1
|
Meenakshi S, Suvetha R, Ramadevi S. Escherichia coli Nissle 1917 efficiently expresses the RBD domain of SARS-CoV-2 spike protein without codon optimization. Sci Rep 2025; 15:15670. [PMID: 40325187 PMCID: PMC12053594 DOI: 10.1038/s41598-025-99902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Bacterial outer membrane vesicles (OMVs) represent a promising and versatile platform for vaccine delivery. Their inherent self-adjuvant properties and the ability to be adorned with a wide range of heterogeneous antigens position them as a powerful tool in the fight against infectious diseases. Escherichia coli Nissle 1917 (EcN) stands out as a highly valuable probiotic strain because of its long history of safe use and proven clinical benefits in humans. The EcN strain was genetically engineered to derive OMVs displaying receptor binding domain (RBD) of SARS-CoV-2 spike protein on their surface. Although some research groups have previously expressed the SARS-CoV-2 viral spike protein or the RBD in E. coli, particularly in EcN, this study shows a maiden effort to utilize the gene encoding native RBD. The probiotic EcN exhibited a significant level of native RBD expression, demonstrating a more efficient codon usage pattern compared to commonly used bacterial expression systems such as BL21, and DH5α. EcN was engineered to display the native form of viral RBD on the surface using the Lpp-OmpA system. Cell fractionation studies clearly indicated the presence of RBD in the membrane fraction. OMVs displaying RBD on their surface were isolated using ultracentrifugation and the presence of RBD in the OMVs was confirmed by western blot followed by immunofluorescence analyses. Due to their preferential uptake by antigen presenting cells, OMVs derived from EcN bearing native form of RBD hold promise as a potential COVID-19 vaccine candidate.
Collapse
Affiliation(s)
- Shanmugaraja Meenakshi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technologies, Kattankulathur, Tamilnadu, 603203, India.
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamilnadu, 626005, India.
| | - R Suvetha
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamilnadu, 626005, India
| | - S Ramadevi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamilnadu, 603103, India
| |
Collapse
|
2
|
Perez Marc G, Coria LM, Ceballos A, Rodriguez JM, Lombardo ME, Bruno L, Páez Córdoba F, Fascetto Cassero CG, Salvatori M, Rios Medrano M, Fulgenzi F, Alzogaray MF, Mykietiuk A, Uriarte IL, Itcovici N, Smith Casabella T, Corral G, Bruno M, Roldán O, Núñez SA, Cahn F, Yerino GA, Bianchi A, Braem V, Christmann A, Corradetti S, Darraidou MC, Di Nunzio L, Estrada T, López Castelo R, Marchionatti C, Pitocco L, Trias Uriarte V, Wood C, Zadoff R, Bues F, Garrido RM, Montomoli E, Manenti A, Laboratorio Pablo Cassará group for ARVAC, Demaría A, Prado L, Pueblas Castro C, Saposnik L, Geffner J, Montes de Oca F, Vega JC, Fló J, Bonvehí P, Cassará J, Pasquevich KA, Cassataro J. Immunogenicity and safety of monovalent and bivalent SARS-CoV-2 variant adapted RBD-based protein booster vaccines in adults previously immunized with different vaccine platforms: A phase II/III, randomized clinical trial. Vaccine 2025; 54:127045. [PMID: 40179522 DOI: 10.1016/j.vaccine.2025.127045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
A randomized, placebo-controlled, crossover, double-blind, phase II/III study was conducted to evaluate the immunogenicity, safety, and tolerability of a recombinant booster vaccine (ARVAC) containing the SARS-CoV-2 spike protein receptor binding domain in three versions: ARVACGamma, ARVACOmicron, and ARVACBivalent in adults with ≤3 previous SARS-CoV-2 booster doses. Primary endpoint was seroconversion rate of neutralizing antibodies compared to placebo and to a > 75 % seroconversion rate to vaccine antigen homologous variants. All vaccine versions significantly increased seroconversion rates to SARS-CoV-2 variants compared to placebo. In participants aged 18-60 years, all versions met the primary endpoint; in those over 60 years old, ARVACOmicron and ARVACBivalent met this endpoint. No vaccine-related serious adverse events were recorded, and most adverse events were mild. Plasma levels of anti-spike-specific IgG and anti-S1-specific IgA in saliva increased in participants receiving any vaccine. The increase in plasma neutralizing antibodies induced by the vaccine was independent of the number of previous booster doses (0, 1 or 2), the primary vaccine platform (adenovirus, single-dose adenovirus, mRNA, inactivated virus, heterologous vaccination, and virus-like particle [VLP]) and the history of previous COVID-19. The neutralizing Ab response induced by the vaccine in healthy participants was similar to that triggered in participants with underlying medical conditions associated with an increased risk of severe COVID-19. ARVACBivalent induced high seroconversion rates (>90 %) against multiple variants and was superior to other ARVAC-versions. It increased neutralizing antibodies against SARS-CoV-2 variants (Ancestral, Gamma, Omicron, XBB and JN.1) and SARS-CoV-1. (NCT05752201).
Collapse
MESH Headings
- Adolescent
- Adult
- Female
- Humans
- Male
- Middle Aged
- Young Adult
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- Cross-Over Studies
- Double-Blind Method
- Immunization, Secondary/methods
- Immunogenicity, Vaccine
- Immunoglobulin G/blood
- SARS-CoV-2/immunology
- Seroconversion
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
Collapse
Affiliation(s)
- Gonzalo Perez Marc
- Hospital Militar Central, Ciudad Autónoma Buenos Aires (1426), Argentina; ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Lorena M Coria
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, INBIRS-CONICET, Facultad de Medicina, UBA, Buenos Aires (1121), Argentina
| | | | - Mónica E Lombardo
- Nobeltri S. R. L. Ciudad Autónoma de Buenos Aires (1430), Argentina; Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Ciudad Autónoma de Buenos Aires (1430), Argentina
| | - Laura Bruno
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Federico Páez Córdoba
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Clara G Fascetto Cassero
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Melina Salvatori
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, INBIRS-CONICET, Facultad de Medicina, UBA, Buenos Aires (1121), Argentina
| | - Mayra Rios Medrano
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Fabiana Fulgenzi
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | | | - Analía Mykietiuk
- Instituto Médico Platense, La Plata (1900), Buenos Aires, Argentina
| | - Ignacio Leandro Uriarte
- Clínica del Niño y la Madre, Mar del Plata (7600), Buenos Aires, Argentina; Escuela Superior de Medicina, Universidad Nacional de Mar del Plata, Mar del Plata (7600), Buenos Aires, Argentina
| | - Nicolás Itcovici
- Centro de Investigaciones Clínicas Belgrano S.A, Ciudad Autónoma de Buenos Aires (1425), Argentina
| | | | - Gonzalo Corral
- Instituto de Investigaciones Clínicas Mar del Plata, Mar del Plata (7600), Buenos Aires, Argentina
| | - Miriam Bruno
- Vacunar S.A. Ciudad Autónoma de Buenos Aires (1430), Argentina
| | - Oscar Roldán
- Clínica Privada del Sol S.A. Ciudad de Córdoba (5000), Córdoba. Argentina
| | - Sebastián A Núñez
- Centro Médico Maffei - Investigación Clínica Aplicada, Ciudad Autónoma de Buenos Aires (1435), Argentina
| | - Florencia Cahn
- Fundación Huésped, Ciudad Autónoma de Buenos Aires (1202), Argentina
| | - Gustavo A Yerino
- FP Clinical Pharma S.R.L. Ciudad Autónoma de Buenos Aires (1425), Argentina
| | - Alejandra Bianchi
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Virginia Braem
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Analía Christmann
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | | | - Martín C Darraidou
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Lucila Di Nunzio
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Tatiana Estrada
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | | | - Carla Marchionatti
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Lucila Pitocco
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | | | - Cristian Wood
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Romina Zadoff
- ARVAC Clinical Trial Study Group. Argentina, Buenos Aires (1426), Argentina
| | - Florencia Bues
- Nobeltri S. R. L. Ciudad Autónoma de Buenos Aires (1430), Argentina
| | - Rosa M Garrido
- Nobeltri S. R. L. Ciudad Autónoma de Buenos Aires (1430), Argentina
| | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | - Agostina Demaría
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Lineia Prado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Celeste Pueblas Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Lucas Saposnik
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, INBIRS-CONICET, Facultad de Medicina, UBA, Buenos Aires (1121), Argentina
| | | | - Julio C Vega
- Laboratorio Pablo Cassará S.R.L, Ciudad Autónoma de Buenos Aires (1408), Argentina
| | - Juan Fló
- Laboratorio Pablo Cassará S.R.L, Ciudad Autónoma de Buenos Aires (1408), Argentina
| | - Pablo Bonvehí
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Ciudad Autónoma de Buenos Aires (1430), Argentina
| | - Jorge Cassará
- Laboratorio Pablo Cassará S.R.L, Ciudad Autónoma de Buenos Aires (1408), Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín (1650), Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín (1650), Buenos Aires, Argentina.
| |
Collapse
Collaborators
Sabrina A Del Priore, Andrés C Hernando Insua, Ingrid G Kaufman, Adrián Di María, Adrián Gongora, Agustin Moreno, Susana Cervellini, Martin Blasco, Fernando Toneguzzo,
Collapse
|
3
|
Babutzka S, Gehrke M, Papadopoulou A, Diedrichs-Möhring M, Giannaki M, Hennis L, Föhr B, Kooyman C, Osterman A, Yannaki E, Wildner G, Ammer H, Michalakis S. A novel platform for engineered AAV-based vaccines. Mol Ther Methods Clin Dev 2025; 33:101418. [PMID: 40008090 PMCID: PMC11850754 DOI: 10.1016/j.omtm.2025.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Engineering of adeno-associated virus (AAV) capsids allowed for the development of gene therapy vectors with improved tropism and enhanced transduction efficiency. Capsid engineering can also be used to adapt the AAV technology for applications outside gene therapy. Here, we investigated modified AAV capsids as scaffolds for the presentation of large immunogenic antigens to elicit a strong and specific immune response against pathogens. Using SARS-CoV-2 as a model pathogen, we introduced ∼200 amino acids of the SARS-CoV-2 receptor-binding domain (RBD) into a surface-exposed variable loop region of AAV2 and AAV9, resulting in AAV2.RBD and AAV9.RBD capsids (AAV.RBDs). This engineering endowed AAV.RBDs with SARS-CoV-2-like properties, such as angiotensin-converting enzyme 2 receptor affinity. In line with this, AAV.RBDs were neutralized by sera from human donors vaccinated against SARS-CoV-2. When administered subcutaneously to rabbits, AAV.RBDs elicited a strong humoral response against SARS-CoV-2 RBD. Moreover, the AAV.RBDs were able to trigger RBD-specific cellular immune responses in peripheral human lymphocytes. In conclusion, this novel AAV-based next-generation vaccine platform allows for the presentation of large antigenic sequences to elicit strong and specific immune responses. This versatile vaccine technology could be explored in the context of diseases where conventional immunization approaches have been unsuccessful.
Collapse
Affiliation(s)
- Sabrina Babutzka
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Miranda Gehrke
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
| | | | - Maria Giannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
| | - Lena Hennis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Bastian Föhr
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Cale Kooyman
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, LMU Munich, 80336 Munich, Germany
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 91895, USA
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Hermann Ammer
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
4
|
Nolan S, Vignali M, Klinger M, Dines JN, Kaplan IM, Svejnoha E, Craft T, Boland K, Pesesky MW, Gittelman RM, Snyder TM, Gooley CJ, Semprini S, Cerchione C, Nicolini F, Mazza M, Delmonte OM, Dobbs K, Carreño-Tarragona G, Barrio S, Sambri V, Martinelli G, Goldman JD, Heath JR, Notarangelo LD, Martinez-Lopez J, Howie B, Carlson JM, Robins HS. A large-scale database of T-cell receptor beta sequences and binding associations from natural and synthetic exposure to SARS-CoV-2. Front Immunol 2025; 16:1488851. [PMID: 40034696 PMCID: PMC11873104 DOI: 10.3389/fimmu.2025.1488851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
We describe the establishment and current content of the ImmuneCODE™ database, which includes hundreds of millions of T-cell Receptor (TCR) sequences from over 1,400 subjects exposed to or infected with the SARS-CoV-2 virus, as well as over 160,000 high-confidence SARS-CoV-2-associated TCRs. This database is made freely available, and the data contained in it can be used to assist with global efforts to understand the immune response to the SARS-CoV-2 virus and develop new interventions.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- COVID-19/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Databases, Genetic
Collapse
Affiliation(s)
- Sean Nolan
- Adaptive Biotechnologies, Seattle, WA, United States
| | | | - Mark Klinger
- Adaptive Biotechnologies, Seattle, WA, United States
| | | | - Ian M. Kaplan
- Adaptive Biotechnologies, Seattle, WA, United States
| | | | - Tracy Craft
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Katie Boland
- Adaptive Biotechnologies, Seattle, WA, United States
| | | | | | | | | | - Simona Semprini
- Unit of Microbiology - The Great Romagna Hub Laboratory, Pievesestina ITALY and DIMES, University of Bologna, Bologna, Italy
| | - Claudio Cerchione
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Fabio Nicolini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kerry Dobbs
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Santiago Barrio
- Hematology Department, Hospital 12 de Octubre, i+12, CNIO, Complutense University, Madrid, Spain
| | - Vittorio Sambri
- Unit of Microbiology - The Great Romagna Hub Laboratory, Pievesestina ITALY and DIMES, University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Jason D. Goldman
- Swedish Medical Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, United States
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital 12 de Octubre, i+12, CNIO, Complutense University, Madrid, Spain
| | - Bryan Howie
- Adaptive Biotechnologies, Seattle, WA, United States
| | | | | |
Collapse
|
5
|
Blanco J, Trinité B, Puig‐Barberà J. Rethinking Optimal Immunogens to Face SARS-CoV-2 Evolution Through Vaccination. Influenza Other Respir Viruses 2025; 19:e70076. [PMID: 39871737 PMCID: PMC11773156 DOI: 10.1111/irv.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
SARS-CoV-2, which originated in China in late 2019, quickly fueled the global COVID-19 pandemic, profoundly impacting health and the economy worldwide. A series of vaccines, mostly based on the full SARS-CoV-2 Spike protein, were rapidly developed, showing excellent humoral and cellular responses and high efficacy against both symptomatic infection and severe disease. However, viral evolution and the waning humoral neutralizing responses strongly challenged vaccine long term effectiveness, mainly against symptomatic infection, making necessary a strategy of repeated and updated booster shots. In this repeated vaccination context, antibody repertoire diversification was evidenced, although immune imprinting after booster doses or reinfection was also demonstrated and identified as a major determinant of immunological responses to repeated antigen exposures. Considering that a small domain of the SARS-CoV-2 Spike protein, the receptor binding domain (RBD), is the major target of neutralizing antibodies and concentrates most viral mutations, the following text aims to provide insights into the ongoing debate over the best strategies for vaccine boosters. We address the relevance of developing new booster vaccines that target the evolving RBD, thus focusing on the relevant antigenic sites of the SARS-CoV-2 new variants. A combination of this strategy with immunofusing and computerized approaches could minimize immune imprinting, therefore optimizing neutralizing immune responses and booster vaccine efficacy.
Collapse
Affiliation(s)
- Julià Blanco
- IrsiCaixaBadalonaCataloniaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaCataloniaSpain
- CIBER de Enfermedades InfecciosasMadridSpain
- Chair in Infectious Diseases and Immunity, Faculty of MedicineUniversity of Vic‐Central University of Catalonia (UVic‐UCC)VicCataloniaSpain
| | | | - Joan Puig‐Barberà
- Área de Investigación en VacunasFundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat ValencianaValenciaSpain
| |
Collapse
|
6
|
Chentoufi AA, Ulmer JB, BenMohamed L. Antigen Delivery Platforms for Next-Generation Coronavirus Vaccines. Vaccines (Basel) 2024; 13:30. [PMID: 39852809 PMCID: PMC11769099 DOI: 10.3390/vaccines13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is in its sixth year and is being maintained by the inability of current spike-alone-based COVID-19 vaccines to prevent transmission leading to the continuous emergence of variants and sub-variants of concern (VOCs). This underscores the critical need for next-generation broad-spectrum pan-Coronavirus vaccines (pan-CoV vaccine) to break this cycle and end the pandemic. The development of a pan-CoV vaccine offering protection against a wide array of VOCs requires two key elements: (1) identifying protective antigens that are highly conserved between passed, current, and future VOCs; and (2) developing a safe and efficient antigen delivery system for induction of broad-based and long-lasting B- and T-cell immunity. This review will (1) present the current state of antigen delivery platforms involving a multifaceted approach, including bioinformatics, molecular and structural biology, immunology, and advanced computational methods; (2) discuss the challenges facing the development of safe and effective antigen delivery platforms; and (3) highlight the potential of nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) as the platform that is well suited to the needs of a next-generation pan-CoV vaccine, such as the ability to induce broad-based immunity and amenable to large-scale manufacturing to safely provide durable protective immunity against current and future Coronavirus threats.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Al-Wassiti HA, Fabb SA, Grimley SL, Kochappan R, Ho JK, Wong CY, Tan CW, Payne TJ, Takanashi A, Lee CL, Mugan RS, Sicilia H, Teo SL, McAuley J, Ellenberg P, Cooney JP, Davidson KC, Bowen R, Pellegrini M, Rockman S, Godfrey DI, Nolan TM, Wang LF, Deliyannis G, Purcell DF, Pouton CW. mRNA vaccines encoding membrane-anchored RBDs of SARS-CoV-2 mutants induce strong humoral responses and can overcome immune imprinting. Mol Ther Methods Clin Dev 2024; 32:101380. [PMID: 39687732 PMCID: PMC11646785 DOI: 10.1016/j.omtm.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
We investigated mRNA vaccines encoding a membrane-anchored receptor-binding domain (RBD), each a fusion of a variant RBD, the transmembrane (TM) and cytoplasmic tail fragments of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In naive mice, RBD-TM mRNA vaccines against SARS-CoV-2 variants induced strong humoral responses against the target RBD. Multiplex surrogate viral neutralization (sVNT) assays revealed broad neutralizing activity against a range of variant RBDs. In the setting of a heterologous boost, against the background of exposure to ancestral whole-spike vaccines, sVNT studies suggested that BA.1 and BA.5 RBD-TM vaccines had the potential to overcome the detrimental effects of immune imprinting. A subsequent heterologous boost study using XBB.1.5 booster vaccines was evaluated using both sVNT and authentic virus neutralization. Geometric mean XBB.1.5 neutralization values after third-dose RBD-TM or whole-spike XBB.1.5 booster vaccines were compared with those after a third dose of ancestral spike booster vaccine. Fold-improvement over ancestral vaccine was just 1.3 for the whole-spike XBB.1.5 vaccine, similar to data published using human serum samples. In contrast, the fold-improvement achieved by the RBD-TM XBB.1.5 vaccine was 16.3, indicating that the RBD-TM vaccine induced the production of antibodies that neutralize the XBB.1.5 variant despite previous exposure to ancestral spike protein.
Collapse
Affiliation(s)
- Hareth A. Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Stewart A. Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Samantha L. Grimley
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ruby Kochappan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joan K. Ho
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chinn Yi Wong
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chee Wah Tan
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Thomas J. Payne
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Asuka Takanashi
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Chee Leng Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rekha Shandre Mugan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Horatio Sicilia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Serena L.Y. Teo
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Julie McAuley
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Paula Ellenberg
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - James P. Cooney
- Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Richard Bowen
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Marc Pellegrini
- Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Steven Rockman
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
- Seqirus, Parkville, VIC 3052, Australia
| | - Dale I. Godfrey
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Terry M. Nolan
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lin-fa Wang
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Georgia Deliyannis
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Damian F.J. Purcell
- Peter Doherty Institute for Infection and Immunity, and Department of Infectious Diseases, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
8
|
Fagiani F, Frigerio R, Salzano AM, Scaloni A, Marusic C, Donini M. Plant production of recombinant antigens containing the receptor binding domain (RBD) of two SARS-CoV-2 variants. Biotechnol Lett 2024; 46:1303-1318. [PMID: 39066957 DOI: 10.1007/s10529-024-03517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES The aim of this work was to rapidly produce in plats two recombinant antigens (RBDw-Fc and RBDo-Fc) containing the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 variants Wuhan and Omicron as fusion proteins to the Fc portion of a murine IgG2a antibody constant region (Fc). RESULTS The two recombinant antigens were expressed in Nicotiana benthamiana plants, engineered to avoid the addition of N-linked plant-typical sugars, through vacuum agroinfiltration and showed comparable purification yields (about 35 mg/kg leaf fresh weight). CONCLUSIONS Their Western blotting and Coomassie staining evidenced the occurrence of major in planta proteolysis in the region between the RBD and Fc, which was particularly evident in RBDw-Fc, the only antigen bearing the HRV 3C cysteine protease recognition site. The two RBD N-linked glycosylation sites showed very homogeneous profiles free from plant-typical sugars, with the most abundant glycoform represented by the complex sugar GlcNAc4Man3. Both antigens were specifically recognised in Western Blot analysis by the anti-SARS-CoV-2 human neutralizing monoclonal antibody J08-MUT and RBDw-Fc was successfully used in competitive ELISA experiments for binding to the angiotensin-converting enzyme 2 receptor to verify the neutralizing capacity of the serum from vaccinated patients. Both SARS-Cov-2 antigens fused to a murine Fc region were rapidly and functionally produced in plants with potential applications in diagnostics.
Collapse
MESH Headings
- Nicotiana/genetics
- Nicotiana/metabolism
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- Humans
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COVID-19
- Mice
- Antibodies, Viral/immunology
- Protein Domains
- Antibodies, Neutralizing/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Flavia Fagiani
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy
| | - Rachele Frigerio
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy
| | - Anna Maria Salzano
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80055, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80055, Portici, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy.
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Research Center Casaccia, 00123, Rome, Italy.
| |
Collapse
|
9
|
Haynesworth K, Kemp TJ, Loftus SA, Metz J, Castro NC, Bullock J, Fetterer D, Pinto LA. Analytical measuring interval, linearity, and precision of serology assays for detection of SARS-CoV-2 antibodies according to CLSI guidelines. mSphere 2024; 9:e0039324. [PMID: 39480103 PMCID: PMC11580426 DOI: 10.1128/msphere.00393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Serology testing is commonly used to evaluate the immunogenicity of COVID-19 vaccines and measure antibodies as a marker of previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, four laboratory-developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike and anti-Nucleocapsid immunoglobin G [IgG] and immunoglobin M [IgM]) calibrated to the WHO International Standard 20/136 were validated via analytical measuring interval (limit of blank [LOB], limit of detection [LOD], and limit of quantification [LOQ]), linearity, and precision according to the Clinical and Laboratory Standards Institute (CLSI) guidelines EP17-A2, EP06 2nd Edition, and EP05-A3. For Spike IgG, LOB was 3.0 binding antibody units per milliliter (BAU/mL), LOD was 4.1 BAU/mL, and LOQ was 27.1 BAU/mL. For Nucleocapsid IgG, LOB was 1.9 BAU/mL, LOD was 3.2 BAU/mL, and LOQ was 24.6 BAU/mL. For Spike IgM, LOB was 57.1 BAU/mL, LOD was 69.0 BAU/mL, and LOQ was 113.5 BAU/mL. For Nucleocapsid IgM, LOD was 242.2 BAU/mL, LOD was 289.9 BAU/mL, and LOQ was 572.4 BAU/mL. Each assay displayed good linearity (max % deviation from linearity (≥LOQ) = 10.7%). The result of within-run repeatability evaluation for medium positive samples was 7.7% for Spike IgG, 4.6% for Nucleocapsid IgG, 7.5% for Spike IgM, and 10.1% for Nucleocapsid IgM. The total precision, including medium positive sample variability across 20 days, three reagent kits, and two operators, was 13.5% for Spike IgG, 14.5% for Nucleocapsid IgG, 17.6% for Spike IgM, and 16.2% for Nucleocapsid IgM. The assays were successfully validated following the applicable CLSI guidelines. All assays met the ±20% deviation from linearity and the ±20% coefficient of variation specification for precision and repeatability. IMPORTANCE Reliable and validated serology assays are of increasing importance as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to evolve and cause outbreaks. Validation of serology assays along with calibration to the International and National Standards (such as anti-SARS-CoV-2 Immunoglobulin WHO International Standard 20/136 or Frederick National Laboratory for Cancer Research's National Serology Standard COVID-NS01097) is critical to ensuring that results from clinical studies are reliable and comparable among various assays and laboratories. We describe the design and execution of a comprehensive study that established the analytical measuring intervals, linearity, precision, and repeatability of four in-house developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike immunoglobin G [IgG] and immunoglobin M [IgM] and anti-Nucleocapsid IgG and IgM) following applicable Clinical and Laboratory Standards Institute (CLSI) guidelines. Overall, this study provides practical guidance on experimental design strategies and data analysis techniques, pertaining to the validation of COVID-19 serology assays according to CLSI guidelines, for use in clinical research studies.
Collapse
Affiliation(s)
- Katarzyna Haynesworth
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy J. Kemp
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Sarah A Loftus
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jordan Metz
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Nicholas C. Castro
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jimmie Bullock
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - David Fetterer
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Ligia A. Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| |
Collapse
|
10
|
Samiei-Abianeh H, Nazarian S, Kordbacheh E, Felegary A. Recombinant receptor-binding motif of spike COVID-19 vaccine candidate induces SARS-CoV-2 neutralizing antibody response. BIOIMPACTS : BI 2024; 15:30520. [PMID: 40256231 PMCID: PMC12008496 DOI: 10.34172/bi.30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 04/22/2025]
Abstract
Introduction The SARS-CoV-2 pandemic necessitates effective therapeutic solutions. The receptor-binding motif (RBM) is a subdomain of the spike protein's receptor-binding domain (RBD) and is critical for facilitating the binding of SARS-CoV-2 to the human ACE2 receptor. This study investigates the use of the receptor-binding motif (RBM) domain as an immunogen to produce potent neutralizing antibodies against SARS-CoV-2. Methods The RBM gene was codon-optimized and cloned into the pET17b vector for expression in E. coli BL21 (DE3) cells, induced with 1 mM IPTG. The recombinant RBM protein was purified using Ni-NTA affinity chromatography. After validating the recombinant RBM by Western blotting with anti-His tag antibodies, BALB/c mice were immunized with 20 µg of the purified RBM protein. Anti-RBM IgG was subsequently purified using protein G resin, and its neutralizing capacity was assessed using the Pishtaz Teb Zaman Neutralization Assay Kit. Results The recombinant RBM protein, with a molecular weight of 10 kDa, was expressed as inclusion bodies. the typical yield of purification was 27 mg/L of bacterial culture. The neutralization test demonstrated a concentration of 36 µg/mL of neutralizing antibodies in the immunized serum, preventing the spike protein from binding to ACE2. Conclusion Our study demonstrated that anti-RBM antibodies exhibited neutralization effects on SARS-CoV-2. These findings provide evidence for the development of a vaccine candidate through the induction of antibodies against the RBM, necessitating further studies with adjuvants suitable for human use to evaluate its potential for human vaccination.
Collapse
Affiliation(s)
- Hossein Samiei-Abianeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Emad Kordbacheh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Alireza Felegary
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| |
Collapse
|
11
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PNP, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJC, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. Cell 2024; 187:5554-5571.e19. [PMID: 39197450 PMCID: PMC11460329 DOI: 10.1016/j.cell.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Ellis Robb
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Ian G Fotheringham
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
12
|
Thanh TT, Tu NTK, Nguyet LA, Thuy CT, Thuan NLT, Ny NTH, Nhu LNT, Thanh LK, Hong NTT, Anh NT, Truong NT, Chau NVV, Yen LM, Van E P, Thuong NP, Van Truc N, Trung PH, Yap WC, Pandey R, Yee S, Weng R, Mongkolsapaya J, Dejnirattisai W, Hamers RL, Chantratita N, Screaton G, Dunachie SJ, Jones EY, Stuart DI, Dung NT, Thwaites G, Wang LF, Tan CW, Tan LV. Immunogenicity of Abdala COVID-19 vaccine in Vietnamese people after primary and booster vaccinations: A prospective observational study in Vietnam. Int J Infect Dis 2024; 147:107173. [PMID: 39094762 DOI: 10.1016/j.ijid.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES We studied the immunogenicity after primary and booster vaccinations of the Abdala COVID-19 vaccine, a receptor-binding domain protein subunit vaccine, in Vietnamese people by determining the level of neutralization and cross-neutralization activities against the ancestral SARS-CoV-2 and its variants and SARS-CoV-1. METHODS We performed a prospective observational study, enrolling adults aged 19-59 years in Dong Thap province, southern Vietnam, and collected blood samples from baseline until 4 weeks after the booster dose. We measured anti-nucleocapsid, anti-spike, and neutralizing antibodies against SARS-CoV-2 and assessed the cross-neutralization against 14 SARS-CoV-2 variants and SARS-CoV-1. Complementary antibody data came from Vietnamese health care workers fully vaccinated with ChAdOx1-S. RESULTS After primary vaccination, anti-spike antibody and neutralizing antibodies were detectable in 98.4% and 87% of 251 study participants, respectively, with neutralizing antibody titers similar to that induced by ChAdOx1-S vaccine. Antibody responses after a homologous (Abdala COVID-19) or heterologous (messenger RNA BNT162b2) booster could neutralize 14 SARS-CoV-2 variants (including Omicron) and SARS-CoV-1. CONCLUSIONS Abdala COVID-19 vaccine is immunogenic in Vietnamese people. Enhanced antibody response after a booster dose could cross-neutralize 14 SARS-CoV-2 variants and SARS-CoV-1. Our results have added to the growing body of knowledge about the contribution of protein subunit vaccine platforms to pandemic control.
Collapse
Affiliation(s)
- Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Kha Tu
- Center for Disease Control, Dong Thap Province, Vietnam; Department of Health, Dong Thap Province, Vietnam.
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Cao Thu Thuy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Le Kim Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Lam Minh Yen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Phan Van E
- Department of Health, Dong Thap Province, Vietnam; Health Center, Thanh Binh District, Dong Thap Province, Vietnam
| | | | - Nguyen Van Truc
- Health Center, Thap Muoi District, Dong Thap Province, Vietnam
| | - Pham Huu Trung
- Commune Health Station, My Qui Commune, Thap Muoi District, Dong Thap Province, Vietnam
| | - Wee Chee Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rahul Pandey
- Diagnostics Development Hub, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sidney Yee
- Diagnostics Development Hub, Agency for Science, Technology and Research (A*STAR), Singapore; Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore; Department of Obstetrics and Gynaecology, NUS YLL School of Medicine, Singapore
| | - Ruifen Weng
- Diagnostics Development Hub, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Obstetrics and Gynaecology, NUS YLL School of Medicine, Singapore
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Raph L Hamers
- Oxford University Clinical Research Unit, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - E Yvonne Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David I Stuart
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lin-Fa Wang
- Programme for Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Chee Wah Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Komlodi-Pasztor E, Escarra-Senmarti M, Bazer DA, Bhatnagar A, Perez Heydrich CA, Messmer M, Ambinder RF, Gladstone DE, Clayton L, Goodrich A, Schoch L, Wagner-Johnston N, VandenBussche CJ, Huang P, Holdhoff M, Rosario M. The immune response to Covid-19 mRNA vaccination among Lymphoma patients receiving anti-CD20 treatment. Front Immunol 2024; 15:1433442. [PMID: 39295862 PMCID: PMC11408186 DOI: 10.3389/fimmu.2024.1433442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
The monoclonal antibody rituximab improves clinical outcome in the treatment of CD20-positive lymphomatous neoplasms, and it is an established drug for treatment of these cancers. Successful mRNA COVID-19 (SARS-CoV-2) vaccination is extremely important for lymphoma patients because they tend to be elderly with comorbidities which leaves them at increased risk of poor outcomes once infected by Coronavirus. Anti-CD20 therapies such as rituximab, deplete B-cell populations and can affect vaccine efficacy. Therefore, a knowledge of the effect of COVID-19 vaccination in this group is critical. We followed a cohort of 28 patients with CD20-positive lymphomatous malignancies treated with rituximab that started prior to their course of COVID-19 vaccination, including boosters. We assayed for vaccine "take" in the humoral (IgG and IgA) and cellular compartment. Here, we show that short-term and long-term development of IgG and IgA antibodies directed toward COVID-19 spike protein are reduced in these patients compared to healthy controls. Conversely, the robustness and breath of underlying T-cell response is equal to healthy controls. This response is not limited to specific parts of the spike protein but spans the spike region, including response to the conserved Receptor Binding Domain (RBD). Our data informs on rational vaccine design and bodes well for future vaccination strategies that require strong induction of T-cell responses in these patients.
Collapse
Affiliation(s)
- Edina Komlodi-Pasztor
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Marta Escarra-Senmarti
- Department of Pathology, Division of Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Danielle A Bazer
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aastha Bhatnagar
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Carlos A Perez Heydrich
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marcus Messmer
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Richard F Ambinder
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Douglas E Gladstone
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Northwell Health Cancer Institute, New Hyde Park, NY, United States
| | - Laura Clayton
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Goodrich
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laura Schoch
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nina Wagner-Johnston
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher J VandenBussche
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Division of Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peng Huang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maximillian Rosario
- Department of Pathology, Division of Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
14
|
Lovell JF, Miura K, Baik YO, Lee C, Choi Y, Her H, Lee JY, Ylade M, Lee-Llacer R, De Asis N, Trinidad-Aseron M, Ranola JM, De Jesus LZ. Interim safety and immunogenicity analysis of the EuCorVac-19 COVID-19 vaccine in a Phase 3 randomized, observer-blind, immunobridging trial in the Philippines. J Med Virol 2024; 96:e29927. [PMID: 39318203 DOI: 10.1002/jmv.29927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
EuCorVac-19 (ECV-19) is a recombinant receptor binding domain (RBD) COVID-19 vaccine that displays the RBD (derived from the SARS-CoV-2 Wuhan strain) on immunogenic liposomes. This study compares the safety and immunogenicity of ECV-19 to the COVISHIELDTM (CS) adenoviral-vectored vaccine. Interim analysis is presented of a randomized, observer-blind, immunobridging Phase 3 trial in the Philippines in 2600 subjects, with treatment and biospecimen collection between October 2022 and January 2023. Healthy male and female adults who received investigational vaccines were 18 years and older, and randomly assigned to ECV-19 (n = 2004) or CS (n = 596) groups. Immunization followed a two-injection, intramuscular regimen with 4 weeks between prime and boost vaccination. Safety endpoints were assessed in all participants and immunogenicity analysis was carried out in a subset (n = 585 in ECV-19 and n = 290 in CS groups). The primary immunological endpoints were superiority of neutralizing antibody response, as well as noninferiority in seroresponse rate (defined as a 4-fold increase in RBD antibody titers from baseline). After prime vaccination, ECV-19 had a lower incidence of local solicited adverse events (AEs) (12.0% vs. 15.8%, p < 0.01), and solicited systemic AEs (13.1 vs. 17.4%, p < 0.01) relative to CS. After the second injection, both ECV-19 and CS had lower overall solicited AEs (7.8% vs. 7.6%). For immunological assessment, 98% of participants had prior COVID-19 exposure (based on the presence of anti-nucleocapsid antibodies) at the time of the initial immunization, without differing baseline antibody levels or microneutralization (MN) titers against the Wuhan strain in the two groups. After prime vaccination, ECV-19 induced higher anti-RBD IgG relative to CS (1,464 vs. 355 BAU/mL, p < 0.001) and higher neutralizing antibody response (1,303 vs. 494 MN titer, p < 0.001). After boost vaccination, ECV-19 and CS maintained those levels of anti-RBD IgG (1367 vs. 344 BAU/mL, p < 0.001) and neutralizing antibodies (1128 vs. 469 MN titer, p < 0.001). ECV-19 also elicited antibodies that better neutralized the Omicron variant, compared to CS (763 vs. 373 MN titer, p < 0.001). Women displayed higher responses to both vaccines than men. The ECV-19 group had a greater seroresponse rate compared to CS (83% vs. 30%, p < 0.001). In summary, both ECV-19 and CS had favorable safety profiles, with ECV-19 showing diminished local and systemic solicited AE after prime immunization. ECV-19 had significantly greater immunogenicity in terms of anti-RBD IgG, neutralizing antibodies, and seroresponse rate. These data establish a relatively favorable safety and immunogenicity profile for ECV-19. The trial is registered on ClinicalTrials.gov (NCT05572879).
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yeong Ok Baik
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Chankyu Lee
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - YoungJin Choi
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Howard Her
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Jeong-Yoon Lee
- EuBiologics, R&D Center, EuBiologics Co., Ltd., Seoul, Republic of Korea
| | - Michelle Ylade
- National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Roxas Lee-Llacer
- Bicol Regional Training and Teaching Hospital, Albay, Philippines
| | - Norman De Asis
- Norzel Medical & Diagnostic Clinic, Cebu City, Philippines
| | | | | | | |
Collapse
|
15
|
Ives CM, Nguyen L, Fogarty CA, Harbison AM, Durocher Y, Klassen J, Fadda E. Role of N343 glycosylation on the SARS-CoV-2 S RBD structure and co-receptor binding across variants of concern. eLife 2024; 13:RP95708. [PMID: 38864493 PMCID: PMC11168744 DOI: 10.7554/elife.95708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Glycosylation of the SARS-CoV-2 spike (S) protein represents a key target for viral evolution because it affects both viral evasion and fitness. Successful variations in the glycan shield are difficult to achieve though, as protein glycosylation is also critical to folding and structural stability. Within this framework, the identification of glycosylation sites that are structurally dispensable can provide insight into the evolutionary mechanisms of the shield and inform immune surveillance. In this work, we show through over 45 μs of cumulative sampling from conventional and enhanced molecular dynamics (MD) simulations, how the structure of the immunodominant S receptor binding domain (RBD) is regulated by N-glycosylation at N343 and how this glycan's structural role changes from WHu-1, alpha (B.1.1.7), and beta (B.1.351), to the delta (B.1.617.2), and omicron (BA.1 and BA.2.86) variants. More specifically, we find that the amphipathic nature of the N-glycan is instrumental to preserve the structural integrity of the RBD hydrophobic core and that loss of glycosylation at N343 triggers a specific and consistent conformational change. We show how this change allosterically regulates the conformation of the receptor binding motif (RBM) in the WHu-1, alpha, and beta RBDs, but not in the delta and omicron variants, due to mutations that reinforce the RBD architecture. In support of these findings, we show that the binding of the RBD to monosialylated ganglioside co-receptors is highly dependent on N343 glycosylation in the WHu-1, but not in the delta RBD, and that affinity changes significantly across VoCs. Ultimately, the molecular and functional insight we provide in this work reinforces our understanding of the role of glycosylation in protein structure and function and it also allows us to identify the structural constraints within which the glycosylation site at N343 can become a hotspot for mutations in the SARS-CoV-2 S glycan shield.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | - Linh Nguyen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Carl A Fogarty
- Department of Chemistry, Maynooth UniversityMaynoothIreland
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council CanadaQuébecCanada
- Département de Biochimie et Médecine Moléculaire, Université de MontréalQuébecCanada
| | - John Klassen
- Department of Chemistry, University of AlbertaEdmontonCanada
| | - Elisa Fadda
- School of Biological Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
16
|
Umeda L, Torres A, Kunihiro BP, Rubas NC, Wells RK, Phankitnirundorn K, Peres R, Juarez R, Maunakea AK. Immuno-Microbial Signature of Vaccine-Induced Immunity against SARS-CoV-2. Vaccines (Basel) 2024; 12:637. [PMID: 38932366 PMCID: PMC11209251 DOI: 10.3390/vaccines12060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Although vaccines address critical public health needs, inter-individual differences in responses are not always considered in their development. Understanding the underlying basis for these differences is needed to optimize vaccine effectiveness and ultimately improve disease control. In this pilot study, pre- and post-antiviral immunological and gut microbiota features were characterized to examine inter-individual differences in SARS-CoV-2 mRNA vaccine response. Blood and stool samples were collected before administration of the vaccine and at 2-to-4-week intervals after the first dose. A cohort of 14 adults was separated post hoc into two groups based on neutralizing antibody levels (high [HN] or low [LN]) at 10 weeks following vaccination. Bivariate correlation analysis was performed to examine associations between gut microbiota, inflammation, and neutralization capacity at that timepoint. These analyses revealed significant differences in gut microbiome composition and inflammation states pre-vaccination, which predicted later viral neutralization capacity, with certain bacterial taxa, such as those in the genus Prevotella, found at higher abundance in the LN vs HN group that were also negatively correlated with a panel of inflammatory factors such as IL-17, yet positively correlated with plasma levels of the high mobility group box 1 (HMGB-1) protein at pre-vaccination. In particular, we observed a significant inverse relationship (Pearson = -0.54, p = 0.03) between HMGB-1 pre-vaccination and neutralization capacity at 10 weeks post-vaccination. Consistent with known roles as mediators of inflammation, our results altogether implicate HMGB-1 and related gut microbial signatures as potential biomarkers in predicting SARS-CoV-2 mRNA vaccine effectiveness measured by the production of viral neutralization antibodies.
Collapse
Affiliation(s)
- Lesley Umeda
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Amada Torres
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
| | - Braden P. Kunihiro
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Noelle C. Rubas
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Riley K. Wells
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA; (L.U.); (B.P.K.); (N.C.R.); (R.K.W.)
| | - Krit Phankitnirundorn
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
| | - Rafael Peres
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
| | - Ruben Juarez
- Department of Economics and UHERO, University of Hawaii, Honolulu, HI 96822, USA;
- Hawaii Integrated Analytics, LLC, Honolulu, HI 96822, USA
| | - Alika K. Maunakea
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA; (A.T.); (K.P.); (R.P.)
- Hawaii Integrated Analytics, LLC, Honolulu, HI 96822, USA
| |
Collapse
|
17
|
Peters MH. Mutations in the Receptor Binding Domain of Severe Acute Respiratory Coronavirus-2 Omicron Variant Spike Protein Significantly Stabilizes Its Conformation. Viruses 2024; 16:912. [PMID: 38932204 PMCID: PMC11209484 DOI: 10.3390/v16060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The Omicron variant and its sub-lineages are the only current circulating SARS-CoV-2 viruses worldwide. In this study, the conformational stability of the isolated Receptor Binding Domain (RBD) of Omicron's spike protein is examined in detail. The parent Omicron lineage has over ten mutations in the ACE2 binding region of the RBD that are specifically associated with its β hairpin loop domain. It is demonstrated through biophysical molecular computations that the mutations in the β hairpin loop domain significantly increase the intra-protein interaction energies of intra-loop and loop-RBD interactions. The interaction energy increases include the formation of new hydrogen bonds in the β hairpin loop domain that help stabilize this critical ACE2 binding region. Our results also agree with recent experiments on the stability of Omicron's core β barrel domain, outside of its loop domain, and help demonstrate the overall conformational stability of the Omicron RBD. It is further shown here through dynamic simulations that the unbound state of the Omicron RBD remains closely aligned with the bound state configuration, which was not observed for the wild-type RBD. Overall, these studies demonstrate the significantly increased conformational stability of Omicron over its wild-type configuration and raise a number of questions on whether conformational stability could be a positive selection feature of SARS-CoV-2 viral mutational changes.
Collapse
Affiliation(s)
- Michael H Peters
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| |
Collapse
|
18
|
Padilla‐Flores T, Sampieri A, Vaca L. Incidence and management of the main serious adverse events reported after COVID-19 vaccination. Pharmacol Res Perspect 2024; 12:e1224. [PMID: 38864106 PMCID: PMC11167235 DOI: 10.1002/prp2.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2n first appeared in Wuhan, China in 2019. Soon after, it was declared a pandemic by the World Health Organization. The health crisis imposed by a new virus and its rapid spread worldwide prompted the fast development of vaccines. For the first time in human history, two vaccines based on recombinant genetic material technology were approved for human use. These mRNA vaccines were applied in massive immunization programs around the world, followed by other vaccines based on more traditional approaches. Even though all vaccines were tested in clinical trials prior to their general administration, serious adverse events, usually of very low incidence, were mostly identified after application of millions of doses. Establishing a direct correlation (the cause-effect paradigm) between vaccination and the appearance of adverse effects has proven challenging. This review focuses on the main adverse effects observed after vaccination, including anaphylaxis, myocarditis, vaccine-induced thrombotic thrombocytopenia, Guillain-Barré syndrome, and transverse myelitis reported in the context of COVID-19 vaccination. We highlight the symptoms, laboratory tests required for an adequate diagnosis, and briefly outline the recommended treatments for these adverse effects. The aim of this work is to increase awareness among healthcare personnel about the serious adverse events that may arise post-vaccination. Regardless of the ongoing discussion about the safety of COVID-19 vaccination, these adverse effects must be identified promptly and treated effectively to reduce the risk of complications.
Collapse
Affiliation(s)
- Teresa Padilla‐Flores
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Luis Vaca
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| |
Collapse
|
19
|
Volosnikova EA, Volkova NV, Ermolaev VV, Borgoyakova MB, Nesmeyanova VS, Zaykovskaya AV, Pyankov OV, Zaitsev BN, Belenkaya SV, Isaeva AA, Shcherbakov DN. Use of Adjuvant Compositions Based on Squalene Ensures Induction of Neutralizing Antibodies against SARS-CoV-2. Bull Exp Biol Med 2024; 177:221-224. [PMID: 39093475 DOI: 10.1007/s10517-024-06160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/04/2024]
Abstract
Squalene-based adjuvant compositions that can provide effective induction of specific humoral immune response have been developed. Recombinant receptor-binding domain (RBD) of surface S-protein of SARS-CoV-2 was used to evaluate the properties of the composition. Immunization of mice with the developed squalene-based compositions in combination with RBD allows obtaining high titers of specific antibodies: from 105 to 2×106. The blood sera from immunized mice exhibit neutralizing activity against SARS-CoV-2 Delta variant (B.1.617.2) with a titer up to 1:2000.
Collapse
Affiliation(s)
- E A Volosnikova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - N V Volkova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - V V Ermolaev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - M B Borgoyakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - V S Nesmeyanova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A V Zaykovskaya
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - O V Pyankov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - B N Zaitsev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - S V Belenkaya
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Isaeva
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - D N Shcherbakov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
20
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PN, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJ, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.576722. [PMID: 38370696 PMCID: PMC10871317 DOI: 10.1101/2024.02.08.576722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Sandra E. Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J. Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY, 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Martina Quintanar-Audelo
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
- Present address: Centre for Inflammation Research and Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ellis Robb
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Ian G. Fotheringham
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
21
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
22
|
Galeota E, Bevilacqua V, Gobbini A, Gruarin P, Bombaci M, Pesce E, Favalli A, Lombardi A, Vincenti F, Ongaro J, Fabbris T, Curti S, Martinovic M, Toccafondi M, Lorenzo M, Critelli A, Clemente F, Crosti M, Sarnicola ML, Martinelli M, La Sala L, Espadas A, Donnici L, Borghi MO, De Feo T, De Francesco R, Prati D, Meroni PL, Notarbartolo S, Geginat J, Gori A, Bandera A, Abrignani S, Grifantini R. Tracking the immune response profiles elicited by the BNT162b2 vaccine in COVID-19 unexperienced and experienced individuals. Clin Immunol 2024; 261:110164. [PMID: 38417765 DOI: 10.1016/j.clim.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eugenia Galeota
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Valeria Bevilacqua
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Gobbini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Paola Gruarin
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mauro Bombaci
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Favalli
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Ph.D. Program in Translational and Molecular Medicine, Dottorato in Medicina Molecolare e Traslazionale (DIMET), University of Milan-Bicocca, Monza, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Francesca Vincenti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Jessica Ongaro
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Tanya Fabbris
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Serena Curti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Martina Martinovic
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mirco Toccafondi
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariangela Lorenzo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Angelica Critelli
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Clemente
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariacristina Crosti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Lucia Sarnicola
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | | | - Alejandro Espadas
- Laboratory of Transplant Immunology - North Italy Transplant program (NITp) - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
| | - Tullia De Feo
- Laboratory of Transplant Immunology - North Italy Transplant program (NITp) - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Raffaele De Francesco
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Pier Luigi Meroni
- IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
| | - Samuele Notarbartolo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Jens Geginat
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Gori
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Infectious Diseases Unit, Ospedale "Luigi Sacco", Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; CheckmAb Srl, Milan, Italy.
| |
Collapse
|
23
|
Idrovo-Hidalgo T, Pignataro MF, Bredeston LM, Elias F, Herrera MG, Pavan MF, Foscaldi S, Suireszcz M, Fernández NB, Wetzler DE, Paván CH, Craig PO, Roman EA, Ruberto LAM, Noseda DG, Ibañez LI, Czibener C, Ugalde JE, Nadra AD, Santos J, D'Alessio C. Deglycosylated RBD produced in Pichia pastoris as a low-cost sera COVID-19 diagnosis tool and a vaccine candidate. Glycobiology 2024; 34:cwad089. [PMID: 37944064 DOI: 10.1093/glycob/cwad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
During the COVID-19 outbreak, numerous tools including protein-based vaccines have been developed. The methylotrophic yeast Pichia pastoris (synonymous to Komagataella phaffii) is an eukaryotic cost-effective and scalable system for recombinant protein production, with the advantages of an efficient secretion system and the protein folding assistance of the secretory pathway of eukaryotic cells. In a previous work, we compared the expression of SARS-CoV-2 Spike Receptor Binding Domain in P. pastoris with that in human cells. Although the size and glycosylation pattern was different between them, their protein structural and conformational features were indistinguishable. Nevertheless, since high mannose glycan extensions in proteins expressed by yeast may be the cause of a nonspecific immune recognition, we deglycosylated RBD in native conditions. This resulted in a highly pure, homogenous, properly folded and monomeric stable protein. This was confirmed by circular dichroism and tryptophan fluorescence spectra and by SEC-HPLC, which were similar to those of RBD proteins produced in yeast or human cells. Deglycosylated RBD was obtained at high yields in a single step, and it was efficient in distinguishing between SARS-CoV-2-negative and positive sera from patients. Moreover, when the deglycosylated variant was used as an immunogen, it elicited a humoral immune response ten times greater than the glycosylated form, producing antibodies with enhanced neutralizing power and eliciting a more robust cellular response. The proposed approach may be used to produce at a low cost, many antigens that require glycosylation to fold and express, but do not require glycans for recognition purposes.
Collapse
Affiliation(s)
- Tommy Idrovo-Hidalgo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pignataro
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
| | - Luis M Bredeston
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Junín 965 C1113AAD. Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
| | - Fernanda Elias
- Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Pablo Cassará, Instituto de Ciencia y Tecnología Dr. César Milstein, Saladillo 2468 C1440FFX, Buenos Aires, Argentina
| | - María G Herrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - María F Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Sabrina Foscaldi
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Mayra Suireszcz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Natalia B Fernández
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Diana E Wetzler
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Carlos H Paván
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, LANAIS-PROEM, Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Patricio O Craig
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Ernesto A Roman
- Instituto de Química y Fisicoquímica Biológicas, (IQUIFIB), CONICET-Universidad de Buenos Aires, Junín 956 C1113AAD, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Lucas A M Ruberto
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 965, C1113AAD, Buenos Aires, Argentina
- Instituto Antártico Argentino, Ministerio de Relaciones Exteriores y Culto, Av. 25 de Mayo 1147, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Diego G Noseda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Lorena I Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Cecilia Czibener
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Juan E Ugalde
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín-CONICET, Av. 25 de Mayo y Francia S/N, B1650HMP, San Martín, Prov. de Buenos Aires, Argentina
| | - Alejandro D Nadra
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
| | - Javier Santos
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| | - Cecilia D'Alessio
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425FQB, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
24
|
Zhang Y, Sun J, Zheng J, Li S, Rao H, Dai J, Zhang Z, Wang Y, Liu D, Chen Z, Ran W, Zhu A, Li F, Yan Q, Wang Y, Yu K, Zhang S, Wang D, Tang Y, Liu B, Cheng L, Huo J, Perlman S, Zhao J, Zhao J. Mosaic RBD Nanoparticles Elicit Protective Immunity Against Multiple Human Coronaviruses in Animal Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303366. [PMID: 38105421 PMCID: PMC10916629 DOI: 10.1002/advs.202303366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/27/2023] [Indexed: 12/19/2023]
Abstract
To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (β-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of β-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-β-CoV vaccine.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jian Zheng
- Department of Microbiology and ImmunologyUniversity of IowaIowa CityIA52242USA
| | - Suxiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Haiyue Rao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jun Dai
- Guangzhou Customs District Technology CenterGuangzhou510700P. R. China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yanhong Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Banghui Liu
- State Key Laboratory of Respiratory DiseaseGuangdong Laboratory of Computational BiomedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530P. R. China
| | - Linling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jiandong Huo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
| | - Stanley Perlman
- Department of Microbiology and ImmunologyUniversity of IowaIowa CityIA52242USA
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
- Institute of Infectious diseaseGuangzhou Eighth People's Hospital of Guangzhou Medical UniversityGuangzhou510060P. R. China
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's Hospitalthe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112P. R. China
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
25
|
Wamhoff EC, Ronsard L, Feldman J, Knappe GA, Hauser BM, Romanov A, Case JB, Sanapala S, Lam EC, Denis KJS, Boucau J, Barczak AK, Balazs AB, Diamond MS, Schmidt AG, Lingwood D, Bathe M. Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds. Nat Commun 2024; 15:795. [PMID: 38291019 PMCID: PMC10828404 DOI: 10.1038/s41467-024-44869-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Protein-based virus-like particles (P-VLPs) are commonly used to spatially organize antigens and enhance humoral immunity through multivalent antigen display. However, P-VLPs are thymus-dependent antigens that are themselves immunogenic and can induce B cell responses that may neutralize the platform. Here, we investigate thymus-independent DNA origami as an alternative material for multivalent antigen display using the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, the primary target of neutralizing antibody responses. Sequential immunization of mice with DNA-based VLPs (DNA-VLPs) elicits protective neutralizing antibodies to SARS-CoV-2 in a manner that depends on the valency of the antigen displayed and on T cell help. Importantly, the immune sera do not contain boosted, class-switched antibodies against the DNA scaffold, in contrast to P-VLPs that elicit strong B cell memory against both the target antigen and the scaffold. Thus, DNA-VLPs enhance target antigen immunogenicity without generating scaffold-directed immunity and thereby offer an important alternative material for particulate vaccine design.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Larance Ronsard
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Jared Feldman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Grant A Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Blake M Hauser
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Evan C Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Kerri J St Denis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Amy K Barczak
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Alejandro B Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA.
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Silva Souza M, Pires Farias J, Barros Luiz W, Birbrair A, Durães-Carvalho R, de Souza Ferreira LC, Amorim JH. Immune targets to stop future SARS-CoV-2 variants. Microbiol Spectr 2023; 11:e0289223. [PMID: 37966210 PMCID: PMC10714790 DOI: 10.1128/spectrum.02892-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/08/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The emergence of SARS-CoV-2 had a major impact across the world. It is true that the collaboration of scientists from all over the world resulted in a rapid response against COVID-19, mainly with the development of vaccines against the disease. However, many viral genetic variants that threaten vaccines have emerged. Our study reveals highly conserved antigenic regions in the vaccines have emerged. Our study reveals highly conserved antigenic regions in the spike protein in all variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) as well as in the wild-type virus. Such immune targets can be used to fight future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Milena Silva Souza
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Department of Biological Sciences, Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Jéssica Pires Farias
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Wilson Barros Luiz
- Department of Biological Sciences, Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, São Paulo School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Luís Carlos de Souza Ferreira
- Department of Microbiology, Vaccine Development Laboratory, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Jaime Henrique Amorim
- Western Bahia Virology Institute, Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Department of Biological Sciences, Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
27
|
Upadhyay V, Panja S, Lucas A, Patrick C, Mallela KMG. Biophysical evolution of the receptor-binding domains of SARS-CoVs. Biophys J 2023; 122:4489-4502. [PMID: 37897042 PMCID: PMC10719049 DOI: 10.1016/j.bpj.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface. The sequence of the two RBDs is divergent, especially in the receptor-binding motif that directly interacts with ACE2. We probed the biophysical differences between the two RBDs in terms of their structure, stability, aggregation, and function. Since RBD is being explored as an antigen in protein subunit vaccines against CoVs, determining these biophysical properties will also aid in developing stable protein subunit vaccines. Our results show that, despite RBDs having a similar three-dimensional structure, they differ in their thermodynamic stability. RBD of SARS-CoV-2 is significantly less stable than that of SARS-CoV. Correspondingly, SARS-CoV-2 RBD shows a higher aggregation propensity. Regarding binding to ACE2, less stable SARS-CoV-2 RBD binds with a higher affinity than more stable SARS-CoV RBD. In addition, SARS-CoV-2 RBD is more homogenous in terms of its binding stoichiometry toward ACE2 compared to SARS-CoV RBD. These results indicate that SARS-CoV-2 RBD differs from SARS-CoV RBD in terms of its stability, aggregation, and function, possibly originating from the diverse receptor-binding motifs. Higher aggregation propensity and decreased stability of SARS-CoV-2 RBD warrant further optimization of protein subunit vaccines that use RBD as an antigen by inserting stabilizing mutations or formulation screening.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra Lucas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
28
|
Nolan TM, Deliyannis G, Griffith M, Braat S, Allen LF, Audsley J, Chung AW, Ciula M, Gherardin NA, Giles ML, Gordon TP, Grimley SL, Horng L, Jackson DC, Juno JA, Kedzierska K, Kent SJ, Lewin SR, Littlejohn M, McQuilten HA, Mordant FL, Nguyen THO, Soo VP, Price B, Purcell DFJ, Ramanathan P, Redmond SJ, Rockman S, Ruan Z, Sasadeusz J, Simpson JA, Subbarao K, Fabb SA, Payne TJ, Takanashi A, Tan CW, Torresi J, Wang JJ, Wang LF, Al-Wassiti H, Wong CY, Zaloumis S, Pouton CW, Godfrey DI. Interim results from a phase I randomized, placebo-controlled trial of novel SARS-CoV-2 beta variant receptor-binding domain recombinant protein and mRNA vaccines as a 4th dose booster. EBioMedicine 2023; 98:104878. [PMID: 38016322 PMCID: PMC10696466 DOI: 10.1016/j.ebiom.2023.104878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 booster vaccination should ideally enhance protection against variants and minimise immune imprinting. This Phase I trial evaluated two vaccines targeting SARS-CoV-2 beta-variant receptor-binding domain (RBD): a recombinant dimeric RBD-human IgG1 Fc-fusion protein, and an mRNA encoding a membrane-anchored RBD. METHODS 76 healthy adults aged 18-64 y, previously triple vaccinated with licensed SARS-CoV-2 vaccines, were randomised to receive a 4th dose of either an adjuvanted (MF59®, CSL Seqirus) protein vaccine (5, 15 or 45 μg, N = 32), mRNA vaccine (10, 20, or 50 μg, N = 32), or placebo (saline, N = 12) at least 90 days after a 3rd boost vaccination or SARS-CoV-2 infection. Bleeds occurred on days 1 (prior to vaccination), 8, and 29. CLINICALTRIALS govNCT05272605. FINDINGS No vaccine-related serious or medically-attended adverse events occurred. The protein vaccine reactogenicity was mild, whereas the mRNA vaccine was moderately reactogenic at higher dose levels. Best anti-RBD antibody responses resulted from the higher doses of each vaccine. A similar pattern was seen with live virus neutralisation and surrogate, and pseudovirus neutralisation assays. Breadth of immune response was demonstrated against BA.5 and more recent omicron subvariants (XBB, XBB.1.5 and BQ.1.1). Binding antibody titres for both vaccines were comparable to those of a licensed bivalent mRNA vaccine. Both vaccines enhanced CD4+ and CD8+ T cell activation. INTERPRETATION There were no safety concerns and the reactogenicity profile was mild and similar to licensed SARS-CoV-2 vaccines. Both vaccines showed strong immune boosting against beta, ancestral and omicron strains. FUNDING Australian Government Medical Research Future Fund, and philanthropies Jack Ma Foundation and IFM investors.
Collapse
Affiliation(s)
- Terry M Nolan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia.
| | - Georgia Deliyannis
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Maryanne Griffith
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Sabine Braat
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Lilith F Allen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer Audsley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Amy W Chung
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marcin Ciula
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michelle L Giles
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Samantha L Grimley
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lana Horng
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - David C Jackson
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jennifer A Juno
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Stephen J Kent
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Mason Littlejohn
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Hayley A McQuilten
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Francesca L Mordant
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Thi H O Nguyen
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Vanessa Pac Soo
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Briony Price
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Rockman
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; CSL Seqirus, Vaccine Innovation Unit, Parkville, Melbourne, Australia
| | - Zheng Ruan
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joseph Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas J Payne
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Asuka Takanashi
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Chee Wah Tan
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Joseph Torresi
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jing Jing Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, Australia
| | - Lin-Fa Wang
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | | | - Chinn Yi Wong
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sophie Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
29
|
Balinsky CA, Jiang L, Jani V, Cheng Y, Zhang Z, Belinskaya T, Qiu Q, Long TK, Schilling MA, Jenkins SA, Corson KS, Martin NJ, Letizia AG, Hontz RD, Sun P. Antibodies to S2 domain of SARS-CoV-2 spike protein in Moderna mRNA vaccinated subjects sustain antibody-dependent NK cell-mediated cell cytotoxicity against Omicron BA.1. Front Immunol 2023; 14:1266829. [PMID: 38077368 PMCID: PMC10702584 DOI: 10.3389/fimmu.2023.1266829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination with the primary two-dose series of SARS-CoV-2 mRNA protects against infection with the ancestral strain, and limits the presentation of severe disease after re-infection by multiple variants of concern (VOC), including Omicron, despite the lack of a strong neutralizing response to these variants. We compared antibody responses in serum samples collected from mRNA-1273 (Moderna) vaccinated subjects to identify mechanisms of immune escape and cross-protection. Using pseudovirus constructs containing domain-specific amino acid changes representative of Omicron BA.1, combined with domain competition and RBD-antibody depletion, we showed that RBD antibodies were primarily responsible for virus neutralization and variant escape. Antibodies to NTD played a less significant role in antibody neutralization but acted along with RBD to enhance neutralization. S2 of Omicron BA.1 had no impact on neutralization escape, suggesting it is a less critical domain for antibody neutralization; however, it was as capable as S1 at eliciting IgG3 responses and NK-cell mediated, antibody-dependent cell cytotoxicity (ADCC). Antibody neutralization and ADCC activities to RBD, NTD, and S1 were all prone to BA.1 escape. In contrast, ADCC activities to S2 resisted BA.1 escape. In conclusion, S2 antibodies showed potent ADCC function and resisted Omicron BA.1 escape, suggesting that S2 contributes to cross-protection against Omicron BA.1. In line with its conserved nature, S2 may hold promise as a vaccine target against future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Le Jiang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vihasi Jani
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Zhiwen Zhang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Tatyana Belinskaya
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Qi Qiu
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Megan A. Schilling
- Virology and Emerging Infectious Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Sarah A. Jenkins
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Karen S. Corson
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | | | | | - Robert D. Hontz
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | - Peifang Sun
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
30
|
Bottero D, Rudi E, Martin Aispuro P, Zurita E, Gaillard E, Gonzalez Lopez Ledesma MM, Malito J, Stuible M, Ambrosis N, Durocher Y, Gamarnik AV, Wigdorovitz A, Hozbor D. Heterologous booster with a novel formulation containing glycosylated trimeric S protein is effective against Omicron. Front Immunol 2023; 14:1271209. [PMID: 38022542 PMCID: PMC10667599 DOI: 10.3389/fimmu.2023.1271209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we evaluated the efficacy of a heterologous three-dose vaccination schedule against the Omicron BA.1 SARS-CoV-2 variant infection using a mouse intranasal challenge model. The vaccination schedules tested in this study consisted of a primary series of 2 doses covered by two commercial vaccines: an mRNA-based vaccine (mRNA1273) or a non-replicative vector-based vaccine (AZD1222/ChAdOx1, hereafter referred to as AZD1222). These were followed by a heterologous booster dose using one of the two vaccine candidates previously designed by us: one containing the glycosylated and trimeric spike protein (S) from the ancestral virus (SW-Vac 2µg), and the other from the Delta variant of SARS-CoV-2 (SD-Vac 2µg), both formulated with Alhydrogel as an adjuvant. For comparison purposes, homologous three-dose schedules of the commercial vaccines were used. The mRNA-based vaccine, whether used in heterologous or homologous schedules, demonstrated the best performance, significantly increasing both humoral and cellular immune responses. In contrast, for the schedules that included the AZD1222 vaccine as the primary series, the heterologous schemes showed superior immunological outcomes compared to the homologous 3-dose AZD1222 regimen. For these schemes no differences were observed in the immune response obtained when SW-Vac 2µg or SD-Vac 2µg were used as a booster dose. Neutralizing antibody levels against Omicron BA.1 were low, especially for the schedules using AZD1222. However, a robust Th1 profile, known to be crucial for protection, was observed, particularly for the heterologous schemes that included AZD1222. All the tested schedules were capable of inducing populations of CD4 T effector, memory, and follicular helper T lymphocytes. It is important to highlight that all the evaluated schedules demonstrated a satisfactory safety profile and induced multiple immunological markers of protection. Although the levels of these markers were different among the tested schedules, they appear to complement each other in conferring protection against intranasal challenge with Omicron BA.1 in K18-hACE2 mice. In summary, the results highlight the potential of using the S protein (either ancestral Wuhan or Delta variant)-based vaccine formulation as heterologous boosters in the management of COVID-19, particularly for certain commercial vaccines currently in use.
Collapse
Affiliation(s)
- Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Erika Rudi
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Eugenia Zurita
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Maria M. Gonzalez Lopez Ledesma
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Malito
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Nicolas Ambrosis
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montreal, QC, Canada
| | - Andrea V. Gamarnik
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- INCUINTA Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), HURLINGHAM, Instituto Nacional de Tecnología Agropecuaria (INTA) Castelar, Buenos Aires, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico Tecnológico – Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-CONICET), La Plata, Argentina
| |
Collapse
|
31
|
Kumru OS, Sanyal M, Friedland N, Hickey JM, Joshi R, Weidenbacher P, Do J, Cheng YC, Kim PS, Joshi SB, Volkin DB. Formulation development and comparability studies with an aluminum-salt adjuvanted SARS-CoV-2 spike ferritin nanoparticle vaccine antigen produced from two different cell lines. Vaccine 2023; 41:6502-6513. [PMID: 37620203 PMCID: PMC11181998 DOI: 10.1016/j.vaccine.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.
Collapse
Affiliation(s)
- Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Natalia Friedland
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Richa Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Payton Weidenbacher
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ya-Chen Cheng
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
32
|
Leal L, Pich J, Ferrer L, Nava J, Martí-Lluch R, Esteban I, Pradenas E, Raïch-Regué D, Prenafeta A, Escobar K, Pastor C, Ribas-Aulinas M, Trinitè B, Muñoz-Basagoiti J, Domenech G, Clotet B, Corominas J, Corpes-Comes A, Garriga C, Barreiro A, Izquierdo-Useros N, Arnaiz JA, Soriano A, Ríos J, Nadal M, Plana M, Blanco J, Prat T, Torroella E, Ramos R. Safety and immunogenicity of a recombinant protein RBD fusion heterodimer vaccine against SARS-CoV-2. NPJ Vaccines 2023; 8:147. [PMID: 37775521 PMCID: PMC10541407 DOI: 10.1038/s41541-023-00736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
In response to COVID-19 pandemic, we have launched a vaccine development program against SARS-CoV-2. Here we report the safety, tolerability, and immunogenicity of a recombinant protein RBD fusion heterodimeric vaccine against SARS-CoV-2 (PHH-1V) evaluated in a phase 1-2a dose-escalation, randomized clinical trial conducted in Catalonia, Spain. 30 young healthy adults were enrolled and received two intramuscular doses, 21 days apart of PHH-1V vaccine formulations [10 µg (n = 5), 20 µg (n = 10), 40 µg (n = 10)] or control [BNT162b2 (n = 5)]. Each PHH-1V group had one safety sentinel and the remaining participants were randomly assigned. The primary endpoint was solicited events within 7 days and unsolicited events within 28 days after each vaccination. Secondary endpoints were humoral and cellular immunogenicity against the variants of concern (VOCs) alpha, beta, delta and gamma. All formulations were safe and well tolerated, with tenderness and pain at the site of injection being the most frequently reported solicited events. Throughout the study, all participants reported having at least one mild to moderate unsolicited event. Two unrelated severe adverse events (AE) were reported and fully resolved. No AE of special interest was reported. Fourteen days after the second vaccine dose, all participants had a >4-fold change in total binding antibodies from baseline. PHH-1V induced robust humoral responses with neutralizing activities against all VOCs assessed (geometric mean fold rise at 35 days p < 0.0001). The specific T-cell response assessed by ELISpot was moderate. This initial evaluation has contributed significantly to the further development of PHH-1V, which is now included in the European vaccine portfolio.ClinicalTrials.gov Identifier NCT05007509EudraCT No. 2021-001411-82.
Collapse
Affiliation(s)
- Lorna Leal
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.
| | - Judit Pich
- Clinical Trials Unit (CTU), Hospital Clínic Barcelona, Barcelona, Spain
| | - Laura Ferrer
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | - Jocelyn Nava
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Ruth Martí-Lluch
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Ignasi Esteban
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | | | - Karla Escobar
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Carmen Pastor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Ribas-Aulinas
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
| | - Benjamin Trinitè
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Gemma Domenech
- Medical Statistics Core Facility, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Chair of Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (uVic-UCC), Vic, Spain
| | | | - Aida Corpes-Comes
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
| | - Carme Garriga
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Ríos
- Medical Statistics Core Facility, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Clinic Barcelona, Barcelona, Spain
- Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marga Nadal
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Montserrat Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
- Chair of Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (uVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Teresa Prat
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | - Elia Torroella
- HIPRA. Avenida La Selva, 135, 17170, Amer (Girona), Spain
| | - Rafel Ramos
- Institut Universitari d''Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Catalonia, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
33
|
Toyama K, Eto T, Takazawa K, Shimizu S, Nakayama T, Furihata K, Sogawa Y, Kumazaki M, Jonai N, Matsunaga S, Takeshita F, Yoshihara K, Ishizuka H. DS-5670a, a novel mRNA-encapsulated lipid nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2: Results from a phase 2 clinical study. Vaccine 2023; 41:5525-5534. [PMID: 37586958 DOI: 10.1016/j.vaccine.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND DS-5670a is a vaccine candidate for coronavirus disease 2019 (COVID-19) harnessing a novel modality composed of messenger ribonucleic acid (mRNA) encoding the receptor-binding domain (RBD) from the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encapsulated in lipid nanoparticles. Here, we report the safety, immunogenicity, and pharmacokinetic profile of DS-5670a from a phase 2 clinical trial in healthy adults who were immunologically naïve to SARS-CoV-2. METHODS The study consisted of an open-label, uncontrolled, dose-escalation part and a double-blind, randomized, uncontrolled, 2-arm, parallel-group part. A total of 80 Japanese participants were assigned to receive intramuscular DS-5670a, containing either 30 or 60 µg of mRNA, as two injections administered 4 weeks apart. Safety was assessed by characterization of treatment-emergent adverse events (TEAEs). Immunogenicity was assessed by neutralization titers against SARS-CoV-2, anti-RBD immunoglobulin (Ig)G levels, and SARS-CoV-2 spike-specific T cell responses. Plasma pharmacokinetic parameters of DS-5670a were also evaluated. RESULTS Most solicited TEAEs were mild or moderate with both the 30 and 60 µg mRNA doses. Four participants (10 %) in the 60 µg mRNA group developed severe redness at the injection site, but all cases resolved without treatment. There were no serious TEAEs and no TEAEs leading to discontinuation. Humoral immune responses in both dose groups were greater than those observed in human convalescent serum; the 60 µg mRNA dose produced better responses. Neutralization titers were found to be correlated with anti-RBD IgG levels (specifically IgG1). DS-5670a elicited antigen-specific T helper 1-polarized cellular immune responses. CONCLUSIONS The novel mRNA-based vaccine candidate DS-5670a provided favorable immune responses against SARS-CoV-2 with a clinically acceptable safety profile. Confirmatory trials are currently ongoing to evaluate the safety and immunogenicity of DS-5670a as the primary vaccine and to assess the immunogenicity when administered as a heterologous or homologous booster. TRIAL REGISTRY https://jrct.niph.go.jp/latest-detail/jRCT2071210086.
Collapse
Affiliation(s)
- Kaoru Toyama
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Eto
- Souseikai Hakata Clinic, Random Square 5F, 6-18, Tenyamachi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Kenji Takazawa
- Shinanozaka Clinic, Medical Corporation Shinanokai, Yotsuya Medical Building 3F, 20 Samon-cho, Shinjyu-ku, Tokyo 160-0017, Japan
| | - Shinji Shimizu
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tetsuo Nakayama
- Kitasato University Ömura Satoshi Memorial Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kei Furihata
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshitaka Sogawa
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masafumi Kumazaki
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Nao Jonai
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Satoko Matsunaga
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Fumihiko Takeshita
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazutaka Yoshihara
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hitoshi Ishizuka
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| |
Collapse
|
34
|
Grant MD, Bentley K, Fielding CA, Hatfield KM, Ings DP, Harnum D, Wang EC, Stanton RJ, Holder KA. Combined anti-S1 and anti-S2 antibodies from hybrid immunity elicit potent cross-variant ADCC against SARS-CoV-2. JCI Insight 2023; 8:e170681. [PMID: 37338994 PMCID: PMC10445686 DOI: 10.1172/jci.insight.170681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Antibodies capable of neutralizing SARS-CoV-2 are well studied, but Fc receptor-dependent antibody activities that can also significantly impact the course of infection have not been studied in such depth. Since most SARS-CoV-2 vaccines induce only anti-spike antibodies, here we investigated spike-specific antibody-dependent cellular cytotoxicity (ADCC). Vaccination produced antibodies that weakly induced ADCC; however, antibodies from individuals who were infected prior to vaccination (hybrid immunity) elicited strong anti-spike ADCC. Quantitative and qualitative aspects of humoral immunity contributed to this capability, with infection skewing IgG antibody production toward S2, vaccination skewing toward S1, and hybrid immunity evoking strong responses against both domains. A combination of antibodies targeting both spike domains support strong antibody-dependent NK cell activation, with 3 regions of antibody reactivity outside the receptor-binding domain (RBD) corresponding with potent anti-spike ADCC. Consequently, ADCC induced by hybrid immunity with ancestral antigen was conserved against variants containing neutralization escape mutations in the RBD. Induction of antibodies recognizing a broad range of spike epitopes and eliciting strong and durable ADCC may partially explain why hybrid immunity provides superior protection against infection and disease compared with vaccination alone, and it demonstrates that spike-only subunit vaccines would benefit from strategies that induce combined anti-S1 and anti-S2 antibody responses.
Collapse
Affiliation(s)
- Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kirsten Bentley
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ceri A. Fielding
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Keeley M. Hatfield
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Danielle P. Ings
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Debbie Harnum
- Eastern Health Regional Health Authority, St. John’s, Newfoundland, Canada
| | - Eddie C.Y. Wang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kayla A. Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
35
|
Kumru OS, Bajoria S, Kaur K, Hickey JM, Van Slyke G, Doering J, Berman K, Richardson C, Lien H, Kleanthous H, Mantis NJ, Joshi SB, Volkin DB. Effects of aluminum-salt, CpG and emulsion adjuvants on the stability and immunogenicity of a virus-like particle displaying the SARS-CoV-2 receptor-binding domain (RBD). Hum Vaccin Immunother 2023; 19:2264594. [PMID: 37932241 PMCID: PMC10760504 DOI: 10.1080/21645515.2023.2264594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023] Open
Abstract
Second-generation COVID-19 vaccines with improved immunogenicity (e.g., breadth, duration) and availability (e.g., lower costs, refrigerator stable) are needed to enhance global coverage. In this work, we formulated a clinical-stage SARS-CoV-2 receptor-binding domain (RBD) virus-like particle (VLP) vaccine candidate (IVX-411) with widely available adjuvants. Specifically, we assessed the in vitro storage stability and in vivo mouse immunogenicity of IVX-411 formulated with aluminum-salt adjuvants (Alhydrogel™, AH and Adjuphos™, AP), without or with the TLR-9 agonist CpG-1018™ (CpG), and compared these profiles to IVX-411 adjuvanted with an oil-in-water nano-emulsion (AddaVax™, AV). Although IVX-411 bound both AH and AP, lower binding strength of antigen to AP was observed by Langmuir binding isotherms. Interestingly, AH- and AP-adsorbed IVX-411 had similar storage stability profiles as measured by antigen-binding assays (competitive ELISAs), but the latter displayed higher pseudovirus neutralizing titers (pNT) in mice, at levels comparable to titers elicited by AV-adjuvanted IVX-411. CpG addition to alum (AP or AH) resulted in a marginal trend of improved pNTs in stressed samples only, yet did not impact the storage stability profiles of IVX-411. In contrast, previous work with AH-formulations of a monomeric RBD antigen showed greatly improved immunogenicity and decreased stability upon CpG addition to alum. At elevated temperatures (25, 37°C), IVX-411 formulated with AH or AP displayed decreased in vitro stability compared to AV-formulated IVX-411and this rank-ordering correlated with in vivo performance (mouse pNT values). This case study highlights the importance of characterizing antigen-adjuvant interactions to develop low cost, aluminum-salt adjuvanted recombinant subunit vaccine candidates.
Collapse
Affiliation(s)
- Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Greta Van Slyke
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jennifer Doering
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Katherine Berman
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | | | - Harry Kleanthous
- Discovery & Translational Sciences, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
36
|
Xiao L, Yu W, Shen L, Yan W, Qi J, Hu T. Mucosal SARS-CoV-2 Nanoparticle Vaccine Based on Mucosal Adjuvants and Its Immune Effectiveness by Intranasal Administration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466148 DOI: 10.1021/acsami.3c05456] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
SARS-CoV-2 is a respiratory virus that causes significant threats to human health. Mucosal immunity provides a first-line defense to prevent the infection of SARS-CoV-2 in the respiratory tract. Because most SARS-CoV-2 vaccines could not stimulate mucosal immunity in the respiratory tract, appropriate mucosal adjuvants or delivery systems are needed for mucosal vaccine development. Mannan, polyarginine, and 2',3'-cGAMP are three mucosal adjuvants that could stimulate mucosal immunity. In the present study, the three adjuvants were assembled with a receptor-binding domain (RBD) by electrostatic interaction to generate a nanoparticle vaccine (RBD-MP-cG). RBD-MP-cG elicited mucosal IgA and IgG response in bronchoalveolar lavage and nasal lavage by intranasal administration. It induced a robust RBD-specific antibody response, high levels of protective neutralizing antibody, and ACE2-blocking activity in the mouse sera. It stimulated the splenic secretion of high levels of Th1-, Th2-, and Th17-type cytokines. Thus, RBD-MP-cG elicited strong mucosal immunity and systematic immunity by intranasal administration. RBD-MP-cG was expected to act as a safe, effective, and easily produced mucosal nanoparticle vaccine to combat the infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Lucheng Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Weili Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Lijuan Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Wenying Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinming Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| | - Tao Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 Bei-Er-Jie Street, Haidian District, Beijing 100190, China
| |
Collapse
|
37
|
Lobaina Y, Chen R, Suzarte E, Ai P, Huerta V, Tan C, Alvarez-Lajonchere L, Liling Y, Musacchio A, Silva R, Guillén G, Zaixue J, Yang K, Perera Y, Hermida L. Broad humoral immunity generated in mice by a formulation composed of two antigens from the Delta variant of SARS-CoV-2. Arch Virol 2023; 168:190. [PMID: 37351679 DOI: 10.1007/s00705-023-05812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/05/2023] [Indexed: 06/24/2023]
Abstract
Due to the rapid development of new variants of SARS-CoV-2 as well as the real threat of new coronavirus zoonosis events, the development of a preventive vaccine with a broader scope of functionality is highly desirable. Previously, we reported the functionality of a nasal formulation containing the nucleocapsid protein and the receptor-binding domain (RBD) of the spike protein of the Delta variant of SARS-CoV-2 combined with the ODN-39M adjuvant. This combination induced cross-reactive immunity in mucosal and systemic compartments at the sarbecovirus level. In the present study, we explored the magnitude of the immunity generated in BALB/c mice by the same formulation with alum added as an additional adjuvant, to enhance the humoral immunity against the two antigens. Animals were immunized with three doses of the bivalent formulation, administered by subcutaneous route. Humoral immunity was tested by ELISA, and the neutralizing capacity of the resulting antibodies (Abs) was evaluated using a surrogate test and a vesicular stomatitis virus (VSV) pseudovirus-based assay. Cell-mediated immunity was also investigated using an IFN-γ ELISpot assay. High levels of antibodies against both antigens (N and RBD) were obtained upon immunization. Anti-RBD Abs with neutralizing capacity reacted with the RBD of three SARS-CoV-2 variants tested, including Omicron. Abs recognizing the nucleocapsid proteins of SARS-CoV-1 and the SARS-CoV-2 Delta and Omicron variants were also detected. Taken together, these results suggest that this bivalent formulation could be an attractive component of a pancorona vaccine able to broaden the scope of humoral immunity against both antigens. This will be particularly important for the reinforcement of immunity in previously vaccinated and/or infected populations.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Research Department, Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou, 425000, Hunan, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Edith Suzarte
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Vivian Huerta
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Liz Alvarez-Lajonchere
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Yang Liling
- Department of Laboratory Medicine, Dongguan Ninth People's Hospital, No. 88, Shaditang, Guancheng District, Dongguan, Guangdong, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Ricardo Silva
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Scientific Department, Representative Office of BioCubaFarma in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing, 100022, China
| | - Gerardo Guillén
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Jiang Zaixue
- Guangdong Eighth People's Hospital, No. 68 South, Shilong Xihu 3rd Road, Shilong Town, Dongguan, Guangdong, China
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China.
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba.
- Research Department, Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou, 425000, Hunan, China.
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Scientific Department, Representative Office of BioCubaFarma in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing, 100022, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China.
| |
Collapse
|
38
|
Wamhoff EC, Ronsard L, Feldman J, Knappe GA, Hauser BM, Romanov A, Lam E, Denis KS, Boucau J, Barczak AK, Balazs AB, Schmidt A, Lingwood D, Bathe M. Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.08.16.504128. [PMID: 36032975 PMCID: PMC9413718 DOI: 10.1101/2022.08.16.504128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Multivalent antigen display is a well-established principle to enhance humoral immunity. Protein-based virus-like particles (VLPs) are commonly used to spatially organize antigens. However, protein-based VLPs are limited in their ability to control valency on fixed scaffold geometries and are thymus-dependent antigens that elicit neutralizing B cell memory themselves, which can distract immune responses. Here, we investigated DNA origami as an alternative material for multivalent antigen display in vivo, applied to the receptor binding domain (RBD) of SARS-CoV2 that is the primary antigenic target of neutralizing antibody responses. Icosahedral DNA-VLPs elicited neutralizing antibodies to SARS-CoV-2 in a valency-dependent manner following sequential immunization in mice, quantified by pseudo- and live-virus neutralization assays. Further, induction of B cell memory against the RBD required T cell help, but the immune sera did not contain boosted, class-switched antibodies against the DNA scaffold. This contrasted with protein-based VLP display of the RBD that elicited B cell memory against both the target antigen and the scaffold. Thus, DNA-based VLPs enhance target antigen immunogenicity without generating off-target, scaffold-directed immune memory, thereby offering a potentially important alternative material for particulate vaccine design.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Larance Ronsard
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Jared Feldman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Grant A. Knappe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Blake M. Hauser
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Evan Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Kerri St. Denis
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Amy K Barczak
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Alejandro B. Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Aaron Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, United States
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, United States
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
39
|
Jacobson GM, Kraakman K, Wallace O, Pan J, Hennebry A, Smolenski G, Cursons R, Hodgkinson S, Williamson A, Kelton W. Immunogenic fusion proteins induce neutralizing SARS-CoV-2 antibodies in the serum and milk of sheep. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00791. [PMID: 36915646 PMCID: PMC9995299 DOI: 10.1016/j.btre.2023.e00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Antigen-specific polyclonal immunoglobulins derived from the serum, colostrum, or milk of immunized ruminant animals have potential as scalable therapeutics for the control of viral diseases including COVID-19. Here we show that the immunization of sheep with fusions of the SARS-CoV-2 receptor binding domain (RBD) to ovine IgG2a Fc domains promotes significantly higher levels of antigen-specific antibodies compared to native RBD or full-length spike antigens. This antibody population contained elevated levels of neutralizing antibodies that suppressed binding between the RBD and hACE2 receptors in vitro. A second immune-stimulating fusion candidate, Granulocyte-macrophage colony-stimulating factor (GM-CSF), induced high neutralizing responses in select animals but narrowly missed achieving significance. We further demonstrated that the antibodies induced by these fusion antigens were transferred into colostrum/milk and possessed cross-neutralizing activity against diverse SARS-CoV-2 variants. Our findings highlight a new pathway for recombinant antigen design in ruminant animals with applications in immune milk production and animal health.
Collapse
Affiliation(s)
- Gregory M Jacobson
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Kirsty Kraakman
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand.,Ruakura Technologies Ltd, Ruakura Research Centre, Hamilton 3214, New Zealand
| | - Olivia Wallace
- Ruakura Technologies Ltd, Ruakura Research Centre, Hamilton 3214, New Zealand
| | - Jolyn Pan
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Alex Hennebry
- Ruakura Technologies Ltd, Ruakura Research Centre, Hamilton 3214, New Zealand
| | - Grant Smolenski
- Ruakura Technologies Ltd, Ruakura Research Centre, Hamilton 3214, New Zealand
| | - Ray Cursons
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Steve Hodgkinson
- Ruakura Technologies Ltd, Ruakura Research Centre, Hamilton 3214, New Zealand
| | - Adele Williamson
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - William Kelton
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton 3240, New Zealand.,Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| |
Collapse
|
40
|
Dash S, Farnós O, Yang Z, Perumal AS, Chaves Fulber JP, Venereo-Sánchez A, Leclerc D, Kamen AA. A rapid procedure to generate stably transfected HEK293 suspension cells for recombinant protein manufacturing: Yield improvements, bioreactor production and downstream processing. Protein Expr Purif 2023; 210:106295. [PMID: 37201590 DOI: 10.1016/j.pep.2023.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
The human cell line HEK293 is one of the preferred choices for manufacturing therapeutic proteins and viral vectors for human applications. Despite its increased use, it is still considered in disadvantage in production aspects compared to cell lines such as the CHO cell line. We provide here a simple workflow for the rapid generation of stably transfected HEK293 cells expressing an engineered variant of the SARS-CoV-2 Receptor Binding Domain (RBD) carrying a coupling domain for linkage to VLPs through a bacterial transpeptidase-sortase (SrtA). To generate stable suspension cells expressing the RBD-SrtA, a single two plasmids transfection was performed, with hygromycin selection. The suspension HEK293 were grown in adherent conditions, with 20% FBS supplementation. These transfection conditions increased cell survival, allowing the selection of stable cell pools, which was otherwise not possible with standard procedures in suspension. Six pools were isolated, expanded and successfully re-adapted to suspension with a gradual increase of serum-free media and agitation. The complete process lasted four weeks. Stable expression with viability over 98% was verified for over two months in culture, with cell passages every 4-5 days. With process intensification, RBD-SrtA yields reached 6.4 μg/mL and 13.4 μg/mL in fed-batch and perfusion-like cultures, respectively. RBD-SrtA was further produced in fed-batch stirred tank 1L-bioreactors, reaching 10-fold higher yields than perfusion flasks. The trimeric antigen displayed the conformational structure and functionality expected. This work provides a series of steps for stable cell pool development using suspension HEK293 cells aimed at the scalable production of recombinant proteins.
Collapse
Affiliation(s)
- Shantoshini Dash
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Omar Farnós
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0E9, Canada
| | - Zeyu Yang
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0E9, Canada
| | | | | | | | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, 2705 boul. Laurier, Quebec City, PQ, G1V 4G2, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0E9, Canada.
| |
Collapse
|
41
|
Deliyannis G, Gherardin NA, Wong CY, Grimley SL, Cooney JP, Redmond SJ, Ellenberg P, Davidson KC, Mordant FL, Smith T, Gillard M, Lopez E, McAuley J, Tan CW, Wang JJ, Zeng W, Littlejohn M, Zhou R, Fuk-Woo Chan J, Chen ZW, Hartwig AE, Bowen R, Mackenzie JM, Vincan E, Torresi J, Kedzierska K, Pouton CW, Gordon TP, Wang LF, Kent SJ, Wheatley AK, Lewin SR, Subbarao K, Chung AW, Pellegrini M, Munro T, Nolan T, Rockman S, Jackson DC, Purcell DFJ, Godfrey DI. Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine. EBioMedicine 2023; 92:104574. [PMID: 37148585 PMCID: PMC10159263 DOI: 10.1016/j.ebiom.2023.104574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/02/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chinn Yi Wong
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Samantha L Grimley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - James P Cooney
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Paula Ellenberg
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Kathryn C Davidson
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Francesca L Mordant
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tim Smith
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ester Lopez
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Julie McAuley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chee Wah Tan
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Jing J Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Weiguang Zeng
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mason Littlejohn
- Doherty Directorate, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Runhong Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Zhi-Wei Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Airn E Hartwig
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Richard Bowen
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory (VIDRL) at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Joseph Torresi
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Lin-Fa Wang
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Stephen J Kent
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, 3010 Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Amy W Chung
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Terry Nolan
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Vaccine and Immunisation Research Group (VIRGo), Department of Infectious Disease, Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Murdoch Children's Research Institute, Victoria 3010, Australia
| | - Steven Rockman
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Seqirus, Vaccine Innovation Unit, Parkville, Victoria, 3052, Australia
| | - David C Jackson
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Damian F J Purcell
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
42
|
Corominas J, Garriga C, Prenafeta A, Moros A, Cañete M, Barreiro A, González-González L, Madrenas L, Güell I, Clotet B, Izquierdo-Useros N, Raïch-Regué D, Gallemí M, Blanco J, Pradenas E, Trinité B, Prado JG, Blanch-Lombarte O, Pérez-Caballero R, Plana M, Esteban I, Pastor-Quiñones C, Núñez-Costa X, Taleb RA, McSkimming P, Soriano A, Nava J, Anagua JO, Ramos R, Lluch RM, Comes AC, Romero SO, Gomez XM, Sans-Pola C, Moltó J, Benet S, Bailón L, Arribas JR, Borobia AM, Parada JQ, Navarro-Pérez J, Forner Giner MJ, Lucas RO, Jiménez MDMV, Compán SO, Alvarez-Mon M, Troncoso D, Arana-Arri E, Meijide S, Imaz-Ayo N, García PM, de la Villa Martínez S, Fernández SR, Prat T, Torroella È, Ferrer L. Safety and immunogenicity of the protein-based PHH-1V compared to BNT162b2 as a heterologous SARS-CoV-2 booster vaccine in adults vaccinated against COVID-19: a multicentre, randomised, double-blind, non-inferiority phase IIb trial. THE LANCET REGIONAL HEALTH. EUROPE 2023; 28:100613. [PMID: 37131861 PMCID: PMC10102678 DOI: 10.1016/j.lanepe.2023.100613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/04/2023]
Abstract
Background A SARS-CoV-2 protein-based heterodimer vaccine, PHH-1V, has been shown to be safe and well-tolerated in healthy young adults in a first-in-human, Phase I/IIa study dose-escalation trial. Here, we report the interim results of the Phase IIb HH-2, where the immunogenicity and safety of a heterologous booster with PHH-1V is assessed versus a homologous booster with BNT162b2 at 14, 28 and 98 days after vaccine administration. Methods The HH-2 study is an ongoing multicentre, randomised, active-controlled, double-blind, non-inferiority Phase IIb trial, where participants 18 years or older who had received two doses of BNT162b2 were randomly assigned in a 2:1 ratio to receive a booster dose of vaccine-either heterologous (PHH-1V group) or homologous (BNT162b2 group)-in 10 centres in Spain. Eligible subjects were allocated to treatment stratified by age group (18-64 versus ≥65 years) with approximately 10% of the sample enrolled in the older age group. The primary endpoints were humoral immunogenicity measured by changes in levels of neutralizing antibodies (PBNA) against the ancestral Wuhan-Hu-1 strain after the PHH-1V or the BNT162b2 boost, and the safety and tolerability of PHH-1V as a boost. The secondary endpoints were to compare changes in levels of neutralizing antibodies against different variants of SARS-CoV-2 and the T-cell responses towards the SARS-CoV-2 spike glycoprotein peptides. The exploratory endpoint was to assess the number of subjects with SARS-CoV-2 infections ≥14 days after PHH-1V booster. This study is ongoing and is registered with ClinicalTrials.gov, NCT05142553. Findings From 15 November 2021, 782 adults were randomly assigned to PHH-1V (n = 522) or BNT162b2 (n = 260) boost vaccine groups. The geometric mean titre (GMT) ratio of neutralizing antibodies on days 14, 28 and 98, shown as BNT162b2 active control versus PHH-1V, was, respectively, 1.68 (p < 0.0001), 1.31 (p = 0.0007) and 0.86 (p = 0.40) for the ancestral Wuhan-Hu-1 strain; 0.62 (p < 0.0001), 0.65 (p < 0.0001) and 0.56 (p = 0.003) for the Beta variant; 1.01 (p = 0.92), 0.88 (p = 0.11) and 0.52 (p = 0.0003) for the Delta variant; and 0.59 (p ≤ 0.0001), 0.66 (p < 0.0001) and 0.57 (p = 0.0028) for the Omicron BA.1 variant. Additionally, PHH-1V as a booster dose induced a significant increase of CD4+ and CD8+ T-cells expressing IFN-γ on day 14. There were 458 participants who experienced at least one adverse event (89.3%) in the PHH-1V and 238 (94.4%) in the BNT162b2 group. The most frequent adverse events were injection site pain (79.7% and 89.3%), fatigue (27.5% and 42.1%) and headache (31.2 and 40.1%) for the PHH-1V and the BNT162b2 groups, respectively. A total of 52 COVID-19 cases occurred from day 14 post-vaccination (10.14%) for the PHH-1V group and 30 (11.90%) for the BNT162b2 group (p = 0.45), and none of the subjects developed severe COVID-19. Interpretation Our interim results from the Phase IIb HH-2 trial show that PHH-1V as a heterologous booster vaccine, when compared to BNT162b2, although it does not reach a non-inferior neutralizing antibody response against the Wuhan-Hu-1 strain at days 14 and 28 after vaccination, it does so at day 98. PHH-1V as a heterologous booster elicits a superior neutralizing antibody response against the previous circulating Beta and the currently circulating Omicron BA.1 SARS-CoV-2 variants in all time points assessed, and for the Delta variant on day 98 as well. Moreover, the PHH-1V boost also induces a strong and balanced T-cell response. Concerning the safety profile, subjects in the PHH-1V group report significantly fewer adverse events than those in the BNT162b2 group, most of mild intensity, and both vaccine groups present comparable COVID-19 breakthrough cases, none of them severe. Funding HIPRA SCIENTIFIC, S.L.U.
Collapse
Affiliation(s)
- Júlia Corominas
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | - Carme Garriga
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | | | - Alexandra Moros
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | - Manuel Cañete
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | | | | | - Laia Madrenas
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | - Irina Güell
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
- Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Carrer de la Sagrada Família, 7, 08500, Vic, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
| | - Marçal Gallemí
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
- Infectious Diseases and Immunity, Faculty of Medicine, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Carrer de la Sagrada Família, 7, 08500, Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Carretera de Canyet, s/n, Badalona, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Julia G. Prado
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Carretera de Canyet, s/n, Badalona, Spain
| | - Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
| | - Raúl Pérez-Caballero
- IrsiCaixa AIDS Research Institute, Carretera de Canyet, s/n, Can Ruti Campus, 08916, Badalona, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/ del Rosselló, 149, 08036, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Ignasi Esteban
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/ del Rosselló, 149, 08036, Barcelona, Spain
| | - Carmen Pastor-Quiñones
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/ del Rosselló, 149, 08036, Barcelona, Spain
| | - Xavier Núñez-Costa
- Veristat, LLC, Barcelona, Spain
- Veristat, LLC, Toronto, Canada
- Veristat, LLC, Pickmere, UK
| | - Rachel Abu Taleb
- Veristat, LLC, Barcelona, Spain
- Veristat, LLC, Toronto, Canada
- Veristat, LLC, Pickmere, UK
| | - Paula McSkimming
- Veristat, LLC, Barcelona, Spain
- Veristat, LLC, Toronto, Canada
- Veristat, LLC, Pickmere, UK
| | - Alex Soriano
- Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Jocelyn Nava
- Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036, Barcelona, Spain
| | - Jesse Omar Anagua
- Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036, Barcelona, Spain
| | - Rafel Ramos
- Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Biomedical Research Institute, Girona (IdIBGi), Catalan Institute of Health, Carrer del Dr. Castany, s/n, 17190, Salt, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Plaça de Sant Domènec, 3, 17004, Girona, Spain
| | - Ruth Martí Lluch
- Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Biomedical Research Institute, Girona (IdIBGi), Catalan Institute of Health, Carrer del Dr. Castany, s/n, 17190, Salt, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Plaça de Sant Domènec, 3, 17004, Girona, Spain
| | - Aida Corpes Comes
- Institut Universitari d’Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Biomedical Research Institute, Girona (IdIBGi), Catalan Institute of Health, Carrer del Dr. Castany, s/n, 17190, Salt, Girona, Spain
| | - Susana Otero Romero
- Hospital Universitari Vall d'Hebron, Pg. de la Vall d'Hebron, 119, 08035, Barcelona, Spain
- Unitat Docent Vall d'Hebron, Universitat Autònoma de Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
- Department of Neurology/Neuroimmunology, Centro de Esclerosis Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Pg. de la Vall d'Hebron, 119, 08035, Barcelona, Spain
| | - Xavier Martinez Gomez
- Hospital Universitari Vall d'Hebron, Pg. de la Vall d'Hebron, 119, 08035, Barcelona, Spain
- Unitat Docent Vall d'Hebron, Universitat Autònoma de Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
| | - Carla Sans-Pola
- Hospital Universitari Vall d'Hebron, Pg. de la Vall d'Hebron, 119, 08035, Barcelona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Plaça Cívica, 08193, Bellaterra, Barcelona, Spain
- Clinical Pharmacology Research Group, Vall d'Hebron Institut de Recerca, Pg. de la Vall d'Hebron, 119, 08035, Barcelona, Spain
| | - José Moltó
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, s/n, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Susana Benet
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, s/n, Badalona, Spain
| | - Lucía Bailón
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, s/n, Badalona, Spain
| | - Jose R. Arribas
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, C. de Pedro Rico, 6, 28029, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Alberto M. Borobia
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, C. de Pedro Rico, 6, 28029, Madrid, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
- Spanish Clinical Research Network - SCReN, Spain
| | - Javier Queiruga Parada
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, C. de Pedro Rico, 6, 28029, Madrid, Spain
- Spanish Clinical Research Network - SCReN, Spain
| | - Jorge Navarro-Pérez
- Hospital Clínico Universitario Valencia, Av. de Blasco Ibáñez, 17, 46010, València, Spain
| | | | - Rafael Ortí Lucas
- Hospital Clínico Universitario Valencia, Av. de Blasco Ibáñez, 17, 46010, València, Spain
| | | | - Salvador Oña Compán
- Hospital Regional Universitario de Málaga, Av. de Carlos Haya, 84, 29010, Málaga, Spain
| | - Melchor Alvarez-Mon
- Hospital Universitario Príncipe de Asturias, Av. Principal de la Universidad, s/n, 28805, Alcalá de Henares, Madrid, Spain
| | - Daniel Troncoso
- Hospital Universitario Príncipe de Asturias, Av. Principal de la Universidad, s/n, 28805, Alcalá de Henares, Madrid, Spain
| | - Eunate Arana-Arri
- Scientific Coordination, Biocruces Bizkaia HRI, Osakidetza, Cruces Plaza, 48903, Barakaldo, Bizkaia, Spain
| | - Susana Meijide
- Scientific Coordination, Biocruces Bizkaia HRI, Osakidetza, Cruces Plaza, 48903, Barakaldo, Bizkaia, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination, Biocruces Bizkaia HRI, Osakidetza, Cruces Plaza, 48903, Barakaldo, Bizkaia, Spain
| | - Patricia Muñoz García
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007, Madrid, Spain
- CIBER Enfermedades Respiratorias- CIBERES (CB06/06/0058), Madrid, Spain
| | - Sofía de la Villa Martínez
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007, Madrid, Spain
| | - Sara Rodríguez Fernández
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007, Madrid, Spain
| | - Teresa Prat
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | - Èlia Torroella
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| | - Laura Ferrer
- HIPRA, Avinguda de la Selva, 135, 17170, Amer, Girona, Spain
| |
Collapse
|
43
|
Hoffmann MAG, Yang Z, Huey-Tubman KE, Cohen AA, Gnanapragasam PNP, Nakatomi LM, Storm KN, Moon WJ, Lin PJC, West AP, Bjorkman PJ. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines. Cell 2023; 186:2380-2391.e9. [PMID: 37146611 PMCID: PMC10121106 DOI: 10.1016/j.cell.2023.04.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
Prime-boost regimens for COVID-19 vaccines elicit poor antibody responses against Omicron-based variants and employ frequent boosters to maintain antibody levels. We present a natural infection-mimicking technology that combines features of mRNA- and proteinnanoparticle-based vaccines through encoding self-assembling enveloped virus-like particles (eVLPs). eVLP assembly is achieved by inserting an ESCRT- and ALIX-binding region (EABR) into the SARS-CoV-2 spike cytoplasmic tail, which recruits ESCRT proteins to induce eVLP budding from cells. Purified spike-EABR eVLPs presented densely arrayed spikes and elicited potent antibody responses in mice. Two immunizations with mRNA-LNP encoding spike-EABR elicited potent CD8+ T cell responses and superior neutralizing antibody responses against original and variant SARS-CoV-2 compared with conventional spike-encoding mRNA-LNP and purified spike-EABR eVLPs, improving neutralizing titers >10-fold against Omicron-based variants for 3 months post-boost. Thus, EABR technology enhances potency and breadth of vaccine-induced responses through antigen presentation on cell surfaces and eVLPs, enabling longer-lasting protection against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Magnus A G Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kathryn E Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Leesa M Nakatomi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kaya N Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
44
|
Montgomerie I, Bird TW, Palmer OR, Mason NC, Pankhurst TE, Lawley B, Hernández LC, Harfoot R, Authier-Hall A, Anderson DE, Hilligan KL, Buick KH, Mbenza NM, Mittelstädt G, Maxwell S, Sinha S, Kuang J, Subbarao K, Parker EJ, Sher A, Hermans IF, Ussher JE, Quiñones-Mateu ME, Comoletti D, Connor LM. Incorporation of SARS-CoV-2 spike NTD to RBD protein vaccine improves immunity against viral variants. iScience 2023; 26:106256. [PMID: 36845030 PMCID: PMC9940465 DOI: 10.1016/j.isci.2023.106256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | - Blair Lawley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Leonor C Hernández
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rhodri Harfoot
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Danielle E Anderson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlin H Buick
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Naasson M Mbenza
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gerd Mittelstädt
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Samara Maxwell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Shubhra Sinha
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
| | - Emily J Parker
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Alan Sher
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - James E Ussher
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Webster Centre for Infectious Diseases, University of Otago, Dunedin, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | |
Collapse
|
45
|
Campbell E, Dobkin J, Osorio LJ, Kolloli A, Ramasamy S, Kumar R, Sant'Angelo DB, Subbian S, Denzin LK, Anderson S. A SARS-CoV-2 Vaccine Designed for Manufacturability Results in Unexpected Potency and Non-Waning Humoral Response. Vaccines (Basel) 2023; 11:vaccines11040832. [PMID: 37112744 PMCID: PMC10145385 DOI: 10.3390/vaccines11040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The rapid development of several highly efficacious SARS-CoV-2 vaccines was an unprecedented scientific achievement that saved millions of lives. However, now that SARS-CoV-2 is transitioning to the endemic stage, there exists an unmet need for new vaccines that provide durable immunity and protection against variants and can be more easily manufactured and distributed. Here, we describe a novel protein component vaccine candidate, MT-001, based on a fragment of the SARS-CoV-2 spike protein that encompasses the receptor binding domain (RBD). Mice and hamsters immunized with a prime-boost regimen of MT-001 demonstrated extremely high anti-spike IgG titers, and remarkably this humoral response did not appreciably wane for up to 12 months following vaccination. Further, virus neutralization titers, including titers against variants such as Delta and Omicron BA.1, remained high without the requirement for subsequent boosting. MT-001 was designed for manufacturability and ease of distribution, and we demonstrate that these attributes are not inconsistent with a highly immunogenic vaccine that confers durable and broad immunity to SARS-CoV-2 and its emerging variants. These properties suggest MT-001 could be a valuable new addition to the toolbox of SARS-CoV-2 vaccines and other interventions to prevent infection and curtail additional morbidity and mortality from the ongoing worldwide pandemic.
Collapse
Affiliation(s)
- Elliot Campbell
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
- Macrotope, Inc., Princeton, NJ 08540, USA
| | - Julie Dobkin
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Louis J Osorio
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Afsal Kolloli
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Stephen Anderson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
- Macrotope, Inc., Princeton, NJ 08540, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
46
|
Volosnikova EA, Merkuleva IA, Esina TI, Shcherbakov DN, Borgoyakova MB, Isaeva AA, Nesmeyanova VS, Volkova NV, Belenkaya SV, Zaykovskaya AV, Pyankov OV, Starostina EV, Zadorozhny AM, Zaitsev BN, Karpenko LI, Ilyichev AA, Danilenko ED. SARS-CoV-2 RBD Conjugated to Polyglucin, Spermidine, and dsRNA Elicits a Strong Immune Response in Mice. Vaccines (Basel) 2023; 11:vaccines11040808. [PMID: 37112720 PMCID: PMC10146165 DOI: 10.3390/vaccines11040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.
Collapse
Affiliation(s)
- Ekaterina A Volosnikova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Iuliia A Merkuleva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Tatiana I Esina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Dmitry N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Mariya B Borgoyakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Anastasiya A Isaeva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Valentina S Nesmeyanova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Natalia V Volkova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Svetlana V Belenkaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Anna V Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Ekaterina V Starostina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Alexey M Zadorozhny
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Boris N Zaitsev
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Larisa I Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Alexander A Ilyichev
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Elena D Danilenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia
| |
Collapse
|
47
|
Kumru OS, Sanyal M, Friedland N, Hickey J, Joshi R, Weidenbacher P, Do J, Cheng YC, Kim PS, Joshi SB, Volkin DB. Formulation development and comparability studies with an aluminum-salt adjuvanted SARS-CoV-2 Spike ferritin nanoparticle vaccine antigen produced from two different cell lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535447. [PMID: 37066156 PMCID: PMC10103975 DOI: 10.1101/2023.04.03.535447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ∼100%, ∼40% or ∼10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4°C storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells.
Collapse
Affiliation(s)
- Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Natalia Friedland
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - John Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Richa Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Payton Weidenbacher
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan Do
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Ya-Chen Cheng
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, CA, 94305 USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
48
|
Koopman G, Amacker M, Stegmann T, Verschoor EJ, Verstrepen BE, Bhoelan F, Bemelman D, Böszörményi KP, Fagrouch Z, Kiemenyi-Kayere G, Mortier D, Verel DE, Niphuis H, Acar RF, Kondova I, Kap YS, Bogers WMJM, Mooij P, Fleury S. A low dose of RBD and TLR7/8 agonist displayed on influenza virosome particles protects rhesus macaque against SARS-CoV-2 challenge. Sci Rep 2023; 13:5074. [PMID: 36977691 PMCID: PMC10044094 DOI: 10.1038/s41598-023-31818-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Influenza virosomes serve as antigen delivery vehicles and pre-existing immunity toward influenza improves the immune responses toward antigens. Here, vaccine efficacy was evaluated in non-human primates with a COVID-19 virosome-based vaccine containing a low dose of RBD protein (15 µg) and the adjuvant 3M-052 (1 µg), displayed together on virosomes. Vaccinated animals (n = 6) received two intramuscular administrations at week 0 and 4 and challenged with SARS-CoV-2 at week 8, together with unvaccinated control animals (n = 4). The vaccine was safe and well tolerated and serum RBD IgG antibodies were induced in all animals and in the nasal washes and bronchoalveolar lavages in the three youngest animals. All control animals became strongly sgRNA positive in BAL, while all vaccinated animals were protected, although the oldest vaccinated animal (V1) was transiently weakly positive. The three youngest animals had also no detectable sgRNA in nasal wash and throat. Cross-strain serum neutralizing antibodies toward Wuhan-like, Alpha, Beta, and Delta viruses were observed in animals with the highest serum titers. Pro-inflammatory cytokines IL-8, CXCL-10 and IL-6 were increased in BALs of infected control animals but not in vaccinated animals. Virosomes-RBD/3M-052 prevented severe SARS-CoV-2, as shown by a lower total lung inflammatory pathology score than control animals.
Collapse
Grants
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
Collapse
Affiliation(s)
- Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands.
| | - Mario Amacker
- Mymetics SA, 4 Route de La Corniche, 1066, Epalinges, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Toon Stegmann
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Farien Bhoelan
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Denzel Bemelman
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Dagmar E Verel
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Roja Fidel Acar
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Ivanela Kondova
- Animal Science Department, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Yolanda S Kap
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Willy M J M Bogers
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Sylvain Fleury
- Mymetics SA, 4 Route de La Corniche, 1066, Epalinges, Switzerland.
| |
Collapse
|
49
|
Oktay E, Alem F, Hernandez K, Girgis M, Green C, Mathur D, Medintz IL, Narayanan A, Veneziano R. DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response. Commun Biol 2023; 6:308. [PMID: 36959304 PMCID: PMC10034259 DOI: 10.1038/s42003-023-04689-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Effective and safe vaccines are invaluable tools in the arsenal to fight infectious diseases. The rapid spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 pandemic has highlighted the need to develop methods for rapid and efficient vaccine development. DNA origami nanoparticles (DNA-NPs) presenting multiple antigens in prescribed nanoscale patterns have recently emerged as a safe, efficient, and easily scalable alternative for rational design of vaccines. Here, we are leveraging the unique properties of these DNA-NPs and demonstrate that precisely patterning ten copies of a reconstituted trimer of the receptor binding domain (RBD) of SARS-CoV-2 along with CpG adjuvants on the DNA-NPs is able to elicit a robust protective immunity against SARS-CoV-2 in a mouse model. Our results demonstrate the potential of our DNA-NP-based approach for developing safe and effective nanovaccines against infectious diseases with prolonged antibody response and effective protection in the context of a viral challenge.
Collapse
Affiliation(s)
- Esra Oktay
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Farhang Alem
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Keziah Hernandez
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Michael Girgis
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Christopher Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA.
| |
Collapse
|
50
|
Horvath D, Temperton N, Mayora-Neto M, Da Costa K, Cantoni D, Horlacher R, Günther A, Brosig A, Morath J, Jakobs B, Groettrup M, Hoschuetzky H, Rohayem J, Ter Meulen J. Novel intranasal vaccine targeting SARS-CoV-2 receptor binding domain to mucosal microfold cells and adjuvanted with TLR3 agonist Riboxxim™ elicits strong antibody and T-cell responses in mice. Sci Rep 2023; 13:4648. [PMID: 36944687 PMCID: PMC10029786 DOI: 10.1038/s41598-023-31198-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
SARS-CoV-2 continues to circulate in the human population necessitating regular booster immunization for its long-term control. Ideally, vaccines should ideally not only protect against symptomatic disease, but also prevent transmission via asymptomatic shedding and cover existing and future variants of the virus. This may ultimately only be possible through induction of potent and long-lasting immune responses in the nasopharyngeal tract, the initial entry site of SARS-CoV-2. To this end, we have designed a vaccine based on recombinantly expressed receptor binding domain (RBD) of SARS-CoV-2, fused to the C-terminus of C. perfringens enterotoxin, which is known to target Claudin-4, a matrix molecule highly expressed on mucosal microfold (M) cells of the nasal and bronchial-associated lymphoid tissues. To further enhance immune responses, the vaccine was adjuvanted with a novel toll-like receptor 3/RIG-I agonist (Riboxxim™), consisting of synthetic short double stranded RNA. Intranasal prime-boost immunization of mice induced robust mucosal and systemic anti-SARS-CoV-2 neutralizing antibody responses against SARS-CoV-2 strains Wuhan-Hu-1, and several variants (B.1.351/beta, B.1.1.7/alpha, B.1.617.2/delta), as well as systemic T-cell responses. A combination vaccine with M-cell targeted recombinant HA1 from an H1N1 G4 influenza strain also induced mucosal and systemic antibodies against influenza. Taken together, the data show that development of an intranasal SARS-CoV-2 vaccine based on recombinant RBD adjuvanted with a TLR3 agonist is feasible, also as a combination vaccine against influenza.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | - Kelly Da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | | | | | | | | | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Jacques Rohayem
- Riboxx Pharmaceuticals, Radebeul, Dresden, Germany and Institute of Virology, Dresden University of Technology, Dresden, Germany
| | - Jan Ter Meulen
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|