1
|
Wang Y, Chen Y, McGarrigle J, Cook J, Rios PD, La Monica G, Wei W, Oberholzer J. Cell Therapy for T1D Beyond BLA: Gearing Up Toward Clinical Practice. Diabetes Ther 2025; 16:1125-1138. [PMID: 40214896 PMCID: PMC12085407 DOI: 10.1007/s13300-025-01732-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/18/2025] [Indexed: 05/18/2025] Open
Abstract
Type 1 diabetes (T1D) remains a significant global health challenge and patients with T1D need lifelong insulin therapy. Islet transplantation holds transformative potential by replacing autoimmune-mediated destruction of insulin-producing beta cells. This review examines the trajectory of islet transplantation for T1D, focusing on the process and benefits of obtaining biologics license application (BLA) approval for cell-based therapies. Following US Food and Drug Administration (FDA) approval, the authors identify key steps urgently needed to foster islet transplantation as a viable treatment for a broader population of patients with T1D. Furthermore, the authors highlight recent advances in encapsulation technologies, stem cell-derived islets, xenogeneic islets, and gene editing as strategies to overcome challenges such as immune rejection and limited islet sources. These innovations are pivotal in enhancing the safety and efficacy of islet transplantation. Ultimately, this review emphasizes that while BLA approval represents a critical milestone, realizing the full potential of cell therapy for T1D requires addressing the scientific, clinical, and logistical challenges of its real-world implementation. By fostering innovation, collaboration, and strategic partnerships, the field can transform T1D care, offering patients a durable, life-changing alternative to traditional insulin therapy.
Collapse
Affiliation(s)
- Yong Wang
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA.
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
- Visceral and Transplant Department, University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
| | - YingYing Chen
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland
| | - James McGarrigle
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA
| | - Jenny Cook
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA
| | - Peter D Rios
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA
| | | | - Wei Wei
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland
| | - Jose Oberholzer
- CellTrans, Inc., 2201 W. Campbell Park Dr, Chicago, IL, 60612, USA.
- University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
- Visceral and Transplant Department, University of Zürich Hospital, Ramistrasse 100, 8991, Zürich, Switzerland.
| |
Collapse
|
2
|
Miller J, Perrier Q, Rengaraj A, Bowlby J, Byers L, Peveri E, Jeong W, Ritchey T, Gambelli AM, Rossi A, Calafiore R, Tomei A, Orlando G, Asthana A. State of the Art of Bioengineering Approaches in Beta-Cell Replacement. CURRENT TRANSPLANTATION REPORTS 2025; 12:17. [PMID: 40342868 PMCID: PMC12055624 DOI: 10.1007/s40472-025-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/11/2025]
Abstract
Purpose of the Review Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment. Recent Findings First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation. Summary These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.
Collapse
Affiliation(s)
- Jake Miller
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Quentin Perrier
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
- Univ. Grenoble Alpes, Department of Pharmacy, Grenoble Alpes University Hospital, Grenoble, France
| | - Arunkumar Rengaraj
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Joshua Bowlby
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Lori Byers
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Emma Peveri
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | - Thomas Ritchey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
| | | | - Arianna Rossi
- Department of Engineering, University of Perugia, Perugia, Italy
| | | | - Alice Tomei
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA
- Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA
| |
Collapse
|
3
|
Kieffer TJ, Hoesli CA, Shapiro AMJ. Advances in Islet Transplantation and the Future of Stem Cell-Derived Islets to Treat Diabetes. Cold Spring Harb Perspect Med 2025; 15:a041624. [PMID: 39074874 PMCID: PMC12047745 DOI: 10.1101/cshperspect.a041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
β-Cell replacement for type 1 diabetes (T1D) can restore normal glucose homeostasis, thereby eliminating the need for exogenous insulin and halting the progression of diabetes complications. Success in achieving insulin independence following transplantation of cadaveric islets fueled academic and industry efforts to develop techniques to mass produce β cells from human pluripotent stem cells, and these have now been clinically validated as an alternative source of regulated insulin production. Various encapsulation strategies are being pursued to contain implanted cells in a retrievable format, and different implant sites are being explored with some strategies reaching clinical studies. Stem cell lines, whether derived from embryonic sources or reprogrammed somatic cells, are being genetically modified for designer features, including immune evasiveness to enable implant without the use of chronic immunosuppression. Although hurdles remain in optimizing large-scale manufacturing, demonstrating efficacy, durability, and safety, products containing stem cell-derived β cells promise to provide a potent treatment for insulin-dependent diabetes.
Collapse
Affiliation(s)
- Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, School of Biomedical Engineering
- Department of Surgery, The University of British Columbia, Vancouver V6T1Z3, British Columbia, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, Department of Biomedical Engineering, McGill University, Montreal H3A 0C5, Québec, Canada
- Associate Member, Department of Biomedical Engineering, McGill University, Montreal H3A 0C5, Québec, Canada
| | - A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, Edmonton T6G2E1, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton T6G2E1, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton T6G2E1, Alberta, Canada
| |
Collapse
|
4
|
Lee K, Aviles Vargas A, Bottino R, Wang Y. Islet Transplantation: Microencapsulation, Nanoencapsulation, and Hypoimmune Engineering. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70016. [PMID: 40394888 PMCID: PMC12093044 DOI: 10.1002/wnan.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/14/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Islet transplantation represents a promising curative approach for type 1 diabetes by restoring glucose-responsive insulin secretion. However, the requirement for lifelong immunosuppression to prevent immune rejection can lead to significant side effects. Emerging strategies such as microencapsulation, nanoencapsulation, and hypoimmune engineering are being developed to protect transplanted islets from immune attack, thereby enhancing their viability and function. This review critically examines these innovative technologies, highlighting the methodologies, materials, experimental and clinical outcomes, as well as the challenges they face and potential solutions to overcome those challenges.
Collapse
Affiliation(s)
- Kyungsene Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Ana Aviles Vargas
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Yong Wang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
5
|
Shiwarski DJ, Hudson AR, Tashman JW, Bakirci E, Moss S, Coffin BD, Feinberg AW. 3D bioprinting of collagen-based high-resolution internally perfusable scaffolds for engineering fully biologic tissue systems. SCIENCE ADVANCES 2025; 11:eadu5905. [PMID: 40267204 PMCID: PMC12017336 DOI: 10.1126/sciadv.adu5905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Organ-on-a-chip and microfluidic systems have improved the translational relevance of in vitro systems; however, current manufacturing approaches impart limitations on materials selection, non-native mechanical properties, geometric complexity, and cell-driven remodeling into functional tissues. Here, we three-dimensionally (3D) bioprint extracellular matrix (ECM) and cells into collagen-based high-resolution internally perfusable scaffolds (CHIPS) that integrate with a vascular and perfusion organ-on-a-chip reactor (VAPOR) to form a complete tissue engineering platform. We improve the fidelity of freeform reversible embedding of suspended hydrogels (FRESH) bioprinting to produce a range of CHIPS designs fabricated in a one-step process. CHIPS exhibit size-dependent permeability of perfused molecules into the surrounding scaffold to support cell viability and migration. Lastly, we implemented multi-material bioprinting to control 3D spatial patterning, ECM composition, cellularization, and material properties to create a glucose-responsive, insulin-secreting pancreatic-like CHIPS with vascular endothelial cadherin+ vascular-like networks. Together, CHIPS and VAPOR form a platform technology toward engineering full organ-scale function for disease modeling and cell replacement therapy.
Collapse
Affiliation(s)
- Daniel J. Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Andrew R. Hudson
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joshua W. Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samuel Moss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brian D. Coffin
- Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Ju R, Gao X, Zhang C, Tang W, Zhang S, Huo F, Song N, Tang W, Tian W, He M. A Versatile Immune Protective Armor to Enhance the Regenerative Potential of Exogenous Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23600-23612. [PMID: 40197018 DOI: 10.1021/acsami.5c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Host immune rejection has long been recognized as a major contributor to the poor survival rates of exogenous stem cells (ESCs). In this study, we present a simple and versatile strategy to protect ESCs from host immune system insults by developing a protective "armor." This armor was designed using tannic acid (TA), leveraging its strong affinity for biomacromolecules and its anti-inflammatory properties. Prior to implantation, the armor can be readily applied to the surface of individual ESCs, cell aggregates, cell sheets, or cell-laden hydrogel systems by simply immersing them in a TA solution for several seconds, without additional processing steps. The TA-based armor effectively modulates the acute inflammatory response during the initial days postimplantation by scavenging reactive oxygen species (ROS), thereby creating an ESCs-friendly immune microenvironment. This was evidenced by reduction in the infiltration of pro-inflammatory immune cells and the secretion of pro-inflammatory cytokines. Consequently, the survival of engrafted ESCs was significantly enhanced, with preserved stemness and immunomodulatory functions. The regenerative potential of ESCs was further demonstrated in a rat periodontal defect model. These findings provide a novel approach for enhancing the regenerative performance of ESCs and offer a straightforward and versatile strategy to shield ESCs from host immune rejection.
Collapse
Affiliation(s)
- RongBai Ju
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghui Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weibing Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyuan Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ning Song
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Atkinson EA, Gregory HN, Carter LN, Evans RE, Roberton VH, Dickman R, Phillips JB. An immunomodulatory encapsulation system to deliver human iPSC-derived dopaminergic neuron progenitors for Parkinson's disease treatment. Biomater Sci 2025; 13:2012-2025. [PMID: 40013398 DOI: 10.1039/d4bm01566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Parkinson's disease is a neurodegenerative condition associated with the progressive loss of dopaminergic neurons. This leads to neurological impairments with heightening severity and is globally increasing in prevalence due to population ageing. Cell transplantation has demonstrated significant promise in altering the disease course in the clinic, and stem cell-derived grafts are being investigated. Current clinical protocols involve systemic immunosuppression to prevent graft rejection, which could potentially be avoided by encapsulating the therapeutic cells in a locally immunosuppressive biomaterial matrix before delivery. Here we report the progression of an immunomodulatory encapsulation system employing ultrapure alginate hydrogel beads alongside tacrolimus-loaded microparticles in the encapsulation of dopaminergic neuron progenitors derived from human induced pluripotent stem cells (hiPSCs). The hiPSC-derived progenitors were characterised and displayed robust viability after encapsulation within alginate beads, producing dopamine as they matured in vitro. The encapsulation system effectively reduced T cell activation (3-fold) and protected progenitors from cytotoxicity in vitro. The alginate bead diameter was optimised using microfluidics to yield spherical and monodisperse hydrogels with a median size of 215.6 ± 0.5 μm, suitable for delivery to the brain through a surgical cannula. This technology has the potential to advance cell transplantation by locally protecting grafts from the host immune system.
Collapse
Affiliation(s)
- Emily A Atkinson
- UCL School of Pharmacy, University College London, London, UK.
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Holly N Gregory
- UCL School of Pharmacy, University College London, London, UK.
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Lara N Carter
- UCL School of Pharmacy, University College London, London, UK.
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Rachael E Evans
- UCL School of Pharmacy, University College London, London, UK.
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Victoria H Roberton
- UCL School of Pharmacy, University College London, London, UK.
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Rachael Dickman
- UCL School of Pharmacy, University College London, London, UK.
| | - James B Phillips
- UCL School of Pharmacy, University College London, London, UK.
- UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
8
|
Ribezzi D, Català P, Pignatelli C, Citro A, Levato R. Bioprinting and synthetic biology approaches to engineer functional endocrine pancreatic constructs. Trends Biotechnol 2025:S0167-7799(25)00090-3. [PMID: 40185667 DOI: 10.1016/j.tibtech.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Diabetes is a complex disease affecting over 500 million people worldwide. Traditional approaches, such as insulin delivery, are mainstay treatments, but do not cure the disease. Recent advances in biofabrication and synthetic biology offer new hope for the development of tissue constructs recapitulating salient organ functions. Here, we discuss recent progress in bioprinting a functional endocrine pancreas, ranging from cell sources to main advances in biomaterials. We review innovative areas for the development of this field, with a particular focus on the convergence of synthetic biology and cell engineering with bioprinting, which opens new avenues for developing advanced in vitro models and regenerative, transplantable grafts, with the potential to provide independence from exogenous insulin administration.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pere Català
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Photiadis S, Mai Q, Montanez G, Nguyen C, Kramer T, Photiadis D, Sylvia C, Spangler T, Nguyen KH. A novel intravascular bioartificial pancreas device shows safety and islet functionality over 30 days in nondiabetic swine. Am J Transplant 2025; 25:734-743. [PMID: 39557121 DOI: 10.1016/j.ajt.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
In this study using a discordant, xenogeneic, transplant model we demonstrate the functionality and safety of the first stent-based bioartificial pancreas (BAP) device implanted endovascularly into an artery, harnessing the high oxygen content in blood to support islet viability. The device is a self-expanding nitinol stent that is coated with a bilayer of polytetrafluoroethylene that forms channels to hold islets embedded in a hydrogel. We completed a 1-month study in the nondiabetic swine model (N = 3) to test the safety of the device and to assess islet functionality after device recovery. The luminal diameter of the devices from 3 animals on day 0 and day 30 was 10.01 ± 0.408 mm and 10.05 ± 0.25 mm, respectively. The stimulation index of the control and endovascular BAP devices explanted at day 30 were 3.35 ± 0.97 and 4.83 ±1.20, respectively, and the islets stained positively for insulin and glucagon after 30 days in vivo. This pilot study shows that BAP implantation into a peripheral artery is safe and supports islet functionality over 30 days, providing the groundwork for future work assessing the in vivo function of the device in diabetic swine.
Collapse
Affiliation(s)
| | - Quynh Mai
- Isla Technologies, Inc, San Carlos, California, USA
| | | | | | - Thomas Kramer
- Sirius Engineering, LLC, San Carlos, California, USA
| | | | - Charles Sylvia
- Bayside Preclinical Services, Inc, Dixon, California, USA
| | | | | |
Collapse
|
10
|
Vasuthas K, Kjesbu JS, Brambilla A, Levitan M, Coron AE, Fonseca DM, Strand BL, Slupphaug G, Rokstad AMA. Fucoidan alginate and sulfated alginate microbeads induce distinct coagulation, inflammatory and fibrotic responses. Mater Today Bio 2025; 31:101474. [PMID: 39896282 PMCID: PMC11783016 DOI: 10.1016/j.mtbio.2025.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
This study investigates the host response to fucoidan alginate microbeads in comparison to sulfated alginate microbeads, which are relevant for immune protection in cell therapy. While sulfated alginate microbeads reduce fibrosis and inflammation, fucoidan, a kelp-derived polysaccharide rich in sulfate groups, has not been evaluated in this context. The study assesses surface reactivity to acute-phase proteins and cytokines using ex vivo human whole blood and plasma models. It also examines pericapsular overgrowth (PFO) in C57BL/6JRj mice, incorporating protein pattern mapping through LC-MS/MS proteomics. Fucoidan alginate microbeads activated complement and coagulation, while both fucoidan and sulfated alginate microbeads induced plasmin activity. Fucoidan alginate microbeads exhibited a distinct cytokine profile, characterized by high levels of MCP-1, IL-8, IFN-γ, and reduced levels of RANTES, Eotaxin, PDGF-BB, TGF-β isoforms, along with higher PFO. The balance between plasmin activity and coagulation emerged as a potential predictor of fibrosis resistance, favouring sulfated alginate microbeads. Explanted materials were enriched with both complement and coagulation activators (Complement C1q and C3, Factor 12, Kallikrein, HMW-kininogen) and inhibitors (C1-inhibitor, Factor H, Factor I). Fucoidan alginate microbeads predominantly enriched extracellular matrix factors (Fibrinogen, Collagen, TGF-β, Bmp), while sulfated alginate microbeads favoured ECM-degrading proteases (Metalloproteases and Cathepsins). This study reveals significant differences in host responses to fucoidan and sulfated alginate in microbeads. The plasmin activity to coagulation ratio is highlighted as a key indicator of fibrosis resistance. Additionally, the preferential enrichment of ECM-degrading proteases on the material surface post-implantation proved to be another crucial factor.
Collapse
Affiliation(s)
- Kalaiyarasi Vasuthas
- Centre of Molecular Inflammation Research (CEMIR), NTNU, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norway
| | | | - Alessandro Brambilla
- Department of Clinical and Molecular Medicine, NTNU, Norway
- Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim, Norway
- Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Health Authority, Norway
| | - Maya Levitan
- Centre of Molecular Inflammation Research (CEMIR), NTNU, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norway
| | | | - Davi M. Fonseca
- Department of Clinical and Molecular Medicine, NTNU, Norway
- Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim, Norway
- Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Health Authority, Norway
| | | | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU, Norway
- Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim, Norway
- Proteomics and Modomics Experimental Core (PROMEC), NTNU and the Central Norway Health Authority, Norway
| | - Anne Mari A. Rokstad
- Centre of Molecular Inflammation Research (CEMIR), NTNU, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norway
- Clinic of Laboratory Medicine, St Olavs Hospital, Trondheim, Norway
| |
Collapse
|
11
|
Khan WU, Shen Z, Mugo SM, Wang H, Zhang Q. Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces. Chem Soc Rev 2025; 54:2832-2880. [PMID: 40035554 DOI: 10.1039/d4cs01074d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity. Traditional implantable electrodes, primarily made from rigid materials like metal, silicon, and carbon, provide excellent conductivity but encounter serious issues such as foreign body rejection, neural signal attenuation, and micromotion with brain tissue. To address these limitations, hydrogels are emerging as promising candidates for BCIs, given their mechanical and chemical similarities to brain tissues. These hydrogels are particularly suitable for implantable neural electrodes due to their three-dimensional water-rich structures, soft elastomeric properties, biocompatibility, and enhanced electrochemical characteristics. These exceptional features make them ideal for signal recording, neural modulation, and effective therapies for neurological conditions. This review highlights the current advancements in implantable hydrogel electrodes, focusing on their unique properties for neural signal recording and neuromodulation technologies, with the ultimate aim of treating brain disorders. A comprehensive overview is provided to encourage future progress in this field. Implantable hydrogel electrodes for BCIs have enormous potential to influence the broader scientific landscape and drive groundbreaking innovations across various sectors.
Collapse
Affiliation(s)
- Wasid Ullah Khan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Applied Chemistry Science & Technology Co., Ltd, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
12
|
Wang Y, McGarrigle J, Cook J, Rios P, Monica GL, Chen Y, Wei W, Oberholzer J. The future of islet transplantation beyond the BLA approval: challenges and opportunities. FRONTIERS IN TRANSPLANTATION 2025; 4:1522409. [PMID: 40124184 PMCID: PMC11925927 DOI: 10.3389/frtra.2025.1522409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
This opinion paper explores the path forward for islet transplantation as a cell therapy for type 1 diabetes, following the Biologics License Application (BLA) approval. The authors review key challenges and opportunities that lie ahead. After a brief overview of the history of human islet transplantation, the paper examines the FDA's regulatory stance on isolated islet cells and the requirements for obtaining a BLA. The authors discuss the significance of this approval and the critical steps necessary to broaden patient access, such as scaling up production, clinical integration, reimbursement frameworks, post-marketing surveillance, and patient education initiatives. The paper highlights that the approval of LANTIDRA as an allogeneic cell transplant for uncontrolled type 1 diabetes marks the beginning of new chapters in improving islet transplantation. The authors emphasize essential areas for development, including advancements in islet manufacturing, optimization of transplant sites, islet encapsulation, exploration of unlimited cell sources, and gene editing technologies. In conclusion, the future of islet transplantation beyond the BLA approval presents challenges and opportunities. While significant regulatory milestones have been reached, hurdles remain. Innovations in stem cell-derived islets, cell encapsulation, and gene editing show promise in enhancing graft survival, expanding the availability of transplantable cells, and reducing the reliance on immunosuppressive drugs. These advancements could pave the way for more accessible, durable, and personalized diabetes treatments.
Collapse
Affiliation(s)
- Yong Wang
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
- CellTrans, Inc., Chicago, IL, United States
| | | | - Jenny Cook
- CellTrans, Inc., Chicago, IL, United States
| | - Peter Rios
- CellTrans, Inc., Chicago, IL, United States
| | | | - Yingying Chen
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Wei Wei
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
| | - Jose Oberholzer
- Clinic of Visceral and Transplant Surgery, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zürich, Switzerland
- CellTrans, Inc., Chicago, IL, United States
| |
Collapse
|
13
|
Fang C, Cai Y, He C, Li Y, He L, Wang X, Lu Y. Endogenous Protein-Modified Gold Nanorods as Immune-Inert Biomodulators for Tumor-Specific Imaging and Therapy. Adv Healthc Mater 2025; 14:e2404548. [PMID: 39846276 PMCID: PMC11912115 DOI: 10.1002/adhm.202404548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Engineered modifications of nanomaterials inspired by nature hold great promise for disease-specific imaging and therapies. However, conventional polyethylene glycol modification is limited by immune system rejection. The manipulation of gold nanorods (Au NRs) modified by endogenous proteins (eP@Au) is reported as an engineered biomodulator for enhanced breast tumor therapy. The results show that eP@Au NRs neither activate inflammatory factors in vitro nor elicit rejection of immune responses in vivo. Tumor-specific eP@Au NRs exhibit a dual-modal imaging capability and trigger a mild photothermal effect under near-infrared light irradiation, enabling highly efficient imaging and therapy of tumors. Transcriptome sequencing and confirmatory experiments reveal that the antitumor effect is mainly attributed to the repression of PI3K-Akt/MAPK signaling pathways at the molecular level. This powerful and surprising in situ eP-regulated biomodulation demonstrates the advantages of convenient fabrication, inert immunogenicity, and biocompatibility, providing an alternative strategy for biomedical imaging and therapy.
Collapse
Affiliation(s)
- Chunyan Fang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240P.R. China
| | - Yueming Cai
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240P.R. China
| | - Cui He
- Department of Basic MedicineShanxi Medical UniversityJinzhong030000P.R. China
| | - Ying Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240P.R. China
| | - Lei He
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240P.R. China
| | - Xiaoyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240P.R. China
| | - Yong Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240P.R. China
- School of Laboratory MedicineWannan Medical CollegeWuhu241002P.R. China
| |
Collapse
|
14
|
Rech Tondin A, Lanzoni G. Islet Cell Replacement and Regeneration for Type 1 Diabetes: Current Developments and Future Prospects. BioDrugs 2025; 39:261-280. [PMID: 39918671 PMCID: PMC11906537 DOI: 10.1007/s40259-025-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 03/14/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by the destruction of insulin-producing beta cells in the pancreas, leading to insulin deficiency and chronic hyperglycemia. The main current therapeutic strategies for clinically overt T1D - primarily exogenous insulin administration combined with blood glucose monitoring - fail to fully mimic physiological insulin regulation, often resulting in suboptimal or insufficient glycemic control. Islet cell transplantation has emerged as a promising avenue for functionally replacing endogenous insulin production and achieving long-term glycemic stability. Here, we provide an overview of current islet replacement strategies, ranging from islet transplantation to stem cell-derived islet cell transplantation, and highlight emerging approaches such as immunoengineering. We examine the advancements in immunosuppressive protocols to enhance graft survival, innovative encapsulation, and immunomodulation techniques to protect transplanted islets, and the ongoing challenges in achieving durable and functional islet integration. Additionally, we discuss the latest clinical outcomes, the potential of gene editing technologies, and the emerging strategies for islet cell regeneration. This review aims to highlight the potential of these approaches to transform the management of T1D and improve the quality of life of individuals affected by this condition.
Collapse
Affiliation(s)
- Arthur Rech Tondin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
15
|
Bezold MG, Dollinger BR, DeJulius CR, Keech MC, Hanna AR, Kittel AR, Yu F, Gupta MK, D'Arcy R, Brunger JM, Duvall CL. Shear-thinning hydrogel for allograft cell transplantation and externally controlled transgene expression. Biomaterials 2025; 314:122812. [PMID: 39288619 DOI: 10.1016/j.biomaterials.2024.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
This work establishes the design of a fully synthetic, shear-thinning hydrogel platform that is injectable and can isolate engineered, allogeneic cell therapies from the host. We utilized RAFT to generate a library of linear random copolymers of N,N-dimethylacrylamide (DMA) and 2-vinyl-4,4-dimethyl azlactone (VDMA) with variable mol% VDMA and degree of polymerization. Poly(DMA-co-VDMA) copolymers were subsequently modified with either adamantane (Ad) or β-cyclodextrin (Cd) through amine-reactive VDMA to prepare hydrogel precursor macromers containing complementary guest-host pairing pendant groups that, when mixed, form shear-thinning hydrogels. Rheometric evaluation of the hydrogel library enabled identification of lead macromer structures comprising 15 mol% pendants (Ad or Cd) and a degree of polymerization of 1000; mixing of these Ad and Cd functionalized precursors yielded hydrogels possessing storage modulus above 1000 Pa, tan(δ) values below 1 and high yield strain, which are target characteristics of robust but injectable shear-thinning gels. This modular system proved amenable to nanoparticle integration with surface-modified nanoparticles displaying Ad. The addition of the Ad-functionalized nanoparticles simultaneously improved mechanical properties of the hydrogels and enabled extended hydrogel retention of a model small molecule in vivo. In studies benchmarking against alginate, a material traditionally used for cell encapsulation, the lead hydrogel showed significantly less fibrous encapsulation in a subcutaneous implant site. Finally, this platform was utilized to encapsulate and extend in vivo longevity of inducible transgene-engineered mesenchymal stem cells in an allogeneic transplant model. The hydrogels remained intact and blocked infiltration by host cells, consequently extending the longevity of grafted cell function relative to a benchmark, shear-thinning hyaluronic acid-based gel. In sum, the new synthetic, shear-thinning hydrogel system presented here shows potential for further development as an injectable platform for delivery and in situ drug modulation of allograft and engineered cell therapies.
Collapse
Affiliation(s)
- Mariah G Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Megan C Keech
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Andrew R Hanna
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Anna R Kittel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Richard D'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
16
|
Duret G, Coffler S, Avant B, Kim W, Peterchev AV, Robinson J. Magnetic activation of electrically active cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636926. [PMID: 39975002 PMCID: PMC11839070 DOI: 10.1101/2025.02.07.636926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Magnetic control of cell activity has applications ranging from non-invasive neurostimulation to remote activation of cell-based therapies. Unlike other methods of regulating cell activity like heat and light, which are based on known receptors or proteins, no magnetically gated channel has been identified to date. As a result, effective approaches for magnetic control of cell activity are based on strong alternating magnetic fields able to induce electric fields or materials that convert magnetic energy into electrical, thermal, or mechanical energy to stimulate cells. In our investigations of magnetic cell responses, we found that a spiking HEK cell line with no other co-factors responds to a magnetic field that reaches a maximum of 500 mT within 200 ms using a permanent magnet. The response is rare, approximately 1 in 50 cells, but is fast and reproducible, generating an action potential within 200 ms of magnetic field stimulation. The magnetic field stimulation is over 10,000 times slower than the magnetic fields used in transcranial magnetic stimulation (TMS) and the induced electric field is more than an order of magnitude lower than necessary for neuromodulation, suggesting that induced electric currents do not drive the cell response. Instead, our calculation suggests that this response depends on mechanoreception pathways activated by the magnetic torque of TRP-associated lipid rafts. Despite the relatively rare response to magnetic stimulation, when cells form gap junctions, the magnetic stimulation can propagate to nearby cells, causing tissue-level responses. As an example, we co-cultured spiking HEK cells with beta-pancreatic MIN6 cells and found that this co-culture responds to magnetic fields by increasing insulin production. Together, these results point toward a method for the magnetic control of biological activity without the need for a material co-factor such as synthetic nanoparticles. By better understanding this mechanism and enriching for magneto-sensitivity it may be possible to adapt this approach to the rapidly expanding tool kit for wireless cell activity regulation.
Collapse
|
17
|
Pham JA, Coronel MM. Unlocking Transplant Tolerance with Biomaterials. Adv Healthc Mater 2025; 14:e2400965. [PMID: 38843866 PMCID: PMC11834385 DOI: 10.1002/adhm.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Indexed: 07/04/2024]
Abstract
For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.
Collapse
Affiliation(s)
- John‐Paul A. Pham
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| | - María M. Coronel
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Elizabeth Caswell Diabetes InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
18
|
Jeang WJ, Wong BM, Zhao Y, Manan RS, Jiang AL, Bose S, Collins E, McMullen P, Rosenboom JG, Lathwal S, Langer R, Anderson DG. Antifouling Immunomodulatory Copolymer Architectures That Inhibit the Fibrosis of Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414743. [PMID: 39722171 DOI: 10.1002/adma.202414743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Immune reactions to medical implants often lead to encapsulation by fibrotic tissue and impaired device function. This process is thought to initiate by protein adsorption, which enables immune cells to attach and mount an inflammatory response. Previously, several antifibrotic materials have been either designed to reduce protein adsorption or discovered via high-throughput screens (HTS) to favorably regulate inflammation. The present work introduces antifouling immunomodulatory (AIM) copolymer coatings, which combine both strategies to effectively enhance implant protection. AIM copolymers synergistically integrate zwitterionic moieties to resist protein fouling, HTS-derived antifibrotics for immunomodulation, and silane monomers for grafting to diverse substrates including elastomers, ceramics, and metals. Interestingly, simply combining these monomers into conventional random or block copolymer architectures yielded no significant advantage over homopolymers. By contrast, an unusual polymer chain architecture - a zwitterionic block flanked by a mixed zwitterionic immunomodulatory segment - showed superior fibrosis resistance in both peritoneal and subcutaneous sites over one month in immunocompetent mice. This architecture also improved the performance of two different HTS-derived antifibrotic monomers, suggesting that tailoring AIM architectures may broadly complement immunomodulatory chemistries and provide a versatile approach to improving implant longevity.
Collapse
Affiliation(s)
- William J Jeang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
| | - Bryan M Wong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yichao Zhao
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexis L Jiang
- Department of Computer Science, Wellesley College, Wellesley, MA, 02481, USA
| | - Suman Bose
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Evan Collins
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Patrick McMullen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jan-Georg Rosenboom
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Radiology, Division of Interventional Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sushil Lathwal
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Critical Care Pain Medicine, Boston Children Hospital, Boston, MA, 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
19
|
Wang H, Duan C, Luo R, Liu Y, Tong O, Demski J, Rivnay J, Ameer GA. A Pro-Angiogenic Immunoprotective Membrane for Cell Therapies. Adv Healthc Mater 2025; 14:e2400459. [PMID: 39506432 DOI: 10.1002/adhm.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/10/2024] [Indexed: 11/08/2024]
Abstract
Immunoisolation strategies that rely on porous membranes play an important role in cell transplantation therapies to protect cells from the host's immune system. These membranes must possess immunoprotective properties while facilitating the transport of nutrients and cell products to maintain the functional integrity of encapsulated cells. An easy and scalable process is described to fabricate a dual function porous polymeric membrane that shields cells against immune cell attack and promotes vascularization to address the nutritional and oxygen requirements of transplanted cells. The fabrication process results in a membrane cross-section with a gradient of nanopores to micropores that support cell immunoisolation and interfacial vascularization requirements, respectively. The membranes demonstrate excellent cell compatibility and effectively prevent T cell transmigration without compromising glucose diffusion and oxygen permeability. In a murine subcutaneous implantation model, membranes are stable for 60 days and exhibit significantly reduced fibrous capsules, with enhanced vascularization near the membrane. These porous polymeric membranes can potentially be used as pro-angiogenic immunoprotective membranes for cell transplantation applications where maximizing cell viability and function is of critical importance.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ruyue Luo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ophelia Tong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julia Demski
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Material Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
20
|
Krishnan SR, Langer R, Anderson DG. Materials approaches for next-generation encapsulated cell therapies. MRS COMMUNICATIONS 2024; 15:21-33. [PMID: 39958992 PMCID: PMC11825545 DOI: 10.1557/s43579-024-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/29/2024] [Indexed: 02/18/2025]
Abstract
Transplanted cells can act as living drug factories capable of secreting therapeutic proteins in vivo, with applications in the treatment of Type 1 diabetes (T1D), blood borne disease, vision disorders, and degenerative neural disease, potentially representing functional cures for chronic conditions. However, attack from the host immune system represents a major challenge, requiring chronic immunosuppression to enable long-lived cell transplantation in vivo. Encapsulating cells in engineered biomaterials capable of excluding components of the host immune system while allowing for the transport of therapeutic proteins, oxygen, nutrients, metabolites, and waste products represents a potential solution. However, the foreign-body response can lead to isolation from native vasculature and hypoxia leading to cell death. In this prospective article, we highlight materials-based solutions to three important challenges in the field: (i) improving biocompatibility and reducing fibrosis; (ii) enhancing transport of secreted protein drugs and key nutrients and oxygen via engineered, semipermeable membranes; and (iii) improving oxygenation. These efforts draw on several disciplines in materials' research, including polymer science, surfaces, membranes, biomaterials' microfabrication, and flexible electronics. If successful, these efforts could lead to new therapies for chronic disease and are a rich space for both fundamental materials' discovery and applied translational science. Graphical Abstract
Collapse
Affiliation(s)
- Siddharth R. Krishnan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA USA
| |
Collapse
|
21
|
Jeon S, Heo J, Myung N, Shin JY, Kim MK, Kang H. High-Efficiency, Prevascularization-Free Macroencapsulation System for Subcutaneous Transplantation of Pancreatic Islets for Enhanced Diabetes Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408329. [PMID: 39308296 PMCID: PMC11636157 DOI: 10.1002/adma.202408329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Indexed: 12/13/2024]
Abstract
Pancreatic islet macroencapsulation systems for subcutaneous transplantation have garnered significant attention as a therapy for Type I diabetes due to their minimal invasiveness and low complication rates. However, the low vascular density of subcutaneous tissue threatens the long-term survival of islets. To address this issue, prevascularized systems are introduced but various challenges remain, including system complexity and vascular-cell immunogenicity. Here, a novel prevasculature-free macroencapsulation system designed as a multilayer sheet, which ensures sufficient mass transport even in regions with sparse vasculature, is presented. Islets are localized in top/bottom micro-shell layers (≈300 µm thick) to maximize proximity to the surrounding host vasculature. These sheets, fabricated via bioprinting using rat islets and alginate-based bio-ink, double islet viability and optimize islet density, improving insulin secretion function by 240%. The subcutaneous transplantation of small islet masses (≈250 islet equivalent) into diabetic nude mice enable rapid (<1 day) recovery of blood glucose, which remain stable for >120 days. Additionally, antifibrotic drug-loaded multilayer sheets facilitate blood glucose regulation by rat islets at the subcutaneous sites of diabetic immunocompetent mice for >35 days. Thus, this macroencapsulation system can advance the treatment of Type I diabetes and is also effective for islet xenotransplantation in subcutaneous tissue.
Collapse
Affiliation(s)
- Seunggyu Jeon
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Jun‐Ho Heo
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Noehyun Myung
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Ji Yeong Shin
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Min Kyeong Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Hyun‐Wook Kang
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| |
Collapse
|
22
|
Zhang W, Cui Y, Lu M, Xu M, Li Y, Song H, Luo Y, Song J, Yang Y, Wang X, Liao L, Wang Y, Reid L, He Z. Hormonally and chemically defined expansion conditions for organoids of biliary tree Stem Cells. Bioact Mater 2024; 41:672-695. [PMID: 39309110 PMCID: PMC11415613 DOI: 10.1016/j.bioactmat.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Wholly defined ex vivo expansion conditions for biliary tree stem cell (BTSC) organoids were established, consisting of a defined proliferative medium (DPM) used in combination with soft hyaluronan hydrogels. The DPM consisted of commercially available Kubota's Medium (KM), to which a set of small molecules, particular paracrine signals, and heparan sulfate (HS) were added. The small molecules used were DNA methyltransferase inhibitor (RG108), TGF- β Type I receptor inhibitor (A83-01), adenylate cyclase activator (Forskolin), and L-type Ca2+ channel agonist (Bay K8644). A key paracrine signal proved to be R-spondin 1 (RSPO1), a secreted protein that activates Wnts. Soluble hyaluronans, 0.05 % sodium hyaluronate, were used with DPM to expand monolayer cultures. Expansion of organoids was achieved by using DPM in combination with embedding organoids in Matrigel that was replaced with a defined thiol-hyaluronan triggered with PEGDA to form a hydrogel with a rheology [G*] of less than 100 Pa. The combination is called the BTSC-Expansion-Glycogel-System (BEX-gel system) for expanding BTSCs as a monolayer or as organoids. The BTSC organoids were expanded more than 3000-fold ex vivo in the BEX-gel system within 70 days while maintaining phenotypic traits indicative of stem/progenitors. Stem-cell-patch grafting of expanded BTSC organoids was performed on the livers of Fah-/- mice with tyrosinemia and resulted in the rescue of the mice and restoration of their normal liver functions. The BEX-gel system for BTSC organoid expansion provides a strategy to generate sufficient numbers of organoids for the therapeutic treatments of liver diseases.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mengqi Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yuting Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Haimeng Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yi Luo
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Jinjia Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Lola Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| |
Collapse
|
23
|
Passannanti F, Gallo M, Lentini G, Colucci Cante R, Nigro F, Nigro R, Budelli A. Alginate Capsules: Versatile Applications and Production Techniques. Macromol Biosci 2024; 24:e2400202. [PMID: 39233662 DOI: 10.1002/mabi.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Indexed: 09/06/2024]
Abstract
Alginate is a natural polysaccharide commonly obtained from brown algae and is usually used in the food industry as an additive, specifically as a thickening, gelling, and emulsifying agent. Due to its polyanionic nature, it can crosslink in the presence of divalent or trivalent cations. This crosslinking process involves the formation of chemical bonds between the carboxylic groups of parallel chains, resulting in a solid structure. In this way, compounds of interest can be enclosed in a capsule or a bead. Thanks to this ability, possible applications of alginate capsules are countless: it is possible to range from the pharmaceutical to the nutritional fields, from the agri-food industry to the textile or cosmetic sectors. These capsules can protect the encapsulated ingredients, promote their delivery or controlled release, or be imagined as small-scale reactors. The present review describes the main techniques used to produce alginate capsules, and several examples of possible application fields are shown.
Collapse
Affiliation(s)
- Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Via Don Carlo Gnocchi 3, Rome, 00166, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Via Bisignano a Chiaia, 68, Naples, 80121, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
| | - Andrea Budelli
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, Naples, 80125, Italy
- Heinz Innovation Center, Nieuwe Dukenburgseweg 19 6534 AD Nijmegen Postbus 57, Nijmegen, NL-6500, Netherlands
| |
Collapse
|
24
|
Wang LH, Marfil-Garza BA, Ernst AU, Pawlick RL, Pepper AR, Okada K, Epel B, Viswakarma N, Kotecha M, Flanders JA, Datta AK, Gao HJ, You YZ, Ma M, Shapiro AMJ. Inflammation-induced subcutaneous neovascularization for the long-term survival of encapsulated islets without immunosuppression. Nat Biomed Eng 2024; 8:1266-1284. [PMID: 38052996 DOI: 10.1038/s41551-023-01145-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel. The neovascularized cavity led to the sustained reversal of diabetes, as we show in immunocompetent syngeneic, allogeneic and xenogeneic mouse models of diabetes, owing to increased oxygenation, physiological glucose responsiveness and islet survival, as indicated by a computational model of mass transport. The cavity also allowed for the in situ replacement of impaired devices, with prompt return to normoglycemia. Controlled inflammation-induced neovascularization is a scalable approach, as we show with a minipig model, and may facilitate the clinical translation of immunosuppression-free subcutaneous islet transplantation.
Collapse
Affiliation(s)
- Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Braulio A Marfil-Garza
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Rena L Pawlick
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kento Okada
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- O2M Technologies, LLC, Chicago, IL, USA
| | | | | | | | - Ashim K Datta
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hong-Jie Gao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Ju R, Gao X, Zhang C, Tang W, Tian W, He M. Exogenous MSC based tissue regeneration: a review of immuno-protection strategies from biomaterial scaffolds. J Mater Chem B 2024; 12:8868-8882. [PMID: 39171946 DOI: 10.1039/d4tb00778f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering holds great potential for regenerative medicine as a means of replacing damaged or lost tissues to restore their structure and function. However, the efficacy of MSC-based regeneration is frequently limited by the low survival rate and limited survival time of transplanted MSCs. Despite the inherent immune privileges of MSCs, such as low expression of major histocompatibility complex antigens, tolerogenic properties, local immunosuppressive microenvironment creation, and induction of immune tolerance, immune rejection remains a major obstacle to their survival and regenerative potential. Evidence suggests that immune protection strategies can enhance MSC therapeutic efficacy by prolonging their survival and maintaining their biological functions. Among various immune protection strategies, biomaterial-based scaffolds or cell encapsulation systems that mediate the interaction between transplanted MSCs and the host immune system or spatially isolate MSCs from the immune system for a specific time period have shown great promise. In this review, we provide a comprehensive overview of these biomaterial-based immune protection strategies employed for exogenous MSCs, highlighting the crucial role of modulating the immune microenvironment. Each strategy is critically examined, discussing its strengths, limitations, and potential applications in MSC-based tissue engineering. By elucidating the mechanisms behind immune rejection and exploring immune protection strategies, we aim to address the challenges faced by MSC-based tissue engineering and pave the way for enhancing the therapeutic outcomes of MSC therapies. The insights gained from this review will contribute to the development of more effective strategies to protect transplanted MSCs from immune rejection and enable their successful application in regenerative medicine.
Collapse
Affiliation(s)
- Rongbai Ju
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chi Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
26
|
Mei D, Xue Z, Zhang T, Yang Y, Jin L, Yu Q, Hong J, Zhang X, Ge J, Xu L, Wang H, Zhang Z, Zhao Y, Zhai Y, Tao Q, Zhai Z, Li Q, Li H, Zhang L. Immune isolation-enabled nanoencapsulation of donor T cells: a promising strategy for mitigating GVHD and treating AML in preclinical models. J Immunother Cancer 2024; 12:e008663. [PMID: 39242117 PMCID: PMC11381671 DOI: 10.1136/jitc-2023-008663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND In allogeneic-hematopoietic stem cell transplantation for acute myeloid leukemia (AML), donor T cells combat leukemia through the graft-versus-leukemia (GVL) effect, while they also pose a risk of triggering life-threatening graft-versus-host disease (GVHD) by interacting with recipient cells. The onset of GVHD hinges on the interplay between donor T cells and recipient antigen-presenting cells (APCs), sparking T-cell activation. However, effective methods to balance GVHD and GVL are lacking. METHODS In our study, we crafted nanocapsules by layering polycationic aminated gelatin and polyanionic alginate onto the surface of T cells, examining potential alterations in their fundamental physiological functions. Subsequently, we established an AML mouse model and treated it with transplantation of bone marrow cells (BMCs) combined with encapsulated T cells to investigate the GVL and anti-GVHD effects of encapsulated T cells. In vitro co-culture was employed to probe the effects of encapsulation on immune synapses, co-stimulatory molecules, and tumor-killing pathways. RESULTS Transplantation of BMCs combined with donor T cells selectively encapsulated onto AML mice significantly alleviates GVHD symptoms while preserving essential GVL effects. Encapsulated T cells exerted their immunomodulatory effects by impeding the formation of immune synapses with recipient APCs, thereby downregulating co-stimulatory signals such as CD28-CD80, ICOS-ICOSL, and CD40L-CD40. Recipient mice receiving encapsulated T-cell transplantation exhibited a marked increase in donor Ly-5.1-BMC cell numbers, accompanied by unaltered in vivo expression levels of perforin and granzyme B. While transient inhibition of donor T-cell cytotoxicity in the tumor microenvironment was observed in vitro following single-cell nanoencapsulation, subsequent restoration to normal antitumor activity ensued, attributed to selective permeability of encapsulated vesicle shells and material degradation. Moreover, the expression of apoptotic proteins and FAS-FAS ligand pathway at normal levels was still observed in leukemia tumor cells. CONCLUSIONS Encapsulated donor T cells effectively mitigate GVHD while preserving the GVL effect by minimizing co-stimulatory signaling with APCs through early immune isolation. Subsequent degradation of nanocapsules restores T-cell cytotoxic efficacy against AML cells, mediated by cytotoxic pathways. Using transplant-encapsulated T cells offers a promising strategy to suppress GVHD while preserving the GVL effect.
Collapse
Affiliation(s)
- Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Ziyang Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Jian Hong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yuanfang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Qianshan Tao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongxia Li
- Department of Hematology and Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
27
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Zhou X, Cao W, Chen Y, Zhu Z, Lai Y, Liu Z, Jia F, Lu Z, Han H, Yao K, Wang Y, Ji J, Zhang P. An elastomer with in situ generated pure zwitterionic surfaces for fibrosis-resistant implants. Acta Biomater 2024; 185:226-239. [PMID: 38972625 DOI: 10.1016/j.actbio.2024.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Polymeric elastomers are widely utilized in implantable biomedical devices. Nevertheless, the implantation of these elastomers can provoke a robust foreign body response (FBR), leading to the rejection of foreign implants and consequently reducing their effectiveness in vivo. Building effective anti-FBR coatings on those implants remains challenging. Herein, we introduce a coating-free elastomer with superior immunocompatibility. A super-hydrophilic anti-fouling zwitterionic layer can be generated in situ on the surface of the elastomer through a simple chemical trigger. This elastomer can repel the adsorption of proteins, as well as the adhesion of cells, platelets, and diverse microbes. The elastomer elicited negligible inflammatory responses after subcutaneous implantation in rodents for 2 weeks. No apparent fibrotic capsule formation was observed surrounding the elastomer after 6 months in rodents. Continuous subcutaneous insulin infusion (CSII) catheters constructed from the elastomer demonstrated prolonged longevity and performance compared to commercial catheters, indicating its great potential for enhancing and extending the performance of various implantable biomedical devices by effectively attenuating local immune responses. STATEMENT OF SIGNIFICANCE: The foreign body response remains a significant challenge for implants. Complicated coating procedures are usually needed to construct anti-fibrotic coatings on implantable elastomers. Herein, a coating-free elastomer with superior immunocompatibility was achieved using a zwitterionic monomer derivative. A pure zwitterionic layer can be generated on the elastomer surface through a simple chemical trigger. This elastomer significantly reduces protein adsorption, cell and bacterial adhesion, and platelet activation, leading to minimal fibrotic capsule formation even after six months of subcutaneous implantation in rodents. CSII catheters constructed from the PQCBE-H elastomer demonstrated prolonged longevity and performance compared to commercial catheters, highlighting the significant potential of PQCBE-H elastomers for enhancing and extending the performance of various implantable biomedical devices.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Yuxian Lai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Zuolong Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311202, Zhejiang Province, PR China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang Province, PR China
| | - Zhouyu Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, Zhejiang Province, PR China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, Zhejiang Province, PR China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, Zhejiang Province, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311202, Zhejiang Province, PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311202, Zhejiang Province, PR China.
| |
Collapse
|
29
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Zhou X, Lu Z, Cao W, Zhu Z, Chen Y, Ni Y, Liu Z, Jia F, Ye Y, Han H, Yao K, Liu W, Wang Y, Ji J, Zhang P. Immunocompatible elastomer with increased resistance to the foreign body response. Nat Commun 2024; 15:7526. [PMID: 39214984 PMCID: PMC11364871 DOI: 10.1038/s41467-024-52023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric elastomers are extensively employed to fabricate implantable medical devices. However, implantation of the elastomers can induce a strong immune rejection known as the foreign body response (FBR), diminishing their efficacy. Herein, we present a group of immunocompatible elastomers, termed easy-to-synthesize vinyl-based anti-FBR dense elastomers (EVADE). EVADE materials effectively suppress the inflammation and capsule formation in subcutaneous models of rodents and non-human primates for at least one year and two months, respectively. Implantation of EVADE materials significantly reduces the expression of inflammation-related proteins S100A8/A9 in adjacent tissues compared to polydimethylsiloxane. We also show that inhibition or knockout of S100A8/A9 leads to substantial attenuation of fibrosis in mice, suggesting a target for fibrosis inhibition. Continuous subcutaneous insulin infusion (CSII) catheters constructed from EVADE elastomers demonstrate significantly improved longevity and performance compared to commercial catheters. The EVADE materials reported here may enhance and extend function in various medical devices by resisting the local immune responses.
Collapse
Affiliation(s)
- Xianchi Zhou
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zhouyu Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanwen Ni
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Zuolong Liu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Yang Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, Hangzhou, P. R. China
| | - Weifeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Jian Ji
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Peng Zhang
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
31
|
Hu T, Zhou T, Goit RK, Tam KC, Chan YK, Lam WC, Lo ACY. Bioactive Glial-Derived Neurotrophic Factor from a Safe Injectable Collagen-Alginate Composite Gel Rescues Retinal Photoreceptors from Retinal Degeneration in Rabbits. Mar Drugs 2024; 22:394. [PMID: 39330275 PMCID: PMC11433152 DOI: 10.3390/md22090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The management of vision-threatening retinal diseases remains challenging due to the lack of an effective drug delivery system. Encapsulated cell therapy (ECT) offers a promising approach for the continuous delivery of therapeutic agents without the need for immunosuppressants. In this context, an injectable and terminable collagen-alginate composite (CAC) ECT gel, designed with a Tet-on pro-caspase-8 system, was developed as a safe intraocular drug delivery platform for the sustained release of glial-cell-line-derived neurotrophic factor (GDNF) to treat retinal degenerative diseases. This study examined the potential clinical application of the CAC ECT gel, focusing on its safety, performance, and termination through doxycycline (Dox) administration in the eyes of healthy New Zealand White rabbits, as well as its therapeutic efficacy in rabbits with sodium-iodate (SI)-induced retinal degeneration. The findings indicated that the CAC ECT gel can be safely implanted without harming the retina or lens, displaying resistance to degradation, facilitating cell attachment, and secreting bioactive GDNF. Furthermore, the GDNF levels could be modulated by the number of implants. Moreover, Dox administration was effective in terminating gel function without causing retinal damage. Notably, rabbits with retinal degeneration treated with the gels exhibited significant functional recovery in both a-wave and b-wave amplitudes and showed remarkable efficacy in reducing photoreceptor apoptosis. Given its biocompatibility, mechanical stability, controlled drug release, terminability, and therapeutic effectiveness, our CAC ECT gel presents a promising therapeutic strategy for various retinal diseases in a clinical setting, eliminating the need for immunosuppressants.
Collapse
Affiliation(s)
- Tingyu Hu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Wai-Ching Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| |
Collapse
|
32
|
Soleymani H, Ghorbani M, Sedghi M, Allahverdi A, Naderi-Manesh H. Microfluidics single-cell encapsulation reveals that poly-l-lysine-mediated stem cell adhesion to alginate microgels is crucial for cell-cell crosstalk and its self-renewal. Int J Biol Macromol 2024; 274:133418. [PMID: 38936577 DOI: 10.1016/j.ijbiomac.2024.133418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/08/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Microfluidic cell encapsulation has provided a platform for studying the behavior of individual cells and has become a turning point in single-cell analysis during the last decade. The engineered microenvironment, along with protecting the immune response, has led to increasingly presenting the results of practical and pre-clinical studies with the goals of disease treatment, tissue engineering, intelligent control of stem cell differentiation, and regenerative medicine. However, the significance of cell-substrate interaction versus cell-cell communications in the microgel is still unclear. In this study, monodisperse alginate microgels were generated using a flow-focusing microfluidic device to determine how the cell microenvironment can control human bone marrow-derived mesenchymal stem cells (hBMSCs) viability, proliferation, and biomechanical features in single-cell droplets versus multi-cell droplets. Collected results show insufficient cell proliferation (234 % and 329 %) in both single- and multi-cell alginate microgels. Alginate hydrogels supplemented with poly-l-lysine (PLL) showed a better proliferation rate (514 % and 780 %) in a comparison of free alginate hydrogels. Cell stiffness data illustrate that hBMSCs cultured in alginate hydrogels have higher membrane flexibility and migration potency (Young's modulus equal to 1.06 kPa), whereas PLL introduces more binding sites for cell attachment and causes lower flexibility and migration potency (Young's modulus equal to 1.83 kPa). Considering that cell adhesion is the most important parameter in tissue engineering, in which cells do not run away from a 3D substrate, PLL enhances cell stiffness and guarantees cell attachments. In conclusion, cell attachment to PLL-mediated alginate hydrogels is crucial for cell viability and proliferation. It suggests that cell-cell signaling is good enough for stem cell viability, but cell-PLL attachment alongside cell-cell signaling is crucial for stem cell proliferation and self-renewal.
Collapse
Affiliation(s)
- Hossein Soleymani
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran.
| | - Mohammad Ghorbani
- Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mosslim Sedghi
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Abdollah Allahverdi
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran.
| | - Hossein Naderi-Manesh
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
| |
Collapse
|
33
|
Wang L, Sun Y, Yang L, Wang S, Liu C, Wang Y, Niu Y, Huang Z, Zhang J, Wang C, Dong L. Engineering an energy-dissipating hybrid tissue in vivo for obesity treatment. Cell Rep 2024; 43:114425. [PMID: 38970789 DOI: 10.1016/j.celrep.2024.114425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
Obesity is a global health challenge with limited therapeutic solutions. Here, we demonstrate the engineering of an energy-dissipating hybrid tissue (EDHT) in the body for weight control. EDHT is constructed by implanting a synthetic gel matrix comprising immunomodulatory signals and functional cells into the recipient mouse. The immunomodulatory signals induce the host stromal cells to create an immunosuppressive niche that protects the functional cells, which are overexpressing the uncoupling protein 1 (UCP1), from immune rejection. Consequently, these endogenous and exogenous cells co-develop a hybrid tissue that sustainedly produces UCP1 to accelerate the host's energy expenditure. Systematic experiments in high-fat diet (HFD) and transgenic (ob/ob) mice show that EDHT efficiently reduces body weight and relieves obesity-associated pathological conditions. Importantly, an 18-month observation for safety assessment excludes cell leakage from EDHT and reports no adverse physiological responses. Overall, EDHT demonstrates convincing efficacy and safety in controlling body weight.
Collapse
Affiliation(s)
- Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yajie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Lifang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunyan Liu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Yulian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Medical School, Nanjing University, Nanjing 210093, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China; National Resource Center for Mutant Mice, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
34
|
Zhu J, He Y, Wang Y, Cai LH. Voxelated bioprinting of modular double-network bio-ink droplets. Nat Commun 2024; 15:5902. [PMID: 39003266 PMCID: PMC11246467 DOI: 10.1038/s41467-024-49705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/17/2024] [Indexed: 07/15/2024] Open
Abstract
Analogous of pixels to two-dimensional pictures, voxels-in the form of either small cubes or spheres-are the basic building blocks of three-dimensional objects. However, precise manipulation of viscoelastic bio-ink voxels in three-dimensional space represents a grand challenge in both soft matter science and biomanufacturing. Here, we present a voxelated bioprinting technology that enables the digital assembly of interpenetrating double-network hydrogel droplets made of polyacrylamide/alginate-based or hyaluronic acid/alginate-based polymers. The hydrogels are crosslinked via additive-free and biofriendly click reaction between a pair of stoichiometrically matched polymers carrying norbornene and tetrazine groups, respectively. We develop theoretical frameworks to describe the crosslinking kinetics and stiffness of the hydrogels, and construct a diagram-of-state to delineate their mechanical properties. Multi-channel print nozzles are developed to allow on-demand mixing of highly viscoelastic bio-inks without significantly impairing cell viability. Further, we showcase the distinctive capability of voxelated bioprinting by creating highly complex three-dimensional structures such as a hollow sphere composed of interconnected yet distinguishable hydrogel particles. Finally, we validate the cytocompatibility and in vivo stability of the printed double-network scaffolds through cell encapsulation and animal transplantation.
Collapse
Affiliation(s)
- Jinchang Zhu
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Yi He
- Department of Surgery, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, 22903, USA
| | - Li-Heng Cai
- Soft Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
35
|
Dorchei F, Heydari A, Kroneková Z, Kronek J, Pelach M, Cseriová Z, Chorvát D, Zúñiga-Navarrete F, Rios PD, McGarrigle J, Ghani S, Isa D, Joshi I, Vasuthas K, Rokstad AMA, Oberholzer J, Raus V, Lacík I. Postmodification with Polycations Enhances Key Properties of Alginate-Based Multicomponent Microcapsules. Biomacromolecules 2024; 25:4118-4138. [PMID: 38857534 DOI: 10.1021/acs.biomac.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Postmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly in vivo. Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure. We found that the postmodification can enhance or impair the mechanical resistance and biocompatibility of microcapsules implanted into a mouse model, with polycations surprisingly providing the best results. Confocal Raman microscopy and confocal laser scanning microscopy (CLSM) analyses revealed stable interpolyelectrolyte complex layers within the parent microcapsule, hindering the access of higher molar weight PEs into the microcapsule core. All microcapsules showed negative surface zeta potential, indicating that the postmodification PEs get hidden within the microcapsule membrane, which agrees with CLSM data. Human whole blood assay revealed complex behavior of microcapsules regarding their inflammatory and coagulation potential. Importantly, most of the postmodification PEs, including polycations, were found to be benign toward the encapsulated model cells.
Collapse
Affiliation(s)
- Faeze Dorchei
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Abolfazl Heydari
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| | - Michal Pelach
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Cseriová
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Dušan Chorvát
- Department of Biophotonics, International Laser Centre, Slovak Centre of Scientific and Technical Information, Ilkovičova 3, 841 04 Bratislava, Slovakia
| | - Fernando Zúñiga-Navarrete
- Department of Proteomics, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter D Rios
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - James McGarrigle
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Sofia Ghani
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Douglas Isa
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Ira Joshi
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
| | - Kalaiyarasi Vasuthas
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - Anne Mari A Rokstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Prinsesse Kristinas gt.1, NO-7491 Trondheim, Norway
| | - José Oberholzer
- CellTrans, Inc., 2201 W. Campbell Park Dr., Chicago, Illinois 60612, United States
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt'any, Slovakia
| |
Collapse
|
36
|
Duke RE, Stanich NJ, Sittadjody S, Opara EC, Berberich JA, Saul JM. A Simple Mathematical Model Demonstrates the Potential for Cell-Based Hormone Therapy to Address Dysregulation of the Hypothalamus-Pituitary-Ovary Axis in Females with Loss of Ovarian Function. Ann Biomed Eng 2024; 52:1894-1907. [PMID: 37436565 PMCID: PMC10804442 DOI: 10.1007/s10439-023-03307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Tissue-engineering and cell-based strategies provide an intriguing approach to treat complex conditions such as those of the endocrine system. We have previously developed a cell-based hormone therapy (cHT) to address hormonal insufficiency associated with the loss of ovarian function. To assess how the cHT strategy may achieve its efficacy, we developed a mathematical model to determine if known autocrine, paracrine, and endocrine effects of the native hypothalamus-pituitary-ovary (HPO) axis could explain our previously observed effects in ovariectomized rats following treatment with cHT. Our model suggests that cHT constructs participate in the complex machinery of the HPO axis. We were able to describe the in vivo behaviors of estrogen, progesterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), inhibin, and androgen with good accuracy. A sensitivity analysis indicated that some parameters impact the broader HPO system more than others, but that most changes in model parameters led to proportional changes in the system. We also conducted a predictive analysis on the effect of cHT dose on HPO axis hormones and found that, with the exception of estrogen, the other HPO hormones analyzed reach a saturation level within the physically possible number of constructs.
Collapse
Affiliation(s)
- Rachel E Duke
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA
| | | | - Sivanandane Sittadjody
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jason A Berberich
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA.
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
37
|
Zhou X, Wang Y, Ji J, Zhang P. Materials Strategies to Overcome the Foreign Body Response. Adv Healthc Mater 2024; 13:e2304478. [PMID: 38666550 DOI: 10.1002/adhm.202304478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The foreign body response (FBR) is an immune-mediated reaction that can occur with most biomaterials and biomedical devices. The FBR initiates a deterioration in the performance of implantable devices, representing a longstanding challenge that consistently hampers their optimal utilization. Over the last decade, significant strides are achieved based on either hydrogel design or surface modifications to mitigate the FBR. This review delves into recent material strategies aimed at mitigating the FBR. Further, the authors look forward to future novel anti-FBR materials from the perspective of clinical translation needs. Such prospective materials hold the potential to attenuate local immune responses, thereby significantly enhancing the overall performance of implantable devices.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 311202, P. R. China
| |
Collapse
|
38
|
Drozdova M, Makhonina A, Gladkikh D, Artyukhov A, Bryukhanov L, Mezhuev Y, Lozinsky V, Markvicheva E. Hydroxyapatite-loaded macroporous calcium alginate hydrogels: Preparation, characterization, and in vitro evaluation. Biopolymers 2024; 115:e23583. [PMID: 38661371 DOI: 10.1002/bip.23583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Hydrogels from natural polysaccharides are of great interest for tissue engineering. This study aims (1) to prepare hydroxyapatite-loaded macroporous calcium alginate hydrogels by novel one-step technique using internal gelation in water-frozen solutions; (2) to evaluate their physicochemical properties; (3) to estimate their ability to support cell growth and proliferation in vitro. The structure of the hydrogel samples in a swollen state was studied by confocal laser scanning microscopy and was shown to represent a system of interconnected macropores with sizes of tens micron. The swelling behavior of the hydrogels, their mechanical properties (Young's moduli) in function of a hydroxyapatite content (5-30 mass%) were studied. All hydrogel samples loaded with hydroxyapatite were found to support growth and proliferation of mouse fibroblasts (L929) at long-term cultivation for 7 days. The obtained macroporous composite Ca-Alg-HA hydrogels could be promising for tissue engineering.
Collapse
Affiliation(s)
- Maria Drozdova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alika Makhonina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Daria Gladkikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Alexander Artyukhov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Leonid Bryukhanov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Lozinsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Elena Markvicheva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Gong L, He L, Lu N, Petchakup C, Li KHH, Tay CY, Hou HW. Label-Free Single Microparticles and Cell Aggregates Sorting in Continuous Cell-Based Manufacturing. Adv Healthc Mater 2024; 13:e2304529. [PMID: 38465888 DOI: 10.1002/adhm.202304529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Indexed: 03/12/2024]
Abstract
There is a paradigm shift in biomanufacturing toward continuous bioprocessing but cell-based manufacturing using adherent and suspension cultures, including microcarriers, hydrogel microparticles, and 3D cell aggregates, remains challenging due to the lack of efficient in-line bioprocess monitoring and cell harvesting tools. Herein, a novel label-free microfluidic platform for high throughput (≈50 particles/sec) impedance bioanalysis of biomass, cell viability, and stem cell differentiation at single particle resolution is reported. The device is integrated with a real-time piezo-actuated particle sorter based on user-defined multi-frequency impedance signatures. Biomass profiling of Cytodex-3 microcarriers seeded with adipose-derived mesenchymal stem cells (ADSCs) is first performed to sort well-seeded or confluent microcarriers for downstream culture or harvesting, respectively. Next, impedance-based isolation of microcarriers with osteogenic differentiated ADSCs is demonstrated, which is validated with a twofold increase of calcium content in sorted ADSCs. Impedance profiling of heterogenous ADSCs-encapsulated hydrogel (alginate) microparticles and 3D ADSC aggregate mixtures is also performed to sort particles with high biomass and cell viability to improve cell quality. Overall, the scalable microfluidic platform technology enables in-line sample processing from bioreactors directly and automated analysis of cell quality attributes to maximize cell yield and improve the control of cell quality in continuous cell-based manufacturing.
Collapse
Affiliation(s)
- Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Singapore, 637141, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| |
Collapse
|
40
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
41
|
Li J, Sun L, Bian F, Pandol SJ, Li L. Emerging approaches for the development of artificial islets. SMART MEDICINE 2024; 3:e20230042. [PMID: 39188698 PMCID: PMC11235711 DOI: 10.1002/smmd.20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 08/28/2024]
Abstract
The islet of Langerhans, functioning as a "mini organ", plays a vital role in regulating endocrine activities due to its intricate structure. Dysfunction in these islets is closely associated with the development of diabetes mellitus (DM). To offer valuable insights for DM research and treatment, various approaches have been proposed to create artificial islets or islet organoids with high similarity to natural islets, under the collaborative effort of biologists, clinical physicians, and biomedical engineers. This review investigates the design and fabrication of artificial islets considering both biological and tissue engineering aspects. It begins by examining the natural structures and functions of native islets and proceeds to analyze the protocols for generating islets from stem cells. The review also outlines various techniques used in crafting artificial islets, with a specific focus on hydrogel-based ones. Additionally, it provides a concise overview of the materials and devices employed in the clinical applications of artificial islets. Throughout, the primary goal is to develop artificial islets, thereby bridging the realms of developmental biology, clinical medicine, and tissue engineering.
Collapse
Affiliation(s)
- Jingbo Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Lingyu Sun
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Feika Bian
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Stephen J. Pandol
- Division of GastroenterologyDepartment of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ling Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
42
|
Wu J, Deng J, Theocharidis G, Sarrafian TL, Griffiths LG, Bronson RT, Veves A, Chen J, Yuk H, Zhao X. Adhesive anti-fibrotic interfaces on diverse organs. Nature 2024; 630:360-367. [PMID: 38778109 PMCID: PMC11168934 DOI: 10.1038/s41586-024-07426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Implanted biomaterials and devices face compromised functionality and efficacy in the long term owing to foreign body reactions and subsequent formation of fibrous capsules at the implant-tissue interfaces1-4. Here we demonstrate that an adhesive implant-tissue interface can mitigate fibrous capsule formation in diverse animal models, including rats, mice, humanized mice and pigs, by reducing the level of infiltration of inflammatory cells into the adhesive implant-tissue interface compared to the non-adhesive implant-tissue interface. Histological analysis shows that the adhesive implant-tissue interface does not form observable fibrous capsules on diverse organs, including the abdominal wall, colon, stomach, lung and heart, over 12 weeks in vivo. In vitro protein adsorption, multiplex Luminex assays, quantitative PCR, immunofluorescence analysis and RNA sequencing are additionally carried out to validate the hypothesis. We further demonstrate long-term bidirectional electrical communication enabled by implantable electrodes with an adhesive interface over 12 weeks in a rat model in vivo. These findings may offer a promising strategy for long-term anti-fibrotic implant-tissue interfaces.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jue Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- SanaHeal, Cambridge, MA, USA.
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Bochenek MA, Walters B, Zhang J, Fenton OS, Facklam A, Kroneková Z, Pelach M, Engquist EN, Leite NC, Morgart A, Lacík I, Langer R, Anderson DG. Enhancing the Functionality of Immunoisolated Human SC-βeta Cell Clusters through Prior Resizing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307464. [PMID: 38212275 PMCID: PMC11153032 DOI: 10.1002/smll.202307464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/10/2023] [Indexed: 01/13/2024]
Abstract
The transplantation of immunoisolated stem cell derived beta cell clusters (SC-β) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable β-cell source without the need for systemic immune suppression. SC-β cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-β clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-β cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-β cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-β cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-β cells exhibited the least amount of fibrosis and enhanced markers of β-cell maturation. The utilization of small SC-β cell clusters within immunoprotection devices may improve clinical translation in the future.
Collapse
Affiliation(s)
- Matthew A Bochenek
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Ben Walters
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jingping Zhang
- Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Owen S Fenton
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Amanda Facklam
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Zuzana Kroneková
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 41, Slovakia
| | - Michal Pelach
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 41, Slovakia
| | - Elise N Engquist
- Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Nayara C Leite
- Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Alex Morgart
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 41, Slovakia
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
44
|
Karaca MA, Kancagi DD, Ozbek U, Ovali E, Gok O. Betulin Stimulates Osteogenic Differentiation of Human Osteoblasts-Loaded Alginate-Gelatin Microbeads. Bioengineering (Basel) 2024; 11:553. [PMID: 38927789 PMCID: PMC11201098 DOI: 10.3390/bioengineering11060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis, a terminal illness, has emerged as a global public health problem in recent years. The long-term use of bone anabolic drugs to treat osteoporosis causes multi-morbidity in elderly patients. Alternative therapies, such as allogenic and autogenic tissue grafts, face important issues, such as a limited source of allogenic grafts and tissue rejection in autogenic grafts. However, stem cell therapy has been shown to increase bone regeneration and decrease osteoporotic bone formation. Stem cell therapy combined with betulin (BET) supplementation might be adequate for bone remodeling and new bone tissue generation. In this study, the effect of BET on the viability and osteogenic differentiation of hFOB 1.19 cells was investigated. The cells were encapsulated in alginate-gelatin (AlGel) microbeads. In vitro tests were conducted during the 12 d of incubation. While BET showed cytotoxic activity (>1 µM) toward non-encapsulated hFOB 1.19 cells, encapsulated cells retained their functionality for up to 12 days, even at 5 µM BET. Moreover, the expression of osteogenic markers indicates an enhanced osteo-inductive effect of betulin on encapsulated hFOB 1.19, compared to the non-encapsulated cell culture. The 3D micro-environment of the AlGel microcapsules successfully protects the hFOB 1.19 cells against BET cytotoxicity, allowing BET to improve the mineralization and differentiation of osteoblast cells.
Collapse
Affiliation(s)
- Mehmet Ali Karaca
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Derya Dilek Kancagi
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ugur Ozbek
- Medical Genetics Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, 34752 Istanbul, Turkey; (D.D.K.); (E.O.)
| | - Ozgul Gok
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
45
|
Amin ML, Mawad D, Dokos S, Sorrell CC. Comparative Bioactivities of Chemically Modified Fucoidan and λ-Carrageenan toward Cells Encapsulated in Covalently Cross-Linked Hydrogels. Biomacromolecules 2024; 25:3131-3140. [PMID: 38554085 DOI: 10.1021/acs.biomac.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The sulfated marine polysaccharides, fucoidan and λ-carrageenan, are known to possess anti-inflammatory, immunomodulatory, and cellular protective properties. Although they hold considerable promise for tissue engineering constructs, their covalent cross-linking in hydrogels and comparative bioactivities to cells are absent from the literature. Thus, fucoidan and λ-carrageenan were modified with methacrylate groups and were covalently cross-linked with the synthetic polymer poly(vinyl alcohol)-methacrylate (PVA-MA) to form 20 wt % biosynthetic hydrogels. Identical degrees of methacrylation were confirmed by 1H NMR, and covalent conjugation was determined by using a colorimetric 1,9-dimethyl-methylene blue (DMMB) assay. Pancreatic beta cells were encapsulated in the hydrogels, followed by culturing in the 3D environment for a prolonged period of 32 days and evaluation of the cellular functionality by live/dead, adenosine 5'-triphosphate (ATP) level, and insulin secretion. The results confirmed that fucoidan and λ-carrageenan exhibited ∼12% methacrylate substitution, which generated hydrogels with stable conjugation of the polysaccharides with PVA-MA. The cells encapsulated in the PVA-fucoidan hydrogels demonstrated consistently high ATP levels over the culture period. Furthermore, only cells in the PVA-fucoidan hydrogels retained glucose responsiveness, demonstrating comparatively higher insulin secretion in response to glucose. In contrast, cells in the PVA-λ-carrageenan and the PVA control hydrogels lost all glucose responsiveness. The present work confirms the superior effects of chemically modified fucoidan over λ-carrageenan on pancreatic beta cell survival and function in covalently cross-linked hydrogels, thereby illustrating the importance of differential polysaccharide structural features on their biological effects.
Collapse
Affiliation(s)
- Md Lutful Amin
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
46
|
Zangi AR, Amiri A, Pazooki P, Soltanmohammadi F, Hamishehkar H, Javadzadeh Y. Non-viral and viral delivery systems for hemophilia A therapy: recent development and prospects. Ann Hematol 2024; 103:1493-1511. [PMID: 37951852 DOI: 10.1007/s00277-023-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Recent advancements have focused on enhancing factor VIII half-life and refining its delivery methods, despite the well-established knowledge that factor VIII deficiency is the main clotting protein lacking in hemophilia. Consequently, both viral and non-viral delivery systems play a crucial role in enhancing the quality of life for hemophilia patients. The utilization of viral vectors and the manipulation of non-viral vectors through targeted delivery are significant advancements in the field of cellular and molecular therapies for hemophilia. These developments contribute to the progression of treatment strategies and hold great promise for improving the overall well-being of individuals with hemophilia. This review study comprehensively explores the application of viral and non-viral vectors in cellular (specifically T cell) and molecular therapy approaches, such as RNA, monoclonal antibody (mAb), and CRISPR therapeutics, with the aim of addressing the challenges in hemophilia treatment. By examining these innovative strategies, the study aims to shed light on potential solutions to enhance the efficacy and outcomes of hemophilia therapy.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran.
| |
Collapse
|
47
|
Ho BX, Teo AKK, Ng NHJ. Innovations in bio-engineering and cell-based approaches to address immunological challenges in islet transplantation. Front Immunol 2024; 15:1375177. [PMID: 38650946 PMCID: PMC11033429 DOI: 10.3389/fimmu.2024.1375177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells 'on-demand'. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- BetaLife Pte Ltd, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
48
|
Jeang WJ, Bochenek MA, Bose S, Zhao Y, Wong BM, Yang J, Jiang AL, Langer R, Anderson DG. Silicone cryogel skeletons enhance the survival and mechanical integrity of hydrogel-encapsulated cell therapies. SCIENCE ADVANCES 2024; 10:eadk5949. [PMID: 38578991 PMCID: PMC10997197 DOI: 10.1126/sciadv.adk5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
The transplantation of engineered cells that secrete therapeutic proteins presents a promising method for addressing a range of chronic diseases. However, hydrogels used to encase and protect non-autologous cells from immune rejection often suffer from poor mechanical properties, insufficient oxygenation, and fibrotic encapsulation. Here, we introduce a composite encapsulation system comprising an oxygen-permeable silicone cryogel skeleton, a hydrogel matrix, and a fibrosis-resistant polymer coating. Cryogel skeletons enhance the fracture toughness of conventional alginate hydrogels by 23-fold and oxygen diffusion by 2.8-fold, effectively mitigating both implant fracture and hypoxia of encapsulated cells. Composite implants containing xenogeneic cells engineered to secrete erythropoietin significantly outperform unsupported alginate implants in therapeutic delivery over 8 weeks in immunocompetent mice. By improving mechanical resiliency and sustaining denser cell populations, silicone cryogel skeletons enable more durable and miniaturized therapeutic implants.
Collapse
Affiliation(s)
- William J. Jeang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew A. Bochenek
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suman Bose
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yichao Zhao
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan M. Wong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiawei Yang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Alexis L. Jiang
- Department of Computer Science, Wellesley College, Wellesley, MA 02481, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
49
|
Zhou X, Cao W, Chen Y, Zhu Z, Chen Y, Ni Y, Liu Z, Jia F, Lu Z, Ye Y, Han H, Yao K, Liu W, Wei X, Chen S, Wang Y, Ji J, Zhang P. Poly(Glutamic Acid-Lysine) Hydrogels with Alternating Sequence Resist the Foreign Body Response in Rodents and Non-Human Primates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308077. [PMID: 38403462 PMCID: PMC11040334 DOI: 10.1002/advs.202308077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Indexed: 02/27/2024]
Abstract
The foreign body response (FBR) to implanted biomaterials and biomedical devices can severely impede their functionality and even lead to failure. The discovery of effective anti-FBR materials remains a formidable challenge. Inspire by the enrichment of glutamic acid (E) and lysine (K) residues on human protein surfaces, a class of zwitterionic polypeptide (ZIP) hydrogels with alternating E and K sequences to mitigate the FBR is prepared. When subcutaneously implanted, the ZIP hydrogels caused minimal inflammation after 2 weeks and no obvious collagen capsulation after 6 months in mice. Importantly, these hydrogels effectively resisted the FBR in non-human primate models for at least 2 months. In addition, the enzymatic degradability of the gel can be controlled by adjusting the crosslinking degree or the optical isomerism of amino acid monomers. The long-term FBR resistance and controlled degradability of ZIP hydrogels open up new possibilities for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wenzhong Cao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Zihao Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Yanwen Ni
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Zuolong Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Fan Jia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016P. R. China
| | - Zhouyu Lu
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Yang Ye
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Haijie Han
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Ke Yao
- Eye CenterThe Second Affiliated HospitalSchool of MedicineZhejiang Provincial Key Laboratory of OphthalmologyZhejiang Provincial Clinical Research Center for Eye DiseasesZhejiang Provincial Engineering Institute on Eye DiseasesZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Weifeng Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| | - Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationDepartment of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationDepartment of Chemical and Biological EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
- International Research Center for X PolymersInternational CampusZhejiang UniversityHainingZhejiang314400P. R. China
- State Key Laboratory of Transvascular Implantation DevicesZhejiang UniversityHangzhouZhejiang311202P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058P. R. China
- International Research Center for X PolymersInternational CampusZhejiang UniversityHainingZhejiang314400P. R. China
- State Key Laboratory of Transvascular Implantation DevicesZhejiang UniversityHangzhouZhejiang311202P. R. China
| |
Collapse
|
50
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|