1
|
Park SJ, Kim S, Gu EY, Park H, Im WJ, Min SE, Choi BH, Kim N, Jang MS, Kim Y, Han KH, Ko KC, Hong EJ, Kim YB. A four-week study on the toxicity of repeated intramuscular administration of plant-based BA-CoV2-0301 vaccine against SARS-CoV-2 in Sprague-Dawley rats. J Immunotoxicol 2025; 22:2504401. [PMID: 40366666 DOI: 10.1080/1547691x.2025.2504401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
In December 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China, leading to the global Coronavirus Disease pandemic. The rapid spread of SARS-CoV-2 highlighted the urgent need for effective vaccines. However, the high cost, cold storage requirements, and scalability challenges associated with mRNA vaccines have necessitated alternative vaccine technologies. In the study, the safety of a plant-based vaccine was evaluated. The vaccine, an emulsion of the SARS-CoV-2 S1 antigen and a synthetic TLR4 agonist produced and purified from Nicotiana benthamiana, was administered to Sprague-Dawley rats three times over 4 wk. Mortality, clinical signs, body weight, food consumption, vision, urinalysis, gross findings, organ weight, hematology, serum biochemistry, histopathology, and immunogenicity were evaluated. The results showed that antibodies were efficiently produced and maintained for one month following vaccination with the plant-derived receptor-binding domain (RBD) antigen of COVID-19. Furthermore, the rats showed no toxicological symptoms, with reversible changes at the injection site and minor histological alterations in the spinal cord and bone marrow, typical of vaccine responses. The plant-derived SARS-CoV-2 vaccine appears safe following repeated administration over 4 wk and represents a promising alternative for potential use in human clinical trials and clinical applications.
Collapse
Affiliation(s)
- Sang-Jin Park
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seonghyeon Kim
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Young Gu
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Heejin Park
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Wan-Jung Im
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seung Eui Min
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Human and Environmental Toxicology, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Bo-Hwa Choi
- R&D Department, BioApplications Inc, Pohang, Republic of Korea
| | - NamHyung Kim
- R&D Department, BioApplications Inc, Pohang, Republic of Korea
| | - Min Seong Jang
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Yoongi Kim
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kang-Hyun Han
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
- Human and Environmental Toxicology, Korea National University of Science and Technology, Daejeon, Republic of Korea
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Bum Kim
- Division of Next Generation Non-Clinical Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
He P, He C, Wu F, Ou Y, Luo S, Zhang Y, Chang Y, Guo Z, Tang X, Zhao Y, Xu Y, Wang H, Bai S, Du G, Sun X. Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection. J Control Release 2025; 379:1045-1057. [PMID: 39875077 DOI: 10.1016/j.jconrel.2025.01.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs. To preserve the biological activity of the AAV vaccine, the microneedles were fabricated via an optimized two-step low-temperature strategy and using 20 % trehalose as a protective agent. AAV serotype 8, which expresses the trimeric receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AAV8-RBD), remained 100 % biological activity after being loaded into the microneedles (MN-A8R). Upon a single-dose vaccination on the dorsal skin of mice, MN-A8R efficiently recruited APCs to the vaccination site and improved AAV8-RBD infection in APCs. Furthermore, MN-A8R prompted an increased formation of germinal centers in the draining lymph nodes. Compared to hypodermic needle-mediated intradermal injection, MN-A8R induced significantly stronger cellular immune responses and long-lasting, high-quality neutralizing antibodies. Importantly, MN-A8R demonstrated more comprehensive and robust cross-protection against three common SARS-CoV-2 pseudoviruses for at least six months. Our findings highlight the use of optimized polymeric microneedles for preserving AAV vaccine biological activity and enhancing the AAV vaccine efficacy by up-regulating APC infection.
Collapse
Affiliation(s)
- Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunting He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yangsen Ou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongshun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Chang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhaofei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanhao Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanhua Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Pandey B, Wang Z, Jimenez A, Bhatia E, Jain R, Beach A, Maniar D, Hosten J, O'Farrell L, Vantucci C, Hur D, Noel R, Ringquist R, Smith C, Ochoa MA, Roy K. A Dual-Adjuvanted Parenteral-Intranasal Subunit Nanovaccine generates Robust Systemic and Mucosal Immunity Against SARS-CoV-2 in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402792. [PMID: 39352717 PMCID: PMC11615772 DOI: 10.1002/advs.202402792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/09/2024] [Indexed: 12/06/2024]
Abstract
Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters can overcome the shortcomings of parenteral vaccines and enhance pre-existing systemic immunity. Here, a new protein subunit nanovaccine is developed by utilizing dual-adjuvanted (RIG-I: PUUC RNA and TLR-9: CpG DNA) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) along with SARS-CoV-2 S1 trimer protein, that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL subunit nanovaccine, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lungs and showed robust systemic humoral immunity. Interestingly, as a purely intranasal subunit vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. The data suggest that PUUC+CpG PAL subunit nanovaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Mucosal/immunology
- Immunity, Mucosal/drug effects
- SARS-CoV-2/immunology
- Administration, Intranasal/methods
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/immunology
- COVID-19/prevention & control
- Nanoparticles/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Antibodies, Viral/immunology
- Female
- Adjuvants, Vaccine/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Neutralizing/immunology
- Mice, Inbred BALB C
- Nanovaccines
Collapse
Affiliation(s)
- Bhawana Pandey
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Zhengying Wang
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Eshant Bhatia
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ritika Jain
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Alexander Beach
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Drishti Maniar
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Laura O'Farrell
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Casey Vantucci
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - David Hur
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Richard Noel
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Rachel Ringquist
- The Parker H. Petit Institute for Bioengineering and BiosciencesSchool of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Clinton Smith
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Miguel A. Ochoa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical EngineeringThe Parker H. Petit Institute for Bioengineering and BiosciencesMarcus Center for Therapeutic Cell Characterization and ManufacturingGeorgia Institute of TechnologyAtlantaGAUSA
- Department of Biomedical EngineeringDepartment of Chemical and Biomolecular EngineeringSchool of EngineeringDepartment of Pathology, Microbiology and ImmunologySchool of MedicineVanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
4
|
Rathore D, Chauhan P, Bonagiri A, Gandhi L, Maisnam D, Kumar R, Row AT, Kesavulu MM, Venkataramana M. Non-RBD peptides of SARS-CoV-2 spike protein exhibit immunodominance as they elicit both innate and adaptive immune responses. Heliyon 2024; 10:e39941. [PMID: 39568852 PMCID: PMC11577203 DOI: 10.1016/j.heliyon.2024.e39941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Severe acute respiratory coronavirus-2 (SARS-CoV-2) emerged in 2019 as a new virus and caused worldwide outbreaks, quickly turning into a pandemic disease called coronavirus disease-19 (COVID-19). All the existing methodologies were used for developing vaccines for this virus. But sporadic infections of this virus and the emergence of new strains to date suggest the incomplete protection offered by the developed vaccines and the need for new research. In this direction, we identified five epitopes present in the non-RBD region and on the surface of the spike protein by in silico analysis. They are epitope I (aa 80-90), epitope II (aa 262-270), and a small protein with three epitopes (aa 1059-1124). Antigenicity scores of these epitopes were found to be higher than the full length spike protein and its RBD region. These epitopes showed high conserveness across the emerging strains, high immunogenicity, non-toxicity, no homology with human sequences and high affinity for MHC class I & II molecules. Antibodies raised against these epitopes interacted with the bacterially expressed spike protein in western blotting. The antiserum of COVID-19 recovered participants reacted with the developed epitopes (small protein). Furthermore, in the presence of the respective antiserum and COVID-19 convalescent serum, these epitopes successfully fixed the complement, implying a possible role in innate immunity. The epitopes were also found to activate the peripheral blood mononuclear cells (PBMCs) isolated from the blood samples of COVID-19 recovered/vaccinated participants, suggesting a possible role in adaptive immunity. The need for the new SARS-CoV-2 vaccines is further highlighted in light of current reports about the side effects of a developed vaccine (AstraZeneca) and the circulating new strains. The epitopes presented in this study represent the potential immunogens and expect certain pitfalls of the existing vaccines would be sealed.
Collapse
Affiliation(s)
- Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Ramesh Kumar
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anupama T Row
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - M M Kesavulu
- Department of Basic Sciences and Humanities, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
5
|
Feng Q, Cheng K, Zhang L, Wang D, Gao X, Liang J, Liu G, Ma N, Xu C, Tang M, Chen L, Wang X, Ma X, Zou J, Shi Q, Du P, Wang Q, Wang H, Nie G, Zhao X. Rationally designed multimeric nanovaccines using icosahedral DNA origami for display of SARS-CoV-2 receptor binding domain. Nat Commun 2024; 15:9581. [PMID: 39505890 PMCID: PMC11542012 DOI: 10.1038/s41467-024-53937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Multivalent antigen display on nanoparticles can enhance the immunogenicity of nanovaccines targeting viral moieties, such as the receptor binding domain (RBD) of SARS-CoV-2. However, particle morphology and size of current nanovaccines are significantly different from those of SARS-CoV-2. Additionally, surface antigen patterns are not controllable to enable the optimization of B cell activation. Herein, we employ an icosahedral DNA origami (ICO) as a display particle for RBD nanovaccines, achieving morphology and diameter like the virus (91 ± 11 nm). The surface addressability of DNA origami permits facile modification of the ICO surface with numerous RBD antigen clusters (ICO-RBD) to form various antigen patterns. Using an in vitro screening system, we demonstrate that the antigen spacing, antigen copies within clusters and cluster number parameters of the surface antigen pattern all impact the ability of the nanovaccines to activate B cells. Importantly, the optimized ICO-RBD nanovaccines evoke stronger and more enduring humoral and T cell immune responses in female mouse models compared to soluble RBD antigens, and the multivalent display broaden the protection range of B cell responses to more mutant strains. Our vaccines activate similar humoral immunity, observable stronger cellular immunity and more memory immune cells compared to trimeric mRNA vaccines.
Collapse
Affiliation(s)
- Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lizhuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongshu Wang
- State Key Laboratory of Pathogens and Biosecurity, Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liting Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuehui Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jiajia Zou
- Beijing Intell Nanomedicine, No. 9, Chengwan Street, Haidian District, Beijing, 100000, China
| | - Quanwei Shi
- Beijing Intell Nanomedicine, No. 9, Chengwan Street, Haidian District, Beijing, 100000, China
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Hengliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Fedson DS. Treating COVID-19 in 'have not' countries. J Public Health Policy 2024; 45:575-581. [PMID: 39090220 DOI: 10.1057/s41271-024-00507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
|
7
|
Yuan Q, Cai HH, Jiang Y, Khan NU, Qamri GM. The asymmetric effect of global value chain on environmental quality: Implications for environmental management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121470. [PMID: 38897087 DOI: 10.1016/j.jenvman.2024.121470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
This study examines the dynamic relationship between global value chain integration, and carbon emissions, in 57 developing economies from 2000 to 2018. Our results show a multipart link between GVC involvement and carbon emissions. Specifically, forward participation, which involves domestic content in foreign exports, offers the potential to reduce emissions, whereas backward participation, defined by foreign content in domestic exports, typically increases emissions. This imbalance draws attention to the dual nature of using mineral resources, which can contribute to and mitigate environmental damage depending on the extent of GVC engagement. The NARDL model employed in the study also reveals the dynamic and nonlinear responses of carbon emissions to variations in the utilization of mineral resources within GVCs. Our findings show that positive shocks to mineral resources use within GVCs negatively influence carbon emissions, while adverse shocks have less impact. The results have significant policy implications, indicating that developing nations should prioritize environmental sustainability while planning their GVC participation. This entails promoting value-added mining resource use initiatives and pushing for strict environmental regulations in GVCs. Our results also highlight the significance of implementing customized measures to mitigate economic activity's asymmetric and nonlinear impacts on environmental quality. It enlightens policymakers in developing nations on balancing environmental conservation and economic growth in a global economy that is becoming more interconnected.
Collapse
Affiliation(s)
- Qiong Yuan
- School of Management, Hunan Institute of Engineering, Xiangtan, Hunan Province, 411104, P. R. China.
| | - Helen Huifen Cai
- Middlesex Business School, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, United Kingdom.
| | - Yan Jiang
- Newcastle University Business School, Newcastle University, 5 Barrack Road, Newcastle Upon Tyne NE1 4SE, United Kingdom.
| | - Naqib Ullah Khan
- School of Public Administration, Central South University, Changsha, Hunan, China.
| | - Ghulam Muhammad Qamri
- Institute of International Economics and Collaborative Innovation Center for China Economy, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
9
|
Grimes LP, Gerber JS. Neonatal and infant infection with SARS-CoV-2. Semin Perinatol 2024; 48:151922. [PMID: 38897825 DOI: 10.1016/j.semperi.2024.151922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Despite the substantial body of investigative work describing the Coronavirus Disease 2019 (COVID-19) pandemic, its impact on neonates and infants remains less well characterized. Here, we review the data on epidemiology of COVID-19 in this population. Widespread use of universal testing for SARS-CoV-2 among pregnant persons presenting for delivery complicates interpretation of the risks of perinatal exposure. While many neonates and infants with COVID-19 are well-appearing or have only mild signs of illness, factors such as preterm birth, low birth weight, and medical comorbidities increase the risk of severe infection. We highlight potential protective maternal factors, summarize treatment options and discuss vaccine development. Higher quality data are needed to better inform our understanding of COVID-19 in neonates and infants.
Collapse
Affiliation(s)
- Logan P Grimes
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
11
|
Pereira F, Bedda L, Tammam MA, Alabdullah AK, Arafa R, El-Demerdash A. Investigating the antiviral therapeutic potentialities of marine polycyclic lamellarin pyrrole alkaloids as promising inhibitors for SARS-CoV-2 and Zika main proteases (Mpro). J Biomol Struct Dyn 2024; 42:3983-4001. [PMID: 37232419 DOI: 10.1080/07391102.2023.2217513] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The new coronavirus variant (SARS-CoV-2) and Zika virus are two world-wide health pandemics. Along history, natural products-based drugs have always crucially recognized as a main source of valuable medications. Considering the SARS-CoV-2 and Zika main proteases (Mpro) as the re-production key element of the viral cycle and its main target, herein we report an intensive computer-aided virtual screening for a focused list of 39 marine lamellarins pyrrole alkaloids, against SARS-CoV-2 and Zika main proteases (Mpro) using a set of combined modern computational methodologies including molecular docking (MDock), molecule dynamic simulations (MDS) and structure-activity relationships (SARs) as well. Indeed, the molecular docking studies had revealed four promising marine alkaloids including [lamellarin H (14)/K (17)] and [lamellarin S (26)/Z (39)], according to their notable ligand-protein energy scores and relevant binding affinities with the SARS-CoV-2 and Zika (Mpro) pocket residues, respectively. Consequentially, these four chemical hits were further examined thermodynamically though investigating their MD simulations at 100 ns, where they showed prominent stability within the accommodated (Mpro) pockets. Moreover, in-deep SARs studies suggested the crucial roles of the rigid fused polycyclic ring system, particularly aromatic A- and F- rings, position of the phenolic -OH and δ-lactone functionalities as essential structural and pharmacophoric features. Finally, these four promising lamellarins alkaloids were investigated for their in-silico ADME using the SWISS ADME platform, where they displayed appropriated drug-likeness properties. Such motivating outcomes are greatly recommending further in vitro/vivo examinations regarding those lamellarins pyrrole alkaloids (LPAs).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Loay Bedda
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Reem Arafa
- Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Amr El-Demerdash
- Division of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
- Department of Biochemistry and Metabolism, the John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
12
|
Yang T, Tang D, Zhan Y, Seyler BC, Li F, Zhou B. SARS-CoV-2 vaccination and semen quality: a study based on sperm donor candidate data in southwest China. Transl Androl Urol 2024; 13:80-90. [PMID: 38404555 PMCID: PMC10891393 DOI: 10.21037/tau-23-395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/20/2023] [Indexed: 02/27/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic has been a global health crisis and continues to pose risk to population health at the present. Vaccination against this disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a public health priority worldwide. Yet, limited information is available on the potential impact of such vaccines on human fertility. Methods To examine the relationship between COVID-19 vaccination and male fertility, we conducted an observational study on sperm donor candidates in China who received Chinese COVID-19 vaccines between January 1, 2020 to December 31, 2021. Results A total of 2,955 semen samples from 564 individuals were assessed along with vaccination information. Statistical analyses were conducted on both the entire study population and the subgroup of individuals who provided repeated semen samples before and after vaccination. While motility related parameters [progressive rate, curvilinear velocity (VCL), average path velocity (VAP), straight-line velocity (VSL), wobble (WOB), straightness (STR), linearity (LIN), amplitude of lateral head displacement (ALH), beat-cross frequency (BCF)] exhibited statistically significant difference before and after vaccination based on Welch two-sample test, mixed effects regression results based on repeated measures from the same individuals indicated that vaccination was not statistically associated with sperm quality parameters except for VCL, VAP, and VSL. Individual variability was the key determinant of sperm quality variance, with contribution ranging from 19% to 82%. Conclusions Findings from our study could help to enhance current understanding of male reproductive health in the context of the global pandemic.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Die Tang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Barnabas C. Seyler
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Fuping Li
- Department of Andrology/Human Sperm Bank of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Giordano A, Gallicchio R, Milella M, Storto R, Nardelli A, Pellegrino T, Nappi A, Di Cosola M, Storto G. Challenging Axillary Lymph Nodes on PET/CT in Cancer Patients throughout COVID-19 Vaccination Era. Curr Pharm Des 2024; 30:798-806. [PMID: 38454762 DOI: 10.2174/0113816128246329231016091519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/25/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND The unexpected detection of axillary lymphadenopathy (AxL) in cancer patients (pts) represents a real concern during the COVID-19 vaccination era. Benign reactions may take place after vaccine inoculation, which can mislead image interpretation in patients undergoing F-18-FDG, F-18-Choline, and Ga-68-DOTATOC PET/CT. They may also mimic loco-regional metastases or disease. We assessed PET/CT findings after COVID-19 first dose vaccination in cancer patients and the impact on their disease course management. METHODS We evaluated 333 patients undergoing PET/CT (257 F-18-FDG, 54 F-18-Choline, and 23 Ga-68 DOTATOC) scans after the first vaccination with mRNA vaccine (Pfizer-BioNTech) (study group; SG). The uptake index (SUVmax) of suspected AxL was defined as significant when the ratio was > 1.5 as compared to the contralateral lymph nodes. Besides, co-registered CT (Co-CT) features of target lymph nodes were evaluated. Nodes with aggregate imaging positivity were further investigated. RESULTS Overall, the prevalence of apparently positive lymph nodes on PET scans was 17.1% during the vaccination period. 107 pts of the same setting, who had undergone PET/CT before the COVID-19 pandemic, represented the control group (CG). Only 3 patients of CG showed reactive lymph nodes with a prevalence of 2.8% (p < 0.001 as compared to the vaccination period). 84.2% of SG patients exhibited benign characteristics on co-CT images and only 9 pts needed thorough appraisal. CONCLUSION The correct interpretation of images is crucial to avoid unnecessary treatments and invasive procedures in vaccinated cancer pts. A detailed anamnestic interview and the analysis of lymph nodes' CT characteristics, after performing PET/CT, may help to clear any misleading diagnosis.
Collapse
Affiliation(s)
- Alessia Giordano
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Rosj Gallicchio
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Mariarita Milella
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Rebecca Storto
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Anna Nardelli
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Teresa Pellegrino
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Antonio Nappi
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Michele Di Cosola
- Department of Head and Neck Pathology, University of Foggia, Foggia, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, IRCCS CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| |
Collapse
|
14
|
Misaki Y, Hayashi Y, Shirata M, Terada K, Yoshizawa A, Sakamoto R, Ikezoe K, Tanizawa K, Handa T, Hirai T. Resolution of Eosinophilic Pneumonia after Coronavirus Disease 2019 without Systemic Corticosteroids. Intern Med 2023; 62:3223-3230. [PMID: 37587039 PMCID: PMC10686740 DOI: 10.2169/internalmedicine.1648-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Pulmonary and extrapulmonary complications after coronavirus disease 2019 (COVID-19) have been major public health concerns during the COVID-19 pandemic. Although post-COVID-19 pulmonary manifestations cover a wide spectrum, eosinophilic pneumonia (EP) has rarely been reported. To date, only four cases of EP potentially triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported, all of which required systemic corticosteroid therapy. We herein report the first case of post-COVID-19 EP resolution without systemic corticosteroid therapy. We also review the literature regarding EP associated with SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Yumiko Misaki
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Yusuke Hayashi
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Masahiro Shirata
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan
- Department of Respiratory Medicine, Kyoto Preventive Medical Center, Japan
| | - Kazuhiro Terada
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Kohei Ikezoe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan
| | - Tomohiro Handa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
15
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
16
|
Rahman MS, Han MJ, Kim SW, Kang SM, Kim BR, Kim H, Lee CJ, Noh JE, Kim H, Lee JO, Jang SK. Structure-Guided Development of Bivalent Aptamers Blocking SARS-CoV-2 Infection. Molecules 2023; 28:4645. [PMID: 37375202 PMCID: PMC10303109 DOI: 10.3390/molecules28124645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Md Shafiqur Rahman
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Min Jung Han
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Sang Won Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Seong Mu Kang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Bo Ri Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Heesun Kim
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, Pohang University of Science and Technology, Nam-gu, Pohang-si 37673, Republic of Korea
| | - Chang Jun Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Jung Eun Noh
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Hanseong Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Jie-Oh Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
| | - Sung Key Jang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea; (M.S.R.); (M.J.H.); (S.W.K.)
- Division of Integrative Bioscience & Biotechnology, POSTECH Biotech Center, Pohang University of Science and Technology, Nam-gu, Pohang-si 37673, Republic of Korea
| |
Collapse
|
17
|
Singh RS, Singh A, Masih GD, Batra G, Sharma AR, Joshi R, Prakash A, Suroy B, Sarma P, Prajapat M, Kaur H, Bhattacharyya A, Upadhyay S, Medhi B. A comprehensive insight on the challenges for COVID-19 vaccine: A lesson learnt from other viral vaccines. Heliyon 2023; 9:e16813. [PMID: 37303517 PMCID: PMC10245239 DOI: 10.1016/j.heliyon.2023.e16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gladson David Masih
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Benjamin Suroy
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector-32, Chandigarh, 160030, India
| | - Sujata Upadhyay
- Department of Physiology, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
18
|
Jerbi A, Masmoudi F. Simulation modeling assessment and improvement of a COVID-19 mass vaccination center operations. SIMULATION 2023; 99:553-572. [PMID: 38603446 PMCID: PMC9679319 DOI: 10.1177/00375497221135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The development of safe and effective vaccines against COVID-19 has been a turning point in the international effort to control this disease. However, vaccine development is only the first phase of the COVID-19 vaccination process. Correct planning of mass vaccination is important for any policy to immunize the population. For this purpose, it is necessary to set up and properly manage mass vaccination centers. This paper presents a discrete event simulation model of a real COVID-19 mass vaccination center located in Sfax, Tunisia. This model was used to evaluate the management of this center through different performance measures. Three person's arrival scenarios were considered and simulated to verify the response of this real vaccination center to arrival variability. A second model was proposed and simulated to improve the performances of the vaccination center. Like the first model, this one underwent the same evaluation process through the three arrivals scenarios. The simulation results show that both models respond well to the arrival's variability. Indeed, most of the arriving persons are vaccinated on time for all the studied scenarios. In addition, both models present moderate average vaccination and waiting times. However, the average utilization rates of operators are modest and need to be improved. Furthermore, both simulation models show a high average number of persons present in the vaccination center, which goes against the respect of the social distancing condition. Comparison between the two simulation models shows that the proposed model is more efficient than the actual one.
Collapse
Affiliation(s)
- Abdessalem Jerbi
- Laboratoire Optimisation, Logistique et Informatique Décisionnelle (OLID), LR19ES21, Institut Supérieur de Gestion Industrielle de Sfax, Université de Sfax, Tunisia
| | - Faouzi Masmoudi
- Mechanics, Modelling and Production Research Laboratory (LA2MP), National Engineering School of Sfax (ENIS), University of Sfax, Tunisia
| |
Collapse
|
19
|
Chen S, Chen M, Chen Q, Zhang T, Xu B, Tung TH, Shen B, Wu X. Assessment of the Risk and Symptoms of SARS-CoV-2 Infection Among Healthcare Workers During the Omicron Transmission Period: A Multicentric Study from Four Hospitals of Mainland China. Infect Drug Resist 2023; 16:3315-3328. [PMID: 37274362 PMCID: PMC10237192 DOI: 10.2147/idr.s412657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
PURPOSE The SARS-CoV-2 omicron variant emerged and spread rapidly among the population in the early stage of China's normalized prevention and control in December 2022. Healthcare workers (HCWs) are particularly exposed to SARS-CoV-2, it is important to evaluate the impact of the omicron pandemic on HCWs in China. METHODS A self-administered online survey was conducted on infected HCWs from four hospitals of Taizhou. A total of 748 HCWs received the survey via DingTalk, and 328 responded to the questionnaire. The risk factors were investigated using univariate and multivariate logistic regression analysis. RESULTS By December 20, 2022, 748 HCWs tested positive by PCR, and the infection rate was 11.4% (748/6581). Among 328 respondents, the most common symptoms were cough (88.4%), fever (83.5%), runny nose (77.1%), sore throat (73.2%), headache (70.1%), muscle aches (67.1%), and fatigue (53.4%). 69.8% (229/328) of the participants had five or more major onset symptoms, while no severe case was observed. The multivariate analysis indicated that the poor sleep quality (OR = 2.29, 95% CI: 1.31-4.02, P = 0.004) was an independent risk factor for more major onset symptoms, while wore gloves ≥95% times in working (OR = 0.49, 95% CI: 0.28-0.85, P = 0.011) was significantly related to fewer symptoms. In addition, 239 (72.9%) recipients reported high fever (temperature ≥38.5°C), less common cold (≤3 vs >3 times/year, OR = 2.20, 95% CI: 1.05-4.65, P = 0.038) was significantly associated with high fever. CONCLUSION Our findings imply rapid transmissibility of omicron and multiple-onset symptoms among HCWs. Improved autoimmunity and self-protection measures for HCWs may be helpful in controlling infection and clinical symptoms. Our results provide empirical reference values for improved countermeasures and protective measures for major public health emergencies.
Collapse
Affiliation(s)
- Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People’s Republic of China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, People’s Republic of China
| | - Mengyuan Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People’s Republic of China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, People’s Republic of China
| | - Qiaoming Chen
- Department of Prevention and Health Care, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, People’s Republic of China
| | - Tongtong Zhang
- Department of Prevention and Health Care, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People’s Republic of China
| | - Bing Xu
- Department of Human Resources, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People’s Republic of China
| | - Tao Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People’s Republic of China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, People’s Republic of China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, People’s Republic of China
| | - Xiaomai Wu
- Department of Respiratory and Critical Medicine, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, People’s Republic of China
| |
Collapse
|
20
|
Rando HM, Lordan R, Lee AJ, Naik A, Wellhausen N, Sell E, Kolla L, COVID-19 Review Consortium, Gitter A, Greene CS. Application of Traditional Vaccine Development Strategies to SARS-CoV-2. mSystems 2023; 8:e0092722. [PMID: 36861991 PMCID: PMC10134813 DOI: 10.1128/msystems.00927-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, in either an inactivated or an attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion article (H. M. Rando, R. Lordan, L. Kolla, E. Sell, et al., mSystems 8:e00928-22, 2023, https://doi.org/10.1128/mSystems.00928-22), we review the more recent and novel development of nucleic acid-based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2. IMPORTANCE The development, production, and distribution of vaccines is imperative to saving lives, preventing illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Vaccines that use cutting-edge biotechnology have played an important role in mitigating the effects of SARS-CoV-2. However, more traditional methods of vaccine development that were refined throughout the 20th century have been especially critical to increasing vaccine access worldwide. Effective deployment is necessary to reducing the susceptibility of the world's population, which is especially important in light of emerging variants. In this review, we discuss the safety, immunogenicity, and distribution of vaccines developed using established technologies. In a separate review, we describe the vaccines developed using nucleic acid-based vaccine platforms. From the current literature, it is clear that the well-established vaccine technologies are also highly effective against SARS-CoV-2 and are being used to address the challenges of COVID-19 globally, including in low- and middle-income countries. This worldwide approach is critical for reducing the devastating impact of SARS-CoV-2.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ronan Lordan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amruta Naik
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Sell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - Likhitha Kolla
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
| | - COVID-19 Review Consortium
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Baghban R, Ghasemian A, Mahmoodi S. Nucleic acid-based vaccine platforms against the coronavirus disease 19 (COVID-19). Arch Microbiol 2023; 205:150. [PMID: 36995507 PMCID: PMC10062302 DOI: 10.1007/s00203-023-03480-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has infected 673,010,496 patients and caused the death of 6,854,959 cases globally until today. Enormous efforts have been made to develop fundamentally different COVID-19 vaccine platforms. Nucleic acid-based vaccines consisting of mRNA and DNA vaccines (third-generation vaccines) have been promising in terms of rapid and convenient production and efficient provocation of immune responses against the COVID-19. Several DNA-based (ZyCoV-D, INO-4800, AG0302-COVID19, and GX-19N) and mRNA-based (BNT162b2, mRNA-1273, and ARCoV) approved vaccine platforms have been utilized for the COVID-19 prevention. mRNA vaccines are at the forefront of all platforms for COVID-19 prevention. However, these vaccines have lower stability, while DNA vaccines are needed with higher doses to stimulate the immune responses. Intracellular delivery of nucleic acid-based vaccines and their adverse events needs further research. Considering re-emergence of the COVID-19 variants of concern, vaccine reassessment and the development of polyvalent vaccines, or pan-coronavirus strategies, is essential for effective infection prevention.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
22
|
Kim TM, Lee RH, Kim MS, Lewis CA, Park C. ETV2/ER71, the key factor leading the paths to vascular regeneration and angiogenic reprogramming. Stem Cell Res Ther 2023; 14:41. [PMID: 36927793 PMCID: PMC10019431 DOI: 10.1186/s13287-023-03267-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Extensive efforts have been made to achieve vascular regeneration accompanying tissue repair for treating vascular dysfunction-associated diseases. Recent advancements in stem cell biology and cell reprogramming have opened unforeseen opportunities to promote angiogenesis in vivo and generate autologous endothelial cells (ECs) for clinical use. We have, for the first time, identified a unique endothelial-specific transcription factor, ETV2/ER71, and revealed its essential role in regulating endothelial cell generation and function, along with vascular regeneration and tissue repair. Furthermore, we and other groups have demonstrated its ability to directly reprogram terminally differentiated non-ECs into functional ECs, proposing ETV2/ER71 as an effective therapeutic target for vascular diseases. In this review, we discuss the up-to-date status of studies on ETV2/ER71, spanning from its molecular mechanism to vasculo-angiogenic role and direct cell reprogramming toward ECs. Furthermore, we discuss future directions to deploy the clinical potential of ETV2/ER71 as a novel and potent target for vascular disorders such as cardiovascular disease, neurovascular impairment and cancer.
Collapse
Affiliation(s)
- Tae Min Kim
- Graduate School of International Agricultural Technology and Institutes of Green-Bio Science and Technology, Seoul National University, 1447 Pyeongchang-daero, Pyeongchang, Gangwon-do, 25354, Republic of Korea.
| | - Ra Ham Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Min Seong Kim
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chloe A Lewis
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
23
|
Reyes-Alcaraz A, Qasim H, Merlinsky E, Fox G, Islam T, Medina B, Schwartz RJ, Craft JW, McConnell BK. A Small Molecule That In Vitro Neutralizes Infection of SARS-CoV-2 and Its Most Infectious Variants, Delta, and Omicron. Biomedicines 2023; 11:916. [PMID: 36979895 PMCID: PMC10046252 DOI: 10.3390/biomedicines11030916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The COVID-19 pandemic has underscored the urgent need to develop highly potent and safe medications that are complementary to the role of vaccines. Specifically, it has exhibited the need for orally bioavailable broad-spectrum antivirals that are able to be quickly deployed against newly emerging viral pathogens. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and its variants Delta and Omicron are still a major threat to patients of all ages. In this brief report, we describe that the small molecule CD04872SC was able to neutralize SARS-CoV2 infection with a half-maximal effective concentration (EC50) = 248 μM. Serendipitously, we also were able to observe that CD04872SC inhibited the infection of the SARS-CoV-2 variants; Delta (EC50 = 152 μM) and Omicron (EC50 = 308 μM). These properties may define CD04872SC as a potential broad-spectrum candidate lead for the development of treatments for COVID-19.
Collapse
Affiliation(s)
- Arfaxad Reyes-Alcaraz
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (A.R.-A.)
| | - Hanan Qasim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (A.R.-A.)
| | - Elizabeth Merlinsky
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (A.R.-A.)
| | - Glenn Fox
- Rogers State University, 1701 W. Will Rogers Blvd., Claremore, OK 74017, USA
| | - Tasneem Islam
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (A.R.-A.)
| | - Bryan Medina
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (A.R.-A.)
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - John W. Craft
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (A.R.-A.)
| |
Collapse
|
24
|
Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, Alotaibi N, Alsalman J, Gorab AH, Almaghrabi RS, Zaidan AA, Aldossary S, Alissa M, Alburaiky LM, Alsalim FM, Thakur N, Verma G, Dhawan M. Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:507. [PMID: 36984508 PMCID: PMC10051174 DOI: 10.3390/medicina59030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The immune response elicited by the current COVID-19 vaccinations declines with time, especially among the immunocompromised population. Furthermore, the emergence of novel SARS-CoV-2 variants, particularly the Omicron variant, has raised serious concerns about the efficacy of currently available vaccines in protecting the most vulnerable people. Several studies have reported that vaccinated people get breakthrough infections amid COVID-19 cases. So far, five variants of concern (VOCs) have been reported, resulting in successive waves of infection. These variants have shown a variable amount of resistance towards the neutralising antibodies (nAbs) elicited either through natural infection or the vaccination. The spike (S) protein, membrane (M) protein, and envelope (E) protein on the viral surface envelope and the N-nucleocapsid protein in the core of the ribonucleoprotein are the major structural vaccine target proteins against COVID-19. Among these targets, S Protein has been extensively exploited to generate effective vaccines against COVID-19. Hence, amid the emergence of novel variants of SARS-CoV-2, we have discussed their impact on currently available vaccines. We have also discussed the potential roles of S Protein in the development of novel vaccination approaches to contain the negative consequences of the variants' emergence and acquisition of mutations in the S Protein of SARS-CoV-2. Moreover, the implications of SARS-CoV-2's structural proteins were also discussed in terms of their variable potential to elicit an effective amount of immune response.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Shamsah H. Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Ali Alghadeer
- Department of Anesthesia, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Nouf Alotaibi
- Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Ali H. Gorab
- Al Kuzama Primary Health Care Center, Al Khobar Health Network, Eastern Health Cluster, Al Khobar 34446, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ali A. Zaidan
- Gastroenterology Department, King Fahad Armed Forces Hospital, Jeddah 23831, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children’s Health Institute, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Lamees M. Alburaiky
- Pediatric Department, Safwa General Hospital, Eastern Health Cluster, Safwa 31921, Saudi Arabia
| | - Fatimah Mustafa Alsalim
- Department of Family Medicine, Primary Health Care, Qatif Health Cluster, Qatif 32434, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| |
Collapse
|
25
|
Che K, Wang K, Yuan Y, Zhang Z, Li F, Li Q. Trend of Academic Productivity in Plastic Surgery and the Impact of COVID-19: A Bibliometric Analysis. J Craniofac Surg 2023; 34:454-460. [PMID: 36184772 PMCID: PMC9943715 DOI: 10.1097/scs.0000000000009021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Plastic surgery has grown rapidly over the past decade, with increasing scientific output. The emergence of coronavirus disease 2019 (COVID-19) has a considerable impact on plastic surgery. OBJECTIVE To identify trends in published literature in plastic surgery from 2011 to 2021. To explore the impact of COVID-19 on scientific research output through bibliometric analysis methods. METHODS Web of Science was searched by authors on December 23, 2021. Published papers about plastic surgery over the last decade were analyzed. The search output was imported into VOSviewer for science mapping. RESULTS The actual number of papers related to plastic surgery during the COVID-19 period was higher than expected one. For scientific outputs in plastic surgery, keywords about surgical practice had a high frequency. "Reconstruction," "effect," "flap," "tissue," "defect," "model" maintained a high level of heat before and after COVID-19. The heat of "risk," "complication," "review," "infection," "cohort," and "meta-analysis" increased after the outbreak of COVID-19. The international collaboration showed an upward trend despite the impact of COVID-19. From the perspective of the volume of plastic surgery publications, some journals had a more positive performance compared to the pre-epidemic period. The proportion of original articles decreased after the spread of COVID-19 from 70.26% to 63.84%. CONCLUSION Although the COVID-19 has a profound impact on the healthcare industry, the bibliographic data reveals an increasing scientific output in the field of plastic surgery over time. For plastic surgery, high-frequency terms, research hotspots, popular journals, article types, and international collaboration have changed under the influence of COVID-19.
Collapse
|
26
|
Abdulla ZA, Al-Bashir SM, Alzoubi H, Al-Salih NS, Aldamen AA, Abdulazeez AZ. The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens 2023; 12:329. [PMID: 36839601 PMCID: PMC9967364 DOI: 10.3390/pathogens12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
This study aims to review the available data regarding the central role of immunity in combating SARS-CoV-2 infection and in the generation of protection by vaccination against COVID-19 in different age groups. Physiologically, the immune response and the components involved in it are variable, both functionally and quantitatively, in neonates, infants, children, adolescents, and adults. These immunological differences are mirrored during COVID-19 infection and in the post-vaccination period. The outcome of SARS-CoV-2 infection is greatly dependent on the reaction orchestrated by the immune system. This is clearly obvious in relation to the clinical status of COVID-19 infection, which can be symptomless, mild, moderate, or severe. Even the complications of the disease show a proportional pattern in relation to the immune response. On the contrary, the commonly used anti-COVID-19 vaccines generate protective humoral and cellular immunity. The magnitude of this immunity and the components involved in it are discussed in detail. Furthermore, many of the adverse effects of these vaccines can be explained on the basis of immune reactions against the different components of the vaccines. Regarding the appropriate choice of vaccine for different age groups, many factors have to be considered. This is a cornerstone, particularly in the following age groups: 1 day to 5 years, 6 to 11 years, and 12 to 17 years. Many factors are involved in deciding the route, doses, and schedule of vaccination for children. Another important issue in this dilemma is the hesitancy of families in making the decision about whether to vaccinate their children. Added to these difficulties is the choice by health authorities and governments concerning whether to make children's vaccination compulsory. In this respect, although rare and limited, adverse effects of vaccines in children have been detected, some of which, unfortunately, have been serious or even fatal. However, to achieve comprehensive control over COVID-19 in communities, both children and adults have to be vaccinated, as the former group represents a reservoir for viral transmission. The understanding of the various immunological mechanisms involved in SARS-CoV-2 infection and in the preparation and application of its vaccines has given the sciences a great opportunity to further deepen and expand immunological knowledge. This will hopefully be reflected positively on other diseases through gaining an immunological background that may aid in diagnosis and therapy. Humanity is still in continuous conflict with SARS-CoV-2 infection and will be for a while, but the future is expected to be in favor of the prevention and control of this disease.
Collapse
Affiliation(s)
| | - Sharaf M. Al-Bashir
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Noor S. Al-Salih
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Ala A. Aldamen
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | | |
Collapse
|
27
|
Wen GP, Zhu M, Li LR, Li XJ, Ye HM, Zhou YL. Homologous booster immunization with an inactivated vaccine induced robust antibody response in healthcare workers: A retrospective study. Front Immunol 2023; 14:1099629. [PMID: 36817474 PMCID: PMC9935570 DOI: 10.3389/fimmu.2023.1099629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus Disease 2019 (Covid-19) severely impacted the health, society, and economy around the world. With declining protective efficacy of primary vaccination and the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, a Covid-19 booster vaccination is being fully implemented globally. Many people received three doses of BBIBP-CorV inactivated vaccine in China and other developing countries. However, the antibody response and immune persistence of the homologous BBIBP-CorV booster vaccination is yet to be thoroughly evaluated, as previous studies focused within one month after the third dose. In this study, 97 participants were enrolled to analyze the antibody response and immune persistence within 6 months as well as the safety within 7 days after the third-dose of homologous BBIBP-CorV inactivated vaccine. The seroconversion rate for total antibody against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein were both 100% at month 1 and month 6 after the third dose. The IgG against the RBD of the SARS-CoV-2 S protein seroconversion rate increased from 42.27% before the third dose to 100% 1 month after the third dose and then slightly decreased to 98.97% 5 months later. Positive IgM against the RBD of the SARS-CoV-2 S protein was rare and was observed in only one participant at month 1 after the third dose. The neutralizing antibody levels at month 1 and month 6 after the third dose increased 63.32-fold and 13.16-fold compared with those before the third dose, and the positive rate for neutralizing antibody was still 100% at month 6 after the third dose. Importantly, the antibody responses induced by the vaccine and immune persistence were not affected by sex or age. No serious adverse reactions were reported. Total antibody and IgG against the RBD of the SARS-CoV-2 S protein were highly correlated with neutralizing antibody, suggesting that total antibody and IgG against the RBD of the SARS-CoV-2 S protein could be used as predictors for neutralizing antibody. In conclusion, the third dose of homologous BBIBP-CorV inactivated vaccine induced a robust antibody response and moderate immune persistence. These finding are of great significance for development future vaccination strategies.
Collapse
Affiliation(s)
- Gui-Ping Wen
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Min Zhu
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Li-Rong Li
- Department of Hospital Infection Management, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiu-Juan Li
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui-Ming Ye
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yu-Lin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
28
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
29
|
Ngonghala CN, Taboe HB, Safdar S, Gumel AB. Unraveling the dynamics of the Omicron and Delta variants of the 2019 coronavirus in the presence of vaccination, mask usage, and antiviral treatment. APPLIED MATHEMATICAL MODELLING 2023; 114:447-465. [PMID: 36281307 PMCID: PMC9581714 DOI: 10.1016/j.apm.2022.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 06/13/2023]
Abstract
The effectiveness of control interventions against COVID-19 is threatened by the emergence of SARS-CoV-2 variants of concern. We present a mathematical model for studying the transmission dynamics of two of these variants (Delta and Omicron) in the United States, in the presence of vaccination, treatment of individuals with clinical symptoms of the disease and the use of face masks. The model is parameterized and cross-validated using observed daily case data for COVID-19 in the United States for the period from November 2021 (when Omicron first emerged) to March 2022. Rigorous qualitative analysis of the model shows that the disease-free equilibrium of the model is locally-asymptotically stable when the control reproduction number of the model (denoted by R c ) is less than one. This equilibrium is shown to be globally-asymptotically stable for a special case of the model, where disease-induced mortality is negligible and both vaccine-derived immunity in fully-vaccinated individuals and natural immunity do not wane, when the associated reproduction number is less than one. The epidemiological implication of the latter result is that the combined vaccination-boosting strategy can lead to the elimination of the pandemic if its implementation can bring (and maintain) the associated reproduction number to a value less than one. An analytical expression for the vaccine-derived herd immunity threshold is derived. Using this expression, together with the baseline values of the parameters of the parameterized model, we showed that the vaccine-derived herd immunity can be achieved in the United States (so that the pandemic will be eliminated) if at least 68 % of the population is fully-vaccinated with two of the three vaccines approved for use in the United States (Pfizer or Moderna vaccine). Furthermore, this study showed (as of the time of writing in March 2022) that the control reproduction number of the Omicron variant was approximately 3.5 times that of the Delta variant (the reproduction of the latter is computed to be ≈ 0.2782 ), indicating that Delta had practically died out and that Omicron has competitively-excluded Delta (to become the predominant variant in the United States). Based on our analysis and parameterization at the time of writing of this paper (March 2022), our study suggests that SARS-CoV-2 elimination is feasible by June 2022 if the current baseline level of the coverage of fully-vaccinated individuals is increased by about 20 % . The prospect of pandemic elimination is significantly improved if vaccination is combined with a face mask strategy that prioritizes moderately effective and high-quality masks. Having a high percentage of the populace wearing the moderately-effective surgical mask is more beneficial to the community than having low percentage of the populace wearing the highly-effective N95 masks. We showed that waning natural and vaccine-derived immunity (if considered individually) offer marginal impact on disease burden, except for the case when they wane at a much faster rate (e.g., within three months), in comparison to the baseline (estimated to be within 9 months to a year). Treatment of symptomatic individuals has marginal effect in reducing daily cases of SARS-CoV-2, in comparison to the baseline, but it has significant impact in reducing daily hospitalizations. Furthermore, while treatment significantly reduces daily hospitalizations (and, consequently, deaths), the prospects of COVID-19 elimination in the United States are significantly enhanced if investments in control resources are focused on mask usage and vaccination rather than on treatment.
Collapse
Affiliation(s)
- Calistus N Ngonghala
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Hemaho B Taboe
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
- Laboratoire de Biomathématiques et d'Estimations Forestières, University of Abomey-Calavi, Cotonou, Bénin
| | - Salman Safdar
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Abba B Gumel
- Department of Mathematics, University of Maryland, College Park, MD 20742, USA
- Department of Biology & Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
30
|
Rando HM, Lordan R, Lee AJ, Naik A, Wellhausen N, Sell E, Kolla L, Gitter A, Greene CS. Application of Traditional Vaccine Development Strategies to SARS-CoV-2. ARXIV 2023:arXiv:2208.08907v2. [PMID: 36034485 PMCID: PMC9413721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against the SARS-CoV-2 virus. A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, either in an inactivated or attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion manuscript, we review the more recent and novel development of nucleic-acid based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic-acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Alexandra J Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552)
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Likhitha Kolla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America · Funded by NIH Medical Scientist Training Program T32 GM07170
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; Morgridge Institute for Research, Madison, Wisconsin, United States of America · Funded by John W. and Jeanne M. Rowe Center for Research in Virology
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America · Funded by the Gordon and Betty Moore Foundation (GBMF 4552); the National Human Genome Research Institute (R01 HG010067)
| |
Collapse
|
31
|
Utami AM, Rendrayani F, Khoiry QA, Noviyanti D, Suwantika AA, Postma MJ, Zakiyah N. Economic evaluation of COVID-19 vaccination: A systematic review. J Glob Health 2023; 13:06001. [PMID: 36637810 PMCID: PMC9838689 DOI: 10.7189/jogh.13.06001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Safe and effective vaccination is considered to be the most critical strategy to fight coronavirus disease 2019 (COVID-19), leading to individual and herd immunity protection. We aimed to systematically review the economic evaluation of COVID-19 vaccination globally. Methods We performed a systematic search to identify relevant studies in two major databases (MEDLINE/PubMed and EBSCO) published until September 8, 2022. After deduplication, two researchers independently screened the study titles and abstracts according to pre-determined inclusion and exclusion criteria. The remaining full-text studies were assessed for eligibility. We assessed their quality of reporting using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 2022 checklist and summarized and narratively presented the results. Results We identified 25 studies that assessed the economic evaluation of COVID-19 vaccination worldwide by considering several input parameters, including vaccine cost, vaccine efficacy, utility value, and the size of the targeted population. All studies suggested that COVID-19 vaccination was a cost-effective or cost-saving intervention for mitigating coronavirus transmission and its effect in many countries within certain conditions. Most studies reported vaccine efficacy values ranging from 65% to 75%. Conclusions Given the favorable cost-effectiveness profile of COVID-19 vaccines and disparities in affordability across countries, considering prioritization has become paramount. This review provides comprehensive insights into the economic evaluation of COVID-19 vaccination that will be useful to policymakers, particularly in highlighting preventive measures and preparedness plans for the next possible pandemic.
Collapse
Affiliation(s)
- Auliasari Meita Utami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Farida Rendrayani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Qisty Aulia Khoiry
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Dita Noviyanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Auliya A Suwantika
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia,Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Maarten J Postma
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia,Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands,Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics & Business, Groningen, the Netherlands
| | - Neily Zakiyah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia,Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
32
|
Kamal M, Atchadé MN, Sokadjo YM, Siddiqui SA, Riad FH, El-Raouf MMA, Aldallal R, Hussam E, Alshanbari HM, Alsuhabi H, Gemeay AM. Influence of COVID-19 vaccination on the dynamics of new infected cases in the world. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3324-3341. [PMID: 36899583 DOI: 10.3934/mbe.2023156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The initial COVID-19 vaccinations were created and distributed to the general population in 2020 thanks to emergency authorization and conditional approval. Consequently, numerous countries followed the process that is currently a global campaign. Taking into account the fact that people are being vaccinated, there are concerns about the effectiveness of that medical solution. Actually, this study is the first one focusing on how the number of vaccinated people might influence the spread of the pandemic in the world. From the Global Change Data Lab "Our World in Data", we were able to get data sets about the number of new cases and vaccinated people. This study is a longitudinal one from 14/12/2020 to 21/03/2021. In addition, we computed Generalized log-Linear Model on count time series (Negative Binomial distribution due to over dispersion in data) and implemented validation tests to confirm the robustness of our results. The findings revealed that when the number of vaccinated people increases by one new vaccination on a given day, the number of new cases decreases significantly two days after by one. The influence is not notable on the same day of vaccination. Authorities should increase the vaccination campaign to control well the pandemic. That solution has effectively started to reduce the spread of COVID-19 in the world.
Collapse
Affiliation(s)
- Mustafa Kamal
- Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Dammam 32256, Saudi Arabia
| | - Mintodê Nicodème Atchadé
- National Higher School of Mathematics Genius and Modelization, National University of Sciences, Technologies, Engineering and Mathematics, Abomey, Benin Republic
- University of Abomey-Calavi/International Chair in Mathematical Physics and Applications (ICMPA: UNESCO-Chair), 072 BP 50 Cotonou, Rep. Benin
| | - Yves Morel Sokadjo
- University of Abomey-Calavi/International Chair in Mathematical Physics and Applications (ICMPA: UNESCO-Chair), 072 BP 50 Cotonou, Rep. Benin
| | - Sabir Ali Siddiqui
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Fathy H Riad
- Mathematics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - M M Abd El-Raouf
- Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, Egypt
| | - Ramy Aldallal
- Department of Accounting, College of Business Administration in Hawtat Bani Tamim, Prince Sattam Abdulaziz University, Saudi Arabia
| | - Eslam Hussam
- Department of Mathematics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Huda M Alshanbari
- Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hassan Alsuhabi
- Department of Mathematics, Al-Qunfudah University College, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Ahmed M Gemeay
- Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
33
|
Khare S, Niharika, Singh A, Hussain I, Singh NB, Singh S. SARS-CoV-2 Vaccines: Types, Working Principle, and Its Impact on Thrombosis and Gastrointestinal Disorders. Appl Biochem Biotechnol 2023; 195:1541-1573. [PMID: 36222988 PMCID: PMC9554396 DOI: 10.1007/s12010-022-04181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
In the current scenario of the coronavirus pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), considerable efforts have been made to control the pandemic by the development of a strong immune system through massive vaccination. Just after the discovery of the genetic sequences of SARS-CoV-2, the development of vaccines became the prime focus of scientists around the globe. About 200 SARS-CoV-2 candidate vaccines have already been entered into preclinical and clinical trials. Various traditional and novel approaches are being utilized as a broad range of platforms. Viral vector (replicating and non-replicating), nucleic acid (DNA and RNA), recombinant protein, virus-like particle, peptide, live attenuated virus, an inactivated virus approaches are the prominent attributes of the vaccine development. This review article includes the current knowledge about the platforms used for the development of different vaccines, their working principles, their efficacy, and the impacts of COVID-19 vaccines on thrombosis. We provide a detailed description of the vaccines that are already approved by administrative authorities. Moreover, various strategies utilized in the development of emerging vaccines that are in the trial phases along with their mode of delivery have been discussed along with their effect on thrombosis and gastrointestinal disorders.
Collapse
Affiliation(s)
- Shubhra Khare
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Niharika
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Ajey Singh
- grid.411488.00000 0001 2302 6594Department of Botany, University of Lucknow, Lucknow, 226007 U.P. India
| | - Imtiyaz Hussain
- grid.412997.00000 0001 2294 5433Government Degree College, University of Ladakh, Dras, Ladakh India
| | - Narsingh Bahadur Singh
- grid.411343.00000 0001 0213 924XPlant Physiology Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002 U.P. India
| | - Subhash Singh
- grid.16416.340000 0004 1936 9174The Institute of Optics, University of Rochester, Rochester, NY-14627 USA
| |
Collapse
|
34
|
Gao Y, Wang W, Yang Y, Zhao Q, Yang C, Jia X, Liu Y, Zhou M, Zeng W, Huang X, Chiu S, Jin T, Wu X. Developing Next-Generation Protein-Based Vaccines Using High-Affinity Glycan Ligand-Decorated Glyconanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204598. [PMID: 36398611 PMCID: PMC9839878 DOI: 10.1002/advs.202204598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Major diseases, such as cancer and COVID-19, are frightening global health problems, and sustained action is necessary to develop vaccines. Here, for the first time, ethoxy acetalated dextran nanoparticles (Ace-Dex-NPs) are functionalized with 9-N-(4H-thieno[3,2-c]chromene-2-carbamoyl)-Siaα2-3Galβ1-4GlcNAc (TCC Sia-LacNAc) targeting macrophages as a universal vaccine design platform. First, azide-containing oxidized Ace-Dex-NPs are synthesized. After the NPs are conjugated with ovalbumin (OVA) and resiquimod (Rd), they are coupled to TCC Sia-LacNAc-DBCO to produce TCC Sia-Ace-Dex-OVA-Rd, which induce a potent, long-lasting OVA-specific cytotoxic T-lymphocyte (CTL) response and high anti-OVA IgG, providing mice with superior protection against tumors. Next, this strategy is exploited to develop vaccines against infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is the main target for neutralizing antibodies. The TCC Sia-Ace-Dex platform is preferentially used for designing an RBD-based vaccine. Strikingly, the synthetic TCC Sia-Ace-Dex-RBD-Rd elicited potent RBD-neutralizing antibodies against live SARS-CoV-2 infected Vero E6 cells. To develop a universal SARS-CoV-2 vaccine, the TCC Sia-Ace-Dex-N-Rd vaccine carrying SARS-CoV-2 nucleocapsid protein (N) is also prepared, which is highly conserved among SARS-CoV-2 and its variants of concern (VOCs), including Omicron (BA.1 to BA.5); this vaccine can trigger strong N-specific CTL responses against target cells infected with SARS-CoV-2 and its VOCs.
Collapse
Affiliation(s)
- Yanan Gao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
| | - Wei Wang
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yunru Yang
- Department of Basic Medical SciencesDivision of Molecular MedicineDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Qingyu Zhao
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
| | - Chendong Yang
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
| | - Xiaoying Jia
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yang Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
| | - Minmin Zhou
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Weihong Zeng
- Department of Basic Medical SciencesDivision of Molecular MedicineDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Xuefei Huang
- Departments of Chemistry and Biomedical EngineeringInstitute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan48824United States
| | - Sandra Chiu
- Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Tengchuan Jin
- Department of Basic Medical SciencesDivision of Molecular MedicineDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Xuanjun Wu
- National Glycoengineering Research CenterShandong Key Laboratory of Carbohydrate Chemistry and GlycobiologyNMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐based MedicineShandong UniversityQingdaoShandong266237China
- Suzhou Research InstituteShandong UniversitySuzhouJiangsu215123China
| |
Collapse
|
35
|
Guo C, Liu X. Editorial: Porcine reproductive and respiratory syndrome virus - animal virology, immunology, and pathogenesis. Front Immunol 2023; 14:1194386. [PMID: 37153562 PMCID: PMC10157469 DOI: 10.3389/fimmu.2023.1194386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Chunhe Guo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- *Correspondence: Chunhe Guo, ; Xiaohong Liu,
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Chunhe Guo, ; Xiaohong Liu,
| |
Collapse
|
36
|
Homma T, Nagata N, Hashimoto M, Iwata-Yoshikawa N, Seki NM, Shiwa-Sudo N, Ainai A, Dohi K, Nikaido E, Mukai A, Ukai Y, Nakagawa T, Shimo Y, Maeda H, Shirai S, Aoki M, Sonoyama T, Sato M, Fumoto M, Nagira M, Nakata F, Hashiguchi T, Suzuki T, Omoto S, Hasegawa H. Immune response and protective efficacy of the SARS-CoV-2 recombinant spike protein vaccine S-268019-b in mice. Sci Rep 2022; 12:20861. [PMID: 36460696 PMCID: PMC9718471 DOI: 10.1038/s41598-022-25418-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Vaccines that efficiently target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for coronavirus disease (COVID-19), are the best means for controlling viral spread. This study evaluated the efficacy of the COVID-19 vaccine S-268019-b, which comprises the recombinant full-length SARS-CoV-2 spike protein S-910823 (antigen) and A-910823 (adjuvant). In addition to eliciting both Th1-type and Th2-type cellular immune responses, two doses of S-910823 plus A-910823 induced anti-spike protein IgG antibodies and neutralizing antibodies against SARS-CoV-2. In a SARS-CoV-2 challenge test, S-910823 plus A-910823 mitigated SARS-CoV-2 infection-induced weight loss and death and inhibited viral replication in mouse lungs. S-910823 plus A-910823 promoted cytokine and chemokine at the injection site and immune cell accumulation in the draining lymph nodes. This led to the formation of germinal centers and the induction of memory B cells, antibody-secreting cells, and memory T cells. These findings provide fundamental property of S-268019-b, especially importance of A-910823 to elicit humoral and cellular immune responses.
Collapse
Affiliation(s)
- Tomoyuki Homma
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Masayuki Hashimoto
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Naomi M Seki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keiji Dohi
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Eiji Nikaido
- Laboratory for Bio-Modality Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Akiko Mukai
- UMN Pharma Inc., 7F, Tekko Building, 1-8-2, Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
| | - Yuuta Ukai
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Takayuki Nakagawa
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Yusuke Shimo
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Hiroki Maeda
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Seiki Shirai
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Miwa Aoki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Takuhiro Sonoyama
- Medical Science Department, Shionogi & Co., Ltd., 8F, Nissei East Building, 3-3-16, Imabashi, Chuo-ku, Osaka, 541-0032, Japan
| | - Mamoru Sato
- UMN Pharma Inc., 7F, Tekko Building, 1-8-2, Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
| | - Masataka Fumoto
- Laboratory for Bio-Modality Research, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Morio Nagira
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Fumihisa Nakata
- UMN Pharma Inc., 7F, Tekko Building, 1-8-2, Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shinya Omoto
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan.
| | - Hideki Hasegawa
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan.
| |
Collapse
|
37
|
Zhang J, He Q, Yan X, Liu J, Bai Y, An C, Cui B, Gao F, Mao Q, Wang J, Xu M, Liang Z. Mixed formulation of mRNA and protein-based COVID-19 vaccines triggered superior neutralizing antibody responses. MedComm (Beijing) 2022; 3:e188. [PMID: 36474858 PMCID: PMC9717706 DOI: 10.1002/mco2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID-19) vaccine candidates. To optimize the immunization strategy of the novel mRNA-based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID-19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA-RBD) and protein subunit vaccine (PS-RBD) in mice. Compared with homologous immunization of RNA-RBD or PS-RBD, heterologous prime-boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody-dependent cell-mediated cytotoxicity for "PS-RBD prime, RNA-RBD boost" and robust Th1 type cellular response for "RNA-RBD prime, PS-RBD boost". Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1-type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein-based COVID-19 vaccines.
Collapse
Affiliation(s)
- Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Xujia Yan
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Jianyang Liu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Chaoqiang An
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Bopei Cui
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Junzhi Wang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Miao Xu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| |
Collapse
|
38
|
Thomas S, Smatti MK, Ouhtit A, Cyprian FS, Almaslamani MA, Thani AA, Yassine HM. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis. Mol Immunol 2022; 152:172-182. [PMID: 36371813 PMCID: PMC9647202 DOI: 10.1016/j.molimm.2022.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Qatar University, Qatar; Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | | | - Allal Ouhtit
- Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Qatar.
| | - Farhan S Cyprian
- Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Qatar.
| | | | - Asmaa Al Thani
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Qatar.
| |
Collapse
|
39
|
Reis HC, Turk V. COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images. Artif Intell Med 2022; 134:102427. [PMID: 36462906 PMCID: PMC9574866 DOI: 10.1016/j.artmed.2022.102427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
COVID-19 (SARS-CoV-2), which causes acute respiratory syndrome, is a contagious and deadly disease that has devastating effects on society and human life. COVID-19 can cause serious complications, especially in patients with pre-existing chronic health problems such as diabetes, hypertension, lung cancer, weakened immune systems, and the elderly. The most critical step in the fight against COVID-19 is the rapid diagnosis of infected patients. Computed Tomography (CT), chest X-ray (CXR), and RT-PCR diagnostic kits are frequently used to diagnose the disease. However, due to difficulties such as the inadequacy of RT-PCR test kits and false negative (FN) results in the early stages of the disease, the time-consuming examination of medical images obtained from CT and CXR imaging techniques by specialists/doctors, and the increasing workload on specialists, it is challenging to detect COVID-19. Therefore, researchers have suggested searching for new methods in COVID- 19 detection. In analysis studies with CT and CXR radiography images, it was determined that COVID-19-infected patients experienced abnormalities related to COVID-19. The anomalies observed here are the primary motivation for artificial intelligence researchers to develop COVID-19 detection applications with deep convolutional neural networks. Here, convolutional neural network-based deep learning algorithms from artificial intelligence technologies with high discrimination capabilities can be considered as an alternative approach in the disease detection process. This study proposes a deep convolutional neural network, COVID-DSNet, to diagnose typical pneumonia (bacterial, viral) and COVID-19 diseases from CT, CXR, hybrid CT + CXR images. In the multi-classification study with the CT dataset, 97.60 % accuracy and 97.60 % sensitivity values were obtained from the COVID-DSNet model, and 100 %, 96.30 %, and 96.58 % sensitivity values were obtained in the detection of typical, common pneumonia and COVID-19, respectively. The proposed model is an economical, practical deep learning network that data scientists can benefit from and develop. Although it is not a definitive solution in disease diagnosis, it may help experts as it produces successful results in detecting pneumonia and COVID-19.
Collapse
Affiliation(s)
- Hatice Catal Reis
- Department of Geomatics Engineering, Gumushane University, Gumushane 2900, Turkey,Corresponding author at: Department of Geomatics Engineering, Gumushane University, Gumushane 2900, Turkey
| | - Veysel Turk
- Department of Computer Engineering, University of Harran, Sanliurfa, Turkey
| |
Collapse
|
40
|
SARS-CoV-2 and Dengue Virus Coinfection in a Mexican Pediatric Patient: A Case Report from Early Molecular Diagnosis. Pathogens 2022; 11:pathogens11111360. [PMID: 36422612 PMCID: PMC9695305 DOI: 10.3390/pathogens11111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
Mexico is an endemic region for dengue virus (DENV). The increase in this disease coincides with outbreaks of COVID-19, both of which are single-stranded positive RNA viruses. These characteristics make it difficult to distinguish each disease because they share clinical and laboratory features, which can consequently result in misdiagnoses. This is why the use of precision confirmatory tests (qRT-PCR) are crucial for early diagnosis. We herein report a pediatric patient who presented a coinfection for DENV and COVID-19, “SARS-CoV-2/Dengue”. This patient initially presented a fever, cough, and headache and, three days later, developed generalized pain and epistaxis. Blood studies revealed thrombocytopenia and leukopenia, and the patient was admitted to the hospital for a probable DENV infection. Within 48 h, qRT-PCR tests specific for SARS-CoV-2 and DENV were performed and resulted as positive. The patient immediately received pharmacological treatment with azithromycin, oseltamivir, and metamizole. During hospitalization (9 days), the patient had no signs of respiratory distress and maintained normal body temperature and normal blood oxygen saturation. This case warns of the need for early diagnosis and adequate clinical and pharmacological management in the face of a “SARS-CoV-2/Dengue” coinfection. Early molecular detection of both viruses and timely treatment helped the patient to achieve a favorable recovery.
Collapse
|
41
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
42
|
Ganesapillai M, Mondal B, Sarkar I, Sinha A, Ray SS, Kwon YN, Nakamura K, Govardhan K. The face behind the Covid-19 mask - A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102837. [PMID: 35879973 PMCID: PMC9299984 DOI: 10.1016/j.eti.2022.102837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 05/07/2023]
Abstract
The threat of epidemic outbreaks like SARS-CoV-2 is growing owing to the exponential growth of the global population and the continual increase in human mobility. Personal protection against viral infections was enforced using ambient air filters, face masks, and other respiratory protective equipment. Available facemasks feature considerable variation in efficacy, materials usage and characteristic properties. Despite their widespread use and importance, face masks pose major potential threats due to the uncontrolled manufacture and disposal techniques. Improper solid waste management enables viral propagation and increases the volume of associated biomedical waste at an alarming rate. Polymers used in single-use face masks include a spectrum of chemical constituents: plasticisers and flame retardants leading to health-related issues over time. Despite ample research in this field, the efficacy of personal protective equipment and its impact post-disposal is yet to be explored satisfactorily. The following review assimilates information on the different forms of personal protective equipment currently in use. Proper waste management techniques pertaining to such special wastes have also been discussed. The study features a holistic overview of innovations made in face masks and their corresponding impact on human health and environment. Strategies with SDG3 and SDG12, outlining safe and proper disposal of solid waste, have also been discussed. Furthermore, employing the CFD paradigm, a 3D model of a face mask was created based on fluid flow during breathing techniques. Lastly, the review concludes with possible future advancements and promising research avenues in personal protective equipment.
Collapse
Affiliation(s)
- Mahesh Ganesapillai
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bidisha Mondal
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ishita Sarkar
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aritro Sinha
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Saikat Sinha Ray
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Young-Nam Kwon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Kazuho Nakamura
- Faculty of Engineering, Division of Material Science and Chemical Engineering, Yokohama National University, Tokiwadai, Yokohama, Kanagawa 240-8501, Japan
| | - K Govardhan
- Department of Micro and Nano-Electronics, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
43
|
Parental health beliefs, intention, and strategies about covid-19 vaccine for their children: A cross-sectional analysis from five Arab countries in the Middle East. Vaccine 2022; 40:6549-6557. [PMID: 36207222 PMCID: PMC9500095 DOI: 10.1016/j.vaccine.2022.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The issue around vaccination of children has brought divergent opinions among the populations across the globe and among the Arab population. There has been a low response rate to the calls for vaccination of children and this is reflective of the sentiments which parents may have towards their children being vaccinated. This study aims to explore the parents' health beliefs, intentions, and strategies towards the COVID-19 vaccine for their children among Arab population. METHODS A cross-sectional study using an online survey from October to December 2021, was carried out in five Arab countries in the Middle East. A reliable health belief model (HBM) including five domains: severity, susceptibility, benefits, barriers and cues to action, was adopted. Chi-square, Mann-Whitney test, and multivariable logistic regression were performed for data analysis. RESULTS The survey response rate was 58 % (1154/2000). Only 56 % of Arab parents are intended to vaccinate their children against COVID-19. The mean scores of parental health belief are largely driven by their concern over the vaccine's side effect (p = 0.001) followed by its efficacy, safety (p < 0.001), and scheduling difficulty (p = 0.029). However, strategies that were statistically encouraged parents to vaccinate their children included doctor's recommendation, adequate information being provided, and acceptance of the vaccine by public (p < 0.001). Parents with one child were almost three times most likely to vaccinate their children (OR = 2.660, 95 %CI = 1.572-4.504, p < 0.001). Parents' desire to vaccinate their children is also influenced by other factors such as job loss owing to COVID-19 and the presence of a health worker in the family. CONCLUSION Intention of Arab parents to vaccinate their children via COVID-19 vaccine is still limited. Thus, it is essential for health care authorities to avail the information which will debunk the erroneous beliefs which some parents have developed towards the vaccination of children against COVID-19.
Collapse
|
44
|
Bhanot N, Ahuja J, Kidwai HI, Nayan A, Bhatti RS. A sustainable economic revival plan for post-COVID-19 using machine learning approach – a case study in developing economy context. BENCHMARKING-AN INTERNATIONAL JOURNAL 2022. [DOI: 10.1108/bij-09-2021-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe impact of COVID-19 has caused a recession in economies all over the world. In this context, the current study aims to analyze the prevailing economic scenario using a machine learning approach and suggest sustainable measures to recover the global economy taking the case of Make in India (MII) initiative of developing the economy as a base for the study.Design/methodology/approachA well-known topic modeling technique – Latent Dirichlet allocation (LDA) algorithm has been employed to extract useful information characterizing the existing state of selected sectors under the MII initiative alongside catalytic policies that have been implemented for the same. The textual data acts as the base of the study upon which suggestions are provided.FindingsThe findings obtained suggest that digital transformation will play a key role in concerned sectors to optimize the performance of manufacturing organizations. Additionally, inter-relationship between Key Performance Indicators for the economy's revival is crucial for effective utilization of foreign direct investment resources.Practical implicationsThe novel efforts to utilize MII initiative as a case present crucial information which can be used by policy makers and various other stakeholders across the globe to enhance decision-making and draft legislation across different sectors to empower the economy.Originality/valueThe study presents a novel approach to utilize the MII initiative by identifying important measures for crucial sectors and associated policies that have been presented by employing a text mining approach which in itself makes it unique in its contribution to research literature.
Collapse
|
45
|
Utami AM, Rendrayani F, Khoiry QA, Alfiani F, Kusuma ASW, Suwantika AA. Cost-Effectiveness Analysis of COVID-19 Vaccination in Low- and Middle-Income Countries. J Multidiscip Healthc 2022; 15:2067-2076. [PMID: 36124175 PMCID: PMC9482370 DOI: 10.2147/jmdh.s372000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background WHO reported that 5.5 million people died in the world because of COVID-19. One of the efforts to mitigate the pandemic is administrating the vaccines globally. Objective The objective of this study was to review cost-effectiveness analysis of COVID-19 vaccination in low- and middle-income countries (LMICs). Methods We searched PubMed and EBSCO for the eligible studies with inclusion criteria using cost-effectiveness analysis, free full text, low-middle-income countries, and the publication date since the last year. Four reviewers conducted the review independently. Results The review identified four articles meeting the eligibility criteria. The settings were LMICs. Different perspectives and economic modelling used by the countries confirmed a similar result. They all explained that vaccination could prevent the infection spread and mortality caused by COVID-19 and showed high cost-effectiveness values. Conclusion Administering COVID-19 vaccines was cost-effective and even cost-saving. The studies found that vaccination was more cost-effective in reducing the spread of the COVID-19 virus and the mortality it caused than no vaccination.
Collapse
Affiliation(s)
- Auliasari M Utami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Farida Rendrayani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Qisty A Khoiry
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Fitri Alfiani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia.,Faculty of Health Science, Universitas Muhammadiyah Cirebon, Cirebon, West Java, Indonesia
| | - Arif S W Kusuma
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Auliya A Suwantika
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, West Java, Indonesia.,Center for Health Technology Assessment, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
46
|
Guerra ENS, de Castro VT, Amorim dos Santos J, Acevedo AC, Chardin H. Saliva is suitable for SARS-CoV-2 antibodies detection after vaccination: A rapid systematic review. Front Immunol 2022; 13:1006040. [PMID: 36203571 PMCID: PMC9530471 DOI: 10.3389/fimmu.2022.1006040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Since the introduction of efficient vaccines anti-SARS-CoV-2, antibody quantification becomes increasingly useful for immunological monitoring and COVID-19 control. In several situations, saliva samples may be an alternative to the serological test. Thus, this rapid systematic review aimed to evaluate if saliva is suitable for SARS-CoV-2 detection after vaccination. For this purpose, search strategies were applied at EMBASE, PubMed, and Web of Science. Studies were selected by two reviewers in a two-phase process. After selection, 15 studies were eligible and included in data synthesis. In total, salivary samples of approximately 1,080 vaccinated and/or convalescent individuals were analyzed. The applied vaccines were mostly mRNA-based (BioNTech 162b2 mRNA/Pfizer and Spikevax mRNA-1273/Moderna), but recombinant viral-vectored vaccines (Ad26. COV2. S Janssen - Johnson & Johnson and Vaxzevria/Oxford AstraZeneca) were also included. Different techniques were applied for saliva evaluation, such as ELISA assay, Multiplex immunoassay, flow cytometry, neutralizing and electrochemical assays. Although antibody titers are lower in saliva than in serum, the results showed that saliva is suitable for antibody detection. The mean of reported correlations for titers in saliva and serum/plasma were moderate for IgG (0.55, 95% CI 0.38-9.73), and weak for IgA (0.28, 95% CI 0.12-0.44). Additionally, six out of nine studies reported numerical titers for immunoglobulins detection, from which the level in saliva reached their reference value in four (66%). IgG but not IgA are frequently presented in saliva from vaccinated anti-COVID-19. Four studies reported lower IgA salivary titers in vaccinated compared to previously infected individuals, otherwise, two reported higher titers of IgA in vaccinated. Concerning IgG, two studies reported high antibody titers in the saliva of vaccinated individuals compared to those previously infected and one presented similar results for vaccinated and infected. The detection of antibodies anti-SARS-CoV-2 in the saliva is available, which suggests this type of sample is a suitable alternative for monitoring the population. Thus, the results also pointed out the possible lack of mucosal immunity induction after anti-SARS-CoV-2 vaccination. It highlights the importance of new vaccination strategies also focused on mucosal alternatives directly on primary routes of SARS-CoV-2 entrance. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022336968, identifier CRD42022336968.
Collapse
Affiliation(s)
- Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Vitória Tavares de Castro
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Hélène Chardin
- Department of Analytical, Bioanalytical Sciences and Miniaturization, École Supérieure de Physique et de Chimie Industrielles (ESPCI) de la Ville de Paris, Paris, France
- Faculté de Chirurgie Dentaire, Université Paris Descartes Sorbonne 12 Rue de l’École de Médecine, Paris, France
| |
Collapse
|
47
|
Liu S, Zhao Y, Guo L, Yu Q. Amoeba-inspired magnetic microgel assembly assisted by engineered dextran-binding protein for vaccination against life-threatening systemic infection. NANO RESEARCH 2022; 16:938-950. [PMID: 36090612 PMCID: PMC9438890 DOI: 10.1007/s12274-022-4809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Vaccination is critical for population protection from pathogenic infections. However, its efficiency is frequently compromised by a failure of antigen retention and presentation. Herein, we designed a dextran-binding protein DexBP, which is composed of the carbohydrate-binding domains of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A, together with the sequence of the fluorescent protein mCherry. DexBP was further prepared by engineered Escherichia coli cells and grafted to magnetic nanoparticles. The magnetic nanoparticles were integrated with a dextran/poly(vinyl alcohol) framework and a reactive oxygen species-responsive linker, obtaining magnetic polymeric microgels for carrying pathogen antigen. Similar to amoeba aggregation, the microgels self-assembled to form aggregates and further induced dendritic cell aggregation. This step-by-step assembly retained antigens at lymph nodes, promoted antigen presentation, stimulated humoral immunity, and protected the mice from life-threatening systemic infections. This study developed a magnetic microgel-assembling platform for dynamically regulating immune response during protection of the body from dangerous infections. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (AFM image and zeta potential of MG; TEM, FT-IR, DLS, and zeta potential of MNP-DexBP; zeta potential of MG+CaAg and MG+MNP-DexBP+CaAg; antigen release profile of MG+CaAg and MG+MNP-DexBP+CaAg; aggregation and dispersion of dendritic cells induced by MG+MNP-DexBP+CaAg; uptake of FITC-labeled CaAg (fCaAg) and intracellular distribution of fCaAg in the dendritic cells; antigen retention and dendritic cell activation in lymph nodes; and serum anti-CaAg antibody levels on day 3 after C. albicans infection in the mice pre-immunized by PBS (control), CaAg, MG+CaAg, and MG+MNP-DexBP+CaAg) is available in the online version of this article at 10.1007/s12274-022-4809-1.
Collapse
Affiliation(s)
- Shuo Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
- Research Center for Infectious Diseases, Nankai University, Tianjin, 300350 China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350 China
| | - Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Linpei Guo
- Department of Urology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, 214002 China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
- Research Center for Infectious Diseases, Nankai University, Tianjin, 300350 China
| |
Collapse
|
48
|
Correlation between the binding affinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes. Proc Natl Acad Sci U S A 2022; 119:e2205412119. [PMID: 35858383 PMCID: PMC9351521 DOI: 10.1073/pnas.2205412119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the structural principles that determine the binding affinity of nanobodies to the spike protein of severe acute respiratory syndrome coronavirus 2 has been difficult. We analyzed electron microscopy maps of nanobody-spike complexes and quantified the conformational entropy of binding. This informed the design of an engineered nanobody with improved binding to the spike protein. This result offers a guiding principle for the rational maturation of nanobodies directed against the spike. High-binding potency nanobodies have been shown to be effective in animal models; thus, this technology could have application in future pandemics. Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure–activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein–nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.
Collapse
|
49
|
Peng L, Fang Z, Renauer PA, McNamara A, Park JJ, Lin Q, Zhou X, Dong MB, Zhu B, Zhao H, Wilen CB, Chen S. Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Rep 2022; 40:111160. [PMID: 35921835 PMCID: PMC9294034 DOI: 10.1016/j.celrep.2022.111160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Although COVID-19 vaccines have been developed, multiple pathogenic coronavirus species exist, urging on development of multispecies coronavirus vaccines. Here we develop prototype lipid nanoparticle (LNP)-mRNA vaccine candidates against SARS-CoV-2 Delta, SARS-CoV, and MERS-CoV, and we test how multiplexing LNP-mRNAs can induce effective immune responses in animal models. Triplex and duplex LNP-mRNA vaccinations induce antigen-specific antibody responses against SARS-CoV-2, SARS-CoV, and MERS-CoV. Single-cell RNA sequencing profiles the global systemic immune repertoires and respective transcriptome signatures of vaccinated animals, revealing a systemic increase in activated B cells and differential gene expression across major adaptive immune cells. Sequential vaccination shows potent antibody responses against all three species, significantly stronger than simultaneous vaccination in mixture. These data demonstrate the feasibility, antibody responses, and single-cell immune profiles of multispecies coronavirus vaccination. The direct comparison between simultaneous and sequential vaccination offers insights into optimization of vaccination schedules to provide broad and potent antibody immunity against three major pathogenic coronavirus species.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA
| | - Zhenhao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA; Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT 06516, USA
| | - Andrew McNamara
- Department of Immunobiology, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale University, New Haven, CT 06510, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT 06516, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA
| | - Xiaoyu Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA; Department of Immunobiology, Yale University, New Haven, CT 06510, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT 06516, USA; Immunobiology Program, Yale University, New Haven, CT 06510, USA
| | - Biqing Zhu
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT 06510, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Computational Biology and Bioinformatics Program, Yale University, New Haven, CT 06510, USA; Department of Biostatistics, Yale University School of Public Health, New Haven, CT 06510, USA; Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University, New Haven, CT 06510, USA; Department of Laboratory Medicine, Yale University, New Haven, CT 06510, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; System Biology Institute, Yale University, West Haven, CT 06516, USA; Center for Cancer Systems Biology, Yale University, West Haven, CT 06516, USA; Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT 06516, USA; M.D.-Ph.D. Program, Yale University, West Haven, CT 06516, USA; Immunobiology Program, Yale University, New Haven, CT 06510, USA; Computational Biology and Bioinformatics Program, Yale University, New Haven, CT 06510, USA; Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
50
|
Hashimoto M, Nagata N, Homma T, Maeda H, Dohi K, Seki NM, Yoshihara K, Iwata-Yoshikawa N, Shiwa-Sudo N, Sakai Y, Shirakura M, Kishida N, Arita T, Suzuki Y, Watanabe S, Asanuma H, Sonoyama T, Suzuki T, Omoto S, Hasegawa H. Immunogenicity and protective efficacy of SARS-CoV-2 recombinant S-protein vaccine S-268019-b in cynomolgus monkeys. Vaccine 2022; 40:4231-4241. [PMID: 35691872 PMCID: PMC9167832 DOI: 10.1016/j.vaccine.2022.05.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022]
Abstract
The vaccine S-268019-b is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-protein vaccine consisting of full-length recombinant SARS-CoV-2 S-protein (S-910823) as antigen, mixed with the squalene-based adjuvant A-910823. The current study evaluated the immunogenicity of S-268019-b using various doses of S-910823 and its vaccine efficacy against SARS-CoV-2 challenge in cynomolgus monkeys. The different doses of S-910823 combined with A-910823 were intramuscularly administered twice at a 3-week interval. Two weeks after the second dosing, dose-dependent humoral immune responses were observed with neutralizing antibody titers being comparable to that of human convalescent plasma. Pseudoviruses harboring S proteins from Beta and Gamma SARS-CoV-2 variants displayed approximately 3- to 4-fold reduced sensitivity to neutralizing antibodies induced after two vaccine doses compared with that against ancestral viruses, whereas neutralizing antibody titers were reduced >14-fold against the Omicron variant. Cellular immunity was also induced with a relative Th1 polarized response. No adverse clinical signs or weight loss associated with the vaccine were observed, suggesting safety of the vaccine in cynomolgus monkeys. Immunization with 10 µg of S-910823 with A-910823 demonstrated protective efficacy against SARS-CoV-2 challenge according to genomic and subgenomic viral RNA transcript levels in nasopharyngeal, throat, and rectal swab specimens. Pathological analysis revealed no detectable vaccine-dependent enhancement of disease in the lungs of challenged vaccinated monkeys. The current findings provide fundamental information regarding vaccine doses for human trials and support the development of S-268019-b as a safe and effective vaccine for controlling the current pandemic, as well as general protection against SARS-CoV-2 moving forward.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Tomoyuki Homma
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Hiroki Maeda
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Keiji Dohi
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Naomi M Seki
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Ken Yoshihara
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Masayuki Shirakura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Tomoko Arita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Yasushi Suzuki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Takuhiro Sonoyama
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Shinya Omoto
- Shionogi & Co., Ltd., 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|