1
|
Ander SE, Fish ER, da Silva MOL, Davenport BJ, Parks MG, Morrison TE. Basic patches on the E2 glycoprotein of eastern equine encephalitis virus influence viral vascular clearance and dissemination in mice. J Virol 2025:e0060225. [PMID: 40387358 DOI: 10.1128/jvi.00602-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025] Open
Abstract
Previously, we found that chimeric Sindbis-eastern equine encephalitis virus (SINV-EEEV) particles can be removed from the murine blood circulation in a phagocyte-dependent manner which can be disrupted by either transient depletion of vascular heparan sulfate (HS) glycosaminoglycans (GAGs), or mutation of the viral E2 glycoprotein (K71/74/77A) associated with decreased GAG binding in vitro. Here, we further investigate the viral determinants of EEEV vascular clearance and evaluate their role in viremia development. We identified two large basic patches on the EEEV E2 glycoprotein which contain two known GAG-binding sites (K71/74/77 and K156/R157) and six additional basic residues (K10, R13, K56, R152, K231, and K232). We find that disruption of either basic patch by single alanine substitutions promotes prolonged retention of SINV-EEEV particles in the murine blood circulation in an experimental viremia model. Furthermore, we observed that the K156/R157A, K10A, and K231A mutations are also associated with similar viral dissemination in a mouse infection model as the attenuated K71/74/77A mutant. Surprisingly, despite known differences in GAG binding and potential alteration in receptor interactions, we find the initial dispersal of wild-type (WT) and mutant SINV-EEEV virions from the inoculation site to the draining lymph node to be equivalent at 1 hour post-subcutaneous inoculation. Moreover, our data suggest the higher viremia associated with mutation of the E2 basic patches may be attributed to evasion of viremic control by blood-filtering phagocytes. Overall, this study defines viral features of the EEEV E2 glycoprotein that influence tissue-specific viral dissemination and highlights the capacity of blood-filtering phagocytes to modulate EEEV viremia.IMPORTANCEVirus-GAG interactions have long been studied in vitro; however, investigating the impact of these interactions in vivo has been challenging. Previously, we showed that blood-filtering phagocytes and vascular HS mediate the removal of enhanced GAG-binding WT SINV-EEEV virions from the blood circulation in a reductionist, experimental viremia model. Here, we demonstrate that single-residue, charge-neutralizing mutations within basic patches of the E2 glycoprotein are sufficient both to promote viral evasion of vascular clearance and viral dissemination in an infection model. We also find that the WT and decreased GAG-binding SINV-EEEV virions traffic similarly from a subcutaneous inoculation until drainage into the bloodstream, upon which the WT virus is selectively depleted. These observations suggest viral dissemination is influenced by tissue-specific, virion-GAG interactions.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Erin R Fish
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mariana O L da Silva
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
2
|
Alcorn MD, Sun C, Gilliland TC, Lukash T, Crasto CM, Raju S, Diamond MS, Weaver SC, Klimstra WB. Three positively charged binding sites on the eastern equine encephalitis virus E2 glycoprotein coordinate heparan sulfate- and protein receptor-dependent infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621500. [PMID: 39574633 PMCID: PMC11580934 DOI: 10.1101/2024.11.04.621500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Naturally circulating strains of eastern equine encephalitis virus (EEEV) bind heparan sulfate (HS) receptors and this interaction has been linked to its neurovirulence. Previous studies associated EEEV-HS interactions with three positively charged amino acid clusters on the E2 glycoprotein. One of these sites has recently been reported to be critical for binding EEEV to very-low-density lipoprotein receptor (VLDLR), an EEEV receptor protein. The proteins apolipoprotein E receptor 2 (ApoER2) isoforms 1 and 2, and LDLR have also been shown to function as EEEV receptors. Herein, we investigate the individual contribution of each HS interaction site to EEEV HS- and protein receptor-dependent infection in vitro and EEEV replication in animals. We show that each site contributes to both EEEV-HS and EEEV-protein receptor interactions, providing evidence that altering these interactions can affect disease in mice and eliminate mosquito infectivity. Thus, multiple HS-binding sites exist in EEEV E2, and these sites overlap functionally with protein receptor interaction sites, with each type of interaction contributing to tissue infectivity and disease phenotypes.
Collapse
Affiliation(s)
- Maria D.H. Alcorn
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Chengqun Sun
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Theron C. Gilliland
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tetyana Lukash
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Christine M. Crasto
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Saravanan Raju
- Department of Medicine and Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael S. Diamond
- Department of Medicine and Pathology & Immunology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Scott C. Weaver
- Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - William B. Klimstra
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
3
|
Ander SE, Parks MG, Davenport BJ, Li FS, Bosco-Lauth A, Carpentier KS, Sun C, Lucas CJ, Klimstra WB, Ebel GD, Morrison TE. Phagocyte-expressed glycosaminoglycans promote capture of alphaviruses from the blood circulation in a host species-specific manner. PNAS NEXUS 2024; 3:pgae119. [PMID: 38560529 PMCID: PMC10978064 DOI: 10.1093/pnasnexus/pgae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The magnitude and duration of vertebrate viremia are critical determinants of arbovirus transmission, geographic spread, and disease severity-yet, mechanisms determining arbovirus viremia levels are poorly defined. Previous studies have drawn associations between in vitro virion-glycosaminoglycan (GAG) interactions and in vivo clearance kinetics of virions from blood circulation. From these observations, it is commonly hypothesized that GAG-binding virions are rapidly removed from circulation due to ubiquitous expression of GAGs by vascular endothelial cells, thereby limiting viremia. Using an in vivo model for viremia, we compared the vascular clearance of low and enhanced GAG-binding viral variants of chikungunya, eastern- (EEEV), and Venezuelan- (VEEV) equine encephalitis viruses. We find GAG-binding virions are more quickly removed from circulation than their non-GAG-binding variant; however individual clearance kinetics vary between GAG-binding viruses, from swift (VEEV) to slow removal from circulation (EEEV). Remarkably, we find phagocytes are required for efficient vascular clearance of some enhanced GAG-binding virions. Moreover, transient depletion of vascular heparan sulfate impedes vascular clearance of only some GAG-binding viral variants and in a phagocyte-dependent manner, implying phagocytes can mediate vascular GAG-virion interactions. Finally, in direct contrast to mice, we find enhanced GAG-binding EEEV is resistant to vascular clearance in avian hosts, suggesting the existence of species-specificity in virion-GAG interactions. In summary, these data support a role for GAG-mediated clearance of some viral particles from the blood circulation, illuminate the potential of blood-contacting phagocytes as a site for GAG-virion binding, and suggest a role for species-specific GAG structures in arbovirus ecology.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Guston Parks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela Bosco-Lauth
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Zubair AS, McAlpine LS, Gobeske KT. Virology, ecology, epidemiology, pathology, and treatment of eastern equine encephalitis. J Neurol Sci 2024; 457:122886. [PMID: 38278094 DOI: 10.1016/j.jns.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Eastern equine encephalitis (EEE) was one of the first-recognized neuroinvasive arboviral diseases in North America, and it remains the most lethal. Although EEE is known to have periodic spikes in infection rates, there is increasing evidence that it may be undergoing a change in its prevalence and its public health burden. Numerous factors shape the scope of EEE in humans, and there are important similarities with other emergent viral diseases that have surfaced or strengthened in recent years. Because environmental and ecological conditions that broadly influence the epidemiology of arboviral diseases also are changing, and the frequency, severity, and scope of outbreaks are expected to worsen, an expanded understanding of EEE will have untold importance in coming years. Here we review the factors shaping EEE transmission cycles and the conditions leading to outbreaks in humans from an updated, multidomain perspective. We also provide special consideration of factors shaping the virology, host-vector-environment relationships, and mechanisms of pathology and treatment as a reference for broadening audiences.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Kevin T Gobeske
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Adams LJ, Raju S, Ma H, Gilliland T, Reed DS, Klimstra WB, Fremont DH, Diamond MS. Structural and functional basis of VLDLR usage by Eastern equine encephalitis virus. Cell 2024; 187:360-374.e19. [PMID: 38176410 PMCID: PMC10843625 DOI: 10.1016/j.cell.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
The very-low-density lipoprotein receptor (VLDLR) comprises eight LDLR type A (LA) domains and supports entry of distantly related alphaviruses, including Eastern equine encephalitis virus (EEEV) and Semliki Forest virus (SFV). Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage more than one LA domain simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection. Whereas all EEEV strains show conservation of two VLDLR-binding sites, the EEEV PE-6 strain and a few other EEE complex members feature a single amino acid substitution that enables binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.
Collapse
Affiliation(s)
- Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongming Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theron Gilliland
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas S Reed
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Ma H, Adams LJ, Raju S, Sariol A, Kafai NM, Janova H, Klimstra WB, Fremont DH, Diamond MS. The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses. Nat Commun 2024; 15:246. [PMID: 38172096 PMCID: PMC10764363 DOI: 10.1038/s41467-023-44624-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.
Collapse
Affiliation(s)
- Hongming Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alan Sariol
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William B Klimstra
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Adams LJ, Raju S, Ma H, Gilliland T, Reed DS, Klimstra WB, Fremont DH, Diamond MS. Structural and functional basis of VLDLR receptor usage by Eastern equine encephalitis virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567188. [PMID: 38014196 PMCID: PMC10680733 DOI: 10.1101/2023.11.15.567188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The very low-density lipoprotein receptor (VLDLR) is comprised of eight LDLR type A (LA) domains and supports entry of distantly related Eastern equine encephalitis (EEEV) and Semliki Forest (SFV) alphaviruses. Here, by resolving multiple cryo-electron microscopy structures of EEEV-VLDLR complexes and performing mutagenesis and functional studies, we show that EEEV uses multiple sites (E1/E2 cleft and E2 A domain) to engage different LA domains simultaneously. However, no single LA domain is necessary or sufficient to support efficient EEEV infection, highlighting complexity in domain usage. Whereas all EEEV strains show conservation of two VLDLR binding sites, the EEEV PE-6 strain and other EEE complex members feature a single amino acid substitution that mediates binding of LA domains to an additional site on the E2 B domain. These structural and functional analyses informed the design of a minimal VLDLR decoy receptor that neutralizes EEEV infection and protects mice from lethal challenge.
Collapse
Affiliation(s)
- Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hongming Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theron Gilliland
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Douglas S. Reed
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B. Klimstra
- The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
8
|
Zimmerman O, Zimmerman MI, Raju S, Nelson CA, Errico JM, Madden EA, Holmes AC, Hassan AO, VanBlargan LA, Kim AS, Adams LJ, Basore K, Whitener BM, Palakurty S, Davis-Adams HG, Sun C, Gilliland T, Earnest JT, Ma H, Ebel GD, Zmasek C, Scheuermann RH, Klimstra WB, Fremont DH, Diamond MS. Vertebrate-class-specific binding modes of the alphavirus receptor MXRA8. Cell 2023; 186:4818-4833.e25. [PMID: 37804831 PMCID: PMC10615782 DOI: 10.1016/j.cell.2023.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
MXRA8 is a receptor for chikungunya (CHIKV) and other arthritogenic alphaviruses with mammalian hosts. However, mammalian MXRA8 does not bind to alphaviruses that infect humans and have avian reservoirs. Here, we show that avian, but not mammalian, MXRA8 can act as a receptor for Sindbis, western equine encephalitis (WEEV), and related alphaviruses with avian reservoirs. Structural analysis of duck MXRA8 complexed with WEEV reveals an inverted binding mode compared with mammalian MXRA8 bound to CHIKV. Whereas both domains of mammalian MXRA8 bind CHIKV E1 and E2, only domain 1 of avian MXRA8 engages WEEV E1, and no appreciable contacts are made with WEEV E2. Using these results, we generated a chimeric avian-mammalian MXRA8 decoy-receptor that neutralizes infection of multiple alphaviruses from distinct antigenic groups in vitro and in vivo. Thus, different alphaviruses can bind MXRA8 encoded by different vertebrate classes with distinct engagement modes, which enables development of broad-spectrum inhibitors.
Collapse
Affiliation(s)
- Ofer Zimmerman
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Maxwell I Zimmerman
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher A Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emily A Madden
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Autumn C Holmes
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine Basore
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sathvik Palakurty
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hannah G Davis-Adams
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Chengqun Sun
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Theron Gilliland
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hongming Ma
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Richard H Scheuermann
- J. Craig Venter Research Institute, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego, San Diego, CA 92161, USA; Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA; Global Virus Network, Baltimore, MD 92037, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
9
|
Powers AM, Williamson LE, Carnahan RH, Crowe JE, Hyde JL, Jonsson CB, Nasar F, Weaver SC. Developing a Prototype Pathogen Plan and Research Priorities for the Alphaviruses. J Infect Dis 2023; 228:S414-S426. [PMID: 37849399 PMCID: PMC11007399 DOI: 10.1093/infdis/jiac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lauren E Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Farooq Nasar
- Emerging Infectious Diseases Branch and Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Sutton MS, Pletnev S, Callahan V, Ko S, Tsybovsky Y, Bylund T, Casner RG, Cerutti G, Gardner CL, Guirguis V, Verardi R, Zhang B, Ambrozak D, Beddall M, Lei H, Yang ES, Liu T, Henry AR, Rawi R, Schön A, Schramm CA, Shen CH, Shi W, Stephens T, Yang Y, Florez MB, Ledgerwood JE, Burke CW, Shapiro L, Fox JM, Kwong PD, Roederer M. Vaccine elicitation and structural basis for antibody protection against alphaviruses. Cell 2023; 186:2672-2689.e25. [PMID: 37295404 PMCID: PMC10411218 DOI: 10.1016/j.cell.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.
Collapse
Affiliation(s)
- Matthew S Sutton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria Callahan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sungyoul Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan G Casner
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christina L Gardner
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Veronica Guirguis
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Beddall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Burgos Florez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Crystal W Burke
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Kim AS, Diamond MS. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol 2023; 21:396-407. [PMID: 36474012 PMCID: PMC9734810 DOI: 10.1038/s41579-022-00825-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that cause epidemics of human infection and disease on a global scale. These viruses are classified as either arthritogenic or encephalitic based on their genetic relatedness and the clinical syndromes they cause. Although there are currently no approved therapeutics or vaccines against alphaviruses, passive transfer of monoclonal antibodies confers protection in animal models. This Review highlights recent advances in our understanding of the host factors required for alphavirus entry, the mechanisms of action by which protective antibodies inhibit different steps in the alphavirus infection cycle and candidate alphavirus vaccines currently under clinical evaluation that focus on humoral immunity. A comprehensive understanding of alphavirus entry and antibody-mediated protection may inform the development of new classes of countermeasures for these emerging viruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
12
|
Raju S, Adams LJ, Earnest JT, Warfield K, Vang L, Crowe JE, Fremont DH, Diamond MS. A chikungunya virus-like particle vaccine induces broadly neutralizing and protective antibodies against alphaviruses in humans. Sci Transl Med 2023; 15:eade8273. [PMID: 37196061 PMCID: PMC10562830 DOI: 10.1126/scitranslmed.ade8273] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes epidemics of acute and chronic musculoskeletal disease. Here, we analyzed the human B cell response to a CHIKV-like particle-adjuvanted vaccine (PXVX0317) from samples obtained from a phase 2 clinical trial in humans (NCT03483961). Immunization with PXVX0317 induced high levels of neutralizing antibody in serum against CHIKV and circulating antigen-specific B cells up to 6 months after immunization. Monoclonal antibodies (mAbs) generated from peripheral blood B cells of three PXVX0317-vaccinated individuals on day 57 after immunization potently neutralized CHIKV infection, and a subset of these inhibited multiple related arthritogenic alphaviruses. Epitope mapping and cryo-electron microscopy defined two broadly neutralizing mAbs that uniquely bind to the apex of the B domain of the E2 glycoprotein. These results demonstrate the inhibitory breadth and activity of the human B cell response induced by the PXVX0317 vaccine against CHIKV and potentially other related alphaviruses.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James T. Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Cao X, Yang D, Parvathareddy J, Chu YK, Kim EJ, Fitz-Henley JN, Li X, Lukka PB, Parmar KR, Temrikar ZH, Dhole P, Adcock RS, Gabbard J, Bansal S, Lee J, Zalduondo L, Hayes E, Stabenow J, Meibohm B, Fitzpatrick EA, Bailey K, Campos RK, Julander JG, Rossi SL, Chung D, Jonsson CB, Golden JE. Efficacy of a brain-penetrant antiviral in lethal Venezuelan and eastern equine encephalitis mouse models. Sci Transl Med 2023; 15:eabl9344. [PMID: 37043558 PMCID: PMC11577637 DOI: 10.1126/scitranslmed.abl9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 μM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.
Collapse
Affiliation(s)
- Xufeng Cao
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dong Yang
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Kyu Chu
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Eun Jung Kim
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jhewelle N Fitz-Henley
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiaoyu Li
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Keyur R Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Priya Dhole
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jon Gabbard
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shruti Bansal
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jasper Lee
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lillian Zalduondo
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ernestine Hayes
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Stabenow
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elizabeth A Fitzpatrick
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Rafael K Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Donghoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Colleen B Jonsson
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer E Golden
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Williamson LE, Bandyopadhyay A, Bailey K, Sirohi D, Klose T, Julander JG, Kuhn RJ, Crowe JE. Structural constraints link differences in neutralization potency of human anti-Eastern equine encephalitis virus monoclonal antibodies. Proc Natl Acad Sci U S A 2023; 120:e2213690120. [PMID: 36961925 PMCID: PMC10068833 DOI: 10.1073/pnas.2213690120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/26/2023] Open
Abstract
Selection and development of monoclonal antibody (mAb) therapeutics against pathogenic viruses depends on certain functional characteristics. Neutralization potency, or the half-maximal inhibitory concentration (IC50) values, is an important characteristic of candidate therapeutic antibodies. Structural insights into the bases of neutralization potency differences between antiviral neutralizing mAbs are lacking. In this report, we present cryo-electron microscopy (EM) reconstructions of three anti-Eastern equine encephalitis virus (EEEV) neutralizing human mAbs targeting overlapping epitopes on the E2 protein, with greater than 20-fold differences in their respective IC50 values. From our structural and biophysical analyses, we identify several constraints that contribute to the observed differences in the neutralization potencies. Cryo-EM reconstructions of EEEV in complex with these Fab fragments reveal structural constraints that dictate intravirion or intervirion cross-linking of glycoprotein spikes by their IgG counterparts as a mechanism of neutralization. Additionally, we describe critical features for the recognition of EEEV by these mAbs including the epitope-paratope interaction surface, occupancy, and kinetic differences in on-rate for binding to the E2 protein. Each constraint contributes to the extent of EEEV inhibition for blockade of virus entry, fusion, and/or egress. These findings provide structural and biophysical insights into the differences in mechanism and neutralization potencies of these antibodies, which help inform rational design principles for candidate vaccines and therapeutic antibodies for all icosahedral viruses.
Collapse
Affiliation(s)
- Lauren E. Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
| | - Abhishek Bandyopadhyay
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT84335
| | - Devika Sirohi
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - Thomas Klose
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | | | - Richard J. Kuhn
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN47907
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
15
|
Ogorek TJ, Golden JE. Advances in the Development of Small Molecule Antivirals against Equine Encephalitic Viruses. Viruses 2023; 15:413. [PMID: 36851628 PMCID: PMC9958955 DOI: 10.3390/v15020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.
Collapse
Affiliation(s)
- Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Schein CH, Rafael G, Baker WS, Anaya ES, Schmidt JG, Weaver SC, Negi S, Braun W. PCP consensus protein/peptide alphavirus antigens stimulate broad spectrum neutralizing antibodies. Peptides 2022; 157:170844. [PMID: 35878658 DOI: 10.1016/j.peptides.2022.170844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Vaccines based on proteins and peptides may be safer and if calculated based on many sequences, more broad-spectrum than those designed based on single strains. Physicochemical Property Consensus (PCPcon) alphavirus (AV) antigens from the B-domain of the E2 envelope protein were designed, synthesized recombinantly and shown to be immunogenic (i.e. sera after inoculation detected the antigen in dotspots and ELISA). Antibodies in sera after inoculation with B-region antigens based on individual AV species (eastern or Venezuelan equine encephalitis (EEEVcon, VEEVcon), or chikungunya (CHIKVcon) bound only their cognate protein, while those designed against multiple species (Mosaikcon and EVCcon) recognized all three serotype specific antigens. The VEEVcon and EEEVcon sera only showed antiviral activity against their related strains (in plaque reduction neutralization assays (PRNT50/80). Peptides designed to surface exposed areas of the E2-A-domain of CHIKVcon were added to CHIKVcon inocula to provide anti-CHIKV antibodies. EVCcon, based on three different alphavirus species, combined with E2-A-domain peptides from AllAVcon, a PCPcon of 24 diverse AV, generated broad spectrum, antiviral antibodies against VEEV, EEEV and CHIKV, AV with less than 35% amino acid identity to each other (>65% diversity). This is a promising start to a molecularly defined vaccine against all AV. Further study with these antigens can illuminate what areas are most important for a robust immune response, resistant to mutations in rapidly evolving viruses. The validated computational methods can also be used to design broad spectrum antigens against many other pathogen families.
Collapse
Affiliation(s)
- Catherine H Schein
- Departments of Biochemistry and Molecular Biology, UTMB; Institute for Human Infections and Immunity (IHII), UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA.
| | - Grace Rafael
- Microbiology and Immunology, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Wendy S Baker
- Departments of Biochemistry and Molecular Biology, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | - Scott C Weaver
- Microbiology and Immunology, UTMB; Institute for Human Infections and Immunity (IHII), UTMB; World Reference Center for Emerging Viruses and Arboviruses, UTMB; Sealy Center for Structural Biology and Molecular Biophysics, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Surendra Negi
- Departments of Biochemistry and Molecular Biology, UTMB; Sealy Center for Structural Biology and Molecular Biophysics, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| | - Werner Braun
- Departments of Biochemistry and Molecular Biology, UTMB; Sealy Center for Structural Biology and Molecular Biophysics, UTMB; University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
17
|
Andreolla AP, Borges AA, Bordignon J, Duarte dos Santos CN. Mayaro Virus: The State-of-the-Art for Antiviral Drug Development. Viruses 2022; 14:1787. [PMID: 36016409 PMCID: PMC9415492 DOI: 10.3390/v14081787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
Mayaro virus is an emerging arbovirus that causes nonspecific febrile illness or arthralgia syndromes similar to the Chikungunya virus, a virus closely related from the Togaviridae family. MAYV outbreaks occur more frequently in the northern and central-western states of Brazil; however, in recent years, virus circulation has been spreading to other regions. Due to the undifferentiated initial clinical symptoms between MAYV and other endemic pathogenic arboviruses with geographic overlapping, identification of patients infected by MAYV might be underreported. Additionally, the lack of specific prophylactic approaches or antiviral drugs limits the pharmacological management of patients to treat symptoms like pain and inflammation, as is the case with most pathogenic alphaviruses. In this context, this review aims to present the state-of-the-art regarding the screening and development of compounds/molecules which may present anti-MAYV activity and infection inhibition.
Collapse
Affiliation(s)
- Ana Paula Andreolla
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Alessandra Abel Borges
- Laboratório de Pesquisas em Virologia e Imunologia, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, ICC/Fiocruz, Curitiba 81350-010, PR, Brazil
| | | |
Collapse
|
18
|
Chen CL, Klose T, Sun C, Kim AS, Buda G, Rossmann MG, Diamond MS, Klimstra WB, Kuhn RJ. Cryo-EM structures of alphavirus conformational intermediates in low pH-triggered prefusion states. Proc Natl Acad Sci U S A 2022; 119:e2114119119. [PMID: 35867819 PMCID: PMC9335222 DOI: 10.1073/pnas.2114119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/03/2022] [Indexed: 01/24/2023] Open
Abstract
Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Chengqun Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Geeta Buda
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - William B. Klimstra
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
19
|
Williams JA, Long SY, Zeng X, Kuehl K, Babka AM, Davis NM, Liu J, Trefry JC, Daye S, Facemire PR, Iversen PL, Bavari S, Pitt ML, Nasar F. Eastern equine encephalitis virus rapidly infects and disseminates in the brain and spinal cord of cynomolgus macaques following aerosol challenge. PLoS Negl Trop Dis 2022; 16:e0010081. [PMID: 35533188 PMCID: PMC9084534 DOI: 10.1371/journal.pntd.0010081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61–68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure. EEEV is an arbovirus endemic in parts of North America and is able to produce fatal encephalitis in humans and domesticated animals. Despite multiple human outbreaks during the last 80 years, there are still no therapeutic or vaccines to treat or prevent human disease. One critical obstacle in the development of effective countermeasure is the lack of insights into EEEV pathogenesis in a susceptible animal host. We recently conducted a study in cynomolgus macaques to investigate the disease course by measuring clinical parameters relevant to humans. Following infection, these parameters were rapidly and profoundly altered leading to severe disease. In this study, we examined the potential mechanisms that underlie pathogenesis to cause severe disease. The virus was present in many parts of the brain and spinal cord, however, minimal or no pathological lesions as well as active virus replication were observed. Additionally, neurons were the predominant target of EEEV infection and virus transport was facilitated via axonal transport system to spread neuron-to-neuron throughout the brain and spinal cord. These data show that EEEV likely hijacks essential transport system to rapidly spread in the brain and local/global neuronal dysfunction rather than neuronal death is the principal cause of severe disease.
Collapse
Affiliation(s)
- Janice A. Williams
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Simon Y. Long
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kathleen Kuehl
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - April M. Babka
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Neil M. Davis
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Jun Liu
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - John C. Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sharon Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Paul R. Facemire
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Patrick L. Iversen
- Therapeutics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Margaret L. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| |
Collapse
|
20
|
Kafai NM, Williamson LE, Binshtein E, Sukupolvi-Petty S, Gardner CL, Liu J, Mackin S, Kim AS, Kose N, Carnahan RH, Jung A, Droit L, Reed DS, Handley SA, Klimstra WB, Crowe JE, Diamond MS. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J Exp Med 2022; 219:e20212532. [PMID: 35297953 PMCID: PMC9195047 DOI: 10.1084/jem.20212532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) remains a risk for epidemic emergence or use as an aerosolized bioweapon. To develop possible countermeasures, we isolated VEEV-specific neutralizing monoclonal antibodies (mAbs) from mice and a human immunized with attenuated VEEV strains. Functional assays and epitope mapping established that potently inhibitory anti-VEEV mAbs bind distinct antigenic sites in the A or B domains of the E2 glycoprotein and block multiple steps in the viral replication cycle including attachment, fusion, and egress. A 3.2-Å cryo-electron microscopy reconstruction of VEEV virus-like particles bound by a human Fab suggests that antibody engagement of the B domain may result in cross-linking of neighboring spikes to prevent conformational requirements for viral fusion. Prophylaxis or postexposure therapy with these mAbs protected mice against lethal aerosol challenge with VEEV. Our study defines functional and structural mechanisms of mAb protection and suggests that multiple antigenic determinants on VEEV can be targeted for vaccine or antibody-based therapeutic development.
Collapse
Affiliation(s)
- Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | | | - Christina L. Gardner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- United States Army Research Institute for Infectious Diseases, Fort Detrick, MD
| | - Jaclyn Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Samantha Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
21
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
22
|
Serological Positivity against Selected Flaviviruses and Alphaviruses in Free-Ranging Bats and Birds from Costa Rica Evidence Exposure to Arboviruses Seldom Reported Locally in Humans. Viruses 2022; 14:v14010093. [PMID: 35062297 PMCID: PMC8780000 DOI: 10.3390/v14010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Arboviruses have two ecological transmission cycles: sylvatic and urban. For some, the sylvatic cycle has not been thoroughly described in America. To study the role of wildlife in a putative sylvatic cycle, we sampled free-ranging bats and birds in two arbovirus endemic locations and analyzed them using molecular, serological, and histological methods. No current infection was detected, and no significant arbovirus-associated histological changes were observed. Neutralizing antibodies were detected against selected arboviruses. In bats, positivity in 34.95% for DENV-1, 16.26% for DENV-2, 5.69% for DENV-3, 4.87% for DENV-4, 2.43% for WNV, 4.87% for SLEV, 0.81% for YFV, 7.31% for EEEV, and 0.81% for VEEV was found. Antibodies against ZIKV were not detected. In birds, PRNT results were positive against WNV in 0.80%, SLEV in 5.64%, EEEV in 8.4%, and VEEV in 5.63%. An additional retrospective PRNT analysis was performed using bat samples from three additional DENV endemic sites resulting in a 3.27% prevalence for WNV and 1.63% for SLEV. Interestingly, one sample resulted unequivocally WNV positive confirmed by serum titration. These results suggest that free-ranging bats and birds are exposed to not currently reported hyperendemic-human infecting Flavivirus and Alphavirus; however, their role as reservoirs or hosts is still undetermined.
Collapse
|
23
|
Phelps AL, O’Brien LM, Ulaeto DO, Holtsberg FW, Liao GC, Douglas R, Aman MJ, Glass PJ, Moyer CL, Ennis J, Zeitlin L, Nagata LP, Hu WG. Cross-Strain Neutralizing and Protective Monoclonal Antibodies against EEEV or WEEV. Viruses 2021; 13:2231. [PMID: 34835037 PMCID: PMC8621548 DOI: 10.3390/v13112231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The three encephalitic alphaviruses, namely, the Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are classified by the Centers for Disease Control and Prevention (CDC) as biothreat agents. Currently, no licensed medical countermeasures (MCMs) against these viruses are available for humans. Neutralizing antibodies (NAbs) are fast-acting and highly effective MCMs for use in both pre- and post-exposure settings against biothreat agents. While significant work has been done to identify anti-VEEV NAbs, less has been done to identify NAbs against EEEV and WEEV. In order to develop anti-EEEV or -WEEV NAbs, mice were immunized using complementary strategies with a variety of different EEEV or WEEV immunogens to maximize the generation of NAbs to each of these viruses. Of the hybridomas generated, three anti-EEEV and seven anti-WEEV monoclonal antibodies were identified with in vitro neutralization activity. The most potent neutralizers (two anti-EEEV NAbs and three anti-WEEV NAbs) were further evaluated for neutralization activity against additional strains of EEEV, a single strain of Madariaga virus (formerly South American EEEV), or WEEV. Of these, G1-2-H4 and G1-4-C3 neutralized all three EEEV strains and the Madariaga virus strain, whereas G8-2-H9 and 12 WA neutralized six out of eight WEEV strains. To determine the protective efficacy of these NAbs, the five most potent neutralizers were evaluated in respective mouse aerosol challenge models. All five NAbs demonstrated various levels of protection when administered at doses of 2.5 mg/kg or 10 mg/kg 24 h before the respective virus exposure via the aerosol route. Of these, anti-EEEV NAb G1-4-C3 and anti-WEEV NAb 8C2 provided 100% protection at both doses and all surviving mice were free of clinical signs throughout the study. Additionally, no virus was detected in the brain 14 days post virus exposure. Taken together, efficacious NAbs were developed that demonstrate the potential for the development of cross-strain antibody-based MCMs against EEEV and WEEV infections.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Cross Protection
- Disease Models, Animal
- Encephalitis Virus, Eastern Equine/immunology
- Encephalitis Virus, Western Equine/immunology
- Encephalomyelitis, Equine/prevention & control
- Immunization
- Mice
- Neutralization Tests
Collapse
Affiliation(s)
- Amanda L. Phelps
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (A.L.P.); (L.M.O.); (D.O.U.)
| | - Lyn M. O’Brien
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (A.L.P.); (L.M.O.); (D.O.U.)
| | - David O. Ulaeto
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK; (A.L.P.); (L.M.O.); (D.O.U.)
| | - Frederick W. Holtsberg
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA; (F.W.H.); (G.C.L.); (R.D.); (M.J.A.)
| | - Grant C. Liao
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA; (F.W.H.); (G.C.L.); (R.D.); (M.J.A.)
| | - Robin Douglas
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA; (F.W.H.); (G.C.L.); (R.D.); (M.J.A.)
| | - M. Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, MD 20850, USA; (F.W.H.); (G.C.L.); (R.D.); (M.J.A.)
| | - Pamela J. Glass
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Crystal L. Moyer
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA; (C.L.M.); (J.E.); (L.Z.)
| | - Jane Ennis
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA; (C.L.M.); (J.E.); (L.Z.)
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA; (C.L.M.); (J.E.); (L.Z.)
| | - Les P. Nagata
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Wei-Gang Hu
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| |
Collapse
|
24
|
Wessel AW, Doyle MP, Engdahl TB, Rodriguez J, Crowe JE, Diamond MS. Human Monoclonal Antibodies against NS1 Protein Protect against Lethal West Nile Virus Infection. mBio 2021; 12:e0244021. [PMID: 34634945 PMCID: PMC8510529 DOI: 10.1128/mbio.02440-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Envelope protein-targeted vaccines for flaviviruses are limited by concerns of antibody-dependent enhancement (ADE) of infections. Nonstructural protein 1 (NS1) provides an alternative vaccine target that avoids this risk since this protein is absent from the virion. Beyond its intracellular role in virus replication, extracellular forms of NS1 function in immune modulation and are recognized by host-derived antibodies. The rational design of NS1-based vaccines requires an extensive understanding of the antigenic sites on NS1, especially those targeted by protective antibodies. Here, we isolated human monoclonal antibodies (MAbs) from individuals previously naturally infected with WNV, mapped their epitopes using structure-guided mutagenesis, and evaluated their efficacy in vivo against lethal WNV challenge. The most protective epitopes clustered at three antigenic sites that are exposed on cell surface forms of NS1: (i) the wing flexible loop, (ii) the outer, electrostatic surface of the wing, and (iii) the spaghetti loop face of the β-ladder. One additional MAb mapped to the distal tip of the β-ladder and conferred a lower level of protection against WNV despite not binding to NS1 on the surface of infected cells. Our study defines the epitopes and modes of binding of protective anti-NS1 MAb antibodies following WNV infection, which may inform the development of NS1-based countermeasures against flaviviruses. IMPORTANCE Therapeutic antibodies against flaviviruses often promote neutralization by targeting the envelope protein of the virion. However, this approach is hindered by a possible concern for antibody-dependent enhancement of infection and paradoxical worsening of disease. As an alternative strategy, antibodies targeting flavivirus nonstructural protein 1 (NS1), which is absent from the virion, can protect against disease and do not cause enhanced infection. Here, we evaluate the structure-function relationships and protective activity of West Nile virus (WNV) NS1-specific monoclonal antibodies (MAbs) isolated from the memory B cells of a naturally infected human donor. We identify several anti-NS1 MAbs that protect mice against lethal WNV challenge and map their epitopes using charge reversal mutagenesis. Antibodies targeting specific regions in the NS1 structure could serve as the basis for countermeasures that control WNV infection in humans.
Collapse
Affiliation(s)
- Alex W. Wessel
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael P. Doyle
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taylor B. Engdahl
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
25
|
Calvert AE, Bennett SL, Hunt AR, Fong RH, Doranz BJ, Roehrig JT, Blair CD. Exposing cryptic epitopes on the Venezuelan equine encephalitis virus E1 glycoprotein prior to treatment with alphavirus cross-reactive monoclonal antibody allows blockage of replication early in infection. Virology 2021; 565:13-21. [PMID: 34626907 PMCID: PMC8765347 DOI: 10.1016/j.virol.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
Eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) can cause fatal encephalitis in humans and equids. Some MAbs to the E1 glycoprotein are known to be cross-reactive, weakly neutralizing in vitro but can protect from disease in animal models. We investigated the mechanism of neutralization of VEEV infection by the broadly cross-reactive E1-specific MAb 1A4B-6. 1A4B-6 protected 3-week-old Swiss Webster mice prophylactically from lethal VEEV challenge. Likewise, 1A4B-6 inhibited virus growth in vitro at a pre-attachment step after virions were incubated at 37 °C and inhibited virus-mediated cell fusion. Amino acid residue N100 in the fusion loop of E1 protein was identified as critical for binding. The potential to elicit broadly cross-reactive MAbs with limited virus neutralizing activity in vitro but that can inhibit virus entry and protect animals from infection merits further exploration for vaccine and therapeutic developmental research.
Collapse
Affiliation(s)
- Amanda E Calvert
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Susan L Bennett
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ann R Hunt
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - John T Roehrig
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carol D Blair
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
26
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
27
|
Williamson LE, Reeder KM, Bailey K, Tran MH, Roy V, Fouch ME, Kose N, Trivette A, Nargi RS, Winkler ES, Kim AS, Gainza C, Rodriguez J, Armstrong E, Sutton RE, Reidy J, Carnahan RH, McDonald WH, Schoeder CT, Klimstra WB, Davidson E, Doranz BJ, Alter G, Meiler J, Schey KL, Julander JG, Diamond MS, Crowe JE. Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell 2021; 184:4430-4446.e22. [PMID: 34416147 PMCID: PMC8418820 DOI: 10.1016/j.cell.2021.07.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/11/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.
Collapse
MESH Headings
- Alphavirus/immunology
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Cell Line
- Chikungunya virus/immunology
- Cross Reactions/immunology
- Encephalitis Virus, Eastern Equine/immunology
- Encephalomyelitis, Equine/immunology
- Encephalomyelitis, Equine/virology
- Epitope Mapping
- Female
- Horses
- Humans
- Hydrogen-Ion Concentration
- Joints/pathology
- Male
- Mice, Inbred C57BL
- Models, Biological
- Protein Binding
- RNA, Viral/metabolism
- Receptors, Fc/metabolism
- Temperature
- Viral Proteins/immunology
- Virion/metabolism
- Virus Internalization
- Virus Release/physiology
- Mice
Collapse
Affiliation(s)
- Lauren E Williamson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen M Reeder
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT 84335, USA
| | - Minh H Tran
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | | | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Trivette
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel S Nargi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emma S Winkler
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Arthur S Kim
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Christopher Gainza
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica Rodriguez
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph Reidy
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Clara T Schoeder
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - William B Klimstra
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA
| | - Jens Meiler
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Kevin L Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84335, USA
| | - Michael S Diamond
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Kim AS, Kafai NM, Winkler ES, Gilliland TC, Cottle EL, Earnest JT, Jethva PN, Kaplonek P, Shah AP, Fong RH, Davidson E, Malonis RJ, Quiroz JA, Williamson LE, Vang L, Mack M, Crowe JE, Doranz BJ, Lai JR, Alter G, Gross ML, Klimstra WB, Fremont DH, Diamond MS. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 2021; 184:4414-4429.e19. [PMID: 34416146 PMCID: PMC8382027 DOI: 10.1016/j.cell.2021.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Theron C Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily L Cottle
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Prashant N Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aadit P Shah
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel H Fong
- Integral Molecular, Inc., Philadelphia, PA 19104, USA
| | | | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose A Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - James E Crowe
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - William B Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
29
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
30
|
Hughes HR, Velez JO, Davis EH, Laven J, Gould CV, Panella AJ, Lambert AJ, Staples JE, Brault AC. Fatal Human Infection with Evidence of Intrahost Variation of Eastern Equine Encephalitis Virus, Alabama, USA, 2019. Emerg Infect Dis 2021; 27:1886-1892. [PMID: 34152960 PMCID: PMC8237905 DOI: 10.3201/eid2707.210315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) is an arbovirus in the family Togaviridae, genus Alphavirus, found in North America and associated with freshwater/hardwood swamps in the Atlantic, Gulf Coast, and Great Lakes regions. EEEV disease in humans is rare but causes substantial illness and death. To investigate the molecular epidemiology and microevolution of EEEV from a fatal case in Alabama, USA, in 2019, we used next-generation sequencing of serum and cerebrospinal fluid (CSF). Phylogenetic inference indicated that the infecting strain may be closely related to isolates from Florida detected during 2010-2014, suggesting potential seeding from Florida. EEEV detected in serum displayed a higher degree of variability with more single-nucleotide variants than that detected in the CSF. These data refine our knowledge of EEEV molecular epidemiologic dynamics in the Gulf Coast region and demonstrate potential quasispecies bottlenecking within the central nervous system of a human host.
Collapse
|
31
|
Keeler SP, Fox JM. Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Based Protection against Emerging Virus Infections. Viruses 2021; 13:v13061037. [PMID: 34072720 PMCID: PMC8226613 DOI: 10.3390/v13061037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
32
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
33
|
Williamson LE, Gilliland T, Yadav PK, Binshtein E, Bombardi R, Kose N, Nargi RS, Sutton RE, Durie CL, Armstrong E, Carnahan RH, Walker LM, Kim AS, Fox JM, Diamond MS, Ohi MD, Klimstra WB, Crowe JE. Human Antibodies Protect against Aerosolized Eastern Equine Encephalitis Virus Infection. Cell 2020; 183:1884-1900.e23. [PMID: 33301709 DOI: 10.1016/j.cell.2020.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.
Collapse
Affiliation(s)
- Lauren E Williamson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Theron Gilliland
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - Pramod K Yadav
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elad Binshtein
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel S Nargi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clarissa L Durie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erica Armstrong
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren M Walker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Arthur S Kim
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Julie M Fox
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William B Klimstra
- The Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 165261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 165261, USA
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 2020; 588:308-314. [PMID: 33208938 PMCID: PMC7769003 DOI: 10.1038/s41586-020-2915-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is a neurotropic alphavirus transmitted by mosquitoes that causes encephalitis and death in humans1. VEEV is a biodefence concern because of its potential for aerosol spread and the current lack of sufficient countermeasures. The host factors that are required for VEEV entry and infection remain poorly characterized. Here, using a genome-wide CRISPR-Cas9-based screen, we identify low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3)-a highly conserved yet poorly characterized member of the scavenger receptor superfamily-as a receptor for VEEV. Gene editing of mouse Ldlrad3 or human LDLRAD3 results in markedly reduced viral infection of neuronal cells, which is restored upon complementation with LDLRAD3. LDLRAD3 binds directly to VEEV particles and enhances virus attachment and internalization into host cells. Genetic studies indicate that domain 1 of LDLRAD3 (LDLRAD3(D1)) is necessary and sufficient to support infection by VEEV, and both anti-LDLRAD3 antibodies and an LDLRAD3(D1)-Fc fusion protein block VEEV infection in cell culture. The pathogenesis of VEEV infection is abrogated in mice with deletions in Ldlrad3, and administration of LDLRAD3(D1)-Fc abolishes disease caused by several subtypes of VEEV, including highly virulent strains. The development of a decoy-receptor fusion protein suggests a strategy for the prevention of severe VEEV infection and associated disease in humans.
Collapse
|
35
|
Teige LH, Aksnes I, Røsæg MV, Jensen I, Jørgensen J, Sindre H, Collins C, Collet B, Rimstad E, Dahle MK, Boysen P. Detection of specific Atlantic salmon antibodies against salmonid alphavirus using a bead-based immunoassay. FISH & SHELLFISH IMMUNOLOGY 2020; 106:374-383. [PMID: 32738513 DOI: 10.1016/j.fsi.2020.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Salmonid alphavirus (SAV) is the etiological cause of pancreas disease (PD) in Atlantic salmon (Salmo salar). Several vaccines against SAV are in use, but PD still cause significant mortality and concern in European aquaculture, raising the need for optimal tools to monitor SAV immunity. To monitor and control the distribution of PD in Norway, all salmonid farms are regularly screened for SAV by RT-qPCR. While the direct detection of SAV is helpful in the early stages of infection, serological methods could bring additional information on acquired SAV immunity in the later stages. Traditionally, SAV antibodies are monitored in neutralization assays, but they are time-consuming and cumbersome, thus alternative assays are warranted. Enzyme-linked immunosorbent assays (ELISAs) have not yet been successfully used for anti-SAV antibody detection in aquaculture. We aimed to develop a bead-based immunoassay for SAV-specific antibodies. By using detergent-treated SAV particles as antigens, we detected SAV-specific antibodies in plasma collected from both a SAV challenge trial and a field outbreak of PD. Increased levels of SAV-specific antibodies were seen after most fish had become negative for viral RNA. The bead-based assay is time saving compared to virus neutralization assays, and suitable for non-lethal testing due to low sample size requirements. We conclude that the bead-based immunoassay for SAV antibody detection is a promising diagnostic tool to complement SAV screening in aquaculture.
Collapse
Affiliation(s)
- Lena Hammerlund Teige
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Ida Aksnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | - Ingvill Jensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Sindre
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Catherine Collins
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Maria K Dahle
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| |
Collapse
|
36
|
Wessel AW, Kose N, Bombardi RG, Roy V, Chantima W, Mongkolsapaya J, Edeling MA, Nelson CA, Bosch I, Alter G, Screaton GR, Fremont DH, Crowe JE, Diamond MS. Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nat Commun 2020; 11:5278. [PMID: 33077712 PMCID: PMC7572419 DOI: 10.1038/s41467-020-19096-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
There are no licensed therapeutics or vaccines available against Zika virus (ZIKV) to counteract its potential for congenital disease. Antibody-based countermeasures targeting the ZIKV envelope protein have been hampered by concerns for cross-reactive responses that induce antibody-dependent enhancement (ADE) of heterologous flavivirus infection. Nonstructural protein 1 (NS1) is a membrane-associated and secreted glycoprotein that functions in flavivirus replication and immune evasion but is absent from the virion. Although some studies suggest that antibodies against ZIKV NS1 are protective, their activity during congenital infection is unknown. Here we develop mouse and human anti-NS1 monoclonal antibodies that protect against ZIKV in both non-pregnant and pregnant mice. Avidity of antibody binding to cell-surface NS1 along with Fc effector functions engagement correlate with protection in vivo. Protective mAbs map to exposed epitopes in the wing domain and loop face of the β-platform. Anti-NS1 antibodies provide an alternative strategy for protection against congenital ZIKV infection without causing ADE.
Collapse
Affiliation(s)
- Alex W Wessel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nurgun Kose
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robin G Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, 02139, USA
| | - Warangkana Chantima
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Dengue Hemorrhagic Fever Unit, Faculty of Medicine, Office for Research and Development, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Melissa A Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Irene Bosch
- E25Bio, Inc., The Engine of MIT, Cambridge, MA, 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, 02139, USA
| | - Gavin R Screaton
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - David H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James E Crowe
- Departments of Pediatrics, Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Raabe V, Lai L, Xu Y, Huerta C, Wang D, Pouch SM, Burke CW, Piper AE, Gardner CL, Glass PJ, Mulligan MJ. The Immune Response to Eastern Equine Encephalitis Virus Acquired Through Organ Transplantation. Front Microbiol 2020; 11:561530. [PMID: 33072022 PMCID: PMC7541818 DOI: 10.3389/fmicb.2020.561530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
The human immune response to eastern equine encephalitis virus (EEEV) infection is poorly characterized due to the rarity of infection. We examined the humoral and cellular immune response to EEEV acquired from an infected donor via liver transplantation. Both binding and highly neutralizing antibodies to EEEV as well as a robust EEEV-specific IgG memory B cell response were generated. Despite triple-drug immunosuppressive therapy, a virus-specific CD4+ T cell response, predominated by interferon-γ production, was generated. T cell epitopes on the E2 envelope protein were identified by interferon-γ ELISpot. Although these results are from a single person who acquired EEEV by a non-traditional mechanism, to our knowledge this work represents the first analysis of the human cellular immune response to EEEV.
Collapse
Affiliation(s)
- Vanessa Raabe
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Lilin Lai
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Yong Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chris Huerta
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Dongli Wang
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Stephanie M Pouch
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Crystal W Burke
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christina L Gardner
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Mark J Mulligan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
38
|
Fox JM, Huang L, Tahan S, Powell LA, Crowe JE, Wang D, Diamond MS. A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice. PLoS Pathog 2020; 16:e1008743. [PMID: 32760128 PMCID: PMC7433899 DOI: 10.1371/journal.ppat.1008743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/18/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Arthritogenic alphaviruses cause debilitating musculoskeletal disease and historically have circulated in distinct regions. With the global spread of chikungunya virus (CHIKV), there now is more geographic overlap, which could result in heterologous immunity affecting natural infection or vaccination. Here, we evaluated the capacity of a cross-reactive anti-CHIKV monoclonal antibody (CHK-265) to protect against disease caused by the distantly related alphavirus, Ross River virus (RRV). Although CHK-265 only moderately neutralizes RRV infection in cell culture, it limited clinical disease in mice independently of Fc effector function activity. Despite this protective phenotype, RRV escaped from CHK-265 neutralization in vivo, with resistant variants retaining pathogenic potential. Near the inoculation site, CHK-265 reduced viral burden in a type I interferon signaling-dependent manner and limited immune cell infiltration into musculoskeletal tissue. In a parallel set of experiments, purified human CHIKV immune IgG also weakly neutralized RRV, yet when transferred to mice, resulted in improved clinical outcome during RRV infection despite the emergence of resistant viruses. Overall, this study suggests that weakly cross-neutralizing antibodies can protect against heterologous alphavirus disease, even if neutralization escape occurs, through an early viral control program that tempers inflammation. The induction of broadly neutralizing antibodies is a goal of many antiviral vaccine programs. In this study, we show that cross-reactive monoclonal and polyclonal antibodies developed after CHIKV infection or immunization with relatively weak cross-neutralizing activity can protect against RRV-induced musculoskeletal disease in mice. Even though RRV rapidly escaped from neutralization, antibody therapy reduced inflammation in musculoskeletal tissues and decreased viral burden near the site of infection in a manner that required type I interferon signaling. These studies in mice show that broadly reactive antibodies with limited neutralizing activity still can confer protection against heterologous alphaviruses.
Collapse
Affiliation(s)
- Julie M. Fox
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ling Huang
- MacroGenics, Rockville, Maryland, United States of America
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Laura A. Powell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
39
|
Roe K. A proposed treatment for pathogenic enveloped viruses having high rates of mutation or replication. Scand J Immunol 2020; 92:e12928. [PMID: 32640050 PMCID: PMC7361161 DOI: 10.1111/sji.12928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023]
Abstract
Several enveloped viruses, particularly some RNA viruses, have high rates of mutation or replication, which can make them virulent pathogens in humans and other mammals. A proposed treatment could use synthesized proteins to mask pathogenic viral surface proteins to quickly induce an immune attack on specific enveloped viruses by using existing immune cells. One treatment could inject dual‐protein ligand masks into patients' bloodstreams to mask pathogenic surface proteins used to infect mammalian cells. The mammalian immune system already uses an analogous, more complex structure called a pentraxin to neutralize some pathogens by connecting their surface proteins to immune cells. And several types of antiviral peptides have already experimentally demonstrated effectiveness in blocking various viral pathogen infections. These treatments offer advantages, especially for currently untreatable viral pathogens. Furthermore, using dual‐protein ligands and the antigenic memory of some sub‐populations of NK cells would also allow the creation of defacto vaccines based on a host's NK cells, instead of vaccines utilizing CD4 and CD8 α:β T cells, which are limited by the requirement of MHC presentation of the target antigens to α:β T cells. Targeted NK cell vaccines could attack host cells latently or actively infected by intracellular pathogens, even host cells having pathogen downregulated MHC antigen presentation. Eight postulates concerning the effects of pathogen mutation, or change in phenotype from genetic recombination or rearrangement, and replication rates on pathogen vs host dominance are also listed, which should be applicable to viral and non‐viral pathogens.
Collapse
|
40
|
Cryo-EM structure of eastern equine encephalitis virus in complex with heparan sulfate analogues. Proc Natl Acad Sci U S A 2020; 117:8890-8899. [PMID: 32245806 DOI: 10.1073/pnas.1910670117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eastern equine encephalitis virus (EEEV), a mosquito-borne icosahedral alphavirus found mainly in North America, causes human and equine neurotropic infections. EEEV neurovirulence is influenced by the interaction of the viral envelope protein E2 with heparan sulfate (HS) proteoglycans from the host's plasma membrane during virus entry. Here, we present a 5.8-Å cryoelectron microscopy (cryo-EM) structure of EEEV complexed with the HS analog heparin. "Peripheral" HS binding sites were found to be associated with the base of each of the E2 glycoproteins that form the 60 quasi-threefold spikes (q3) and the 20 sites associated with the icosahedral threefold axes (i3). In addition, there is one HS site at the vertex of each q3 and i3 spike (the "axial" sites). Both the axial and peripheral sites are surrounded by basic residues, suggesting an electrostatic mechanism for HS binding. These residues are highly conserved among EEEV strains, and therefore a change in these residues might be linked to EEEV neurovirulence.
Collapse
|
41
|
Ma H, Qian W, Bambouskova M, Collins PL, Porter SI, Byrum AK, Zhang R, Artyomov M, Oltz EM, Mosammaparast N, Miner JJ, Diamond MS. Barrier-to-Autointegration Factor 1 Protects against a Basal cGAS-STING Response. mBio 2020; 11:e00136-20. [PMID: 32156810 PMCID: PMC7064753 DOI: 10.1128/mbio.00136-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Although the pathogen recognition receptor pathways that activate cell-intrinsic antiviral responses are well delineated, less is known about how the host regulates this response to prevent sustained signaling and possible immune-mediated damage. Using a genome-wide CRISPR-Cas9 screening approach to identify host factors that modulate interferon-stimulated gene (ISG) expression, we identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1), a previously described inhibitor of retrovirus integration, as a modulator of basal cell-intrinsic immunity. Ablation of Banf1 by gene editing resulted in chromatin activation near host defense genes with associated increased expression of ISGs, including Oas2, Rsad2 (viperin), Ifit1, and ISG15 The phenotype in Banf1-deficient cells occurred through a cGAS-, STING-, and IRF3-dependent signaling axis, was associated with reduced infection of RNA and DNA viruses, and was reversed in Banf1 complemented cells. Confocal microscopy and biochemical studies revealed that a loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline. Our study identifies an undescribed role for Banf1 in regulating the levels of cytoplasmic DNA and cGAS-dependent ISG homeostasis and suggests possible therapeutic directions for promoting or inhibiting cell-intrinsic innate immune responses.IMPORTANCE Although the interferon (IFN) signaling pathway is a key host mechanism to restrict infection of a diverse range of viral pathogens, its unrestrained activity either at baseline or in the context of an immune response can result in host cell damage and injury. Here, we used a genome-wide CRISPR-Cas9 screen and identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1) as a modulator of basal cell-intrinsic immunity. A loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline, which triggered IFN-stimulated gene expression via a cGAS-STING-IRF3 axis that did not require type I IFN or STAT1 signaling. Our experiments define a regulatory network in which Banf1 limits basal inflammation by preventing self DNA accumulation in the cytosol.
Collapse
Affiliation(s)
- Hongming Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Monika Bambouskova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Patrick L Collins
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Sofia I Porter
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Andrea K Byrum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rong Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
42
|
Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Cell Rep 2019; 25:3136-3147.e5. [PMID: 30540945 PMCID: PMC6302666 DOI: 10.1016/j.celrep.2018.11.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Alphaviruses are enveloped pathogens that cause arthritis and encephalitis. Here, we report a 4.4-Å cryoelectron microscopy (cryo-EM) structure of eastern equine encephalitis virus (EEEV), an alphavirus that causes fatal encephalitis in humans. Our analysis provides insights into viral entry into host cells. The envelope protein E2 showed a binding site for the cellular attachment factor heparan sulfate. The presence of a cryptic E2 glycan suggests how EEEV escapes surveillance by lectin-expressing myeloid lineage cells, which are sentinels of the immune system. A mechanism for nucleocapsid core release and disassembly upon viral entry was inferred based on pH changes and capsid dissociation from envelope proteins. The EEEV capsid structure showed a viral RNA genome binding site adjacent to a ribosome binding site for viral genome translation following genome release. Using five Fab-EEEV complexes derived from neutralizing antibodies, our investigation provides insights into EEEV host cell interactions and protective epitopes relevant to vaccine design. EEEV cryo-EM structure shows the basis of receptor binding and pH-triggered disassembly Cryptic envelope protein glycosylation interferes with immune detection EEEV RNA genome binding site on capsid protein has an extended conformation Antibody inhibition of EEEV entry involves cross-linking of viral envelope proteins
Collapse
|
43
|
Earnest JT, Basore K, Roy V, Bailey AL, Wang D, Alter G, Fremont DH, Diamond MS. Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J Exp Med 2019; 216:2282-2301. [PMID: 31337735 PMCID: PMC6781005 DOI: 10.1084/jem.20190736] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
Despite causing outbreaks of fever and arthritis in multiple countries, no countermeasures exist against Mayaro virus (MAYV), an emerging mosquito-transmitted alphavirus. We generated 18 neutralizing mAbs against MAYV, 11 of which had "elite" activity that inhibited infection with EC50 values of <10 ng/ml. Antibodies with the greatest inhibitory capacity in cell culture mapped to epitopes near the fusion peptide of E1 and in domain B of the E2 glycoproteins. Unexpectedly, many of the elite neutralizing mAbs failed to prevent MAYV infection and disease in vivo. Instead, the most protective mAbs bound viral antigen on the cell surface with high avidity and promoted specific Fc effector functions, including phagocytosis by neutrophils and monocytes. In subclass switching studies, murine IgG2a and humanized IgG1 mAb variants controlled infection better than murine IgG1 and humanized IgG1-N297Q variants. An optimally protective antibody response to MAYV and possibly other alphaviruses may require tandem virus neutralization by the Fab moiety and effector functions of the Fc region.
Collapse
Affiliation(s)
- James T Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Vicky Roy
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Adam L Bailey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
44
|
Trobaugh DW, Sun C, Dunn MD, Reed DS, Klimstra WB. Rational design of a live-attenuated eastern equine encephalitis virus vaccine through informed mutation of virulence determinants. PLoS Pathog 2019; 15:e1007584. [PMID: 30742691 PMCID: PMC6386422 DOI: 10.1371/journal.ppat.1007584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Live attenuated vaccines (LAVs), if sufficiently safe, provide the most potent and durable anti-pathogen responses in vaccinees with single immunizations commonly yielding lifelong immunity. Historically, viral LAVs were derived by blind passage of virulent strains in cultured cells resulting in adaptation to culture and a loss of fitness and disease-causing potential in vivo. Mutations associated with these phenomena have been identified but rarely have specific attenuation mechanisms been ascribed, thereby limiting understanding of the attenuating characteristics of the LAV strain and applicability of the attenuation mechanism to other vaccines. Furthermore, the attenuated phenotype is often associated with single nucleotide changes in the viral genome, which can easily revert to the virulent sequence during replication in animals. Here, we have used a rational approach to attenuation of eastern equine encephalitis virus (EEEV), a mosquito-transmitted alphavirus that is among the most acutely human-virulent viruses endemic to North America and has potential for use as an aerosolized bioweapon. Currently, there is no licensed antiviral therapy or vaccine for this virus. Four virulence loci in the EEEV genome were identified and were mutated individually and in combination to abrogate virulence and to resist reversion. The resultant viruses were tested for virulence in mice to examine the degree of attenuation and efficacy was tested by subcutaneous or aerosol challenge with wild type EEEV. Importantly, all viruses containing three or more mutations were avirulent after intracerebral infection of mice, indicating a very high degree of attenuation. All vaccines protected from subcutaneous EEEV challenge while a single vaccine with three mutations provided reproducible, near-complete protection against aerosol challenge. These results suggest that informed mutation of virulence determinants is a productive strategy for production of LAVs even with highly virulent viruses such as EEEV. Furthermore, these results can be directly applied to mutation of analogous virulence loci to create LAVs from other viruses.
Collapse
Affiliation(s)
- Derek W. Trobaugh
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Chengqun Sun
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - William B. Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA United States of America
| |
Collapse
|