JH, Ding Y, Han ML, Le Brun AP, Anderson D, Creek D, Tong J, Gabriel K, Li J, Traven A, Dougan G, Shen HH, Naderer T. Staphylococcal toxin PVL ruptures model membranes under acidic conditions through interactions with cardiolipin and phosphatidic acid. PLoS Biol 2025; 23:e3003080. [PMID: 40233125 PMCID: PMC12052211 DOI: 10.1371/journal.pbio.3003080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 05/05/2025] [Accepted: 02/24/2025] [Indexed: 04/17/2025] Open
Abstract
Panton-Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus strains that cause severe infections. Bicomponent PVL kills phagocytes depending on cell surface receptors, such as complement 5a receptor 1 (C5aR1). How the PVL-receptor interaction enables assembly of the leukocidin complex, targeting of membranes, and insertion of a pore channel remains incompletely understood. Here, we demonstrate that PVL binds the anionic phospholipids, phosphatidic acid, and cardiolipin, under acidic conditions and targets lipid bilayers that mimic lysosomal and mitochondrial membranes, but not the plasma membrane. The PVL-lipid interaction was sufficient to enable leukocidin complex formation as determined by neutron reflectometry and the rupture of model membranes, independent of protein receptors. In phagocytes, PVL and its C5aR1 receptor were internalized depending on sphingomyelin and cholesterol, which were dispensable for the interaction of the toxin with the plasma membrane. Internalized PVL compromised the integrity of lysosomes and mitochondria before plasma membrane rupture. Preventing the acidification of organelles or the genetic loss of PVL impaired the escape of intracellular S. aureus from macrophages. Together, the findings advance our understanding of how an S. aureus toxin kills host cells and provide key insights into how leukocidins target membranes.
Collapse
Affiliation(s)
- Seong H. Chow
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Yusun Jeon
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Amy T. Y. Yeung
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Christine Hale
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Sushmita Sridhar
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Gilu Abraham
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Joshua Nickson
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Françios A. B. Olivier
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Yue Ding
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Australia
| | - Mei-Ling Han
- Department of Microbiology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Anton P. Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Kirrawee DC, Australia
| | - Dovile Anderson
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Darren Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Janette Tong
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Kip Gabriel
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Jian Li
- Centre to Impact AMR, Monash University, Clayton, Australia
- Department of Microbiology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Gordon Dougan
- The Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Hsin-Hui Shen
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
9
|
Yang Z, Zhang L, Ottavi S, Geri JB, Perkowski A, Jiang X, Pfau D, Bryk R, Aubé J, Zimmerman M, Dartois V, Nathan C. ACOD1-mediated lysosomal membrane permeabilization contributes to Mycobacterium tuberculosis-induced macrophage death. Proc Natl Acad Sci U S A 2025; 122:e2425309122. [PMID: 40100622 PMCID: PMC11962489 DOI: 10.1073/pnas.2425309122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) primarily infects macrophages. In vitro without antibiotics, wild-type Mtb hastens death of the macrophages, but the processes leading to rapid cell death are not well understood. Our earlier work indicated that the death of Mtb-infected mouse macrophages in vitro is markedly exacerbated by induction of interferon-β (IFN-β) [L. Zhang et al., J. Exp. Med. 18, e20200887 (2021)]. Here, we identified a key downstream response to IFN-β in the context of Mtb infection as the massive induction of cis-aconitate decarboxylase (ACOD1), not only in its canonical subcellular localization in mitochondria but also in the cytosol, where it bound to the lysosome-stabilizing protein HSP70. ACOD1's product, itaconate, protected Mtb-infected macrophages. However, the contrasting and predominant effect of high-level ACOD1 expression was to act in a noncatalytic manner to promote HSP70's degradation, leading to lysosomal membrane permeabilization (LMP). Mtb-induced macrophage death was markedly diminished by inhibitors of cysteine proteases, consistent with lysosome-mediated cell death. Neither ACOD1 inhibitors nor cysteine protease inhibitors are suitable for potential host-directed therapy (HDT) of tuberculosis. Instead, this work directs attention to how ACOD1 acts nonenzymatically to promote the degradation of HSP70.
Collapse
Affiliation(s)
- Ziwei Yang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Li Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Samantha Ottavi
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jacob B. Geri
- Department of Pharmacology, Weill Cornell Medicine, New York, NY10065
| | - Andrew Perkowski
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Daniel Pfau
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Ruslana Bryk
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
10
|
Scott O, Saran E, Freeman SA. The spectrum of lysosomal stress and damage responses: from mechanosensing to inflammation. EMBO Rep 2025; 26:1425-1439. [PMID: 40016424 PMCID: PMC11933331 DOI: 10.1038/s44319-025-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cells and tissues turn over their aged and damaged components in order to adapt to a changing environment and maintain homeostasis. These functions rely on lysosomes, dynamic and heterogeneous organelles that play essential roles in nutrient redistribution, metabolism, signaling, gene regulation, plasma membrane repair, and immunity. Because of metabolic fluctuations and pathogenic threats, lysosomes must adapt in the short and long term to maintain functionality. In response to such challenges, lysosomes deploy a variety of mechanisms that prevent the breaching of their membrane and escape of their contents, including pathogen-associated molecules and hydrolases. While transient permeabilization of the lysosomal membrane can have acute beneficial effects, supporting inflammation and antigen cross-presentation, sustained or repeated lysosomal perforations have adverse metabolic and transcriptional consequences and can lead to cell death. This review outlines factors contributing to lysosomal stress and damage perception, as well as remedial processes aimed at addressing lysosomal disruptions. We conclude that lysosomal stress plays widespread roles in human physiology and pathology, the understanding and manipulation of which can open the door to novel therapeutic strategies.
Collapse
Affiliation(s)
- Ori Scott
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Ekambir Saran
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Shimoda LA, Bastarache JA, Britt RD, Kuebler WM. Every breath you take: exploring macrophages and environmental exposures in the lung-a tribute to Dr. Joseph Brain's legacy. Am J Physiol Lung Cell Mol Physiol 2025; 328:L321-L323. [PMID: 39823196 DOI: 10.1152/ajplung.00407.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Zhu Z, Zuo S, Zhu Z, Wang C, Du Y, Chen F. THSWD upregulates the LTF/AMPK/mTOR/Becn1 axis and promotes lysosomal autophagy in hepatocellular carcinoma cells by regulating gut flora and metabolic reprogramming. Int Immunopharmacol 2025; 148:114091. [PMID: 39826450 DOI: 10.1016/j.intimp.2025.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
THSWD has the effect of reducing inflammation, improving microcirculation, and regulating immune status in patients with hepatocellular carcinoma. Regardless of its clear therapeutic effect, the underlying mechanism of action against hepatocellular carcinoma is not clear. To identify critical gut microbiota and its associated metabolites related to THSWD inhibition against hepatocellular carcinoma progression, we assessed the microbe-dependent anti-hepatocellular carcinoma effects of THSWD through 16 s rRNA gene sequencing, fecal microbial transplantation and antibiotic treatment. Metabolic analyses, transcriptomic analyses, and molecular experiments were performed to explore how THSWD modulates the gut microbiota against hepatocellular carcinoma progression. As confirmed by in vivo and in vitro assays, THSWD reduced tumour growth rate and promoted apoptosis in hepatocellular carcinoma cells in hepatocellular carcinoma model mice, and liver and kidney indexes were detected and confirmed the safety of THSWD. Transcriptomic analysis revealed that the targets of THSWD were significantly enriched in multiple lysosomal autophagy signalling pathways, suggesting that lysosomal autophagy is probably associated with THSWD's therapeutic effect. Based on the integrated data analysis, THSWD delays hepatocellular carcinoma progression by increasing the intestinal microbiota Duncaniella and augmenting the metabolite glabrol, and the joint analysis of metabolic and genomic data suggests that this metabolite is associated with lysosomal autophagy, and cellular experiments confirmed that the The differential metabolite glabrol induces apoptosis in hepatocellular carcinoma cells by triggering the lysosomal autophagy-mediated apoptosis signalling pathway. Supplementation with glabrol metabolites up regulates the LTF/AMPK/mTOR/Beclin1 axis and promotes hepatocellular carcinoma cells with lysosomal autophagy and induced apoptosis in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Shiqi Zuo
- Department of Pathology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Chen Wang
- Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yangfeng Du
- Changde Hospital, Xiangya School of Medicine, Central South University, 415000 Changde, China.
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
13
|
Li D, Wen G, Wang H, Ren Q, Wang D, Dao A, Huang H, Zhang P. Photoredox-Mediated Immunotherapy Utilizing Rhenium(I) Photocatalysts with Electron Donor-Acceptor-Donor Configuration. J Med Chem 2025; 68:3749-3763. [PMID: 39854246 DOI: 10.1021/acs.jmedchem.4c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate via photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes (Re-TPO and Re-TP) with electron donor-acceptor-donor configuration. Notably, Re-TP exhibits aggregation-induced emission properties and enhanced spin-orbit coupling compared to Re-TPO, thus exhibiting promoted photosensitizing capability. In addition to generating type I and II reactive oxygen species, the excited Re-TP facilitates the photocatalytic oxidation of NADH to NAD+ and the photoreduction of pyruvic acid to lactic acid. This metabolic intervention triggers PD-L1-linked immune responses and disrupts tumor redox balance, leading to ferroptosis and immunogenic cell death. The combined ferroptosis and immunotherapy effects significantly suppress both primary and distant B16 tumors. This investigation provides a compelling model for designing efficient metal-based PSs for photoredox-mediated photoimmunotherapy against hypoxic tumors.
Collapse
Affiliation(s)
- Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guoqing Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou 313000, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Kiraly S, Stanley J, Eden ER. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants (Basel) 2025; 14:125. [PMID: 40002312 PMCID: PMC11852311 DOI: 10.3390/antiox14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
Collapse
Affiliation(s)
| | | | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.K.); (J.S.)
| |
Collapse
|
15
|
Saller BS, Wöhrle S, Fischer L, Dufossez C, Ingerl IL, Kessler S, Mateo-Tortola M, Gorka O, Lange F, Cheng Y, Neuwirt E, Marada A, Koentges C, Urban C, Aktories P, Reuther P, Giese S, Kirschnek S, Mayer C, Pilic J, Falquez-Medina H, Oelgeklaus A, Deepagan VG, Shojaee F, Zimmermann JA, Weber D, Tai YH, Crois A, Ciminski K, Peyronnet R, Brandenburg KS, Wu G, Baumeister R, Heimbucher T, Rizzi M, Riedel D, Helmstädter M, Buescher J, Neumann K, Misgeld T, Kerschensteiner M, Walentek P, Kreutz C, Maurer U, Rambold AS, Vince JE, Edlich F, Malli R, Häcker G, Kierdorf K, Meisinger C, Köttgen A, Jakobs S, Weber ANR, Schwemmle M, Groß CJ, Groß O. Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity 2025; 58:90-107.e11. [PMID: 39571574 DOI: 10.1016/j.immuni.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 01/18/2025]
Abstract
How mitochondria reconcile roles in functionally divergent cell death pathways of apoptosis and NLRP3 inflammasome-mediated pyroptosis remains elusive, as is their precise role in NLRP3 activation and the evolutionarily conserved physiological function of NLRP3. Here, we have shown that when cells were challenged simultaneously, apoptosis was inhibited and NLRP3 activation prevailed. Apoptosis inhibition by structurally diverse NLRP3 activators, including nigericin, imiquimod, extracellular ATP, particles, and viruses, was not a consequence of inflammasome activation but rather of their effects on mitochondria. NLRP3 activators turned out as oxidative phosphorylation (OXPHOS) inhibitors, which we found to disrupt mitochondrial cristae architecture, leading to trapping of cytochrome c. Although this effect was alone not sufficient for NLRP3 activation, OXPHOS inhibitors became triggers of NLRP3 when combined with resiquimod or Yoda-1, suggesting that NLRP3 activation requires two simultaneous cellular signals, one of mitochondrial origin. Therefore, OXPHOS and apoptosis inhibition by NLRP3 activators provide stringency in cell death decisions.
Collapse
Affiliation(s)
- Benedikt S Saller
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Svenja Wöhrle
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Larissa Fischer
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Clara Dufossez
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Isabella L Ingerl
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kessler
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Maria Mateo-Tortola
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Felix Lange
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Emilia Neuwirt
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Koentges
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Chiara Urban
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp Aktories
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Carolin Mayer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johannes Pilic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Hugo Falquez-Medina
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Aline Oelgeklaus
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Veerasikku Gopal Deepagan
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Farzaneh Shojaee
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Julia A Zimmermann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Damian Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Yi-Heng Tai
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Anna Crois
- Faculty of Biology, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Katharina S Brandenburg
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gang Wu
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Helmstädter
- EMcore, Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Joerg Buescher
- Metabolomics and FACS Core Facilities, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Walentek
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Internal Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulrich Maurer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute for Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angelika S Rambold
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, The Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Frank Edlich
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Veterinary Physiological Chemical Institute, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Institute of Genetic Epidemiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Clinic for Neurology, University Medical Center of Göttingen, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
| | - Alexander N R Weber
- Department of Innate Immunity, Institute of Immunology, University of Tübingen, Tübingen, Germany; Clusters of Excellence EXC-2180 (iFIT) and -2124 (CMFI), University of Tübingen, Tübingen, Germany
| | - Martin Schwemmle
- Institute of Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Christina J Groß
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Gallagher ER, Oloko PT, Fitch TC, Brown EM, Spruce LA, Holzbaur ELF. Lysosomal damage triggers a p38 MAPK-dependent phosphorylation cascade to promote lysophagy via the small heat shock protein HSP27. Curr Biol 2024; 34:5739-5757.e8. [PMID: 39541976 DOI: 10.1016/j.cub.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Maintenance of lysosomal integrity is essential for cell viability. Upon injury, lysosomes may be targeted for degradation via a selective form of autophagy known as lysophagy. The engulfment of a damaged lysosome by an autophagosome is mediated by the recruitment of adaptor proteins, including SQSTM1/p62. p62 promotes lysophagy via the formation of phase-separated condensates in a mechanism that is regulated by the heat shock protein HSP27. Here, we demonstrate a direct interaction between HSP27 and p62. We used structural modeling to predict the binding interface between HSP27 and p62 and identify several disease-associated mutations that map to this interface. We used proteomics to identify post-translational modifications of HSP27 that regulate HSP27 recruitment to stressed lysosomes, finding robust phosphorylation at several serine residues. Next, we characterized the upstream signaling mechanism leading to HSP27 phosphorylation and found that p38 mitogen-activated protein kinase (MAPK) and its effector kinase MAP kinase-activated protein kinase 2 (MK2) are activated upon lysosomal damage by the kinase mTOR and the production of intracellular reactive oxygen species (ROS). Increased ROS activates p38 MAPK, which in turn allows MK2-dependent phosphorylation of HSP27. Depletion of HSP27 or the inhibition of HSP27 phosphorylation alters the dynamics of p62 condensates on stressed lysosomes, significantly inhibiting p62-dependent lysophagy. Thus, we define a novel lysosomal quality control mechanism in which lysosomal injury triggers a p38 MAPK/MK2 signaling cascade promoting p62-dependent lysophagy. Further, this signaling cascade is activated by many cellular stressors, including oxidative and heat stress, suggesting that other forms of selective autophagy may be regulated by p38 MAPK/MK2/HSP27.
Collapse
Affiliation(s)
- Elizabeth R Gallagher
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peace T Oloko
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tessa C Fitch
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth M Brown
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lynn A Spruce
- CHOP-Penn Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.625499. [PMID: 39677794 PMCID: PMC11643067 DOI: 10.1101/2024.12.05.625499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The motor stage of idiopathic Parkinson's disease (iPD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD). Here, we show that multiple stages of iPD, including the pre-motor prodromal stage, can be stratified according to the inflammatory and immunometabolic responses to stimulation of peripheral blood mononuclear cells ex vivo. We identified increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in monocytes from RBD patients and showed diminished proinflammatory cytokine secretion in monocytes and T cells in early and moderate stages of PD. Mechanistically, immune activation revealed deficits in CD8+ T-cell mitochondrial health in moderate PD, and relative mitochondrial health in CD8+ T cells was positively correlated with stimulation-dependent T-cell cytokine secretion across the PD spectrum. Dysregulated immunometabolism may drive peripheral inflammation and PD progression, and ex vivo stimulation-based assays have potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
Kim J, Song CH. Stress Granules in Infectious Disease: Cellular Principles and Dynamic Roles in Immunity and Organelles. Int J Mol Sci 2024; 25:12950. [PMID: 39684660 DOI: 10.3390/ijms252312950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid-liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles in regulating gene expression to help cells adapt to stress conditions. Various mRNAs and proteins are aggregated into SGs, particularly those associated with the protein translation machinery, which are frequently found in SGs. When induced by infections, SGs modulate immune cell activity, supporting the cellular response against infection. The roles of SGs differ in viral versus microbial infections, and depending on the type of immune cell involved, SGs function differently in response to infection. In this review, we summarize our current understanding of the implication of SGs in immunity and cellular organelles in the context of infectious diseases. Importantly, we explore insights into the regulatory functions of SGs in the context of host cells under infection.
Collapse
Affiliation(s)
- Jaewhan Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
19
|
Zhou YT, Li S, Du SL, Zhao JH, Cai YQ, Zhang ZQ. The multifaceted role of macrophage mitophagy in SiO 2-induced pulmonary fibrosis: A brief review. J Appl Toxicol 2024; 44:1854-1867. [PMID: 38644760 DOI: 10.1002/jat.4612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Prolonged exposure to environments with high concentrations of crystalline silica (CS) can lead to silicosis. Macrophages play a crucial role in the pathogenesis of silicosis. In the process of silicosis, silica (SiO2) invades alveolar macrophages (AMs) and induces mitophagy which usually exists in three states: normal, excessive, and/or deficiency. Different mitophagy states lead to corresponding toxic responses, including successful macrophage repair, injury, necrosis, apoptosis, and even pulmonary fibrosis. This is a complex process accompanied by various cytokines. Unfortunately, the details have not been fully systematically summarized. Therefore, it is necessary to elucidate the role of macrophage mitophagy in SiO2-induced pulmonary fibrosis by systematic analysis on the literature reports. In this review, we first summarized the current data on the macrophage mitophagy in the development of SiO2-induced pulmonary fibrosis. Then, we introduce the molecular mechanism on how SiO2-induced mitophagy causes pulmonary fibrosis. Finally, we focus on introducing new therapies based on newly developed mitophagy-inducing strategies. We conclude that macrophage mitophagy plays a multifaceted role in the progression of SiO2-induced pulmonary fibrosis, and reprogramming the macrophage mitophagy state accordingly may be a potential means of preventing and treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Department of Public Health, Shandong First Medical University, Jinan, China
- Department of Public Health, Jining Medical University, Jining, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, China
| | - Shu-Ling Du
- Department of Public Health, Jining Medical University, Jining, China
| | - Jia-Hui Zhao
- Department of Public Health, Jining Medical University, Jining, China
| | | | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
20
|
Clarke BE, Ziff OJ, Tyzack G, Petrić Howe M, Wang Y, Klein P, Smith CA, Hall CA, Helmy A, Howell M, Kelly G, Patani R. Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB. Mol Neurodegener 2024; 19:90. [PMID: 39593143 PMCID: PMC11590569 DOI: 10.1186/s13024-024-00773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Microglia play crucial roles in maintaining neuronal homeostasis but have been implicated in contributing to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the role of microglia in ALS/FTD remains incompletely understood. METHODS Here, we generated highly enriched cultures of VCP mutant microglia derived from human induced pluripotent stem cells (hiPSCs) to investigate their cell autonomous and non-cell autonomous roles in ALS pathogenesis. We used RNA-sequencing, proteomics and functional assays to study hiPSC derived VCP mutant microglia and their effects on hiPSC derived motor neurons and astrocytes. RESULTS Transcriptomic, proteomic and functional analyses revealed immune and lysosomal dysfunction in VCP mutant microglia. Stimulating healthy microglia with the inflammatory inducer lipopolysaccharide (LPS) showed partial overlap with VCP mutant microglia in their reactive transformation. LPS-stimulated VCP mutant microglia displayed differential activation of inflammatory pathways compared with LPS-stimulated healthy microglia. Conserved gene expression changes were identified between VCP mutant microglia, SOD1 mutant mice microglia, and postmortem ALS spinal cord microglial signatures, including increased expression of the transmembrane glycoprotein GPNMB. While knockdown of GPNMB affected inflammatory and phagocytosis processes in microglia, this was not sufficient to ameliorate cell autonomous phenotypes in VCP mutant microglia. Secreted factors from VCP mutant microglia were sufficient to activate the JAK-STAT pathway in hiPSC derived motor neurons and astrocytes. CONCLUSIONS VCP mutant microglia undergo cell autonomous reactive transformation involving immune and lysosomal dysfunction that partially recapitulate key phenotypes of microglia from other ALS models and post mortem tissue. These phenotypes occur independently of GPNMB. Additionally, VCP mutant microglia elicit non cell autonomous responses in motor neurons and astrocytes involving the JAK-STAT pathway.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| | - Giulia Tyzack
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marija Petrić Howe
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia A Smith
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cameron A Hall
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| |
Collapse
|
21
|
Zeng Y, Ma Q, Chen J, Kong X, Chen Z, Liu H, Liu L, Qian Y, Wang X, Lu S. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Prolif 2024; 57:e13698. [PMID: 38956399 PMCID: PMC11533074 DOI: 10.1111/cpr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Collapse
Affiliation(s)
- Yuqin Zeng
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Quan Ma
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Jinyun Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xingxing Kong
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Zhanpeng Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Huazhen Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Lanlan Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Yan Qian
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xiaomin Wang
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
22
|
Wculek SK, Forisch S, Miguel V, Sancho D. Metabolic homeostasis of tissue macrophages across the lifespan. Trends Endocrinol Metab 2024; 35:793-808. [PMID: 38763781 DOI: 10.1016/j.tem.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Stephan Forisch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
23
|
Liu B, Sun T, Wang Y, Xia XY, Cao S, Wang KN, Chen Q, Mao ZW. Real-Time Monitoring of mtDNA Aggregation and Mitophagy Induced by a Fluorescent Platinum Complex in Living Cells. Anal Chem 2024; 96:13421-13428. [PMID: 39109704 DOI: 10.1021/acs.analchem.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mitochondrial DNA (mtDNA) is pivotal for mitochondrial morphology and function. Upon mtDNA damage, mitochondria undergo quality control mechanisms, including fusion, fission, and mitophagy. Real-time monitoring of mtDNA enables a deeper understanding of its effect on mitochondrial function and morphology. Controllable induction and real-time tracking of mtDNA dynamics and behavior are of paramount significance for studying mitochondrial function and morphology, facilitating a deeper understanding of mitochondria-related diseases. In this work, a fluorescent platinum complex was designed and developed that not only induces mitochondrial DNA (mtDNA) aggregation but also triggers mitochondrial autophagy (mitophagy) through the MDV pathway for damaged mtDNA clearance in living cells. Additionally, this complex allows for the real-time monitoring of these processes. This complex may serve as a valuable tool for studying mitochondrial microautophagy and holds promise for broader applications in cellular imaging and disease research.
Collapse
Affiliation(s)
- Bing Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ting Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xiao-Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shixian Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Qixin Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
24
|
Bussi C, Lai R, Athanasiadi N, Gutierrez MG. Physiologic medium renders human iPSC-derived macrophages permissive for M. tuberculosis by rewiring organelle function and metabolism. mBio 2024; 15:e0035324. [PMID: 38984828 PMCID: PMC11323749 DOI: 10.1128/mbio.00353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
In vitro studies are crucial for our understanding of the human macrophage immune functions. However, traditional in vitro culture media poorly reflect the metabolic composition of blood, potentially affecting the outcomes of these studies. Here, we analyzed the impact of a physiological medium on human induced pluripotent stem cell (iPSC)-derived macrophages (iPSDM) function. Macrophages cultured in a human plasma-like medium (HPLM) were more permissive to Mycobacterium tuberculosis (Mtb) replication and showed decreased lipid metabolism with increased metabolic polarization. Functionally, we discovered that HPLM-differentiated macrophages showed different metabolic organelle content and activity. Specifically, HPLM-differentiated macrophages displayed reduced lipid droplet and peroxisome content, increased lysosomal proteolytic activity, and increased mitochondrial activity and dynamics. Inhibiting or inducing lipid droplet formation revealed that lipid droplet content is a key factor influencing macrophage permissiveness to Mtb. These findings underscore the importance of using physiologically relevant media in vitro for accurately studying human macrophage function. IMPORTANCE This work compellingly demonstrates that the choice of culture medium significantly influences M. tuberculosis replication outcomes, thus emphasizing the importance of employing physiologically relevant media for accurate in vitro host-pathogen interaction studies. We anticipate that our work will set a precedent for future research with clinical relevance, particularly in evaluating antibiotic efficacy and resistance in cellulo.
Collapse
Affiliation(s)
- Claudio Bussi
- The Francis Crick Institute, London, United Kingdom
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rachel Lai
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
25
|
Zhan Y, Zhang Q, Wang W, Liang W, Wang C. Single-cell RNA sequencing in tuberculosis: Application and future perspectives. Chin Med J (Engl) 2024:00029330-990000000-01167. [PMID: 39111829 DOI: 10.1097/cm9.0000000000003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 03/17/2025] Open
Abstract
Tuberculosis (TB) has one of the highest mortality rates among infectious diseases worldwide. The immune response in the host after infection is proposed to contribute significantly to the progression of TB, but the specific mechanisms involved remain to be elucidated. Single-cell RNA sequencing (scRNA-seq) provides unbiased transcriptome sequencing of large quantities of individual cells, thereby defining biological comprehension of cellular heterogeneity and dynamic transcriptome state of cell populations in the field of immunology and is therefore increasingly applied to lung disease research. Here, we first briefly introduce the concept of scRNA-seq, followed by a summarization on the application of scRNA-seq to TB. Furthermore, we underscore the potential of scRNA-seq for clinical biomarker exploration, host-directed therapy, and precision therapy research in TB and discuss the bottlenecks that need to be overcome for the broad application of scRNA-seq to TB-related research.
Collapse
Affiliation(s)
- Yuejuan Zhan
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiran Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyang Wang
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenyi Liang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
26
|
Cai R, Scott O, Ye G, Le T, Saran E, Kwon W, Inpanathan S, Sayed BA, Botelho RJ, Saric A, Uderhardt S, Freeman SA. Pressure sensing of lysosomes enables control of TFEB responses in macrophages. Nat Cell Biol 2024; 26:1247-1260. [PMID: 38997458 DOI: 10.1038/s41556-024-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Polymers are endocytosed and hydrolysed by lysosomal enzymes to generate transportable solutes. While the transport of diverse organic solutes across the plasma membrane is well studied, their necessary ongoing efflux from the endocytic fluid into the cytosol is poorly appreciated by comparison. Myeloid cells that employ specialized types of endocytosis, that is, phagocytosis and macropinocytosis, are highly dependent on such transport pathways to prevent the build-up of hydrostatic pressure that otherwise offsets lysosomal dynamics including vesiculation, tubulation and fission. Without undergoing rupture, we found that lysosomes incurring this pressure owing to defects in solute efflux, are unable to retain luminal Na+, which collapses its gradient with the cytosol. This cation 'leak' is mediated by pressure-sensitive channels resident to lysosomes and leads to the inhibition of mTORC1, which is normally activated by Na+-coupled amino acid transporters driven by the Na+ gradient. As a consequence, the transcription factors TFEB/TFE3 are made active in macrophages with distended lysosomes. In addition to their role in lysosomal biogenesis, TFEB/TFE3 activation causes the release of MCP-1/CCL2. In catabolically stressed tissues, defects in efflux of solutes from the endocytic pathway leads to increased monocyte recruitment. Here we propose that macrophages respond to a pressure-sensing pathway on lysosomes to orchestrate lysosomal biogenesis as well as myeloid cell recruitment.
Collapse
Affiliation(s)
- Ruiqi Cai
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ori Scott
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gang Ye
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trieu Le
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ekambir Saran
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Whijin Kwon
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Blayne A Sayed
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefan Uderhardt
- Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Centre Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Spencer A Freeman
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
28
|
Stankey CT, Bourges C, Haag LM, Turner-Stokes T, Piedade AP, Palmer-Jones C, Papa I, Silva Dos Santos M, Zhang Q, Cameron AJ, Legrini A, Zhang T, Wood CS, New FN, Randzavola LO, Speidel L, Brown AC, Hall A, Saffioti F, Parkes EC, Edwards W, Direskeneli H, Grayson PC, Jiang L, Merkel PA, Saruhan-Direskeneli G, Sawalha AH, Tombetti E, Quaglia A, Thorburn D, Knight JC, Rochford AP, Murray CD, Divakar P, Green M, Nye E, MacRae JI, Jamieson NB, Skoglund P, Cader MZ, Wallace C, Thomas DC, Lee JC. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature 2024; 630:447-456. [PMID: 38839969 PMCID: PMC11168933 DOI: 10.1038/s41586-024-07501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health1. This is compounded by the limited efficacy of available treatments1 and high failure rates during drug development2, highlighting an urgent need to better understand disease mechanisms. Here we show how functional genomics could address this challenge. By investigating an intergenic haplotype on chr21q22-which has been independently linked to inflammatory bowel disease, ankylosing spondylitis, primary sclerosing cholangitis and Takayasu's arteritis3-6-we identify that the causal gene, ETS2, is a central regulator of human inflammatory macrophages and delineate the shared disease mechanism that amplifies ETS2 expression. Genes regulated by ETS2 were prominently expressed in diseased tissues and more enriched for inflammatory bowel disease GWAS hits than most previously described pathways. Overexpressing ETS2 in resting macrophages reproduced the inflammatory state observed in chr21q22-associated diseases, with upregulation of multiple drug targets, including TNF and IL-23. Using a database of cellular signatures7, we identified drugs that might modulate this pathway and validated the potent anti-inflammatory activity of one class of small molecules in vitro and ex vivo. Together, this illustrates the power of functional genomics, applied directly in primary human cells, to identify immune-mediated disease mechanisms and potential therapeutic opportunities.
Collapse
Affiliation(s)
- C T Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Washington University School of Medicine, St Louis, MO, USA
| | - C Bourges
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - L M Haag
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - T Turner-Stokes
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - A P Piedade
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - C Palmer-Jones
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - I Papa
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | | | - Q Zhang
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - A J Cameron
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - A Legrini
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - T Zhang
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - C S Wood
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - F N New
- NanoString Technologies, Seattle, WA, USA
| | - L O Randzavola
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - L Speidel
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- Genetics Institute, University College London, London, UK
| | - A C Brown
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A Hall
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - F Saffioti
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - E C Parkes
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK
| | - W Edwards
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - H Direskeneli
- Department of Internal Medicine, Division of Rheumatology, Marmara University, Istanbul, Turkey
| | - P C Grayson
- Systemic Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, MD, USA
| | - L Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - P A Merkel
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Epidemiology, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - G Saruhan-Direskeneli
- Department of Physiology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - A H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Lupus Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Tombetti
- Department of Biomedical and Clinical Sciences, Milan University, Milan, Italy
- Internal Medicine and Rheumatology, ASST FBF-Sacco, Milan, Italy
| | - A Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
- UCL Cancer Institute, London, UK
| | - D Thorburn
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
- The Sheila Sherlock Liver Centre, Royal Free Hospital, London, UK
| | - J C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Comprehensive Biomedical Research Centre, Oxford, UK
| | - A P Rochford
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - C D Murray
- Department of Gastroenterology, Royal Free Hospital, London, UK
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - P Divakar
- NanoString Technologies, Seattle, WA, USA
| | - M Green
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - E Nye
- Experimental Histopathology STP, The Francis Crick Institute, London, UK
| | - J I MacRae
- Metabolomics STP, The Francis Crick Institute, London, UK
| | - N B Jamieson
- Wolfson Wohl Cancer Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - P Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - M Z Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - C Wallace
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
| | - D C Thomas
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - J C Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London, UK.
- Department of Gastroenterology, Royal Free Hospital, London, UK.
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK.
| |
Collapse
|
29
|
Pu X, Qi B. Lysosomal dysfunction by inactivation of V-ATPase drives innate immune response in C. elegans. Cell Rep 2024; 43:114138. [PMID: 38678555 DOI: 10.1016/j.celrep.2024.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Pathogens target vacuolar ATPase (V-ATPase) to inhibit lysosomal acidification or lysosomal fusion, causing lysosomal dysfunction. However, it remains unknown whether cells can detect dysfunctional lysosomes and initiate an immune response. In this study, we discover that dysfunction of lysosomes caused by inactivation of V-ATPase enhances innate immunity against bacterial infections. We find that lysosomal V-ATPase interacts with DVE-1, whose nuclear localization serves as a proxy for the induction of mitochondrial unfolded protein response (UPRmt). The inactivation of V-ATPase promotes the nuclear localization of DVE-1, activating UPRmt and inducing downstream immune response genes. Furthermore, pathogen resistance conferred by inactivation of V-ATPase requires dve-1 and its downstream immune effectors. Interestingly, animals grow slower after vha RNAi, suggesting that the vha-RNAi-induced immune response costs the most energy through activation of DVE-1, which trades off with growth. This study reveals how dysfunctional lysosomes can trigger an immune response, emphasizing the importance of conserving energy during immune defense.
Collapse
Affiliation(s)
- Xuepiao Pu
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Qi
- Southwest United Graduate School, Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
30
|
Hollingsworth LR, Veeraraghavan P, Paulo JA, Harper JW. Spatiotemporal proteomic profiling of cellular responses to NLRP3 agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590338. [PMID: 38659763 PMCID: PMC11042255 DOI: 10.1101/2024.04.19.590338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat pyrin-domain containing protein 3 (NLRP3) is an innate immune sensor that forms an inflammasome in response to various cellular stressors. Gain-of-function mutations in NLRP3 cause autoinflammatory diseases and NLRP3 signalling itself exacerbates the pathogenesis of many other human diseases. Despite considerable therapeutic interest, the primary drivers of NLRP3 activation remain controversial due to the diverse array of signals that are integrated through NLRP3. Here, we mapped subcellular proteome changes to lysosomes, mitochondrion, EEA1-positive endosomes, and Golgi caused by the NLRP3 inflammasome agonists nigericin and CL097. We identified several common disruptions to retrograde trafficking pathways, including COPI and Shiga toxin-related transport, in line with recent studies. We further characterized mouse NLRP3 trafficking throughout its activation using temporal proximity proteomics, which supports a recent model of NLRP3 recruitment to endosomes during inflammasome activation. Collectively, these findings provide additional granularity to our understanding of the molecular events driving NLRP3 activation and serve as a valuable resource for cell biological research. We have made our proteomics data accessible through an open-access Shiny browser to facilitate future research within the community, available at: https://harperlab.connect.hms.harvard.edu/inflame/. We will display anonymous peer review for this manuscript on pubpub.org (https://harperlab.pubpub.org/pub/nlrp3/) rather than a traditional journal. Moreover, we invite community feedback on the pubpub version of this manuscript, and we will address criticisms accordingly.
Collapse
Affiliation(s)
- L. Robert Hollingsworth
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| | | | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Harvard
University, Boston, MA 02115, USA
| |
Collapse
|
31
|
Sharma N, Jung M, Mishra PK, Mun JY, Rhee HW. FLEX: genetically encodable enzymatic fluorescence signal amplification using engineered peroxidase. Cell Chem Biol 2024; 31:S2451-9456(24)00081-3. [PMID: 38513646 DOI: 10.1016/j.chembiol.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Fluorescent tagging of biomolecules enables their sensitive detection during separation and determining their subcellular location. In this context, peroxidase-based reactions are actively utilized for signal amplification. To harness this potential, we developed a genetically encodable enzymatic fluorescence signal amplification method using APEX (FLEX). We synthesized a fluorescent probe, Jenfluor triazole (JFT1), which effectively amplifies and restricts fluorescence signals under fixed conditions, enabling fluorescence-based detection of subcellularly localized electron-rich metabolites. Moreover, JFT1 exhibited stable fluorescence signals even under osmium-treated and polymer-embedded conditions, which supported findings from correlative light and electron microscopy (CLEM) using APEX. Using various APEX-conjugated proteins of interest (POIs) targeted to different organelles, we successfully visualized their localization through FLEX imaging while effectively preserving organelle ultrastructures. FLEX provides insights into dynamic lysosome-mitochondria interactions upon exposure to chemical stressors. Overall, FLEX holds significant promise as a sensitive and versatile system for fluorescently detecting APEX2-POIs in multiscale biological samples.
Collapse
Affiliation(s)
- Nirmali Sharma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Minkyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | | | - Ji Young Mun
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
32
|
Yang T, Liu S, Ma H, Lai H, Wang C, Ni K, Lu Y, Li W, Hu X, Zhou Z, Lou C, He D. Carnitine functions as an enhancer of NRF2 to inhibit osteoclastogenesis via regulating macrophage polarization in osteoporosis. Free Radic Biol Med 2024; 213:174-189. [PMID: 38246515 DOI: 10.1016/j.freeradbiomed.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tao Yang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Shijie Liu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Haiwei Ma
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Hehuan Lai
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chengdi Wang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Kainan Ni
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Yahong Lu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Weiqing Li
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Xingyu Hu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Zhiguo Zhou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chao Lou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| | - Dengwei He
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| |
Collapse
|
33
|
Bussi C, Gutierrez MG. One size does not fit all: Lysosomes exist in biochemically and functionally distinct states. PLoS Biol 2024; 22:e3002576. [PMID: 38517908 PMCID: PMC10990177 DOI: 10.1371/journal.pbio.3002576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/03/2024] [Indexed: 03/24/2024] Open
Abstract
Single-organelle resolution approaches have the potential to advance our knowledge of the heterogeneity of lysosome function. Challenging population-based models, we propose a "lysosome states" concept that links single lysosomes to function.
Collapse
|
34
|
Cui M, Yamano K, Yamamoto K, Yamamoto-Imoto H, Minami S, Yamamoto T, Matsui S, Kaminishi T, Shima T, Ogura M, Tsuchiya M, Nishino K, Layden BT, Kato H, Ogawa H, Oki S, Okada Y, Isaka Y, Kosako H, Matsuda N, Yoshimori T, Nakamura S. HKDC1, a target of TFEB, is essential to maintain both mitochondrial and lysosomal homeostasis, preventing cellular senescence. Proc Natl Acad Sci U S A 2024; 121:e2306454120. [PMID: 38170752 PMCID: PMC10786298 DOI: 10.1073/pnas.2306454120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hitomi Yamamoto-Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Sho Matsui
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
| | - Takayuki Shima
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| | - Monami Ogura
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Megumi Tsuchiya
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois Chicago, Chicago, IL60612
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL60612
| | - Hisakazu Kato
- Department of Medical Biochemistry, Graduate School of Medicine/Frontier Bioscience, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidesato Ogawa
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, World Premier International Research Center (WPI-IFReC), Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima770-8503, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo156-8506, Japan
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo113-8510, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka565-0871, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shuhei Nakamura
- Department of Biochemistry, Nara Medical University, Kashihara, Nara634-8521, Japan
| |
Collapse
|
35
|
Toniolo C, Sage D, McKinney JD, Dhar N. Quantification of Mycobacterium tuberculosis Growth in Cell-Based Infection Assays by Time-Lapse Fluorescence Microscopy. Methods Mol Biol 2024; 2813:167-188. [PMID: 38888778 DOI: 10.1007/978-1-0716-3890-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Quantification of Mycobacterium tuberculosis (Mtb) growth dynamics in cell-based in vitro infection models is traditionally carried out by measurement of colony forming units (CFU). However, Mtb being an extremely slow growing organism (16-24 h doubling time), this approach requires at least 3 weeks of incubation to obtain measurable readouts. In this chapter, we describe an alternative approach based on time-lapse microscopy and quantitative image analysis that allows faster quantification of Mtb growth dynamics in host cells. In addition, this approach provides the capability to capture other readouts from the same experimental setup, such as host cell viability, bacterial localization as well as the dynamics of propagation of infection between the host cells.
Collapse
Affiliation(s)
- Chiara Toniolo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Daniel Sage
- Biomedical Imaging Group, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Neeraj Dhar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
36
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
37
|
Li K, Geng Y, Lin B, Xi Z. Molecular mechanisms underlying mitochondrial damage, endoplasmic reticulum stress, and oxidative stress induced by environmental pollutants. Toxicol Res (Camb) 2023; 12:1014-1023. [PMID: 38145103 PMCID: PMC10734609 DOI: 10.1093/toxres/tfad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 12/26/2023] Open
Abstract
Mitochondria and endoplasmic reticulum (ER) are essential organelles playing pivotal roles in the regulation of cellular metabolism, energy production, and protein synthesis. In addition, these organelles are important targets susceptible to external stimuli, such as environmental pollutants. Exposure to environmental pollutants can cause the mitochondrial damage, endoplasmic reticulum stress (ERS), and oxidative stress, leading to cellular dysfunction and death. Therefore, understanding the toxic effects and molecular mechanisms of environmental pollution underlying these processes is crucial for developing effective strategies to mitigate the adverse effects of environmental pollutants on human health. In the present study, we summarized and reviewed the toxic effects and molecular mechanisms of mitochondrial damage, ERS, and oxidative stress caused by exposure to environmental pollutants as well as interactions inducing the cell apoptosis and the roles in exposure to environmental pollutants.
Collapse
Affiliation(s)
- Kang Li
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bencheng Lin
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Department of Health Toxicology, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
38
|
Bussi C, Mangiarotti A, Vanhille-Campos C, Aylan B, Pellegrino E, Athanasiadi N, Fearns A, Rodgers A, Franzmann TM, Šarić A, Dimova R, Gutierrez MG. Stress granules plug and stabilize damaged endolysosomal membranes. Nature 2023; 623:1062-1069. [PMID: 37968398 PMCID: PMC10686833 DOI: 10.1038/s41586-023-06726-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3-7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.
Collapse
Affiliation(s)
| | | | - Christian Vanhille-Campos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK
| | | | | | | | | | | | - Titus M Franzmann
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | |
Collapse
|
39
|
Mutvei AP, Nagiec MJ, Blenis J. Balancing lysosome abundance in health and disease. Nat Cell Biol 2023; 25:1254-1264. [PMID: 37580388 DOI: 10.1038/s41556-023-01197-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023]
Abstract
Lysosomes are catabolic organelles that govern numerous cellular processes, including macromolecule degradation, nutrient signalling and ion homeostasis. Aberrant changes in lysosome abundance are implicated in human diseases. Here we outline the mechanisms of lysosome biogenesis and turnover, and discuss how changes in the lysosome pool impact physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Anders P Mutvei
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michal J Nagiec
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
40
|
Malmhäll-Bah E, Andersson KM, Erlandsson MC, Silfverswärd ST, Pullerits R, Bokarewa MI. Metabolic signature and proteasome activity controls synovial migration of CDC42hiCD14 + cells in rheumatoid arthritis. Front Immunol 2023; 14:1187093. [PMID: 37662900 PMCID: PMC10469903 DOI: 10.3389/fimmu.2023.1187093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVE Activation of Rho-GTPases in macrophages causes inflammation and severe arthritis in mice. In this study, we explore if Rho-GTPases define the joint destination of pathogenic leukocytes, the mechanism by which they perpetuate rheumatoid arthritis (RA), and how JAK inhibition mitigates these effects. METHODS CD14+ cells of 136 RA patients were characterized by RNA sequencing and cytokine measurement to identify biological processes and transcriptional regulators specific for CDC42 hiCD14+ cells, which were summarized in a metabolic signature (MetSig). The effect of hypoxia and IFN-γ signaling on the metabolic signature of CD14+ cells was assessed experimentally. To investigate its connection with joint inflammation, the signature was translated into the single-cell characteristics of CDC42 hi synovial tissue macrophages. The sensitivity of MetSig to the RA disease activity and the treatment effect were assessed experimentally and clinically. RESULTS CDC42 hiCD14+ cells carried MetSig of genes functional in the oxidative phosphorylation and proteasome-dependent cell remodeling, which correlated with the cytokine-rich migratory phenotype and antigen-presenting capacity of these cells. Integration of CDC42 hiCD14+ and synovial macrophages marked with MetSig revealed the important role of the interferon-rich environment and immunoproteasome expression in the homeostasis of these pathogenic macrophages. The CDC42 hiCD14+ cells were targeted by JAK inhibitors and responded with the downregulation of immunoproteasome and MHC-II molecules, which disintegrated the immunological synapse, reduced cytokine production, and alleviated arthritis. CONCLUSION This study shows that the CDC42-related MetSig identifies the antigen-presenting CD14+ cells that migrate to joints to coordinate autoimmunity. The accumulation of CDC42 hiCD14+ cells discloses patients perceptive to the JAKi treatment.
Collapse
Affiliation(s)
- Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin M.E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
41
|
Gopalkrishnan A, Wang N, Cruz-Rangel S, Kassab AY, Shiva S, Kurukulasuriya C, Monga SP, DeBerardinis RJ, Kiselyov K, Duvvuri U. Lysosomal mitochondrial interaction promotes tumor growth in squamous cell carcinoma of the head and neck. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546311. [PMID: 37425842 PMCID: PMC10326999 DOI: 10.1101/2023.06.25.546311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tumor growth and proliferation are regulated by numerous mechanisms. Communication between intracellular organelles has recently been shown to regulate cellular proliferation and fitness. The way lysosomes and mitochondria communicate with each other (lysosomal/mitochondrial interaction) is emerging as a major determinant of tumor proliferation and growth. About 30% of squamous carcinomas (including squamous cell carcinoma of the head and neck, SCCHN) overexpress TMEM16A, a calcium-activated chloride channel, which promotes cellular growth and negatively correlates with patient survival. TMEM16A has recently been shown to drive lysosomal biogenesis, but its impact on mitochondrial function is unclear. Here, we show that (1) patients with high TMEM16A SCCHN display increased mitochondrial content specifically complex I; (2) In vitro and in vivo models uniquely depend on mitochondrial complex I activity for growth and survival; (3) β-catenin/NRF2 signaling is a critical linchpin that drives mitochondrial biogenesis, and (4) mitochondrial complex I and lysosomal function are codependent for proliferation. Taken together, our data demonstrate that LMI drives tumor proliferation and facilitates a functional interaction between lysosomes and mitochondria. Therefore, inhibition of LMI may serve as a therapeutic strategy for patients with SCCHN.
Collapse
|
42
|
Bird LE, Edgington-Mitchell LE, Newton HJ. Eat, prey, love: Pathogen-mediated subversion of lysosomal biology. Curr Opin Immunol 2023; 83:102344. [PMID: 37245414 DOI: 10.1016/j.coi.2023.102344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/30/2023]
Abstract
The mammalian lysosome is classically considered the 'garbage can' of the cell, contributing to clearance of infection through its primary function as a degradative organelle. Intracellular pathogens have evolved several strategies to evade contact with this harsh environment through subversion of endolysosomal trafficking or escape into the cytosol. Pathogens can also manipulate pathways that lead to lysosomal biogenesis or alter the abundance or activity of lysosomal content. This pathogen-driven subversion of lysosomal biology is highly dynamic and depends on a range of factors, including cell type, stage of infection, intracellular niche and pathogen load. The growing body of literature in this field highlights the nuanced and complex relationship between intracellular pathogens and the host lysosome, which is critical for our understanding of infection biology.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia
| | | | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia.
| |
Collapse
|
43
|
Gorski K, Jackson CB, Nyman TA, Rezov V, Battersby BJ, Lehesjoki AE. Progressive mitochondrial dysfunction in cerebellar synaptosomes of cystatin B-deficient mice. Front Mol Neurosci 2023; 16:1175851. [PMID: 37251643 PMCID: PMC10213208 DOI: 10.3389/fnmol.2023.1175851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The involvement of mitochondrial dysfunction in cystatin B (CSTB) deficiency has been suggested, but its role in the onset of neurodegeneration, myoclonus, and ataxia in the CSTB-deficient mouse model (Cstb-/-) is yet unknown. CSTB is an inhibitor of lysosomal and nuclear cysteine cathepsins. In humans, partial loss-of-function mutations cause the progressive myoclonus epilepsy neurodegenerative disorder, EPM1. Here we applied proteome analysis and respirometry on cerebellar synaptosomes from early symptomatic (Cstb-/-) mice to identify the molecular mechanisms involved in the onset of CSTB-deficiency associated neural pathogenesis. Proteome analysis showed that CSTB deficiency is associated with differential expression of mitochondrial and synaptic proteins, and respirometry revealed a progressive impairment in mitochondrial function coinciding with the onset of myoclonus and neurodegeneration in (Cstb-/-) mice. This mitochondrial dysfunction was not associated with alterations in mitochondrial DNA copy number or membrane ultrastructure. Collectively, our results show that CSTB deficiency generates a defect in synaptic mitochondrial bioenergetics that coincides with the onset and progression of the clinical phenotypes, and thus is likely a contributor to the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christopher B. Jackson
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula A. Nyman
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Veronika Rezov
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Zheng L, Yang X, Fan Q, Liu B, Hu W, Cui Y. Transcriptomic profiling identifies differentially expressed genes and related pathways associated with wound healing and cuproptosis-related genes in Ganxi goats. Front Vet Sci 2023; 10:1149333. [PMID: 37313229 PMCID: PMC10259478 DOI: 10.3389/fvets.2023.1149333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/10/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Wound healing is very important for the maintenance of immune barrier integrity, which has attracted wide attention in past 10 years. However, no studies on the regulation of cuproptosis in wound healing have been reported. Methods In this study, the skin injury model was constructed in Gnxi goats, and the function, regulatory network and hub genes of the skin before and after the injury were comprehensively analyzed by transcriptomics. Results The results showed that there were 1,438 differentially expressed genes (DEGs), genes up-regulated by 545 and genes down-regulated by 893, which were detected by comparing day 0 and day 5 posttraumatic skin. Based on GO-KEGG analysis, DEGs that were up-regulated tended to be enriched in lysosome, phagosome, and leukocyte transendothelial migration pathways, while down-regulated DEGs were significantly enriched in adrenergic signaling in cardiomyocytes and calcium signaling pathway. There were 166 overlapped genes (DE-CUGs) between DEGs and cuproptosis-related genes, with 72 up-regulated DE-CUGs and 94 down-regulated DE-CUGs. GOKEGG analysis showed that up-regulated DE-CUGs were significantly enriched in ferroptosis, leukocyte transendothelial migration and lysosome pathways, while down-regulated DE-CUGs were significantly enriched in Apelin signaling pathway and tyrosine metabolism pathways. By constructing and analyzing of protein-protein interaction (PPI) networks of DEGs and DE-CUGs, 10 hub DEGs (ENSCHIG00000020079, PLK1, AURKA, ASPM, CENPE, KIF20A, CCNB2, KIF2C, PRC1 and KIF4A) and 10 hub DE-CUGs (MMP2, TIMP1, MMP9, MMP14, TIMP3, MMP1, EDN1, GCAT, SARDH, and DCT) were obtained, respectively. Discussion This study revealed the hub genes and important wound healing pathways in Ganxi goats, and identified the correlation between wound healing and cuproptosis for the first time, and found that MMP2, TIMP1, MMP9, and EDN1 were the core genes associated. This study enriched the transcriptome data of wound healing in Ganxi goats and expanded the research direction of cuproptosis.
Collapse
Affiliation(s)
- Lucheng Zheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Xue Yang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Qingcan Fan
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|