1
|
Alizon S, Sofonea MT. SARS-CoV-2 epidemiology, kinetics, and evolution: A narrative review. Virulence 2025; 16:2480633. [PMID: 40197159 PMCID: PMC11988222 DOI: 10.1080/21505594.2025.2480633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Since winter 2019, SARS-CoV-2 has emerged, spread, and evolved all around the globe. We explore 4 y of evolutionary epidemiology of this virus, ranging from the applied public health challenges to the more conceptual evolutionary biology perspectives. Through this review, we first present the spread and lethality of the infections it causes, starting from its emergence in Wuhan (China) from the initial epidemics all around the world, compare the virus to other betacoronaviruses, focus on its airborne transmission, compare containment strategies ("zero-COVID" vs. "herd immunity"), explain its phylogeographical tracking, underline the importance of natural selection on the epidemics, mention its within-host population dynamics. Finally, we discuss how the pandemic has transformed (or should transform) the surveillance and prevention of viral respiratory infections and identify perspectives for the research on epidemiology of COVID-19.
Collapse
Affiliation(s)
- Samuel Alizon
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
| | - Mircea T. Sofonea
- PCCEI, University Montpellier, INSERM, Montpellier, France
- Department of Anesthesiology, Critical Care, Intensive Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| |
Collapse
|
2
|
Nègre P, Tayac D, Jamme T, Combis MS, Maupas-Schwalm F. Response to Liu, Yuan, and Fu regarding their letter 'Optimizing the research value and clinical utility of suPAR in COVID-19. Infect Dis Now 2025; 55:105086. [PMID: 40354981 DOI: 10.1016/j.idnow.2025.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Pauline Nègre
- Faculty of Pharmacy, Toulouse III University, France; Medical Biochemistry Laboratory, CHU Toulouse, France
| | - Didier Tayac
- Medical Biochemistry Laboratory, CHU Toulouse, France
| | - Thibaut Jamme
- Medical Biochemistry Laboratory, CHU Toulouse, France
| | | | - Françoise Maupas-Schwalm
- Medical Biochemistry Laboratory, CHU Toulouse, France; Faculty of Medicine, Toulouse III University, France.
| |
Collapse
|
3
|
Pham K, Chaguza C, Lopes R, Cohen T, Taylor-Salmon E, Wilkinson M, Katebi V, Grubaugh ND, Hill V. Large-Scale Genomic Analysis of SARS-CoV-2 Omicron BA.5 Emergence, United States. Emerg Infect Dis 2025; 31:45-56. [PMID: 40359081 PMCID: PMC12078544 DOI: 10.3201/eid3113.240981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
The COVID-19 pandemic has been marked by continuous emergence of novel SARS-CoV-2 variants. Questions remain about the mechanisms with which those variants establish themselves in new geographic areas. We performed a discrete phylogeographic analysis on 18,529 sequences of the SARS-CoV-2 Omicron BA.5 sublineage sampled during February-June 2022 to elucidate emergence of that sublineage in different regions of the United States. The earliest BA.5 sublineage introductions came from Africa, the putative variant origin, but most were from Europe, matching a high volume of air travelers. In addition, we discovered extensive domestic transmission between different US regions, driven by population size and cross-country transmission between key hotspots. We found most BA.5 virus transmission within the United States occurred between 3 regions in the southwestern, southeastern, and northeastern parts of the country. Our results form a framework for analyzing emergence of novel SARS-CoV-2 variants and other pathogens in the United States.
Collapse
|
4
|
Silva L, Fernandes J, Lopes R, Costa S, Malheiro S, Aires E, Pereira D, Fonte J, Dias A, Oliveira V, Cavaco S, Magalhães R, Correia M, Andrade C, Maia LF. Long-Term Persistent Headache After SARS-CoV-2 Infection: A Follow-Up Population-Based Study. Eur J Neurol 2025; 32:e70130. [PMID: 40387234 PMCID: PMC12086783 DOI: 10.1111/ene.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Headache is a symptom of the long-COVID syndrome. The incidence and characteristics of de novo post-COVID headaches remain unclear. Our aim was to characterize new-onset headaches in a population-based prospective cohort of COVID-19 patients from the first pandemic wave. METHODS This study followed a prospective cohort of 732 COVID-19 patients consecutively diagnosed between March and June 2020. Neurological follow-up was performed face-to-face or by phone at 3, 12, and 24 months. A structured clinical questionnaire was used to characterize headaches before infection and 24 months postinfection. RESULTS Overall, 448 patients completed the 24-month follow-up, with a mean age of 51.6 years at SARS-CoV-2 infection; 272 (60.7%) were women. A prior history of headaches was reported by 115 (25.7%). Patients with either pre-existing or de novo persistent headaches were younger, more often women, and exhibited hyposmia, hypogeusia, and headache during the acute phase of infection. De novo persistent headaches occurred in 54 of 333 (16.2%) headache-naïve patients. Of these, 35 (64.8%) fulfilled migraine-like headache (MLH) criteria (mean age of 49.1 years at 24-month follow-up), with a cumulative incidence of 42/1000/year. CONCLUSIONS De novo persistent headaches are common 2 years after COVID-19, with MLH being the most frequent type. MLH incidence after COVID-19 is elevated and de novo "migraineurs-like" tend to be older compared to the general population. This is an important finding with potential implications for healthcare and quality of life, considering the high number of COVID-19 cases and the global burden of migraine.
Collapse
Affiliation(s)
- Lénia Silva
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Joana Fernandes
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Rui Lopes
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Sara Costa
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Sofia Malheiro
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Elaine Aires
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Diogo Pereira
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Joana Fonte
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Alexandre Dias
- i3S ‐ Institute for Research and Innovation in HealthUniversity of PortoPortoPortugal
| | | | - Sara Cavaco
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Rui Magalhães
- Instituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortoPortugal
| | - Manuel Correia
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
- Instituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortoPortugal
| | - Carlos Andrade
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
| | - Luís F. Maia
- Neurology DepartmentCentro Hospitalar Universitário Do Porto, ULS Santo AntónioPortoPortugal
- i3S ‐ Institute for Research and Innovation in HealthUniversity of PortoPortoPortugal
- Instituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortoPortugal
| |
Collapse
|
5
|
Casimiro-Soriguer CS, Lara M, Aguado A, Loucera C, Ortuño FM, Lorusso N, Navarro-Marí JM, Sanbonmatsu-Gámez S, Camacho-Martinez P, Merino-Diaz L, de Salazar A, Fuentes A, The Andalusian COVID-19 Sequencing Initiative, Lepe JA, García F, Dopazo J, Perez-Florido J. A Genomic Surveillance Circuit for Emerging Viral Pathogens. Microorganisms 2025; 13:912. [PMID: 40284750 PMCID: PMC12029405 DOI: 10.3390/microorganisms13040912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Genomic surveillance has been crucial in monitoring the evolution and spread of SARS-CoV-2. In Andalusia (Spain), a coordinated genomic surveillance circuit was established to systematically sequence and analyze viral genomes across the region. This initiative organizes sample collection through 27 hospitals, which act as regional hubs within their respective health districts. Sequencing is performed at three reference laboratories, with downstream data analysis and reporting centralized at a bioinformatics platform. From 2021 to 2025, over 42,500 SARS-CoV-2 genomes were sequenced, enabling the identification of major variants and their evolutionary dynamics. The circuit tracked the transition from Alpha and Delta to successive Omicron waves, including both recombinant and non-recombinant clades. The integration of genomic and epidemiological data facilitated rapid variant detection, outbreak investigation, and public health decision making. This surveillance framework at a regional granularity demonstrates the feasibility of large-scale sequencing within a decentralized healthcare system and has expanded to monitor other pathogens, reinforcing its value for epidemic preparedness. Continued investment in genomic surveillance is critical for tracking viral evolution, guiding interventions, and mitigating future public health threats.
Collapse
Affiliation(s)
- Carlos S. Casimiro-Soriguer
- Platform of Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain;
| | - Maria Lara
- Platform of Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
| | - Andrea Aguado
- Platform of Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
| | - Carlos Loucera
- Platform of Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain;
| | - Francisco M. Ortuño
- Platform of Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Department of Computer Engineering, Automatics and Robotics, University of Granada, 18071 Granada, Spain
| | - Nicola Lorusso
- Dirección General de Salud Pública, Consejería de Salud y Consumo, Junta de Andalucía, 41020 Sevilla, Spain
| | - Jose M. Navarro-Marí
- Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain (F.G.)
| | - Sara Sanbonmatsu-Gámez
- Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain (F.G.)
| | - Pedro Camacho-Martinez
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Laura Merino-Diaz
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Adolfo de Salazar
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain (F.G.)
- Servicio de Microbiología, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ana Fuentes
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain (F.G.)
- Servicio de Microbiología, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | | | - Jose A. Lepe
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain;
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain (F.G.)
- Servicio de Microbiología, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joaquín Dopazo
- Platform of Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain;
| | - Javier Perez-Florido
- Platform of Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Sevilla, Spain;
| |
Collapse
|
6
|
Von Rekowski CP, Pinto I, Fonseca TAH, Araújo R, Calado CRC, Bento L. Analysis of six consecutive waves of ICU-admitted COVID-19 patients: key findings and insights from a Portuguese population. GeroScience 2025; 47:2399-2422. [PMID: 39538084 PMCID: PMC11979077 DOI: 10.1007/s11357-024-01410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Identifying high-risk patients, particularly in intensive care units (ICUs), enhances treatment and reduces severe outcomes. Since the pandemic, numerous studies have examined COVID-19 patient profiles and factors linked to increased mortality. Despite six pandemic waves, to the best of our knowledge, there is no extensive comparative analysis of patients' characteristics across these waves in Portugal. Thus, we aimed to analyze the demographic and clinical features of 1041 COVID-19 patients admitted to an ICU and their relationship with the different SARS-Cov-2 variants in Portugal. Additionally, we conducted an in-depth examination of factors contributing to early and late mortality by analyzing clinical data and laboratory results from the first 72 h of ICU admission. Our findings revealed a notable decline in ICU admissions due to COVID-19, with the highest mortality rates observed during the second and third waves. Furthermore, immunization could have significantly contributed to the reduction in the median age of ICU-admitted patients and the severity of their conditions. The factors contributing to early and late mortality differed. Age, wave number, D-dimers, and procalcitonin were independently associated with the risk of early death. As a measure of discriminative power for the derived multivariable model, an AUC of 0.825 (p < 0.001; 95% CI, 0.719-0.931) was obtained. For late mortality, a model incorporating age, wave number, hematologic cancer, C-reactive protein, lactate dehydrogenase, and platelet counts resulted in an AUC of 0.795 (p < 0.001; 95% CI, 0.759-0.831). These findings underscore the importance of conducting comprehensive analyses across pandemic waves to better understand the dynamics of COVID-19.
Collapse
Affiliation(s)
- Cristiana P Von Rekowski
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal.
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal.
- CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal.
| | - Iola Pinto
- Department of Mathematics, ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal
- NOVA Math - Center for Mathematics and Applications, NOVA FCT - NOVA School of Science and Technology, Universidade NOVA de Lisboa, Largo da Torre, 2829-516, Caparica, Portugal
| | - Tiago A H Fonseca
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal
- CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal
| | - Rúben Araújo
- NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal
- CHRC - Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1150-082, Lisbon, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, i4HB - The Associate Laboratory Institute for Health and Bioeconomy, IST - Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Luís Bento
- Intensive Care Department, ULSSJ - Unidade Local de Saúde São José, Rua José António Serrano, 1150-199, Lisbon, Portugal
- Integrated Pathophysiological Mechanisms, CHRC - Comprehensive Health Research Centre, NMS - NOVA Medical School, FCM - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal
| |
Collapse
|
7
|
Ma Y, Qin LY, Ding X, Wu AP. Diversity, Complexity, and Challenges of Viral Infectious Disease Data in the Big Data Era: A Comprehensive Review. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2025; 40:29-44. [PMID: 40165755 DOI: 10.24920/004461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Viral infectious diseases, characterized by their intricate nature and wide-ranging diversity, pose substantial challenges in the domain of data management. The vast volume of data generated by these diseases, spanning from the molecular mechanisms within cells to large-scale epidemiological patterns, has surpassed the capabilities of traditional analytical methods. In the era of artificial intelligence (AI) and big data, there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information. Despite the rapid accumulation of data associated with viral infections, the lack of a comprehensive framework for integrating, selecting, and analyzing these datasets has left numerous researchers uncertain about which data to select, how to access it, and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels, from the molecular details of pathogens to broad epidemiological trends. The scope extends from the micro-scale to the macro-scale, encompassing pathogens, hosts, and vectors. In addition to data summarization, this review thoroughly investigates various dataset sources. It also traces the historical evolution of data collection in the field of viral infectious diseases, highlighting the progress achieved over time. Simultaneously, it evaluates the current limitations that impede data utilization.Furthermore, we propose strategies to surmount these challenges, focusing on the development and application of advanced computational techniques, AI-driven models, and enhanced data integration practices. By providing a comprehensive synthesis of existing knowledge, this review is designed to guide future research and contribute to more informed approaches in the surveillance, prevention, and control of viral infectious diseases, particularly within the context of the expanding big-data landscape.
Collapse
Affiliation(s)
- Yun Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China
| | - Lu-Yao Qin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China
| | - Xiao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China.
| | - Ai-Ping Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 107302, China.
| |
Collapse
|
8
|
Pérez-Sanz F, Tyrkalska SD, Álvarez-Santacruz C, Moreno-Docón A, Mulero V, Cayuela ML, Candel S. Age- and disease severity-associated changes in the nasopharyngeal microbiota of COVID-19 patients. iScience 2025; 28:112091. [PMID: 40124494 PMCID: PMC11930106 DOI: 10.1016/j.isci.2025.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Although many studies have associated changes in the nasopharyngeal microbiota to patient's susceptibility to COVID-19, their results are highly variable and contradictory. Addressing the limitations in previous research responsible for that variability, this study uses 16S rRNA gene sequencing to analyze the nasopharyngeal microbiota of 395 subjects, 117 controls, and 278 COVID-19 patients, of different age groups that cover the entire lifespan and across varying disease severities. This revealed that bacterial alpha diversity decreases progressively throughout life but only in severely ill COVID-19 patients, in whose nasopharynx, moreover, several opportunistic pathogen bacterial genera are overrepresented. Notably, Scardovia wiggsiae appears only in severe COVID-19 patients over 60 years of age, suggesting its potential utility as a COVID-19 severity biomarker in the elderly, who are the most susceptible individuals to suffer from serious forms of the disease. Thus, our results provide valuable insights into age-associated dynamics within nasopharyngeal microbiota during severe COVID-19.
Collapse
Affiliation(s)
- Fernando Pérez-Sanz
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
| | - Sylwia D. Tyrkalska
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carmen Álvarez-Santacruz
- Servicio de Otorrinolaringología, Hospital de la Vega Lorenzo Guirao, Cieza 30530, Murcia, Spain
| | - Antonio Moreno-Docón
- Servicio de Microbiología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Victoriano Mulero
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María L. Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
- Grupo de Telomerasa, Cáncer y Envejecimiento, Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia 30120, Spain
| | - Sergio Candel
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Murcia 30120, Spain
- Grupo de Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
9
|
Nègre P, Tayac D, Jamme T, Combis MS, Maupas-Schwalm F. Early suPAR levels as a predictor of COVID-19 severity: A new tool for efficient patient triage. Infect Dis Now 2025; 55:105058. [PMID: 40101896 DOI: 10.1016/j.idnow.2025.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Following several waves of the COVID-19 pandemic, we are now facing a lower but persistent rate of SARS-CoV-2 infections, with seasonal resurgences often coinciding with other respiratory tract infections. OBJECTIVE We aimed to identify early clinico-biological variables predictive of an unfavorable outcome in patients with primary SARS-CoV-2 infection. We also evaluated the role of suPAR, an innovative biomarker, in predicting disease severity. METHODS We included 255 patients with PCR-confirmed primary SARS-CoV-2 infection and with a 30-day follow-up minimum. Blood samples were collected within the first 24 h of hospitalization to measure suPAR levels. Comprehensive data from medical records were analyzed to assess their predictive value in stratifying patients into seven severity groups, with groups 1 to 3 representing severe COVID-19 (death, intubation, ECMO, or non-invasive ventilation). RESULTS Early plasma suPAR levels were significantly associated with severe disease progression, as evidenced by ANOVA and logistic regression models, highlighting suPAR as a persistent predictive factor for unfavorable outcomes. CONCLUSION Our findings suggest that a single suPAR measurement, performed early after a positive PCR test for SARS-CoV-2, holds strong predictive value for patient outcomes. This biomarker, alongside pulse oximetry and CT scan results, could be instrumental in early patient triage during seasonal COVID-19 resurgences.
Collapse
Affiliation(s)
- Pauline Nègre
- Faculty of Pharmacy, Toulouse III University, France; Medical Biochemistry Laboratory, CHU Toulouse, France
| | - Didier Tayac
- Medical Biochemistry Laboratory, CHU Toulouse, France
| | - Thibaut Jamme
- Medical Biochemistry Laboratory, CHU Toulouse, France
| | | | - Françoise Maupas-Schwalm
- Medical Biochemistry Laboratory, CHU Toulouse, France; Faculty of Medicine, Toulouse III University, France.
| |
Collapse
|
10
|
Tokhanbigli S, Salami Ghaleh S, Rahimian K, Mahmanzar M, Bayat S, Ahangarzadeh S, Moradi B, Mahmanzar R, Wang Y, Oliver BGG, Deng Y. Intersecting SARS-CoV-2 spike mutations and global vaccine efficacy against COVID-19. Front Immunol 2025; 16:1435873. [PMID: 40124365 PMCID: PMC11925781 DOI: 10.3389/fimmu.2025.1435873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
In line with encountering the world with the emergence of vaccine-resistance variants of SARS-CoV-2, 15,669,529 samples that received COVID-19 vaccines until April 2023 were investigated as two doses in the first phase and booster vaccinations in the second phase. The analysis shows that D614G and P681 mutations occurred in both phases. The E484 and Y655 mutations significantly emerged during the second phase. The 762-889 and 254-381 regions are revealed as conserved parts and could be considered in vaccine design. The Kruskal-Wallis test revealed a significant reduction in single mutations between populations with 20%-50% and those with 70%-100% vaccination coverage (p=0.017). The Mann-Whitney U test proposes a link between vaccination and suppression of viral mutation rates. Dynamic modeling suggests that key mutations have facilitated the virus' evolution and immune escape. The study's findings are crucial for understanding virus genome mutations, especially E614 and P681 in Delta and E484 and H655 in Omicron. This highlights the need to adjust strategies and strengthen global efforts in combating the pandemic.
Collapse
Affiliation(s)
- Samaneh Tokhanbigli
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Saleha Bayat
- Department of Biology and Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Mahmanzar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yunliang Wang
- Department of Neurology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
11
|
Berkell M, Górska A, Smet M, Bachelet D, Gentilotti E, Guedes M, Franco-Yusti AM, Mazzaferri F, Forero EL, Matheeussen V, Visseaux B, Palacios-Baena ZR, Caroccia N, Florence AM, Charpentier C, van Leer C, Giannella M, Friedrich AW, Rodríguez-Baño J, Ghosn J, Kumar-Singh S, Laouénan C, Tacconelli E, Malhotra-Kumar S. Quasi-species prevalence and clinical impact of evolving SARS-CoV-2 lineages in European COVID-19 cohorts, January 2020 to February 2022. Euro Surveill 2025; 30:2400038. [PMID: 40084424 PMCID: PMC11912139 DOI: 10.2807/1560-7917.es.2025.30.10.2400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/05/2024] [Indexed: 03/16/2025] Open
Abstract
BackgroundEvolution of SARS-CoV-2 is continuous.AimBetween 01/2020 and 02/2022, we studied SARS-CoV-2 variant epidemiology, evolution and association with COVID-19 severity.MethodsIn nasopharyngeal swabs of COVID-19 patients (n = 1,762) from France, Italy, Spain, and the Netherlands, SARS-CoV-2 was investigated by reverse transcription-quantitative PCR and whole-genome sequencing, and the virus variant/lineage (NextStrain/Pangolin) was determined. Patients' demographic and clinical details were recorded. Associations between mild/moderate or severe COVID-19 and SARS-CoV-2 variants and patient characteristics were assessed by logistic regression. Rates and genomic locations of mutations, as well as quasi-species distribution (≥ 2 heterogeneous positions, ≥ 50× coverage) were estimated based on 1,332 high-quality sequences.ResultsOverall, 11 SARS-CoV-2 clades infected 1,762 study patients of median age 59 years (interquartile range (IQR): 45-73), with 52.5% (n = 925) being male. In total, 101 non-synonymous substitutions/insertions correlated with disease prognosis (severe, n = 27; mild-to-moderate, n = 74). Several hotspots (mutation rates ≥ 85%) occurred in Alpha, Delta, and Omicron variants of concern (VOCs) but none in pre-Alpha strains. Four hotspots were retained across all study variants, including spike:D614G. Average number of mutations per open-reading-frame (ORF) increased in the spike gene (average < 5 per genome in January 2020 to > 15 in 2022), but remained stable in ORF1ab, membrane, and nucleocapsid genes. Quasi-species were most prevalent in 20A/EU2 (48.9%), 20E/EU1 (48.6%), 20A (38.8%), and 21K/Omicron (36.1%) infections. Immunocompromised status and age (≥ 60 years), while associated with severe COVID-19 or death irrespective of variant (odds ratio (OR): 1.60-2.25; p ≤ 0.014), did not affect quasi-species' prevalence (p > 0.05).ConclusionSpecific mutations correlate with COVID-19 severity. Quasi-species potentially shaping VOCs' emergence are relevant to consider.
Collapse
Affiliation(s)
- Matilda Berkell
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Shared first author
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Anna Górska
- Shared first author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Mathias Smet
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Shared first author
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Bachelet
- Shared first author
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- AP-HP Nord, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, Paris, France
| | - Elisa Gentilotti
- Shared second author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Mariana Guedes
- Shared second author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Maria Franco-Yusti
- Shared second author
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- Service de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Fulvia Mazzaferri
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Erley Lizarazo Forero
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Veerle Matheeussen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Benoit Visseaux
- Service de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Zaira R Palacios-Baena
- Infectious Diseases and Microbiology Unit, University Hospital Virgen Macarena, Department of Medicine, University of Seville, Biomedicine Institute of Seville/CSIC, Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Natascia Caroccia
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Aline-Marie Florence
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- AP-HP Nord, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, Paris, France
| | - Charlotte Charpentier
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- Service de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Coretta van Leer
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Maddalena Giannella
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alex W Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Jesús Rodríguez-Baño
- Infectious Diseases and Microbiology Unit, University Hospital Virgen Macarena, Department of Medicine, University of Seville, Biomedicine Institute of Seville/CSIC, Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Jade Ghosn
- AP-HP Nord, Hôpital Bichat, Department of Infectious and Tropical Diseases, Paris, France
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Cedric Laouénan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, Paris, France
- AP-HP Nord, Hôpital Bichat, Department of Epidemiology Biostatistics and Clinical Research, Paris, France
| | - Evelina Tacconelli
- Shared senior author
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Shared senior author
| |
Collapse
|
12
|
Hensel Z. Secondary structure of the SARS-CoV-2 genome is predictive of nucleotide substitution frequency. eLife 2025; 13:RP98102. [PMID: 40019136 PMCID: PMC11870649 DOI: 10.7554/elife.98102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated 'mutational fitness' of substitutions, a measurement of the difference between a substitution's observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.
Collapse
Affiliation(s)
- Zach Hensel
- ITQB NOVA, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
13
|
Pennisi R, Gentile D, Trischitta P, Barreca D, Rescifina A, Mandalari G, Sciortino MT. Selective Control by Pistacia vera L. and Its Carotenoid Zeaxanthin on SARS-CoV-2 Virus. Int J Mol Sci 2025; 26:1667. [PMID: 40004129 PMCID: PMC11855127 DOI: 10.3390/ijms26041667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Since the onset of the COVID-19 (COronaVIrus Disease 19) pandemic, SARS-CoV-2 has exhibited a high transmission rate, further enhanced by new variants able to better adapt to humans. Addressing this issue has been challenging due to viral resistance and side effects associated with antiviral drugs and vaccines. As a result, there has been a growing interest in plant-derived compounds with antiviral properties. Our study revealed that pistachio extracts significantly inhibited SARS-CoV-2 viral entry. Employing pseudotyped particles bearing the S protein of SARS-CoV-2, we demonstrated that treatment with pistachio extracts inhibited binding of alpha (α) and omicron (ο) SARS-CoV-2 variants. Furthermore, our study revealed that the pistachio carotenoid zeaxanthin exhibited a different inhibitory activity against two SARS-CoV-2 variants. In silico analyses demonstrated a strong interaction between zeaxanthin and the receptor-binding domain (RBD) domain of the omicron spike (S) protein, thus reducing pseudovirus entry. However, zeaxanthin's weaker interaction with the alpha variant's RBD was insufficient to inhibit entry. Additionally, zeaxanthin suppressed the expression of the host protease TMPRSS2 at the protein level, thereby limiting the internalization of the alpha variant, which relies on TMPRSS2 for cellular entry.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| | - Davide Gentile
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V. le A. Doria, 95125 Catania, Italy;
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (D.B.); (G.M.)
| |
Collapse
|
14
|
Gustani-Buss EC, Salehi-Vaziri M, Lemey P, Thijssen M, Fereydouni Z, Ahmadi Z, Ranst MV, Maes P, Pourkarim MR, Maleki A. Dispersal dynamics and introduction patterns of SARS-CoV-2 lineages in Iran. Virus Evol 2025; 11:veaf004. [PMID: 39926479 PMCID: PMC11803630 DOI: 10.1093/ve/veaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Understanding the dispersal patterns of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) lineages is crucial to public health decision-making, especially in countries with limited access to viral genomic sequencing. This study provides a comprehensive epidemiological and phylodynamic perspective on SARS-CoV-2 lineage dispersal in Iran from February 2020 to July 2022. We explored the genomic epidemiology of SARS-CoV-2 combining 1281 genome sequences with spatial data in a phylogeographic framework. Our analyses shed light on multiple international imports seeding subsequent waves and on domestic dispersal dynamics. Lineage B.4 was identified to have been circulating in Iran, 29 days (95% highest probability density interval: 21-47) before non-pharmaceutical interventions were implemented. The importation dynamics throughout subsequent waves were primarily driven from the country or region where the variant was first reported and gradually shifted to other regions. At the national level, Tehran was the main source of dissemination across the country. Our study highlights the crucial role of continuous genomic surveillance and international collaboration for future pandemic preparedness and efforts to control viral transmission.
Collapse
Affiliation(s)
- Emanuele C Gustani-Buss
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Mostafa Salehi-Vaziri
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
| | - Philippe Lemey
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Zahra Fereydouni
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
| | - Zahra Ahmadi
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
| | - Mahmoud Reza Pourkarim
- Laboratory of Clinical and Epidemiological Virology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Post Box 1040, Leuven BE-3000, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion, Hemmat Exp.Way, Tehran 14665-1157, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory (CNRL), Pasteur Institute of Iran, Pasteur Ave., No. 69, Tehran 1316943551, Iran
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Pasteur Ave., Tehran 1316943551, Iran
| |
Collapse
|
15
|
Lefrancq N, Duret L, Bouchez V, Brisse S, Parkhill J, Salje H. Learning the fitness dynamics of pathogens from phylogenies. Nature 2025; 637:683-690. [PMID: 39743587 PMCID: PMC11735385 DOI: 10.1038/s41586-024-08309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/30/2024] [Indexed: 01/04/2025]
Abstract
The dynamics of the genetic diversity of pathogens, including the emergence of lineages with increased fitness, is a foundational concept of disease ecology with key public-health implications. However, the identification of such lineages and estimation of associated fitness remain challenging, and is rarely done outside densely sampled systems1,2. Here we present phylowave, a scalable approach that summarizes changes in population composition in phylogenetic trees, enabling the automatic detection of lineages based on shared fitness and evolutionary relationships. We use our approach on a broad set of viruses and bacteria (SARS-CoV-2, influenza A subtype H3N2, Bordetella pertussis and Mycobacterium tuberculosis), which include both well-studied and understudied threats to human health. We show that phylowave recovers the main known circulating lineages for each pathogen and that it can detect specific amino acid changes linked to fitness changes. Furthermore, phylowave identifies previously undetected lineages with increased fitness, including three co-circulating B. pertussis lineages. Inference using phylowave is robust to uneven and limited observations. This widely applicable approach provides an avenue to monitor evolution in real time to support public-health action and explore fundamental drivers of pathogen fitness.
Collapse
Affiliation(s)
- Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Loréna Duret
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Valérie Bouchez
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université de Paris, Paris, France
- National Reference Center for Whooping Cough and Other Bordetella Infections, Paris, France
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Université de Paris, Paris, France
- National Reference Center for Whooping Cough and Other Bordetella Infections, Paris, France
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Laskar R, Hoque M, Ali S. Phylogeogenomic analysis of the earliest reported sequences of SARS-CoV-2 from 161 countries. APMIS 2025; 133:e13499. [PMID: 39563179 DOI: 10.1111/apm.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
The SARS-CoV-2 is the causative agent of COVID-19 whose evolutionary path with geographical context forms the focus of present study. The first reported sequence from each of the 161 countries was downloaded from the GISAID database. Multiple sequence alignment was performed using MAFFT v.7, and a TCS-based network was constructed using PopART v.1.7. A total of 27 proteins were analyzed including structural and non-structural proteins. NSP3 and NSP12, responsible for viral replication and RNA synthesis, respectively, had the highest mutation incidence and frequency among non-structural proteins. The spike (S) protein, critical for viral attachment and entry, had the highest prevalence and frequency of mutations. ORF3a had the highest mutation incidence and frequency among accessory proteins. The phylogeogenomic network identified six haplogroups containing 35 sequences, while the remaining sequences belonged to different haplotypes. The virus's genetic distinctiveness was higher in European genomes, with four haplogroups dominated by Europe-linked sequences. The triangular-shaped pattern observed in the virus's evolutionary path suggests that it spread to different continents from Asia. Multiple transmission pathways connecting different countries affirm the virus's ability to emerge in multiple countries by early 2020. The possibility of new species emergence through "saltation" due to the pandemic is also discussed.
Collapse
Affiliation(s)
- Rezwanuzzaman Laskar
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Mehboob Hoque
- Applied Bio-Chemistry (ABC) Lab, Department of Biological Sciences, Aliah University, Kolkata, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, India
| |
Collapse
|
17
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2025; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
18
|
Parino F, Gustani-Buss E, Bedford T, Suchard MA, Trovão NS, Rambaut A, Colizza V, Poletto C, Lemey P. Integrating dynamical modeling and phylogeographic inference to characterize global influenza circulation. PNAS NEXUS 2025; 4:pgae561. [PMID: 39737444 PMCID: PMC11683419 DOI: 10.1093/pnasnexus/pgae561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Global seasonal influenza circulation involves a complex interplay between local (seasonality, demography, host immunity) and global factors (international mobility) shaping recurrent epidemic patterns. No studies so far have reconciled the two spatial levels, evaluating the coupling between national epidemics, considering heterogeneous coverage of epidemiological, and virological data, integrating different data sources. We propose a novel-combined approach based on a dynamical model of global influenza spread (GLEAM), integrating high-resolution demographic, and mobility data, and a generalized linear model of phylogeographic diffusion that accounts for time-varying migration rates. Seasonal migration fluxes across countries simulated with GLEAM are tested as phylogeographic predictors to provide model validation and calibration based on genetic data. Seasonal fluxes obtained with a specific transmissibility peak time and recurrent travel outperformed the raw air-transportation predictor, previously considered as optimal indicator of global influenza migration. Influenza A subtypes supported autumn-winter reproductive number as high as 2.25 and an average immunity duration of 2 years. Similar dynamics were preferred by influenza B lineages, with a lower autumn-winter reproductive number. Comparing simulated epidemic profiles against FluNet data offered comparatively limited resolution power. The multiscale approach enables model selection yielding a novel computational framework for describing global influenza dynamics at different scales-local transmission and national epidemics vs. international coupling through mobility and imported cases. Our findings have important implications to improve preparedness against seasonal influenza epidemics. The approach can be generalized to other epidemic contexts, such as emerging disease outbreaks to improve the flexibility and predictive power of modeling.
Collapse
Affiliation(s)
- Francesco Parino
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
| | - Emanuele Gustani-Buss
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, Leuven 3000, Belgium
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Nídia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidemiologie et de Santé Publique (IPLESP), Paris, France
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven – University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
19
|
Galmiche S, Coustaury C, Charniga K, Grant R, Cauchemez S, Fontanet A. Patterns and drivers of excess mortality during the COVID-19 pandemic in 13 Western European countries. BMC GLOBAL AND PUBLIC HEALTH 2024; 2:78. [PMID: 39681939 DOI: 10.1186/s44263-024-00103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Important differences in excess mortality between European countries during the COVID-19 pandemic have been reported. Understanding the drivers of these differences is essential to pandemic preparedness. METHODS We examined patterns in age- and sex-standardized cumulative excess mortality in 13 Western European countries during the first 30 months of the COVID-19 pandemic and the correlation of country-level characteristics of interest with excess mortality. RESULTS In a timeline analysis, we identified notable differences in seeding events, particularly in early 2020 and when the Alpha variant emerged, likely contributing to notable differences in excess mortality between countries (lowest in Denmark during that period). These differences were more limited from July 2021 onwards. Lower excess mortality was associated with implementing stringent non-pharmaceutical interventions (NPIs) when hospital admissions were still low in 2020 (correlation coefficient rho = 0.65, p = 0.03) and rapid rollout of vaccines in the elderly in early 2021 (rho = - 0.76, p = 0.002). Countries which implemented NPIs while hospital admissions were low tended to experience lower gross domestic product (GDP) losses in 2020 (rho = - 0.55, p = 0.08). Structural factors, such as high trust in the national government (rho = - 0.77, p = 0.002) and low ratio of population at risk of poverty (rho = 0.55, p = 0.05), were also associated with lower excess mortality. CONCLUSIONS These results suggest the benefit of early implementation of NPIs and swift rollout of vaccines to the most vulnerable. Further analyses are required at a more granular level to better understand how these factors impacted excess mortality and help guide pandemic preparedness plans.
Collapse
Affiliation(s)
- Simon Galmiche
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Camille Coustaury
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Kelly Charniga
- Mathematical Modelling of Infectious Diseases Unit, UMR2000, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Rebecca Grant
- Infection Control Program and WHO Collaborating Centre, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, UMR2000, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Arnaud Fontanet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France.
- Conservatoire National Des Arts Et Métiers, Unité PACRI, Paris, France.
| |
Collapse
|
20
|
Cella E, Fonseca V, Branda F, Tosta S, Moreno K, Schuab G, Ali S, Slavov SN, Scarpa F, Santos LA, Kashima S, Wilkinson E, Tegally H, Mavian C, Borsetti A, Caccuri F, Salemi M, de Oliveira T, Azarian T, de Filippis AMB, Alcantara LCJ, Ceccarelli G, Caruso A, Colizzi V, Marcello A, Lourenço J, Ciccozzi M, Giovanetti M. Integrated analyses of the transmission history of SARS-CoV-2 and its association with molecular evolution of the virus underlining the pandemic outbreaks in Italy, 2019-2023. Int J Infect Dis 2024; 149:107262. [PMID: 39389289 DOI: 10.1016/j.ijid.2024.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Italy was significantly affected by the COVID-19 pandemic, experiencing multiple waves of infection following the sequential emergence of new variants. Understanding the transmission patterns and evolution of SARS-CoV-2 is vital for future preparedness. METHODS We conducted an analysis of viral genome sequences, integrating epidemiological and phylodynamic approaches, to characterize how SARS-CoV-2 variants have spread within the country. RESULTS Our findings indicate bidirectional international transmission, with Italy transitioning between importing and exporting the virus. Italy experienced four distinct epidemic waves, each associated with a significant reduction in fatalities from 2021 to 2023. These waves were primarily driven by the emergence of VOCs such as Alpha, Delta, and Omicron, which were reflected in observed transmission dynamics and effectiveness of public health measures. CONCLUSIONS The changing patterns of viral spread and variant prevalence throughout Italy's pandemic response underscore the continued importance of flexible public health strategies and genomic surveillance, both of which are crucial for tracking the evolution of variants and adapting control measures effectively to ensure preparedness for future outbreaks.
Collapse
Affiliation(s)
- Eleonora Cella
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico di Roma, Rome, Italy
| | - Stephane Tosta
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Keldenn Moreno
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Schuab
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sobur Ali
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Butantan Institute, São Paulo, Brazil
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Simone Kashima
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Carla Mavian
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Global Health Program Smithsonian's National Zoo & Conservation Biology Institute, DC, USA
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Brescia, Italy
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Taj Azarian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ana Maria Bispo de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Giancarlo Ceccarelli
- Infectious Diseases Department, Azienda Ospedaliero Universitaria Policlinico Umberto I, Rome, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Brescia, Italy
| | - Vittorio Colizzi
- UNESCO Chair of Interdisciplinary Biotechnology and Bioethics, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - José Lourenço
- Faculdade de Medicina, Biomedical Research Center, Universidade Católica Portuguesa, Lisboa, Portugal
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico di Roma, Rome, Italy
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Rome, Italy; Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Konieczny M, Sobieraj D, Niezgoda A, Gąska I, Mielnik A, Niemiec M, Cipora E. Attitudes of pregnant women toward vaccination against COVID-19 - a study conducted in Poland in the first quarter of 2022. Cent Eur J Public Health 2024; 32:225-230. [PMID: 39903591 DOI: 10.21101/cejph.a8177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/30/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVES The study aimed to assess the attitudes of pregnant women toward vaccination against COVID-19. METHODS The research was conducted using a diagnostic survey with our original questionnaire among 283 pregnant women. The survey was carried out in Poland in the first quarter of 2022. Statistical analyses were performed using IBM SPSS 26.0 (p < 0.05). RESULTS It was shown that 140 (49.5%) pregnant women were vaccinated against COVID-19, of which 90 (64.3%) received vaccination during pregnancy. In the group of 143 (50%) unvaccinated people, only 11.9% of respondents expressed willingness to be vaccinated against COVID-19. The most frequently cited arguments for receiving the vaccine were fear of a severe course of the disease (37.5%) and the possibility of passing antibodies to a child (37.1%). Women who did not undergo vaccination believed that they did not want to put themselves and their babies at risk (39.9%) and were concerned about adverse post-vaccination reactions (35.2%) and the safety of the vaccine (32.5%). Women with higher education and professionally active (p = 0.004) were vaccinated more often than respondents with a lower level of education (p < 0.001). Age (p = 0.101) and place of residence (p = 0.179) did not indicate statistically significant differences in decision-making regarding vaccination against COVID-19. CONCLUSION Pregnant women presented both pro- and anti-vaccination attitudes. Less than half of the respondents were vaccinated against COVID-19, and most of the women took the preparation during pregnancy. Selected socio-demographic factors determined women's attitudes toward vaccinations against COVID-19. Medical personnel should play a role in deciding whether a pregnant woman is vaccinated.
Collapse
Affiliation(s)
| | - Dariusz Sobieraj
- John Paul II Podkarpackie Provincial Hospital in Krosno, Krosno, Poland
| | | | - Izabela Gąska
- Medical Institute, Jan Grodek State University in Sanok, Sanok, Poland
| | - Aneta Mielnik
- Medical Institute, Jan Grodek State University in Sanok, Sanok, Poland
| | - Mateusz Niemiec
- Medical Institute, Jan Grodek State University in Sanok, Sanok, Poland
| | - Elżbieta Cipora
- Medical Institute, Jan Grodek State University in Sanok, Sanok, Poland
| |
Collapse
|
22
|
McLachlan I, Huntley S, Leslie K, Bishop J, Redman C, Yebra G, Shaaban S, Christofidis N, Lycett S, Holden MTG, Robertson DL, Smith-Palmer A, Hughes J, Nickbakhsh S. Evaluation of risk-based travel policy for the COVID-19 epidemic in Scotland: a population-based surveillance study. BMJ Open 2024; 14:e085332. [PMID: 39615890 PMCID: PMC11624746 DOI: 10.1136/bmjopen-2024-085332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024] Open
Abstract
OBJECTIVES We aimed to assess the effects of risk-based travel restrictions on (1) international travel frequency, (2) SARS-CoV-2 case importation risk, (3) national SARS-CoV-2 incidence and (4) importation of SARS-CoV-2 variants into Scotland. DESIGN Population-based surveillance study. SETTING The study utilises SARS-CoV-2 community testing from February 2021 to May 2022 in Scotland, UK and spans the introduction of the UK's 'traffic light system' policy in May 2021. PRIMARY OUTCOME MEASURES Travel-related cases of COVID-19 were defined as PCR-positive Scottish residents self-reporting international travel within 14 days of booking a postarrival travel test. The Red-Amber-Green (RAG) status of the reported travel destination was determined through data linkage using country and date. RESULTS International flight passengers arriving into Scotland increased by 754% during the traffic light period. Amber list countries were the most frequently visited and ranked highly for both SARS-CoV-2 importations and contribution to national case incidence. Rates of international travel and associated SARS-CoV-2 case rates varied significantly across age, health board and deprivation groups. Multivariable logistic regression revealed SARS-CoV-2 case detections were less likely through travel-based than community-based surveillance systems, although increased from green-to-amber and amber-to-red lists. When examined according to travel destination, SARS-CoV-2 importation risks did not strictly follow RAG designations, and red lists did not prevent establishment of novel SARS-CoV-2 variants. CONCLUSIONS Our findings suggest that country-specific postarrival screening undertaken in Scotland did not prohibit the public health impact of COVID-19 in Scotland. Travel rates likely contributed to patterns of SARS-CoV-2 case importation and population incidence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Matthew T G Holden
- Public Health Scotland, Edinburgh, UK
- School of Medicine, University of St Andrews, St Andrews, UK
| | | | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sema Nickbakhsh
- Public Health Scotland, Edinburgh, UK
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Su YCF, Zeller MA, Ou TP, Ma J, Pum L, Zhang R, Rath S, Heang V, Kol S, Lim R, Chea KL, Khun L, Heng L, Krang S, Raftery P, Kinzer MH, Ieng V, Kab V, Patel S, Sar B, Horm VS, Yann S, Auerswald H, Siegers JY, Troupin C, Boukli N, Vandelannoote K, Wong FY, Ng GGK, Chan M, Sorn S, Sengdoeurn Y, Heng S, Darapheak C, Savuth C, Khalakdina A, Ly S, Baril L, Spiegel A, Duong V, Ly S, Smith GJD, Karlsson EA. Spatiotemporal evolution and transmission dynamics of Alpha and Delta SARS-CoV-2 variants contributing to sequential outbreaks in Cambodia during 2021. COMMUNICATIONS MEDICINE 2024; 4:252. [PMID: 39604601 PMCID: PMC11603031 DOI: 10.1038/s43856-024-00685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Tracking the emergence, introduction and spread of SARS-CoV-2 variants of concern are essential for informing public health strategies. In 2021, Cambodia faced two major epidemic waves of SARS-CoV-2 triggered by the successive rise of the Alpha and Delta variants. METHODS Phylodynamic analysis of 1,163 complete SARS-CoV-2 genomes from Cambodia, along with global sequences, were conducted between February and September 2021 to infer viral introductions, molecular epidemiology and population dynamics. The relationship between epidemic trends and control strategies were evaluated. Bayesian phylogeographic reconstruction was employed to estimate and contrast the spatiotemporal dynamics of the Alpha and Delta variants over time. RESULTS Here we reveal that the Alpha variant displays rapid lineage diversification, accompanied by the acquisition of a spike E484K mutation that coincides with the national implementation of mass COVID-19 vaccination. Despite nationwide control strategies and increased vaccination coverage, the Alpha variant was quickly displaced by Delta variants that exhibits a higher effective reproductive number. Phylogeographic inference indicates that the Alpha variant was introduced through south-central region of Cambodia, with strong diffusion rates from the capital of Phnom Penh to other provinces, while the Delta variant likely entered the country via the northern border provinces. CONCLUSIONS Continual genomic surveillance and sequencing efforts, in combination with public health strategies, play a vital role in effectively tracking and responding to the emergence, evolution and dissemination of future emerging variants.
Collapse
Affiliation(s)
- Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Michael A Zeller
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Tey Putita Ou
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Ecole Doctorale GAIA, University of Montpelier, Montpelier, France
| | - Jordan Ma
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Leakhena Pum
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Rong Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sophannadeth Rath
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Vireak Heang
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sonita Kol
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Reaksa Lim
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Kim Lay Chea
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Limmey Khun
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Leangyi Heng
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sidonn Krang
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | | | - Michael H Kinzer
- United States Centers for Disease Control and Prevention, Phnom Penh, Cambodia
| | - Vanra Ieng
- World Health Organization Country Office, Phnom Penh, Cambodia
| | - Vannda Kab
- World Health Organization Country Office, Phnom Penh, Cambodia
| | - Sarika Patel
- World Health Organization Country Office, Phnom Penh, Cambodia
| | - Borann Sar
- United States Centers for Disease Control and Prevention, Phnom Penh, Cambodia
| | - Viseth Srey Horm
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokhoun Yann
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Jurre Y Siegers
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Cecile Troupin
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Medical Virology and Rabies group, Institut Pasteur du Laos, Vientiane, Lao PDR, Laos
| | - Narjis Boukli
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Koen Vandelannoote
- Bacterial Phylogenomics Group, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Foong Ying Wong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Giselle G K Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Malen Chan
- Epidemiology and Public Health Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sopheak Sorn
- Epidemiology and Public Health Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Yi Sengdoeurn
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Seng Heng
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Chau Darapheak
- National Institute for Public Health, Phnom Penh, Cambodia
| | - Chin Savuth
- National Institute for Public Health, Phnom Penh, Cambodia
| | | | - Sowath Ly
- Epidemiology and Public Health Unit, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Laurence Baril
- Direction, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Andre Spiegel
- Direction, Institute Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sovann Ly
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Centre for Outbreak Preparedness, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Erik A Karlsson
- Virology Unit, World Health Organization COVID-19 Global Referral Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| |
Collapse
|
24
|
Koncz M, Stirling T, Hadj Mehdi H, Méhi O, Eszenyi B, Asbóth A, Apjok G, Tóth Á, Orosz L, Vásárhelyi BM, Ari E, Daruka L, Polgár TF, Schneider G, Zalokh SA, Számel M, Fekete G, Bohár B, Nagy Varga K, Visnyovszki Á, Székely E, Licker MS, Izmendi O, Costache C, Gajic I, Lukovic B, Molnár S, Szőcs-Gazdi UO, Bozai C, Indreas M, Kristóf K, Van der Henst C, Breine A, Pál C, Papp B, Kintses B. Genomic surveillance as a scalable framework for precision phage therapy against antibiotic-resistant pathogens. Cell 2024; 187:5901-5918.e28. [PMID: 39332413 DOI: 10.1016/j.cell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.
Collapse
Affiliation(s)
- Mihály Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Hiba Hadj Mehdi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Bálint Eszenyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - András Asbóth
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary
| | - Gábor Apjok
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ákos Tóth
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - László Orosz
- Department of Medical Microbiology, University of Szeged, Szent-Györgyi Albert Medical School, Dom tér 10, 6720 Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Tamás Ferenc Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Theoretical Medicine Doctoral School, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Sif Aldin Zalokh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Bohár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor Commonwealth Building Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Karolina Nagy Varga
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ádám Visnyovszki
- South-Pest Central Hospital National Institute of Hematology and Infectious Diseases, Nagyvárad tér 1, 1097 Budapest, Hungary; Doctoral School of Interdisciplinary Medical Sciences, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Edit Székely
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Str. Gheorghe Marinescu 38, 540142 Targu Mures, Romania; County Emergency Clinical Hospital of Targu Mures, Str. Dr. Gh. Marinescu 50, 540136 Targu Mures, Romania
| | - Monica-Sorina Licker
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Oana Izmendi
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania; Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania
| | - Carmen Costache
- Department of Microbiology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, Bulevar Zorana Djindjica 152a, Belgrade, Serbia
| | - Szabolcs Molnár
- Emergency County Hospital Miercurea-Ciuc, Str. Doctor Dénes László 2, 530173 Miercurea Ciuc, Romania
| | | | - Csilla Bozai
- County Emergency Hospital Satu Mare, Str. Ravensburg 1-3, 440192 Satu Mare, Romania
| | - Marina Indreas
- Bacau County Emergency Hospital, Str. Haret Spiru 2-4, 600114 Bacau, Romania
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Üllői út 78/b, 1083 Budapest, Hungary
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary; National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary.
| |
Collapse
|
25
|
Mah MG, Zeller MA, Zhang R, Zhuang Y, Maro VP, Crump JA, Rubach MP, Ooi EE, Low JG, Wang DY, Smith GJD, Su YCF. Discordant phylodynamic and spatiotemporal transmission patterns driving the long-term persistence and evolution of human coronaviruses. NPJ VIRUSES 2024; 2:49. [PMID: 40295720 PMCID: PMC11721344 DOI: 10.1038/s44298-024-00058-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/10/2024] [Indexed: 04/30/2025]
Abstract
Four distinct species of human coronaviruses (HCoVs) circulate in humans. Despite the recent attention due to SARS-CoV-2, a comprehensive understanding of the molecular epidemiology and genomic evolution of HCoVs remains unclear. Here, we employed primary differentiated human nasal epithelial cells for the successful isolation and genome sequencing of HCoVs derived from two retrospective cohorts in Singapore and Tanzania. Phylodynamic inference shows that HCoV-229E and HCoV-OC43 were subject to stronger genetic drift and reduced purifying selection from the early 2000s onwards, primarily targeting spike Domain A and B. This resulted in increased lineage diversification, coinciding with a higher effective reproductive number (Re>1.0). However, HCoV-NL63 and HCoV-HKU1 experienced weaker genetic drift and selective pressure with prolonged regional persistence. Our findings suggest that HCoV-229E and HCoV-OC43 viruses are adept at generating new variants and achieving widespread intercontinental dissemination driven by continuous genetic drift, recombination, and complex migration patterns.
Collapse
Affiliation(s)
- Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Michael A Zeller
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Rong Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Yan Zhuang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Venance P Maro
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - John A Crump
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Matthew P Rubach
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Jenny G Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore.
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
| |
Collapse
|
26
|
Schoefbaenker M, Günther T, Lorentzen EU, Romberg ML, Hennies MT, Neddermeyer R, Müller MM, Mellmann A, Bojarzyn CR, Lenz G, Stelljes M, Hrincius ER, Vollenberg R, Ludwig S, Tepasse PR, Kühn JE. Characterisation of the antibody-mediated selective pressure driving intra-host evolution of SARS-CoV-2 in prolonged infection. PLoS Pathog 2024; 20:e1012624. [PMID: 39405332 PMCID: PMC11508484 DOI: 10.1371/journal.ppat.1012624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/25/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Neutralising antibodies against the SARS-CoV-2 spike (S) protein are major determinants of protective immunity, though insufficient antibody responses may cause the emergence of escape mutants. We studied the humoral immune response causing intra-host evolution in a B-cell depleted, haemato-oncologic patient experiencing clinically severe, prolonged SARS-CoV-2 infection with a virus of lineage B.1.177.81. Following bamlanivimab treatment at an early stage of infection, the patient developed a bamlanivimab-resistant mutation, S:S494P. After five weeks of apparent genetic stability, the emergence of additional substitutions and deletions within the N-terminal domain (NTD) and the receptor binding domain (RBD) of S was observed. Notably, the composition and frequency of escape mutations changed in a short period with an unprecedented dynamic. The triple mutant S:Delta141-4 E484K S494P became dominant until virus elimination. Routine serology revealed no evidence of an antibody response in the patient. A detailed analysis of the variant-specific immune response by pseudotyped virus neutralisation test, surrogate virus neutralisation test, and immunoglobulin-capture enzyme immunoassay showed that the onset of an IgM-dominated antibody response coincided with the appearance of escape mutations. The formation of neutralising antibodies against S:Delta141-4 E484K S494P correlated with virus elimination. One year later, the patient experienced clinically mild re-infection with Omicron BA.1.18, which was treated with sotrovimab and resulted in an increase in Omicron-reactive antibodies. In conclusion, the onset of an IgM-dominated endogenous immune response in an immunocompromised patient coincided with the appearance of additional mutations in the NTD and RBD of S in a bamlanivimab-resistant virus. Although virus elimination was ultimately achieved, this humoral immune response escaped detection by routine diagnosis and created a situation temporarily favouring the rapid emergence of various antibody escape mutants with known epidemiological relevance.
Collapse
Affiliation(s)
| | - Theresa Günther
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Eva Ulla Lorentzen
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Marc Tim Hennies
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Rieke Neddermeyer
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | | | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | | | - Georg Lenz
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Matthias Stelljes
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | | | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, Muenster, Germany
| | - Joachim Ewald Kühn
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| |
Collapse
|
27
|
Dyrdak R, Hodcroft EB, Broddesson S, Grabbe M, Franklin H, Gisslén M, Holm ME, Lindh M, Nederby-Öhd J, Ringlander J, Sundqvist M, Neher RA, Albert J. Early unrecognised SARS-CoV-2 introductions shaped the first pandemic wave, Sweden, 2020. Euro Surveill 2024; 29:2400021. [PMID: 39392000 PMCID: PMC11484920 DOI: 10.2807/1560-7917.es.2024.29.41.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/30/2024] [Indexed: 10/12/2024] Open
Abstract
BackgroundDespite the unprecedented measures implemented globally in early 2020 to prevent the spread of SARS-CoV-2, Sweden, as many other countries, experienced a severe first wave during the COVID-19 pandemic.AimWe investigated the introduction and spread of SARS-CoV-2 into Sweden.MethodsWe analysed stored respiratory specimens (n = 1,979), sampled 7 February-2 April 2020, by PCR for SARS-CoV-2 and sequenced PCR-positive specimens. Sequences generated from newly detected cases and stored positive specimens February-June 2020 (n = 954) were combined with sequences (Sweden: n = 730; other countries: n = 129,913) retrieved from other sources for Nextstrain clade assignment and phylogenetic analyses.ResultsTwelve previously unrecognised SARS-CoV-2 cases were identified: the earliest was sampled on 3 March, 1 week before recognised community transmission. We showed an early influx of clades 20A and 20B from Italy (201/328, 61% of cases exposed abroad) and clades 19A and 20C from Austria (61/328, 19%). Clade 20C dominated the first wave (20C: 908/1,684, 54%; 20B: 438/1,684, 26%; 20A: 263/1,684, 16%), and 800 of 1,684 (48%) Swedish sequences formed a country-specific 20C cluster defined by a spike mutation (G24368T). At the regional level, the proportion of clade 20C sequences correlated with an earlier weighted mean date of COVID-19 deaths.ConclusionCommunity transmission in Sweden started when mitigation efforts still focused on preventing influx. This created a transmission advantage for clade 20C, likely introduced from ongoing cryptic spread in Austria. Therefore, pandemic preparedness should have a comprehensive approach, including capacity for large-scale diagnostics to allow early detection of travel-related cases and community transmission.
Collapse
Affiliation(s)
- Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma B Hodcroft
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Broddesson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Grabbe
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hildur Franklin
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Maricris E Holm
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Nederby-Öhd
- Department of Infectious Disease Prevention and Control, Stockholm Region, Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Sundqvist
- Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Puigdellívol-Sánchez A, Juanes-González M, Calderón-Valdiviezo A, Valls-Foix R, González-Salvador M, Lozano-Paz C, Vidal-Alaball J. COVID-19 in Relation to Polypharmacy and Immunization (2020-2024). Viruses 2024; 16:1533. [PMID: 39459868 PMCID: PMC11512247 DOI: 10.3390/v16101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Observational studies reported worse COVID-19 evolution in relation to polypharmacy and reductions in COVID-19 hospital admissions and death in patients receiving chronic antihistamine treatment. The current profile of hospitalized patients with regard to different variants was analyzed to identify specific targets for future prospective trials. METHODS COVID-19 admissions to the Hospital of Terrassa (11 March 2020-28 August 2024 (n = 1457), from the integral Consorci Sanitari de Terrassa population (n = 167,386 people) were studied. Age, gender, the number of chronic treatments (nT), and immunization status were analyzed. RESULTS After 5 May 2023, 291 patients (54% females) required COVID hospitalization. Of these, 39% received >8 nT (23% receiving 5-7 nT), 70.2% were >70 years, and 93.4% survived. In total, 12% of patients admitted after 5 May 2024 were not vaccinated, while 59% received ≥4 vaccines (43% within the last 12 months). In total, 49% of admitted patients presented no previous infection (while 3% presented infection during the last year). Delta or Omicron variants would have accounted for ≥80% of admissions > 60 years compared to the first pandemic wave if no vaccines existed. CONCLUSIONS Patients > 70 years who receive ≥5 nT, without prior COVID-19 infections, should be the priority for prevention, with updated vaccination and early treatments to reduce hospitalizations.
Collapse
Affiliation(s)
- Anna Puigdellívol-Sánchez
- Medicina de Família, CAP Anton de Borja Centre Universitari, c/ Marconi-Cantonada Edison s/n, Consorci Sanitari de Terrassa, 08191 Rubí, Spain; (M.J.-G.); (A.C.-V.); (R.V.-F.); (C.L.-P.)
- Laboratory of Surgical Neuroanatomy, Human Anatomy and Embryology Unit, Faculty of Medicine, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain
| | - Marta Juanes-González
- Medicina de Família, CAP Anton de Borja Centre Universitari, c/ Marconi-Cantonada Edison s/n, Consorci Sanitari de Terrassa, 08191 Rubí, Spain; (M.J.-G.); (A.C.-V.); (R.V.-F.); (C.L.-P.)
| | - Ana Calderón-Valdiviezo
- Medicina de Família, CAP Anton de Borja Centre Universitari, c/ Marconi-Cantonada Edison s/n, Consorci Sanitari de Terrassa, 08191 Rubí, Spain; (M.J.-G.); (A.C.-V.); (R.V.-F.); (C.L.-P.)
| | - Roger Valls-Foix
- Medicina de Família, CAP Anton de Borja Centre Universitari, c/ Marconi-Cantonada Edison s/n, Consorci Sanitari de Terrassa, 08191 Rubí, Spain; (M.J.-G.); (A.C.-V.); (R.V.-F.); (C.L.-P.)
| | - Marta González-Salvador
- Management, Control and Information Analysis Unit, Hospital Universitari de Terrassa, Consorci Sanitari de Terrassa, Carretera de Torrebonica s/n, 08227 Terrassa, Spain;
| | - Celia Lozano-Paz
- Medicina de Família, CAP Anton de Borja Centre Universitari, c/ Marconi-Cantonada Edison s/n, Consorci Sanitari de Terrassa, 08191 Rubí, Spain; (M.J.-G.); (A.C.-V.); (R.V.-F.); (C.L.-P.)
| | - Josep Vidal-Alaball
- Intelligence for Primary Care Research Group, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina, c/ Soler i March 6, 08242 Manresa, Spain;
- Unitat de Recerca i Innovació, Gerència d’Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, c/ Soler i March 6, 08242 Manresa, Spain
| |
Collapse
|
29
|
Holmes EC, Krammer F, Goodrum FD. Virology-The next fifty years. Cell 2024; 187:5128-5145. [PMID: 39303682 PMCID: PMC11467463 DOI: 10.1016/j.cell.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.
Collapse
Affiliation(s)
- Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
30
|
Li X, Trovão NS. The evolutionary and transmission dynamics of HIV-1 CRF08_BC. PLoS One 2024; 19:e0310027. [PMID: 39241052 PMCID: PMC11379155 DOI: 10.1371/journal.pone.0310027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
HIV-1 CRF08_BC is a significant subtype in China, though its origin and spread remain incompletely understood. Previous studies using partial genomic data have provided insights but lack comprehensive analysis. Here, we investigate the early evolutionary and spatiotemporal dynamics of HIV-1 CRF08_BC in China and Myanmar using near-complete genome sequences. We analyzed 28 near-complete HIV-1 CRF08_BC genomes from China and Myanmar (1997-2013). Phylogenetic, molecular clock, and Bayesian discrete trait analyses were performed to infer the virus's origin, spread, and associated risk groups. Based on Bayesian time-scaled inference with the best-fitting combination of models determined by marginal likelihood estimation (MLE), we inferred the time to the most recent common ancestor (TMRCA) and evolutionary rate of HIV-1 CRF08_BC to be at 3 October 1991 (95% HPD: 22 February1989-27 November 1993) and 2.30 × 10-3 substitutions per site per year (95% HPD: 1.96 × 10-3-2.63 × 10-3), respectively. Our analysis suggests that HIV-1 CRF08_BC originated in Yunnan Province, China, among injecting drug users, and subsequently spread to other regions. This study provides valuable insights into the early dynamics of HIV-1 CRF08_BC through combined genomic and epidemiological data, which may inform effective prevention and mitigation efforts. However, the limited genomic data influenced the extent of our findings, and challenges in collecting accurate risk group information during surveillance were evident.
Collapse
Affiliation(s)
- Xingguang Li
- Ningbo No.2 Hospital, Ningbo, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, China
| | - Nídia S Trovão
- National Institutes of Health, Fogarty International Center, Bethesda, Maryland, United States of America
| |
Collapse
|
31
|
Henares D, Monsalvez V, Brotons P, Machado ML, Capilla S, Gomila-Grange A, Bierge P, Cubero M, Q Pich O, Requena-Méndez A, Muñoz-Almagro C, Gasch O. Human gut microbiota composition associated with international travels. Travel Med Infect Dis 2024; 61:102747. [PMID: 39094984 DOI: 10.1016/j.tmaid.2024.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The objective of this study was to evaluate whether long stays in non-European countries influence the composition, diversity, and dynamics of gut microbiota, considering the potential impact of travelling, close contact with new people, and consumption of water and food. METHODS Two prospective cohorts were analyzed: (i) A longitudinal cohort comprising long-term travellers who provided fecal samples before and after their travels. (ii) A cohort consisting of long-term travellers and recently arrived migrants from non-European countries, which was compared with non-traveller controls. Each participant self-collected fecal samples and provided demographic and epidemiological data. Microbiota was characterized through 16 S rRNA gene sequencing. RESULTS The longitudinal cohort comprised 17 subjects. A trend toward higher bacterial diversity was observed after travelling (Shannon index 3.12vs3.26). When comparing 84 travellers/migrants with 97 non-travellers, a confirmed association of higher diversity levels with travelling was observed (Phylogenetic diversity: 22.1vs20.9). Specific genera enriched in travellers' gut microbiota were identified, including Escherichia/Shigella, Bacteroides, and Parabacteroides. The analysis revealed three major clusters with profound differences in their bacterial composition, which exhibited differential distribution between travellers and non-travellers (Adonis P < 0.001; R2 = 30.6 %). Two clusters were more frequently observed in travellers: The first cluster, characterized by dominance of Escherichia/Shigella, exhibited the lowest levels of richness and diversity. The second cluster, dominated by Faecalibacterium and Bacteroides, displayed the highest richness and diversity patterns. CONCLUSION These findings highlight the diverse impact of international travel on gut microbiota composition and underscore the importance of considering microbiota resilience and diversity in understanding the health implications.
Collapse
Affiliation(s)
- D Henares
- Department of RDI Microbiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain; CIBER Center for Epidemiology (CIBER) and Public Health, Carlos III Health Institute (CIBERESP, ISCIII), Avenida Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - V Monsalvez
- Department of Infectious Diseases, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Pedro Brotons
- Department of RDI Microbiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain; CIBER Center for Epidemiology (CIBER) and Public Health, Carlos III Health Institute (CIBERESP, ISCIII), Avenida Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Medicine, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Barcelona, Spain
| | - Maria Luisa Machado
- Department of Infectious Diseases, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Silvia Capilla
- Department of microbiology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Aina Gomila-Grange
- Department of Infectious Diseases, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208, Sabadell, Spain
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Meritxell Cubero
- Department of RDI Microbiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ana Requena-Méndez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Carrer Roselló 132, 08036, Barcelona, Spain; Biomedical Research Networking Center (CIBER) of Infectious Diseases, Carlos III Health Institute (CIBERINFEC, ISCIII), Carrer Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Department of Medicine Solna, Karolinska Institutet, Solnavägen 1, 17177, Solna, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Solnavägen 1, 17177, Solna, Stockholm, Sweden
| | - C Muñoz-Almagro
- Department of RDI Microbiology, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain; CIBER Center for Epidemiology (CIBER) and Public Health, Carlos III Health Institute (CIBERESP, ISCIII), Avenida Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - O Gasch
- Department of Infectious Diseases, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208, Sabadell, Spain.
| |
Collapse
|
32
|
Khurana MP, Curran-Sebastian J, Scheidwasser N, Morgenstern C, Rasmussen M, Fonager J, Stegger M, Tang MHE, Juul JL, Escobar-Herrera LA, Møller FT, Albertsen M, Kraemer MUG, du Plessis L, Jokelainen P, Lehmann S, Krause TG, Ullum H, Duchêne DA, Mortensen LH, Bhatt S. High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark. Nat Commun 2024; 15:7123. [PMID: 39164246 PMCID: PMC11335946 DOI: 10.1038/s41467-024-51371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Vast amounts of pathogen genomic, demographic and spatial data are transforming our understanding of SARS-CoV-2 emergence and spread. We examined the drivers of molecular evolution and spread of 291,791 SARS-CoV-2 genomes from Denmark in 2021. With a sequencing rate consistently exceeding 60%, and up to 80% of PCR-positive samples between March and November, the viral genome set is broadly whole-epidemic representative. We identify a consistent rise in viral diversity over time, with notable spikes upon the importation of novel variants (e.g., Delta and Omicron). By linking genomic data with rich individual-level demographic data from national registers, we find that individuals aged < 15 and > 75 years had a lower contribution to molecular change (i.e., branch lengths) compared to other age groups, but similar molecular evolutionary rates, suggesting a lower likelihood of introducing novel variants. Similarly, we find greater molecular change among vaccinated individuals, suggestive of immune evasion. We also observe evidence of transmission in rural areas to follow predictable diffusion processes. Conversely, urban areas are expectedly more complex due to their high mobility, emphasising the role of population structure in driving virus spread. Our analyses highlight the added value of integrating genomic data with detailed demographic and spatial information, particularly in the absence of structured infection surveys.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jacob Curran-Sebastian
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Neil Scheidwasser
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas L Juul
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Sune Lehmann
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tyra G Krause
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut Copenhagen, Copenhagen, Denmark
| | | | - David A Duchêne
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
33
|
Grandi N, Cusano R, Piras G, Fiamma M, Monne MI, Fancello T, Milia J, Orrù S, Scognamiglio S, Serra C, Mameli G, Uzzau S, Orrù G, Palmas AD, Rubino S, Tramontano E. The impact of insularity on SARS-CoV-2 diffusion: Recapitulating three years of COVID-19 pandemic in the island of Sardinia. J Infect Public Health 2024; 17:102496. [PMID: 38991412 DOI: 10.1016/j.jiph.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Italy has been the first European Country dealing with SARS-CoV-2, whose diffusion on the territory has not been homogeneous. Among Italian regions, Sardinia represented one of the lowest incidence areas, likely due to its insular nature. Despite this, the impact of insularity on SARS-CoV-2 genetic diversity has not been comprehensively described. METHODS In the present study, we performed the high throughput sequencing of 888 SARS-CoV-2 genomes collected in Sardinia during the first 23 months of pandemics. In addition, 1439 high-coverage SARS-CoV-2 genomes circulating in Sardinia along three years (December 2019 - January 2023) were downloaded from GISAID, for a total of 2327 viral sequences that were characterized in terms of phylogeny and genomic diversity. RESULTS Overall, COVID-19 pandemic in Sardinia showed substantial differences with respect to the national panorama, with additional peaks of infections and uncommon lineages that reflects the national and regional policies of re-opening and the subsequent touristic arrivals. Sardinia has been interested by the circulation of at least 87 SARS-CoV-2 lineages, including some that were poorly represented at national and European level, likely linked to multiple importation events. The relative frequency of Sardinian SARS-CoV-2 lineages has been compared to other Mediterranean Islands, revealing a unique composition. CONCLUSIONS The genomic diversity of SARS-CoV-2 in Sardinia has been shaped by a complex interplay of insular geography, low population density, and touristic arrivals, leading on the one side to the importation of lineages remaining rare at the national level, and resulting on the other side in the delayed entry of otherwise common variants.
Collapse
Affiliation(s)
- Nicole Grandi
- Lab. of Molecular Virology, Dept. of Life and Environmental Sciences, University of Cagliari, Italy
| | - Roberto Cusano
- CRS4 - Center for Advanced Studies, Research and Development in Sardinia, Science and Technology Park Polaris, Cagliari, Italy
| | | | | | | | | | - Jessica Milia
- CRS4 - Center for Advanced Studies, Research and Development in Sardinia, Science and Technology Park Polaris, Cagliari, Italy
| | - Sandro Orrù
- Dept. of Surgical Sciences, University of Cagliari, Italy
| | - Sante Scognamiglio
- Lab. of Molecular Virology, Dept. of Life and Environmental Sciences, University of Cagliari, Italy
| | - Caterina Serra
- Dept. of Biomedical Sciences, University of Sassari, Italy; S.C. Microbiologia e Virologia, AOU Sassari, Italy
| | - Giuseppe Mameli
- ASL Nuoro, Ospedale San Francesco, Italy; ASL Sassari Ospedale Civile Alghero, Italy
| | - Sergio Uzzau
- Dept. of Biomedical Sciences, University of Sassari, Italy; S.C. Microbiologia e Virologia, AOU Sassari, Italy
| | - Germano Orrù
- Dept. of Surgical Sciences, University of Cagliari, Italy
| | | | - Salvatore Rubino
- Dept. of Biomedical Sciences, University of Sassari, Italy; S.C. Microbiologia e Virologia, AOU Sassari, Italy
| | - Enzo Tramontano
- Lab. of Molecular Virology, Dept. of Life and Environmental Sciences, University of Cagliari, Italy.
| |
Collapse
|
34
|
Bonetti Franceschi V, Volz E. Phylogenetic signatures reveal multilevel selection and fitness costs in SARS-CoV-2. Wellcome Open Res 2024; 9:85. [PMID: 39132669 PMCID: PMC11316176 DOI: 10.12688/wellcomeopenres.20704.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background Large-scale sequencing of SARS-CoV-2 has enabled the study of viral evolution during the COVID-19 pandemic. Some viral mutations may be advantageous to viral replication within hosts but detrimental to transmission, thus carrying a transient fitness advantage. By affecting the number of descendants, persistence times and growth rates of associated clades, these mutations generate localised imbalance in phylogenies. Quantifying these features in closely-related clades with and without recurring mutations can elucidate the tradeoffs between within-host replication and between-host transmission. Methods We implemented a novel phylogenetic clustering algorithm ( mlscluster, https://github.com/mrc-ide/mlscluster) to systematically explore time-scaled phylogenies for mutations under transient/multilevel selection. We applied this method to a SARS-CoV-2 time-calibrated phylogeny with >1.2 million sequences from England, and characterised these recurrent mutations that may influence transmission fitness across PANGO-lineages and genomic regions using Poisson regressions and summary statistics. Results We found no major differences across two epidemic stages (before and after Omicron), PANGO-lineages, and genomic regions. However, spike, nucleocapsid, and ORF3a were proportionally more enriched for transmission fitness polymorphisms (TFP)-homoplasies than other proteins. We provide a catalog of SARS-CoV-2 sites under multilevel selection, which can guide experimental investigations within and beyond the spike protein. Conclusions This study provides empirical evidence for the existence of important tradeoffs between within-host replication and between-host transmission shaping the fitness landscape of SARS-CoV-2. This method may be used as a fast and scalable means to shortlist large sequence databases for sites under putative multilevel selection which may warrant subsequent confirmatory analyses and experimental confirmation.
Collapse
Affiliation(s)
- Vinicius Bonetti Franceschi
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| | - Erik Volz
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, England, W2 1PG, UK
| |
Collapse
|
35
|
Ly-Trong N, Bielow C, De Maio N, Minh BQ. CMAPLE: Efficient Phylogenetic Inference in the Pandemic Era. Mol Biol Evol 2024; 41:msae134. [PMID: 38934791 PMCID: PMC11232695 DOI: 10.1093/molbev/msae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
We have recently introduced MAPLE (MAximum Parsimonious Likelihood Estimation), a new pandemic-scale phylogenetic inference method exclusively designed for genomic epidemiology. In response to the need for enhancing MAPLE's performance and scalability, here we present two key components: (i) CMAPLE software, a highly optimized C++ reimplementation of MAPLE with many new features and advancements, and (ii) CMAPLE library, a suite of application programming interfaces to facilitate the integration of the CMAPLE algorithm into existing phylogenetic inference packages. Notably, we have successfully integrated CMAPLE into the widely used IQ-TREE 2 software, enabling its rapid adoption in the scientific community. These advancements serve as a vital step toward better preparedness for future pandemics, offering researchers powerful tools for large-scale pathogen genomic analysis.
Collapse
Affiliation(s)
- Nhan Ly-Trong
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| | - Chris Bielow
- Bioinformatics Solution Center, Freie Universität Berlin, 14195 Berlin, Germany
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Bui Quang Minh
- School of Computing, College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
36
|
Gallego-García P, Estévez-Gómez N, De Chiara L, Alvariño P, Juiz-González PM, Torres-Beceiro I, Poza M, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Aja-Macaya P, Ladra S, Moreno-Flores A, Gude-González MJ, Coira A, Aguilera A, Costa-Alcalde JJ, Trastoy R, Barbeito-Castiñeiras G, García-Souto D, Tubio JMC, Trigo-Daporta M, Camacho-Zamora P, Costa JG, González-Domínguez M, Canoura-Fernández L, Glez-Peña D, Pérez-Castro S, Cabrera JJ, Daviña-Núñez C, Godoy-Diz M, Treinta-Álvarez AB, Veiga MI, Sousa JC, Osório NS, Comas I, González-Candelas F, Hong SL, Bollen N, Dellicour S, Baele G, Suchard MA, Lemey P, Agulla A, Bou G, Alonso-García P, Pérez-Del-Molino ML, García-Campello M, Paz-Vidal I, Regueiro B, Posada D. Dispersal history of SARS-CoV-2 in Galicia, Spain. J Med Virol 2024; 96:e29773. [PMID: 38940448 PMCID: PMC11742125 DOI: 10.1002/jmv.29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron-BA.1 variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the United States became increasingly significant. The number of detected introductions varied from 96 and 101 for Alpha and Delta to 39 for Omicron-BA.1. Most of these introductions left a low number of descendants (<10), suggesting a limited impact on the evolution of the pandemic in Galicia. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.
Collapse
Affiliation(s)
- Pilar Gallego-García
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
| | | | - Pedro M Juiz-González
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Isabel Torres-Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
- Microbiome and Health Group, Faculty of Sciences, University of A Coruña (UDC), A Coruña, Spain
| | - Juan A Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Susana Ladra
- Database Laboratory, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), A Coruña, Spain
| | | | | | - Amparo Coira
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Antonio Aguilera
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - José J Costa-Alcalde
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Rocío Trastoy
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Gema Barbeito-Castiñeiras
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Daniel García-Souto
- CiMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José M C Tubio
- CiMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physic Anthropology, Santiago de Compostela, Spain
| | - Matilde Trigo-Daporta
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Pablo Camacho-Zamora
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Juan García Costa
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Luis Canoura-Fernández
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Daniel Glez-Peña
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Sonia Pérez-Castro
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge J Cabrera
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Carlos Daviña-Núñez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Montserrat Godoy-Diz
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Ana Belén Treinta-Álvarez
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| | - Iñaki Comas
- Tuberculosis Genomics Unit, BioMedicine Institute of Valencia, Spanish Research Council (CSIC), Valencia, Spain
- CIBER in Epidemiology and Public Health, Madrid, Spain
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, Valencia, Spain
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Madrid, Spain
- Joint Research Unit "Infection and Public Health", FISABIO-University of Valencia, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
- Global Virus Network (GVN), Baltimore, Maryland, USA
| | - Andrés Agulla
- Servicio de Microbiología del Complejo Hospitalario Universitario de Ferrol, Ferrol, Spain
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC) - Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC) - CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Edificio Sur, Hospital Universitario A Coruña, As Xubias, A Coruña, Spain
| | - Pilar Alonso-García
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - María Luisa Pérez-Del-Molino
- Department of Microbiology, Complexo Hospitalario Universitario de Santiago de Compostela. SERGAS - Microbiology Research Group, Institute of Biomedical Research (IDIS), Santiago de Compostela, Spain
| | - Marta García-Campello
- Clinical Microbiology Unit, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Isabel Paz-Vidal
- Servicio de Microbiología, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Benito Regueiro
- Department of Microbiology, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
37
|
Goliaei S, Foroughmand-Araabi MH, Roddy A, Weber A, Översti S, Kühnert D, McHardy AC. Importations of SARS-CoV-2 lineages decline after nonpharmaceutical interventions in phylogeographic analyses. Nat Commun 2024; 15:5267. [PMID: 38902246 PMCID: PMC11190289 DOI: 10.1038/s41467-024-48641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
During the early stages of the SARS-CoV-2 pandemic, before vaccines were available, nonpharmaceutical interventions (NPIs) such as reducing contacts or antigenic testing were used to control viral spread. Quantifying their success is therefore key for future pandemic preparedness. Using 1.8 million SARS-CoV-2 genomes from systematic surveillance, we study viral lineage importations into Germany for the third pandemic wave from late 2020 to early 2021, using large-scale Bayesian phylogenetic and phylogeographic analysis with a longitudinal assessment of lineage importation dynamics over multiple sampling strategies. All major nationwide NPIs were followed by fewer importations, with the strongest decreases seen for free rapid tests, the strengthening of regulations on mask-wearing in public transport and stores, as well as on internal movements and gatherings. Most SARS-CoV-2 lineages first appeared in the three most populous states with most cases, and spread from there within the country. Importations rose before and peaked shortly after the Christmas holidays. The substantial effects of free rapid tests and obligatory medical/surgical mask-wearing suggests these as key for pandemic preparedness, given their relatively few negative socioeconomic effects. The approach relates environmental factors at the host population level to viral lineage dissemination, facilitating similar analyses of rapidly evolving pathogens in the future.
Collapse
Affiliation(s)
- Sama Goliaei
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Mohammad-Hadi Foroughmand-Araabi
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Aideen Roddy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ariane Weber
- Transmission, Infection, Diversification and Evolution Group, Max-Planck Institute of Geoanthropology, Jena, Germany
| | - Sanni Översti
- Transmission, Infection, Diversification and Evolution Group, Max-Planck Institute of Geoanthropology, Jena, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max-Planck Institute of Geoanthropology, Jena, Germany
- German COVID Omics Initiative (deCOI), Bonn, Germany
- Centre for Artificial Intelligence in Public Health Research, Robert Koch Institute, Wildau, Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
- German COVID Omics Initiative (deCOI), Bonn, Germany.
| |
Collapse
|
38
|
Natalia YA, Molenberghs G, Faes C, Neyens T. Geospatial patterns of excess mortality in Belgium: Insights from the first year of the COVID-19 pandemic. Spat Spatiotemporal Epidemiol 2024; 49:100660. [PMID: 38876554 DOI: 10.1016/j.sste.2024.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVES Belgium experienced multiple COVID-19 waves that hit various groups in the population, which changed the mortality pattern compared to periods before the pandemic. In this study, we investigated the geographical excess mortality trend in Belgium during the first year of the COVID-19 pandemic. METHODS We retrieved the number of deaths and population data in 2020 based on gender, age, and municipality of residence, and we made a comparison with the mortality data in 2017-2019 using a spatially discrete model. RESULTS Excess mortality was significantly associated with age, gender, and COVID-19 incidence, with larger effects in the second half of 2020. Most municipalities had higher risks of mortality with a number of exceptions in the northeastern part of Belgium. Some discrepancies in excess mortality were observed between the north and south regions. CONCLUSIONS This study offers useful insight into excess mortality and will aid local and regional authorities in monitoring mortality trends.
Collapse
Affiliation(s)
| | - Geert Molenberghs
- I-BioStat, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium; I-BioStat, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, 3000 Leuven, Belgium
| | - Christel Faes
- I-BioStat, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Thomas Neyens
- I-BioStat, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium; I-BioStat, Leuven Biostatistics and Statistical Bioinformatics Centre, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
39
|
de Rioja VL, Perramon-Malavez A, Alonso S, Andrés C, Antón A, Bordoy AE, Càmara J, Cardona PJ, Català M, López D, Martí S, Martró E, Saludes V, Prats C, Alvarez-Lacalle E. Mathematical modeling of SARS-CoV-2 variant substitutions in European countries: transmission dynamics and epidemiological insights. Front Public Health 2024; 12:1339267. [PMID: 38855458 PMCID: PMC11160439 DOI: 10.3389/fpubh.2024.1339267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Countries across Europe have faced similar evolutions of SARS-CoV-2 variants of concern, including the Alpha, Delta, and Omicron variants. Materials and methods We used data from GISAID and applied a robust, automated mathematical substitution model to study the dynamics of COVID-19 variants in Europe over a period of more than 2 years, from late 2020 to early 2023. This model identifies variant substitution patterns and distinguishes between residual and dominant behavior. We used weekly sequencing data from 19 European countries to estimate the increase in transmissibility ( Δ β ) between consecutive SARS-CoV-2 variants. In addition, we focused on large countries with separate regional outbreaks and complex scenarios of multiple competing variants. Results Our model accurately reproduced the observed substitution patterns between the Alpha, Delta, and Omicron major variants. We estimated the daily variant prevalence and calculated Δ β between variants, revealing that: ( i ) Δ β increased progressively from the Alpha to the Omicron variant; ( i i ) Δ β showed a high degree of variability within Omicron variants; ( i i i ) a higher Δ β was associated with a later emergence of the variant within a country; ( i v ) a higher degree of immunization of the population against previous variants was associated with a higher Δ β for the Delta variant; ( v ) larger countries exhibited smaller Δ β , suggesting regionally diverse outbreaks within the same country; and finally ( v i ) the model reliably captures the dynamics of competing variants, even in complex scenarios. Conclusion The use of mathematical models allows for precise and reliable estimation of daily cases of each variant. By quantifying Δ β , we have tracked the spread of the different variants across Europe, highlighting a robust increase in transmissibility trend from Alpha to Omicron. Additionally, we have shown that the geographical characteristics of a country, as well as the timing of new variant entrances, can explain some of the observed differences in variant substitution dynamics across countries.
Collapse
Affiliation(s)
- Víctor López de Rioja
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Aida Perramon-Malavez
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Sergio Alonso
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Cristina Andrés
- Microbiology Department, Vall D’Hebron Hospital Universitari, Vall D’Hebron Institut de Recerca, Vall D’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Biomedical Research Networking Center in Infectious Diseases, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Andrés Antón
- Microbiology Department, Vall D’Hebron Hospital Universitari, Vall D’Hebron Institut de Recerca, Vall D’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Biomedical Research Networking Center in Infectious Diseases, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni E. Bordoy
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pere-Joan Cardona
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Martí Català
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Daniel López
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, L’Hospitalet de Llobregat, Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Elisa Martró
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Biomedical Research Center Network for Epidemiology and Public Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Verónica Saludes
- Microbiology Department, Northern Metropolitan Clinical Laboratory, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Biomedical Research Center Network for Epidemiology and Public Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Clara Prats
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Enrique Alvarez-Lacalle
- Computational Biology and Complex Systems Group, Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
40
|
Santos JD, Sobral D, Pinheiro M, Isidro J, Bogaardt C, Pinto M, Eusébio R, Santos A, Mamede R, Horton DL, Gomes JP, Borges V. INSaFLU-TELEVIR: an open web-based bioinformatics suite for viral metagenomic detection and routine genomic surveillance. Genome Med 2024; 16:61. [PMID: 38659008 PMCID: PMC11044337 DOI: 10.1186/s13073-024-01334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Implementation of clinical metagenomics and pathogen genomic surveillance can be particularly challenging due to the lack of bioinformatics tools and/or expertise. In order to face this challenge, we have previously developed INSaFLU, a free web-based bioinformatics platform for virus next-generation sequencing data analysis. Here, we considerably expanded its genomic surveillance component and developed a new module (TELEVIR) for metagenomic virus identification. RESULTS The routine genomic surveillance component was strengthened with new workflows and functionalities, including (i) a reference-based genome assembly pipeline for Oxford Nanopore technologies (ONT) data; (ii) automated SARS-CoV-2 lineage classification; (iii) Nextclade analysis; (iv) Nextstrain phylogeographic and temporal analysis (SARS-CoV-2, human and avian influenza, monkeypox, respiratory syncytial virus (RSV A/B), as well as a "generic" build for other viruses); and (v) algn2pheno for screening mutations of interest. Both INSaFLU pipelines for reference-based consensus generation (Illumina and ONT) were benchmarked against commonly used command line bioinformatics workflows for SARS-CoV-2, and an INSaFLU snakemake version was released. In parallel, a new module (TELEVIR) for virus detection was developed, after extensive benchmarking of state-of-the-art metagenomics software and following up-to-date recommendations and practices in the field. TELEVIR allows running complex workflows, covering several combinations of steps (e.g., with/without viral enrichment or host depletion), classification software (e.g., Kaiju, Kraken2, Centrifuge, FastViromeExplorer), and databases (RefSeq viral genome, Virosaurus, etc.), while culminating in user- and diagnosis-oriented reports. Finally, to potentiate real-time virus detection during ONT runs, we developed findONTime, a tool aimed at reducing costs and the time between sample reception and diagnosis. CONCLUSIONS The accessibility, versatility, and functionality of INSaFLU-TELEVIR are expected to supply public and animal health laboratories and researchers with a user-oriented and pan-viral bioinformatics framework that promotes a strengthened and timely viral metagenomic detection and routine genomics surveillance. INSaFLU-TELEVIR is compatible with Illumina, Ion Torrent, and ONT data and is freely available at https://insaflu.insa.pt/ (online tool) and https://github.com/INSaFLU (code).
Collapse
Affiliation(s)
- João Dourado Santos
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniel Sobral
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Miguel Pinheiro
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Joana Isidro
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Carlijn Bogaardt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Surrey, UK
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rodrigo Eusébio
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - André Santos
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rafael Mamede
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel L Horton
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Surrey, UK
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal.
| |
Collapse
|
41
|
Corell-Sierra J, Marquez-Molins J, Marqués MC, Hernandez-Azurdia AG, Montagud-Martínez R, Cebriá-Mendoza M, Cuevas JM, Albert E, Navarro D, Rodrigo G, Gómez G. SARS-CoV-2 remodels the landscape of small non-coding RNAs with infection time and symptom severity. NPJ Syst Biol Appl 2024; 10:41. [PMID: 38632240 PMCID: PMC11024147 DOI: 10.1038/s41540-024-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | | | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010, Valencia, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| | - Gustavo Gómez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| |
Collapse
|
42
|
Yang YL, Wang B, Li W, Cai HL, Qian QY, Qin Y, Shi FS, Bosch BJ, Huang YW. Functional dissection of the spike glycoprotein S1 subunit and identification of cellular cofactors for regulation of swine acute diarrhea syndrome coronavirus entry. J Virol 2024; 98:e0013924. [PMID: 38501663 PMCID: PMC11019839 DOI: 10.1128/jvi.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.
Collapse
Affiliation(s)
- Yong-Le Yang
- Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Bin Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wentao Li
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Qian-Yu Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qin
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Shu Shi
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Yao-Wei Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Wang Y, Yuan F, Song Y, Rao H, Xiao L, Guo H, Zhang X, Li M, Wang J, Ren YZ, Tian J, Yang J. Prediction of cross-border spread of the COVID-19 pandemic: A predictive model for imported cases outside China. PLoS One 2024; 19:e0301420. [PMID: 38593140 PMCID: PMC11003692 DOI: 10.1371/journal.pone.0301420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024] Open
Abstract
The COVID-19 pandemic has been present globally for more than three years, and cross-border transmission has played an important role in its spread. Currently, most predictions of COVID-19 spread are limited to a country (or a region), and models for cross-border transmission risk assessment remain lacking. Information on imported COVID-19 cases reported from March 2020 to June 2022 was collected from the National Health Commission of China, and COVID-19 epidemic data of the countries of origin of the imported cases were collected on data websites such as WHO and Our World in Data. It is proposed to establish a prediction model suitable for the prevention and control of overseas importation of COVID-19. Firstly, the SIR model was used to fit the epidemic infection status of the countries where the cases were exported, and most of the r2 values of the fitted curves obtained were above 0.75, which indicated that the SIR model could well fit different countries and the infection status of the region. After fitting the epidemic infection status data of overseas exporting countries, on this basis, a SIR-multiple linear regression overseas import risk prediction combination model was established, which can predict the risk of overseas case importation, and the established overseas import risk model overall P <0.05, the adjusted R2 = 0.7, indicating that the SIR-multivariate linear regression overseas import risk prediction combination model can obtain better prediction results. Our model effectively estimates the risk of imported cases of COVID-19 from abroad.
Collapse
Affiliation(s)
- Ying Wang
- Science and Technology Research Center of China Customs, Beijing, China
- School of Epidemiology and Public Health, Shanxi Medical University, Taiyuan, China
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Fang Yuan
- Science and Technology Research Center of China Customs, Beijing, China
| | - Yueqian Song
- Science and Technology Research Center of China Customs, Beijing, China
| | - Huaxiang Rao
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Lili Xiao
- Science and Technology Research Center of China Customs, Beijing, China
| | - Huilin Guo
- Science and Technology Research Center of China Customs, Beijing, China
| | - Xiaolong Zhang
- Science and Technology Research Center of China Customs, Beijing, China
| | - Mufan Li
- School of Epidemiology and Public Health, Shanxi Medical University, Taiyuan, China
| | - Jiayu Wang
- School of Epidemiology and Public Health, Shanxi Medical University, Taiyuan, China
| | - Yi zhou Ren
- School of Epidemiology and Public Health, Shanxi Medical University, Taiyuan, China
| | - Jie Tian
- Science and Technology Research Center of China Customs, Beijing, China
| | - Jianzhou Yang
- Department of Preventive Medicine, Changzhi Medical College, Changzhi, China
| |
Collapse
|
44
|
Morel M, Zhukova A, Lemoine F, Gascuel O. Accurate Detection of Convergent Mutations in Large Protein Alignments With ConDor. Genome Biol Evol 2024; 16:evae040. [PMID: 38451738 PMCID: PMC10986858 DOI: 10.1093/gbe/evae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Evolutionary convergences are observed at all levels, from phenotype to DNA and protein sequences, and changes at these different levels tend to be correlated. Notably, convergent mutations can lead to convergent changes in phenotype, such as changes in metabolism, drug resistance, and other adaptations to changing environments. We propose a two-component approach to detect mutations subject to convergent evolution in protein alignments. The "Emergence" component selects mutations that emerge more often than expected, while the "Correlation" component selects mutations that correlate with the convergent phenotype under study. With regard to Emergence, a phylogeny deduced from the alignment is provided by the user and is used to simulate the evolution of each alignment position. These simulations allow us to estimate the expected number of mutations in a neutral model, which is compared to the observed number of mutations in the data studied. In Correlation, a comparative phylogenetic approach, is used to measure whether the presence of each of the observed mutations is correlated with the convergent phenotype. Each component can be used on its own, for example Emergence when no phenotype is available. Our method is implemented in a standalone workflow and a webserver, called ConDor. We evaluate the properties of ConDor using simulated data, and we apply it to three real datasets: sedge PEPC proteins, HIV reverse transcriptase, and fish rhodopsin. The results show that the two components of ConDor complement each other, with an overall accuracy that compares favorably to other available tools, especially on large datasets.
Collapse
Affiliation(s)
- Marie Morel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne, 69100, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, CNR Virus Des Infections Respiratoires, Paris, France
| | - Olivier Gascuel
- Institut Pasteur, Université Paris Cité, Unité Bioinformatique Evolutive, Paris, France
- Institut de Systématique, Evolution, Biodiversité (UMR 7205—CNRS, Muséum National d’Histoire Naturelle, SU, EPHE, UA), Paris, France
| |
Collapse
|
45
|
Yu Q, Ascensao JA, Okada T, The COVID-19 Genomics UK (COG-UK) Consortium, Boyd O, Volz E, Hallatschek O. Lineage frequency time series reveal elevated levels of genetic drift in SARS-CoV-2 transmission in England. PLoS Pathog 2024; 20:e1012090. [PMID: 38620033 PMCID: PMC11045146 DOI: 10.1371/journal.ppat.1012090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/25/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024] Open
Abstract
Genetic drift in infectious disease transmission results from randomness of transmission and host recovery or death. The strength of genetic drift for SARS-CoV-2 transmission is expected to be high due to high levels of superspreading, and this is expected to substantially impact disease epidemiology and evolution. However, we don't yet have an understanding of how genetic drift changes over time or across locations. Furthermore, noise that results from data collection can potentially confound estimates of genetic drift. To address this challenge, we develop and validate a method to jointly infer genetic drift and measurement noise from time-series lineage frequency data. Our method is highly scalable to increasingly large genomic datasets, which overcomes a limitation in commonly used phylogenetic methods. We apply this method to over 490,000 SARS-CoV-2 genomic sequences from England collected between March 2020 and December 2021 by the COVID-19 Genomics UK (COG-UK) consortium and separately infer the strength of genetic drift for pre-B.1.177, B.1.177, Alpha, and Delta. We find that even after correcting for measurement noise, the strength of genetic drift is consistently, throughout time, higher than that expected from the observed number of COVID-19 positive individuals in England by 1 to 3 orders of magnitude, which cannot be explained by literature values of superspreading. Our estimates of genetic drift suggest low and time-varying establishment probabilities for new mutations, inform the parametrization of SARS-CoV-2 evolutionary models, and motivate future studies of the potential mechanisms for increased stochasticity in this system.
Collapse
Affiliation(s)
- QinQin Yu
- Department of Physics, University of California, Berkeley, California, United States of America
| | - Joao A. Ascensao
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Takashi Okada
- Department of Physics, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- RIKEN iTHEMS, Wako, Saitama, Japan
| | | | - Olivia Boyd
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Erik Volz
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
46
|
Nonaka CKV, de Jesus Ribeiro AM, Rocha GV, da Hora HS, Junior AAF, Lima FDM, Bastos IN, Teles SAS, Weber TGL, Costa VF, Costa-Ferro ZS, Rocha CAG, Sardi SI, Soares G, Mendes AVA, Souza BSDF. Assessing the Clinical Impact of the SARS-CoV-2 Gamma Variant on Intensive Care Unit Admissions: Insights from a Reference Hospital in Northeastern Brazil. Viruses 2024; 16:467. [PMID: 38543835 PMCID: PMC10974300 DOI: 10.3390/v16030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 05/23/2024] Open
Abstract
The global challenge posed by the prolonged COVID-19 pandemic underscores the critical need for ongoing genomic surveillance to identify emerging variants and formulate effective public health strategies. This retrospective observational study, conducted in a reference hospital in Northeast Brazil and comprising 2116 cases, employed PCR genotyping together with epidemiological data to elucidate the impact of the Gamma variant during its emergence, revealing distinct patterns in hospitalization rates, severity of illness, and outcomes. The study emphasizes the challenges posed by the variant, particularly an increased tendency for ICU admissions and respiratory support, especially among adults aged 18 to 59 without comorbidities. Laboratory analyses further demonstrate elevated inflammatory, coagulation, and hepatic markers in the Gamma variant cohort, suggesting a more severe systemic response. Despite limitations, including a retrospective approach and single-institution data, the study underscores the importance of ongoing genomic surveillance. Overall, this research contributes valuable insights into the impact of the Gamma variant on COVID-19 dynamics, advocating for continued research and surveillance to inform effective public health strategies regarding evolving viral variants.
Collapse
Affiliation(s)
- Carolina Kymie Vasques Nonaka
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil; (C.K.V.N.); (G.V.R.); (Z.S.C.-F.); (C.A.G.R.)
- São Rafael Hospital, Salvador 41253-190, BA, Brazil; (S.A.S.T.); (T.G.L.W.); (V.F.C.); (A.V.A.M.)
| | | | - Gisele Vieira Rocha
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil; (C.K.V.N.); (G.V.R.); (Z.S.C.-F.); (C.A.G.R.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil
| | - Helena Souza da Hora
- Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (A.M.d.J.R.); (G.S.)
| | | | | | - Iasmin Nogueira Bastos
- Faculty of Medicine and Dentistry, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| | - Samara Alves Sa Teles
- São Rafael Hospital, Salvador 41253-190, BA, Brazil; (S.A.S.T.); (T.G.L.W.); (V.F.C.); (A.V.A.M.)
| | | | - Vanessa Ferreira Costa
- São Rafael Hospital, Salvador 41253-190, BA, Brazil; (S.A.S.T.); (T.G.L.W.); (V.F.C.); (A.V.A.M.)
| | - Zaquer Suzana Costa-Ferro
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil; (C.K.V.N.); (G.V.R.); (Z.S.C.-F.); (C.A.G.R.)
| | - Clarissa Araújo Gurgel Rocha
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil; (C.K.V.N.); (G.V.R.); (Z.S.C.-F.); (C.A.G.R.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil
- Faculty of Medicine and Dentistry, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| | - Silvia Inês Sardi
- Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (A.M.d.J.R.); (G.S.)
| | - Gúbio Soares
- Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, BA, Brazil; (A.M.d.J.R.); (G.S.)
| | | | - Bruno Solano de Freitas Souza
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil; (C.K.V.N.); (G.V.R.); (Z.S.C.-F.); (C.A.G.R.)
- São Rafael Hospital, Salvador 41253-190, BA, Brazil; (S.A.S.T.); (T.G.L.W.); (V.F.C.); (A.V.A.M.)
- Gonçalo Moniz Institute, FIOCRUZ, Salvador 40296-710, BA, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Salvador 40296-710, BA, Brazil
| |
Collapse
|
47
|
Faucher B, Sabbatini CE, Czuppon P, Kraemer MUG, Lemey P, Colizza V, Blanquart F, Boëlle PY, Poletto C. Drivers and impact of the early silent invasion of SARS-CoV-2 Alpha. Nat Commun 2024; 15:2152. [PMID: 38461311 PMCID: PMC10925057 DOI: 10.1038/s41467-024-46345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) circulated cryptically before being identified as a threat, delaying interventions. Here we studied the drivers of such silent spread and its epidemic impact to inform future response planning. We focused on Alpha spread out of the UK. We integrated spatio-temporal records of international mobility, local epidemic growth and genomic surveillance into a Bayesian framework to reconstruct the first three months after Alpha emergence. We found that silent circulation lasted from days to months and decreased with the logarithm of sequencing coverage. Social restrictions in some countries likely delayed the establishment of local transmission, mitigating the negative consequences of late detection. Revisiting the initial spread of Alpha supports local mitigation at the destination in case of emerging events.
Collapse
Affiliation(s)
- Benjamin Faucher
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Chiara E Sabbatini
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, 48149, Germany
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
- Department of Biology, Georgetown University, Washington, DC, USA
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, 75005, France
| | - Pierre-Yves Boëlle
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
48
|
de Oliveira Martins L, Mather AE, Page AJ. Scalable neighbour search and alignment with uvaia. PeerJ 2024; 12:e16890. [PMID: 38464752 PMCID: PMC10924453 DOI: 10.7717/peerj.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/15/2024] [Indexed: 03/12/2024] Open
Abstract
Despite millions of SARS-CoV-2 genomes being sequenced and shared globally, manipulating such data sets is still challenging, especially selecting sequences for focused phylogenetic analysis. We present a novel method, uvaia, which is based on partial and exact sequence similarity for quickly extracting database sequences similar to query sequences of interest. Many SARS-CoV-2 phylogenetic analyses rely on very low numbers of ambiguous sites as a measure of quality since ambiguous sites do not contribute to single nucleotide polymorphism (SNP) differences. Uvaia overcomes this limitation by using measures of sequence similarity which consider partially ambiguous sites, allowing for more ambiguous sequences to be included in the analysis if needed. Such fine-grained definition of similarity allows not only for better phylogenetic analyses, but could also lead to improved classification and biogeographical inferences. Uvaia works natively with compressed files, can use multiple cores and efficiently utilises memory, being able to analyse large data sets on a standard desktop.
Collapse
Affiliation(s)
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
49
|
Linosefa L, Hasmiwati H, Jamsari J, Putra AE. Dynamic Evolution of SARS-CoV-2 in West Sumatra: Analyzing S Gene Mutations Across Variants and Their Impact on Public Health and Vaccine Strategies. Pak J Biol Sci 2024; 27:182-189. [PMID: 38812109 DOI: 10.3923/pjbs.2024.182.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
<b>Background and Objective:</b> The global SARS-CoV-2 pandemic highlights the importance of tracking virus evolution through genomic surveillance, especially concerning mutations in the SARS-CoV-2 spike protein, crucial for vaccine development. Despite global concern over variants, regions like West Sumatra, Indonesia, lack thorough genomic analysis, prompting this study to analyze S gene mutations across three pandemic waves in West Sumatra. <b>Materials and Methods:</b> Next-generation sequencing was conducted through the Illumina MiSeq instrument to leverage a dataset of 352 anonymized samples collected between March, 2020 and November, 2022 and rigorous analysis of S gene mutation using CLC Genomics Workbench<sup>®</sup> 21 version 21.0.3 were employed. Statistical analyses assessed mutation prevalence over time, exploring associations with clinical outcomes. <b>Results:</b> The findings revealed significant variability in mutation profiles across different variants. Notably, the Omicron variant (21K) exhibited a high mutation rate, suggesting enhanced immune evasion capabilities. Comparative analysis highlighted evolutionary trends, from early variants with fewer mutations to highly adapted forms like Delta (21I) and Omicron. The dynamic nature of SARS-CoV-2 evolution underscores the importance of continuous surveillance, rapid public health response and vaccine adaptation. <b>Conclusion:</b> This study contributes valuable insights into the virus's evolving landscape, emphasizing the need for ongoing research, global collaboration and adaptable vaccine strategies to manage the evolving threat of COVID-19 effectively.
Collapse
|
50
|
Gräf T, Martinez AA, Bello G, Dellicour S, Lemey P, Colizza V, Mazzoli M, Poletto C, Cardoso VLO, da Silva AF, Motta FC, Resende PC, Siqueira MM, Franco L, Gresh L, Gabastou JM, Rodriguez A, Vicari A, Aldighieri S, Mendez-Rico J, Leite JA. Dispersion patterns of SARS-CoV-2 variants Gamma, Lambda and Mu in Latin America and the Caribbean. Nat Commun 2024; 15:1837. [PMID: 38418815 PMCID: PMC10902334 DOI: 10.1038/s41467-024-46143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.
Collapse
Affiliation(s)
- Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil.
| | - Alexander A Martinez
- Gorgas Memorial Institute for Health Studies, Panama City, Panama
- National Research System (SNI), National Secretary of Research, Technology and Innovation (SENACYT), Panama City, Panama
- Department of Microbiology and Immunology, University of Panama, Panama City, Panama
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 av. FD Roosevelt, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Mattia Mazzoli
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), Paris, France
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Vanessa Leiko Oikawa Cardoso
- Laboratório de Enfermidades Infecciosas Transmitidas por Vetores, Instituto Gonçalo Moniz, FIOCRUZ-Bahia, Salvador, Brazil
| | | | - Fernando Couto Motta
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leticia Franco
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Lionel Gresh
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jean-Marc Gabastou
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Angel Rodriguez
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Andrea Vicari
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Sylvain Aldighieri
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Jairo Mendez-Rico
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA
| | - Juliana Almeida Leite
- Infectious Hazards Management Unit, Health Emergencies Department, Pan American Health Organization, Washington D.C., USA.
| |
Collapse
|