1
|
Zhang X, Xiong W, Gao F, Yu Z, Ren F, Lei XG. Impacts and mechanism of liver-specific knockout of selenoprotein I on hepatic phospholipid metabolism, selenogenome expression, redox status, and resistance to CCl 4 toxicity. Free Radic Biol Med 2025:S0891-5849(25)00662-8. [PMID: 40345504 DOI: 10.1016/j.freeradbiomed.2025.05.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Selenoprotein I (SELENOI) was known initially as ethanolamine phosphotransferase 1 (EPT1) and later as a selenoprotein. Because global knockout of Selenoi in mice is embryonically lethal, we generated liver-specific Selenoi knockout (cKO) mice to reveal functions and mechanism of SELENOI in the liver. Compared with control mice, cKO mice (8 weeks old) had no differences in body weight, glucose metabolism, energy expenditure, overall health status, or liver histology. However, these mice had lower (P < 0.05) mRNA levels of 13 selenoprotein genes, contents of Se, GSH, and T-AOC (12-40%), and activities of antioxidant enzymes (17-51%), but higher (P < 0.05) mRNA levels of oxidative stress-related genes (34%-46%) in the liver than the control mice. They had a higher (P < 0.05) ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) due to increases of the former and decreases of the latter, altered PE and PC constituents such as n-6/n-3 PUFA ratios, and elevated mRNA levels (95%-2-fold, P < 0.05) of lipolysis genes, compared with the control mice. The knockout attenuated hepatic injury and fibrosis induced by 14 intraperitoneal injections of CCl4 (0.5 mL/kg). The protection was associated with adaptive cytoprotective mechanisms induced by the overall decline of redox status mediated by SELENOI as a selenoprotein and activations of PPAR signaling, fatty acid desaturase 2 (FADS2), glutathione S-transferase, and lipid peroxide hydrolysis through modulating biosynthesis and(or) constituents of PC, PE, and n-6/n-3 PUFAs mediated by SELENOI as EPT1. Inhibition of FADS2 in CCl4-treated cKO hepatocytes partially removed the protection by the knockout. In conclusion, hepatic SELENOI expression was not essential for survival, but served as a multifunctional regulator of hepatic selenogenome expression, Se metabolism, redox status, biosyntheses and profiles of PC and PE, and resistance to CCI4.
Collapse
Affiliation(s)
- Xu Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| | - Fei Gao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengquan Yu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
2
|
Liang YN, Chen L, Huang QY, Song YT, Fan YJ, Chen TQ, Ni JH, Wang D, Shen XY, Wang YM, You Y. Immune cells in systemic lupus erythematosus: biology and traditional Chinese medicine therapy. Acta Pharmacol Sin 2025:10.1038/s41401-025-01554-2. [PMID: 40247040 DOI: 10.1038/s41401-025-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/30/2025] [Indexed: 04/19/2025]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by a progressive breakdown of immune tolerance to self-antigens, resulting in multiple tissue damage and clinical symptoms. Innate and adaptive immune cells including dendritic cells, macrophages, myeloid-derived suppressor cells (MDSCs), T cells and B cells are the key drivers in perpetuating and amplifying of this systemic disease. In this review we offer a comprehensive overview of recent advances in understanding the immune-pathogenesis of SLE with particular emphasis on regulatory immune cells exhibiting immunosuppressive properties, as well as newly identified factors influencing immune cell function and lineage differentiation. Furthermore, we discuss traditional Chinese medicine and natural extracts that have shown therapeutic effects on SLE by modulating immune cell differentiation and function, which may provide insights into their clinical applications.
Collapse
Affiliation(s)
- Ya-Nan Liang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Luo Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qing-Yu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Yu-Ting Song
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu-Juan Fan
- Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Tong-Qing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dong Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi-Ming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Jin F, Gridley J, Kumari A, Saeidi A, Holland B, Elrod E, Dravid P, Trivedi S, Kapoor A, Thapa M, Grakoui A. Hyperfunctional T cell responses unchecked by regulatory T cells are unable to resolve hepaciviral infection without humoral contribution. J Hepatol 2025; 82:604-614. [PMID: 39423870 PMCID: PMC11911089 DOI: 10.1016/j.jhep.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS The most recent T cell-based vaccine against HCV tested in humans failed to swing the pendulum from chronicity to resolution, despite eliciting cellular responses in most individuals. These results naturally evoke the question of whether hyperactivated responses of a single adaptive immune arm are capable of inducing HCV clearance or if coordinated efforts between antibodies and T cells are indeed necessary. Here, we sought to address this point in determining whether the suppression of antiviral T cell and IgG responses by regulatory T cells (Tregs) is a critical prerequisite of delayed viral clearance or overt chronicity. METHODS Using a surrogate model of HCV infection, rodent hepacivirus (RHV) infection in mice, we utilized Foxp3-DTR mice to assess how Tregs modulate the generation of acute antiviral adaptive immune responses and indirectly dictate infection fate via intracellular flow cytometry staining, ELISA, RNA sequencing, and qPCR. RESULTS Transient depletion of Tregs prior to infection decreased viral-specific CD4+ T cell function, IgG production, and delayed viral clearance. In contrast, transient Treg depletion after infection increased both T cell functionality and IgG production, thereby facilitating accelerated viral clearance. Hyperactivated T cells, achieved via transient Treg depletion, were unable to clear the virus as an isolated effector arm without the help of viral-specific IgG production. CONCLUSIONS Tregs control the outcome of RHV infection via direct modulation of CD4+ T cells and IgG production. Hyperactivated T cell responses are incapable of compensating for experimentally induced lack of antibodies, further reinforcing the notion of cooperative interplay between adaptive immune arms in facilitating hepaciviral clearance. IMPACT AND IMPLICATIONS Herein, we demonstrate how timing of regulatory T cell depletion determines the fate of effector T cells, humoral responses, and the kinetics of viral clearance. Our observations provide direct evidence that functional T cell responses are incapable of compensating for suboptimal humoral responses to facilitate viral resolution. Our results imply that future HCV vaccine regimens should not solely rely on eliciting focused responses of a single effector arm, but rather incorporate immunogens capable of inducing durable features of both humoral and cellular memory.
Collapse
Affiliation(s)
- Fengzhi Jin
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - John Gridley
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Anuradha Kumari
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Alireza Saeidi
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Brantley Holland
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Elizabeth Elrod
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, Ohio, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, Ohio, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, Ohio, USA
| | - Manoj Thapa
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Arash Grakoui
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Xu G, Xiao W, Sun P, Sun Y, Yang X, Yin X, Liu Y. Lysophosphatidylethanolamine improves diastolic dysfunction by alleviating mitochondrial injury in the aging heart. J Lipid Res 2025; 66:100713. [PMID: 39579983 PMCID: PMC11719853 DOI: 10.1016/j.jlr.2024.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024] Open
Abstract
Diastolic dysfunction in aging mice is linked to mitochondrial abnormalities, including mitochondrial morphology disorders and decreases in membrane potential. Studies also show that aberrant mitochondrial lipid metabolism impairs mitochondrial function in aging cardiomyocytes. Our lipidomic analysis revealed that phosphatidylethanolamine (PE) levels were significantly decreased in aging myocardial mitochondria. Here, we investigated whether a reduction in PE levels in myocardial mitochondria contributes to mitochondrial injury as well as HFpEF pathogenesis and whether modulation of PE levels could ameliorate aging-induced HFpEF. Echocardiography was used to assess cardiac diastolic function in adult and aging mice treated with lysophosphatidylethanolamine (LPE) or saline. Mitochondrial morphologies from tissue samples were evaluated by transmission electron microscopy (TEM), while mitochondrial membrane potential and reactive oxygen species (ROS) levels were assessed using JC-1, MitoSOX, and DCFH-DA detection assays. We performed GO enrichment analysis between adult and aging mice and discovered significant enrichment in transcriptional programs associated with mitochondria and lipid metabolism. Also, mitochondrial PE levels were significantly decreased in aging cardiomyocytes. Treatment with LPE (200 μg/kg) significantly enhanced PE content in aging mice and improved the structure of mitochondria in cardiac cells. Also, LPE treatment protects against aging-induced deterioration of mitochondrial injury, as evidenced by increased mitochondrial membrane potential and decreased mitochondrial ROS. Furthermore, treatment with LPE alleviated severe diastolic dysfunction in aging mice. Taken together, our results suggest that LPE treatment enhances PE levels in mitochondria and ameliorates aging-induced diastolic dysfunction in mice through a mechanism involving improved mitochondrial structure and function.
Collapse
Affiliation(s)
- Guiwen Xu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Xiao
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Pengqi Sun
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanjun Sun
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Yang
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaomeng Yin
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yang Liu
- Institute of Cardiovascular Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
Shi S, Zhang H, Jiang P, Zhou Y, Zhu Y, Feng T, Xie C, He H, Chen J. Inhibition of LPCAT3 exacerbates endoplasmic reticulum stress and HBV replication. Int Immunopharmacol 2024; 143:113337. [PMID: 39423656 DOI: 10.1016/j.intimp.2024.113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Altered phospholipid metabolism plays a key role in changing the immune microenvironment and severely affecting T-cell function. LPCAT3 is one of the vital enzymes regulating phospholipid metabolism. This study aims to verify the effect of LPCAT3 on HBV replication in vitro and the chronic progression of hepatitis B infection based on the results of lipidomic. METHODS Untargeted lipidomic analysis was employed to scrutinize discrepancies in lipid metabolites between 40 HBV-infected patients and those who spontaneously cleared the virus. Subsequently, enzyme-linked immunosorbent assay (ELISA), enzyme-linked immunospot assay (ELISPOT), western blotting (WB) and quantitative polymerase chain reaction (qPCR) were utilized to investigate LPCAT3 expression and assess HBV replication and endoplasmic reticulum stress (ERS). RESULTS A comparative analysis between HBV-infected patients and those experiencing spontaneous clearance revealed significant disparities in 24 lipid metabolites. Among these, phosphatidylcholine (PC) and lysophosphatidylcholine (LPC), constituting half (12/24) of the identified metabolites, were identified as substrates and products of LPCAT3. In vitro studies demonstrated that inhibiting LPCAT3 led to elevated expression levels of hepatitis B surface antigen (HBsAg), HBV-DNA, and interferon-γ (IFN-γ) (P < 0.05), indicative of heightened HBV replication. Furthermore, LPCAT3 inhibition significantly upregulated the expression of genes associated with ERS (P < 0.05). CONCLUSIONS Inhibiting LPCAT3 significantly correlates with HBV replication and induces inflammation by enhancing ERS. We hypothesize that LPCAT3 serves as a potential biomarker for hepatitis B virus replication and chronic progression. Furthermore, these findings elucidate the malignant progression of HBV infection from the standpoint of lipid metabolism, offering a novel insight for subsequent mechanistic exploration or therapeutic studies. LAY SUMMARY LPCAT3 inhibition enhances endoplasmic reticulum stress and HBV replication by altering the membrane phospholipid composition and promotes chronic hepatitis B progression.
Collapse
Affiliation(s)
- Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Pengjun Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Chengxia Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China.
| |
Collapse
|
6
|
Tighanimine K. Lipid remodeling in context of cellular senescence. Biochimie 2024; 227:47-52. [PMID: 39299535 DOI: 10.1016/j.biochi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| |
Collapse
|
7
|
Cao Y, Li X, Pan Y, Wang H, Yang S, Hong L, Ye L. CRISPR-based genetic screens advance cancer immunology. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2554-2562. [PMID: 39048715 DOI: 10.1007/s11427-023-2571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/18/2024] [Indexed: 07/27/2024]
Abstract
CRISPR technologies have revolutionized research areas ranging from fundamental science to translational medicine. CRISPR-based genetic screens offer a powerful platform for unbiased screening in various fields, such as cancer immunology. Immune checkpoint blockade (ICB) therapy has been shown to strongly affect cancer treatment. However, the currently available ICBs are limited and do not work in all cancer patients. Pooled CRISPR screens enable the identification of previously unknown immune regulators that can regulate T-cell activation, cytotoxicity, persistence, infiltration into tumors, cytokine secretion, memory formation, T-cell metabolism, and CD4+ T-cell differentiation. These novel targets can be developed as new immunotherapies or used with the current ICBs as new combination therapies that may yield synergistic efficacy. Here, we review the progress made in the development of CRISPR technologies, particularly technological advances in CRISPR screens and their application in novel target identification for immunotherapy.
Collapse
Affiliation(s)
- Yuanfang Cao
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Xueting Li
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Yumu Pan
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Huahe Wang
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Siyu Yang
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Lingjuan Hong
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Lupeng Ye
- Institute of Modern Biology, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
8
|
Nappi TJ, Butler NS. Tragedy of the commons: the resource struggle during Plasmodium infection. Trends Parasitol 2024; 40:1135-1143. [PMID: 39547909 DOI: 10.1016/j.pt.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Plasmodium spp. have an ancient history with humans, having been described in ancient texts dating back 3500 years ago, which has led to an evolutionary arms race between Plasmodium and humans with Plasmodium successfully subverting durable, sterilizing host immunity. Mechanisms of immune evasion include polymorphism and antigenic variation, as well as dysregulated immune responses, each facilitating transmission and Plasmodium parasite persistence. Notably, metabolite signaling cues in the host and parasite have more recently been appreciated as key drivers for disease progression. Here, we highlight the metabolic interplay between the host and Plasmodium parasites during malaria. We discuss how immunometabolism studies may be leveraged to elucidate this complex relationship and offer opportunities to augment either vaccine- or infection-induced protective immunity.
Collapse
Affiliation(s)
- Taylen J Nappi
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Sharma A, Sharma G, Gao Z, Li K, Li M, Wu M, Kim CJ, Chen Y, Gautam A, Choi HB, Kim J, Kwak JM, Lam SM, Shui G, Paul S, Feng Y, Kang K, Im SH, Rudra D. Glut3 promotes cellular O-GlcNAcylation as a distinctive tumor-supportive feature in Treg cells. Cell Mol Immunol 2024; 21:1474-1490. [PMID: 39468304 PMCID: PMC11606946 DOI: 10.1038/s41423-024-01229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Regulatory T cells (Tregs) establish dominant immune tolerance but obstruct tumor immune surveillance, warranting context-specific mechanistic insights into the functions of tumor-infiltrating Tregs (TIL-Tregs). We show that enhanced posttranslational O-linked N-acetylglucosamine modification (O-GlcNAcylation) of cellular factors is a molecular feature that promotes a tumor-specific gene expression signature and distinguishes TIL-Tregs from their systemic counterparts. We found that altered glucose utilization through the glucose transporter Glut3 is a major facilitator of this process. Treg-specific deletion of Glut3 abrogates tumor immune tolerance, while steady-state immune homeostasis remains largely unaffected in mice. Furthermore, by employing mouse tumor models and human clinical data, we identified the NF-κB subunit c-Rel as one such factor that, through Glut3-dependent O-GlcNAcylation, functionally orchestrates gene expression in Tregs at tumor sites. Together, these results not only identify immunometabolic alterations and molecular events contributing to fundamental aspects of Treg biology, specifically at tumor sites but also reveal tumor-specific cellular properties that can aid in the development of Treg-targeted cancer immunotherapies.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Innovation Research Center for Biofuture Technology (B-IRC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Garima Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- ImmmunoBiome Inc, Pohang, 37673, Republic of Korea
| | - Zhen Gao
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ke Li
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mutong Li
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Menglin Wu
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Yingjia Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, Tübingen, 72076, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | | | - Jin Kim
- Department of Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jung-Myun Kwak
- Department of Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
- Lipidall Technologies Company Limited, Changzhou, 213022, Jiangsu Province, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Sandip Paul
- Center for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- ImmmunoBiome Inc, Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Dipayan Rudra
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Kim J, Lee Y, Chung Y. Control of T-cell immunity by fatty acid metabolism. Ann Pediatr Endocrinol Metab 2024; 29:356-364. [PMID: 39778404 PMCID: PMC11725633 DOI: 10.6065/apem.2448160.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Fatty acids play critical roles in maintaining the cellular functions of T cells and regulating T-cell immunity. This review synthesizes current research on the influence of fatty acids on T-cell subsets, including CD8+ T cells, TH1, TH17, Treg (regulatory T cells), and TFH (T follicular helper) cells. Fatty acids impact T cells by modulating signaling pathways, inducing metabolic changes, altering cellular structures, and regulating gene expression epigenetically. These processes affect T-cell activation, differentiation, and function, with implications for diseases such as autoimmune disease and cancer. Based on these insights, fatty acid pathways can potentially be modulated by novel therapeutics, paving the way for novel treatment approaches for immune-mediated disorders and cancer immunotherapy.
Collapse
Affiliation(s)
- Jaemin Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoosun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Li J, Chen M, Huang D, Li Z, Chen Y, Huang J, Chen Y, Zhou Z, Yu Z. Inhibition of Selenoprotein I promotes ferroptosis and reverses resistance to platinum chemotherapy by impairing Akt phosphorylation in ovarian cancer. MedComm (Beijing) 2024; 5:e70033. [PMID: 39669976 PMCID: PMC11635127 DOI: 10.1002/mco2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 12/14/2024] Open
Abstract
Ovarian cancer (OV) ranks among the deadliest gynecological cancer, known for its high risk of relapse and metastasis, and a general resistance to conventional platinum-based chemotherapy. Selenoprotein I (SELENOI) is a crucial mediator implicated in human hereditary spastic paraplegia. However, its role in human tumors remains poorly elucidated. Here, we comprehensively analyzed SELENOI expression patterns, functions, and clinical implications across various malignancies through the integration of bulk transcriptomics, cancer databases, and in vitro and in vivo experiments. Pan-cancer analysis indicated upregulated SELENOI expression across various cancers, correlating with augmented malignancy, suppressed tumor immunity and poor prognosis. Knockdown of SELENOI caused G0/G1-phase cell cycle arrest and diminished aggressive cancer phenotypes in OV cells. Moreover, SELENOI inhibition augments ferroptosis and reverses the cisplatin resistance in OV cells by modulating Akt phosphorylation. Conversely, overexpression of SELENOI in OV cells enhanced therapeutic sensitivity to cisplatin by upregulating Akt phosphorylation. Importantly, in vivo studies demonstrated that SELENOI inhibition suppressed ovarian tumor growth and enhanced cisplatin's anticancer effects. These findings highlight the significant role of SELENOI in OV by modulating ferroptosis and chemotherapy resistance. Targeting SELENOI represents a promising therapeutic approach to promote the efficacy of platinum-based chemotherapy in OV, particularly in cases of resistance.
Collapse
Affiliation(s)
- Jing Li
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhenChina
| | - Mimi Chen
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dingwen Huang
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Ziyin Li
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Yu Chen
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Jinhua Huang
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Yuanqun Chen
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zhili Zhou
- Department of Endocrinology and MetabolismNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiying Yu
- Department of GynecologyShenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Reproductive Immunology for Peri‐implantationShenzhen Zhongshan Institute for Reproductive Medicine and GeneticsShenzhen Zhongshan Obstetrics & Gynecology HospitalShenzhenChina
| |
Collapse
|
12
|
Baysoy A, Tian X, Zhang F, Renauer P, Bai Z, Shi H, Li H, Tao B, Yang M, Enninful A, Gao F, Wang G, Zhang W, Tran T, Patterson NH, Bao S, Dong C, Xin S, Zhong M, Rankin S, Guy C, Wang Y, Connelly JP, Pruett-Miller SM, Chi H, Chen S, Fan R. Spatially Resolved in vivo CRISPR Screen Sequencing via Perturb-DBiT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624106. [PMID: 39605490 PMCID: PMC11601513 DOI: 10.1101/2024.11.18.624106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Perturb-seq enabled the profiling of transcriptional effects of genetic perturbations in single cells but lacks the ability to examine the impact on tissue environments. We present Perturb-DBiT for simultaneous co-sequencing of spatial transcriptome and guide RNAs (gRNAs) on the same tissue section for in vivo CRISPR screen with genome-scale gRNA libraries, offering a comprehensive understanding of how genetic modifications affect cellular behavior and tissue architecture. This platform supports a variety of delivery vectors, gRNA library sizes, and tissue preparations, along with two distinct gRNA capture methods, making it adaptable to a wide range of experimental setups. In applying Perturb-DBiT, we conducted un-biased knockouts of tens of genes or at genome-wide scale across three cancer models. We mapped all gRNAs in individual colonies and corresponding transcriptomes in a human cancer metastatic colonization model, revealing clonal dynamics and cooperation. We also examined the effect of genetic perturbation on the tumor immune microenvironment in an immune-competent syngeneic model, uncovering differential and synergistic perturbations in promoting immune infiltration or suppression in tumors. Perturb-DBiT allows for simultaneously evaluating the impact of each knockout on tumor initiation, development, metastasis, histopathology, and immune landscape. Ultimately, it not only broadens the scope of genetic inquiry, but also lays the groundwork for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- These authors contributed equally
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Feifei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Paul Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- These authors contributed equally
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Haikuo Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bo Tao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fu Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chuanpeng Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sherri Rankin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Wang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jon P. Connelly
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
- Lead contact
| |
Collapse
|
13
|
Zhang Y, Xu Q, Gao Z, Zhang H, Xie X, Li M. High-throughput screening for optimizing adoptive T cell therapies. Exp Hematol Oncol 2024; 13:113. [PMID: 39538305 PMCID: PMC11562648 DOI: 10.1186/s40164-024-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive T cell therapy is a pivotal strategy in cancer immunotherapy, demonstrating potent clinical efficacy. However, its limited durability often results in primary resistance. High-throughput screening technologies, which include both genetic and non-genetic approaches, facilitate the optimization of adoptive T cell therapies by enabling the selection of biologically significant targets or substances from extensive libraries. In this review, we examine advancements in high-throughput screening technologies and their applications in adoptive T cell therapies. We highlight the use of genetic screening for T cells, tumor cells, and other promising combination strategies, and elucidate the role of non-genetic screening in identifying small molecules and targeted delivery systems relevant to adoptive T cell therapies, providing guidance for future research and clinical applications.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Qinglong Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhifei Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
14
|
Li H, Pan C, Wang F, Li Z, Shahzad K, Huang Y, Zhao W. Multi-omics reveals the effects of dietary supplementation with Bupleuri radix branch powder on gut microbiota and lipid metabolism: insights into gut microbial-muscle interactions. Microbiol Spectr 2024; 12:e0145724. [PMID: 39436132 PMCID: PMC11619355 DOI: 10.1128/spectrum.01457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Improving livestock growth and raising the quality of livestock products have attracted much attention owing to the market's growing need for livestock products. Bupleuri Radix branches powder (BR) has a variety of health characteristics, but its effects on ruminant growth and animal product quality are still uncertain. This study explored the effects of BR on growth performance, health status, gut microbiota, and muscle lipid metabolism of Shaanxi fine-wool sheep (SFS), and examined the interaction between gut microbiota and lipid metabolism through correlation analysis. The results indicated that BR can regulate the immune function, intestinal VFAs, and enzyme activity of FSF by improving the gut microbiota, thereby affecting its muscle lipid metabolism. The lipid metabolite TG showed a strong positive correlation with the gut microbes Bacteroides and Fibrobacter, while Phosphatidylethanolamine and Phosphatidyl serine (PE and PS) showed a significant negative correlation with Fibrobacter. The above results indicate that gut microbiota and lipid metabolites interact with each other. BR has the effects of promoting SFS growth, improving body health, and improving meat quality. These findings offer new insights into improve animal growth performance and livestock product quality in modern farming. IMPORTANCE Enhancing livestock growth performance and improving meat quality are important guidelines for the development of the current animal husbandry industry; thus, we explored a comprehensive study of Bupleuri Radix (BR) on growth performance, gut microbiology, and muscle lipid metabolism in Shaanxi fine-wool sheep (SFS). Our research has found that BR could improve the growth performance of SFS and meat quality by affecting gut microbes. This study provides new solutions to improve the economic efficiency of animal husbandry.
Collapse
Affiliation(s)
- Haiyan Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Cheng Pan
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fuqiang Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Zengkai Li
- Shenmu Livestock Development Center, Yulin, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Wangsheng Zhao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
15
|
You S, Wang MJ, Hou ZY, Wang WD, Zhang ZH, Du TT, Li SY, Liu YC, Xue NN, Hu XM, Chen XG, Ji M. ACAT1 Induces the Differentiation of Glioblastoma Cells by Rewiring Choline Metabolism. Int J Biol Sci 2024; 20:5576-5593. [PMID: 39494339 PMCID: PMC11528465 DOI: 10.7150/ijbs.96651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Abnormal differentiation of cells is a hallmark of malignancy. Induction of cancer-cell differentiation is emerging as a novel therapeutic strategy with low toxicity in hematological malignances, but whether such treatment can be used in solid tumors is not known. Here, we uncovered a novel function of acetyl coenzyme A acetyltransferase (ACAT1) in regulating the differentiation of glioblastoma (GBM) cells. Inhibition of ACAT1 promoted the differentiation of GBM cells into astrocytes but also delayed tumor growth. Mechanistically, suppression of ACAT1 restored mitochondrial function and led to metabolic "reprogramming" in GBM cells: reduction of fatty-acid oxidation and acetyl-CoA, but an increase in free fatty acids. Importantly, ACAT1 negatively regulated the choline metabolic pathway, which is crucial for the differentiation of GBM cells. Finally, we demonstrated that a naturally available substance, chlorogenic acid (CHA), could inhibit phosphorylation of ACAT1 and so delay GBM progression, CHA is a promising candidate to treat GBM because it could induce the differentiation of cancer cells.
Collapse
Affiliation(s)
- Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ming-Jin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Yan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100080, China
| | - Wei-Da Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Hui Zhang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shu-Ying Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi-Chen Liu
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ni-Na Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Min Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xiao-Guang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
16
|
WANG ZHIGUO, LI KUNLIN, LU CONGHUA, FENG MINGXIA, LIN CAIYU, YIN GUOFANG, LUO DAN, LIU WENYI, JIN KAIYU, DOU YUANYAO, WU DI, ZHENG JIE, ZHANG KEJUN, LI LI, FAN XIANMING. Metformin promotes anti-tumor immunity in STK11 mutant NSCLC through AXIN1-dependent upregulation of multiple nucleotide metabolites. Oncol Res 2024; 32:1637-1648. [PMID: 39308524 PMCID: PMC11413838 DOI: 10.32604/or.2024.052664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 09/25/2024] Open
Abstract
Background Metformin has pleiotropic effects beyond glucose reduction, including tumor inhibition and immune regulation. It enhanced the anti-tumor effects of programmed cell death protein 1 (PD-1) inhibitors in serine/threonine kinase 11 (STK11) mutant non-small cell lung cancer (NSCLC) through an axis inhibition protein 1 (AXIN1)-dependent manner. However, the alterations of tumor metabolism and metabolites upon metformin administration remain unclear. Methods We performed untargeted metabolomics using liquid chromatography (LC)-mass spectrometry (MS)/MS system and conducted cell experiments to verify the results of bioinformatics analysis. Results According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, most metabolites were annotated into metabolism, including nucleotide metabolism. Next, the differentially expressed metabolites in H460 (refers to H460 cells), H460_met (refers to metformin-treated H460 cells), and H460_KO_met (refers to metformin-treated Axin1 -/- H460 cells) were distributed into six clusters based on expression patterns. The clusters with a reversed expression pattern upon metformin treatment were selected for further analysis. We screened out metabolic pathways through KEGG pathway enrichment analysis and found that multiple nucleotide metabolites enriched in this pathway were upregulated. Furthermore, these metabolites enhanced the cytotoxicity of activated T cells on H460 cells in vitro and can activate the stimulator of the interferon genes (STING) pathway independently of AXIN1. Conclusion Relying on AXIN1, metformin upregulated multiple nucleotide metabolites which promoted STING signaling and the killing of activated T cells in STK11 mutant NSCLC, indicating a potential immunotherapeutic strategy for STK11 mutant NSCLC.
Collapse
Affiliation(s)
- ZHIGUO WANG
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - KUNLIN LI
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - CONGHUA LU
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - MINGXIA FENG
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - CAIYU LIN
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - GUOFANG YIN
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - DAN LUO
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - WENYI LIU
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - KAIYU JIN
- Department of Respiratory Disease, People’s Hospital of Xuyong County, Luzhou, 646000, China
| | - YUANYAO DOU
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - DI WU
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - JIE ZHENG
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - KEJUN ZHANG
- Department of Outpatients, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - LI LI
- Department of Respiratory Disease, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - XIANMING FAN
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
17
|
Ping Y, Shan J, Qin H, Li F, Qu J, Guo R, Han D, Jing W, Liu Y, Liu J, Liu Z, Li J, Yue D, Wang F, Wang L, Zhang B, Huang B, Zhang Y. PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8 + T cell ferroptosis. Immunity 2024; 57:2122-2139.e9. [PMID: 39208806 DOI: 10.1016/j.immuni.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/23/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The tumor microenvironment (TME) promotes metabolic reprogramming and dysfunction in immune cells. Here, we examined the impact of the TME on phospholipid metabolism in CD8+ T cells. In lung cancer, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were lower in intratumoral CD8+ T cells than in circulating CD8+ T cells. Intratumoral CD8+ T cells exhibited decreased expression of phospholipid phosphatase 1 (PLPP1), which catalyzes PE and PC synthesis. T cell-specific deletion of Plpp1 impaired antitumor immunity and promoted T cell death by ferroptosis. Unsaturated fatty acids in the TME stimulated ferroptosis of Plpp1-/- CD8+ T cells. Mechanistically, programmed death-1 (PD-1) signaling in CD8+ T cells induced GATA1 binding to the promoter region Plpp1 and thereby suppressed Plpp1 expression. PD-1 blockade increased Plpp1 expression and restored CD8+ T cell antitumor function but did not rescue dysfunction of Plpp1-/- CD8+ T cells. Thus, PD-1 signaling regulates phospholipid metabolism in CD8+ T cells, with therapeutic implications for immunotherapy.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiming Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao Qu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Guo
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Han
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Jing
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Zhang S, Zhang G, Wang P, Wang L, Fang B, Huang J. Effect of Selenium and Selenoproteins on Radiation Resistance. Nutrients 2024; 16:2902. [PMID: 39275218 PMCID: PMC11396913 DOI: 10.3390/nu16172902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
With the advancement of radiological medicine and nuclear industry technology, radiation is increasingly used to diagnose human health disorders. However, large-scale nuclear leakage has heightened concerns about the impact on human organs and tissues. Selenium is an essential trace element that functions in the body mainly in the form of selenoproteins. Selenium and selenoproteins can protect against radiation by stimulating antioxidant actions, DNA repair functions, and immune enhancement. While studies on reducing radiation through antioxidants have been conducted for many years, the underlying mechanisms of selenium and selenoproteins as significant antioxidants in radiation damage mitigation remain incompletely understood. Therefore, this paper aims to provide new insights into developing safe and effective radiation protection agents by summarizing the anti-radiation mechanism of selenium and selenoproteins.
Collapse
Affiliation(s)
- Shidi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guowei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Limited Liability Company of Hongda Salt Industry, Hoboksar Mongol Autonomous County, Tacheng 834700, China
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
19
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
20
|
Garcia AC, Six N, Ma L, Morel L. Intersection of the microbiome and immune metabolism in lupus. Immunol Rev 2024; 325:77-89. [PMID: 38873851 PMCID: PMC11338729 DOI: 10.1111/imr.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Systemic lupus erythematosus is a complex autoimmune disease resulting from a dysregulation of the immune system that involves gut dysbiosis and an altered host cellular metabolism. This review highlights novel insights and expands on the interactions between the gut microbiome and the host immune metabolism in lupus. Pathobionts, invasive pathogens, and even commensal microbes, when in dysbiosis, can all trigger and modulate immune responses through metabolic reprogramming. Changes in the microbiota's global composition or individual taxa may trigger a cascade of metabolic changes in immune cells that may, in turn, reprogram their functions. Factors contributing to dysbiosis include changes in intestinal hypoxia, competition for glucose, and limited availability of essential nutrients, such as tryptophan and metal ions, all of which can be driven by host metabolism changes. Conversely, the accumulation of some host metabolites, such as itaconate, succinate, and free fatty acids, could further influence the microbial composition and immune responses. Overall, mounting evidence supports a bidirectional relationship between host immunometabolism and the microbiota in lupus pathogenesis.
Collapse
Affiliation(s)
- Abigail Castellanos Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
21
|
Huang X, Yang X, Zhang M, Li T, Zhu K, Dong Y, Lei X, Yu Z, Lv C, Huang J. SELENOI Functions as a Key Modulator of Ferroptosis Pathway in Colitis and Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404073. [PMID: 38757622 PMCID: PMC11267378 DOI: 10.1002/advs.202404073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Ferroptosis plays important roles both in normal physiology and multiple human diseases. It is well known that selenoprotein named glutathione peroxidase 4 (GPX4) is a crucial regulator for ferroptosis. However, it remains unknown whether other selenoproteins responsible for the regulation of ferroptosis, particularly in gut diseases. In this study, it is observed that Selenoprotein I (Selenoi) prevents ferroptosis by maintaining ether lipids homeostasis. Specific deletion of Selenoi in intestinal epithelial cells induced the occurrence of ferroptosis, leading to impaired intestinal regeneration and compromised colonic tumor growth. Mechanistically, Selenoi deficiency causes a remarkable decrease in ether-linked phosphatidylethanolamine (ePE) and a marked increase in ether-linked phosphatidylcholine (ePC). The imbalance of ePE and ePC results in the upregulation of phospholipase A2, group IIA (Pla2g2a) and group V (Pla2g5), as well as arachidonate-15-lipoxygenase (Alox15), which give rise to excessive lipid peroxidation. Knockdown of PLA2G2A, PLA2G5, or ALOX15 can reverse the ferroptosis phenotypes, suggesting that they are downstream effectors of SELENOI. Strikingly, GPX4 overexpression cannot rescue the ferroptosis phenotypes of SELENOI-knockdown cells, while SELENOI overexpression can partially rescue GPX4-knockdown-induced ferroptosis. It suggests that SELENOI prevents ferroptosis independent of GPX4. Taken together, these findings strongly support the notion that SELENOI functions as a novel suppressor of ferroptosis during colitis and colon tumorigenesis.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Xu Yang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Mingxin Zhang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Tong Li
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Yulan Dong
- College of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xingen Lei
- Department of Animal ScienceCornell UniversityIthacaNY14853USA
| | - Zhengquan Yu
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| |
Collapse
|
22
|
Bemark M. The Fat Controller: an unexpected role of SELENOI in IgM responses. J Leukoc Biol 2024; 116:3-5. [PMID: 38713106 DOI: 10.1093/jleuko/qiae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
SELENOI-produced lipids play roles in peripheral B cell differentiation
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine-Human Immunology, Lund University, J Waldenströms gata 35, Malmö 214 28, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg 413 46, Sweden
| |
Collapse
|
23
|
Ma C, Hoffmann FW, Shay AE, Koo I, Green KA, Green WR, Hoffmann PR. Upregulated selenoprotein I during lipopolysaccharide-induced B cell activation promotes lipidomic changes and is required for effective differentiation into IgM-secreting plasma B cells. J Leukoc Biol 2024; 116:6-17. [PMID: 38289835 PMCID: PMC11212798 DOI: 10.1093/jleuko/qiae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The mechanisms driving metabolic reprogramming during B cell activation are unclear, particularly roles for enzymatic pathways involved in lipid remodeling. We found that murine B cell activation with lipopolysaccharide (LPS) led to a 1.6-fold increase in total lipids that included higher levels of phosphatidylethanolamine (PE) and plasmenyl PE. Selenoprotein I (SELENOI) is an ethanolamine phospholipid transferase involved in the synthesis of both PE and plasmenyl PE, and SELENOI expression was also upregulated during activation. Selenoi knockout (KO) B cells exhibited decreased levels of plasmenyl PE, which plays an important antioxidant role. Lipid peroxidation was measured and found to increase ∼2-fold in KO vs. wild-type (WT) B cells. Cell death was not impacted by KO in LPS-treated B cells and proliferation was only slightly reduced, but differentiation into CD138 + Blimp-1+ plasma B cells was decreased ∼2-fold. This led to examination of B cell receptors important for differentiation that recognize the ligand B cell activating factor, and levels of TACI (transmembrane activator, calcium-modulator, and cytophilin ligand interactor) (CD267) were significantly decreased on KO B cells compared with WT control cells. Vaccination with ovalbumin/adjuvant led to decreased ovalbumin-specific immunoglobulin M (IgM) levels in sera of KO mice compared with WT mice. Real-time polymerase chain reaction analyses revealed a decreased switch from surface to secreted IgM in spleens of KO mice induced by vaccination or LP-BM5 retrovirus infection. Overall, these findings detail the lipidomic response of B cells to LPS activation and reveal the importance of upregulated SELENOI for promoting differentiation into IgM-secreting plasma B cells.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, United States
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, United States
| | - Ashley E Shay
- Huck Institutes of the Life Sciences, The Pennsylvania State University, 101 Huck Life Sciences Building, University Park, PA 16802, United States
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107 Animal, Veterinary, and Biomedical Sciences Building, University Park, PA 16802, United States
| | - Kathy A Green
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, One Medical Center Drive HB7556, Lebanon, NH 03756, United States
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, One Medical Center Drive HB7556, Lebanon, NH 03756, United States
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, United States
| |
Collapse
|
24
|
Huang X, Li T, Yang SH, Zhu KD, Wang LS, Dong YL, Huang JQ. Hepatocyte-specific Selenoi deficiency predisposes mice to hepatic steatosis and obesity. FASEB J 2024; 38:e23717. [PMID: 38837270 DOI: 10.1096/fj.202400575rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Tong Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shi-Hui Yang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Kong-di Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Lian-Shun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Yu-Lan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Liu X, Qiu X, Yang Y, Wang J, Wang Q, Liu J, Huang J, Yang F, Liu Z, Qi R. Uncovering the mechanism of Clostridium butyricum CBX 2021 to improve pig health based on in vivo and in vitro studies. Front Microbiol 2024; 15:1394332. [PMID: 38946904 PMCID: PMC11211278 DOI: 10.3389/fmicb.2024.1394332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction As a symbiotic probiotic for the host, Clostridium butyricum (CB) has the potential to strengthen the body's immune system and improve intestinal health. However, the probiotic mechanism of CB is not completely understood. The Clostridium butyricum CBX 2021 strain isolated by our team from a health pig independently exhibits strong butyric acid production ability and stress resistance. Therefore, this study comprehensively investigated the efficacy of CBX 2021 in pigs and its mechanism of improving pig health. Methods In this study, we systematically revealed the probiotic effect and potential mechanism of the strain by using various methods such as microbiome, metabolites and transcriptome through animal experiments in vivo and cell experiments in vitro. Results Our in vivo study showed that CBX 2021 improved growth indicators such as daily weight gain in weaned piglets and also reduced diarrhea rates. Meanwhile, CBX 2021 significantly increased immunoglobulin levels in piglets, reduced contents of inflammatory factors and improved the intestinal barrier. Subsequently, 16S rRNA sequencing showed that CBX 2021 treatment implanted more butyric acid-producing bacteria (such as Faecalibacterium) in piglets and reduced the number of potentially pathogenic bacteria (like Rikenellaceae RC9_gut_group). With significant changes in the microbial community, CBX 2021 improved tryptophan metabolism and several alkaloids synthesis in piglets. Further in vitro experiments showed that CBX 2021 adhesion directly promoted the proliferation of a porcine intestinal epithelial cell line (IPEC-J2). Moreover, transcriptome analysis revealed that bacterial adhesion increased the expression of intracellular G protein-coupled receptors, inhibited the Notch signaling pathway, and led to a decrease in intracellular pro-inflammatory molecules. Discussion These results suggest that CBX 2021 may accelerate piglet growth by optimizing the intestinal microbiota, improving metabolic function and enhancing intestinal health.
Collapse
Affiliation(s)
- Xin Liu
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Xiaoyu Qiu
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Yong Yang
- Chongqing Academy of Animal Science, Chongqing, China
- College of Life Sciences, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jing Wang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Qi Wang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Jingbo Liu
- College of Life Sciences, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jinxiu Huang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Feiyun Yang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Zuohua Liu
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Science, Chongqing, China
| | - Renli Qi
- National Center of Technology Innovation for Pigs, Chongqing, China
- Chongqing Academy of Animal Science, Chongqing, China
| |
Collapse
|
26
|
Rusnak T, Azarcoya-Barrera J, Makarowski A, Jacobs RL, Richard C. Plant- and Animal-Derived Dietary Sources of Phosphatidylcholine Have Differential Effects on Immune Function in The Context of A High-Fat Diet in Male Wistar Rats. J Nutr 2024; 154:1936-1944. [PMID: 38582387 PMCID: PMC11217025 DOI: 10.1016/j.tjnut.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Phosphatidylcholine (PC) derived from eggs has been shown to beneficially modulate T cell response and intestinal permeability under the context of a high-fat diet. OBJECTIVES The objective of this study was to determine whether there is a differential effect of plant and animal-derived sources of PC on immune function. METHODS Four-week-old male Wistar rats were randomly assigned to consume 1 of 4 diets (n = 10/group) for 12 wk, all containing 1.5 g of total choline/kg of diet but differing in choline forms: 1-Control Low-Fat [CLF, 20% fat, 100% free choline (FC)]; 2-Control High-Fat (CHF, 50% fat, 100% FC); 3-High-Fat Egg-derived PC (EPC, 50% fat, 100% Egg-PC); 4-High-Fat Soy-derived PC (SPC, 50% fat, 100% Soy-PC). Immune cell functions and phenotypes were measured in splenocytes by ex vivo cytokine production after mitogen stimulation and flow cytometry, respectively. RESULTS The SPC diet increased splenocyte IL-2 production after PMA+I stimulation compared with the CHF diet. However, the SPC group had a lower proportion of splenocytes expressing the IL-2 receptor (CD25+, P < 0.05). After PMA+I stimulation, feeding EPC normalized splenocyte production of IL-10 relative to the CLF diet, whereas SPC did not (P < 0.05). In mesenteric lymph node lymphocytes, the SPC diet group produced more IL-2 and TNF-α after PMA+I stimulation than the CHF diet, whereas the EPC diet group did not. CONCLUSIONS Our results suggest that both egg- and soy-derived PC may attenuate high-fat diet-induced T cell dysfunction. However, egg-PC enhances, to a greater extent, IL-10, a cytokine involved in promoting the resolution phase of inflammation, whereas soy-PC appears to elicit a greater effect on gut-associated immune responses.
Collapse
Affiliation(s)
- Tianna Rusnak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Chapman NM, Chi H. Metabolic rewiring and communication in cancer immunity. Cell Chem Biol 2024; 31:862-883. [PMID: 38428418 PMCID: PMC11177544 DOI: 10.1016/j.chembiol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The immune system shapes tumor development and progression. Although immunotherapy has transformed cancer treatment, its overall efficacy remains limited, underscoring the need to uncover mechanisms to improve therapeutic effects. Metabolism-associated processes, including intracellular metabolic reprogramming and intercellular metabolic crosstalk, are emerging as instructive signals for anti-tumor immunity. Here, we first summarize the roles of intracellular metabolic pathways in controlling immune cell function in the tumor microenvironment. How intercellular metabolic communication regulates anti-tumor immunity, and the impact of metabolites or nutrients on signaling events, are also discussed. We then describe how targeting metabolic pathways in tumor cells or intratumoral immune cells or via nutrient-based interventions may boost cancer immunotherapies. Finally, we conclude with discussions on profiling and functional perturbation methods of metabolic activity in intratumoral immune cells, and perspectives on future directions. Uncovering the mechanisms for metabolic rewiring and communication in the tumor microenvironment may enable development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
28
|
Chi H, Pepper M, Thomas PG. Principles and therapeutic applications of adaptive immunity. Cell 2024; 187:2052-2078. [PMID: 38670065 PMCID: PMC11177542 DOI: 10.1016/j.cell.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Adaptive immunity provides protection against infectious and malignant diseases. These effects are mediated by lymphocytes that sense and respond with targeted precision to perturbations induced by pathogens and tissue damage. Here, we review key principles underlying adaptive immunity orchestrated by distinct T cell and B cell populations and their extensions to disease therapies. We discuss the intracellular and intercellular processes shaping antigen specificity and recognition in immune activation and lymphocyte functions in mediating effector and memory responses. We also describe how lymphocytes balance protective immunity against autoimmunity and immunopathology, including during immune tolerance, response to chronic antigen stimulation, and adaptation to non-lymphoid tissues in coordinating tissue immunity and homeostasis. Finally, we discuss extracellular signals and cell-intrinsic programs underpinning adaptive immunity and conclude by summarizing key advances in vaccination and engineering adaptive immune responses for therapeutic interventions. A deeper understanding of these principles holds promise for uncovering new means to improve human health.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
29
|
Wang N, Wang C, Qi M, Lin X, Zha A, Tan B, Yin Y, Wang J. Phosphatidylethanolamine Improves Postnatal Growth Retardation by Regulating Mucus Secretion of Intestinal Goblet Cells in Piglets. Animals (Basel) 2024; 14:1193. [PMID: 38672341 PMCID: PMC11047706 DOI: 10.3390/ani14081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Phosphatidylethanolamine (PE), a multifunctional phospholipid, is necessary for neonate development. This study aimed to explore the impact of the regulation of exogenous PE on postnatal growth retardation (PGR) by improving intestinal barrier function. Thirty-two neonatal pigs were divided into four groups according to their body weight (BW 2.79 ± 0.50 kg or 1.88 ± 0.40 kg) at 7 days old, CON-NBW, PE-NBW, CON-PGR, and PE-PGR. PE was supplemented to NBW piglets and PGR piglets during lactation and post-weaning periods. Compared with the NBW piglets, the growth performance of PGR piglets was lower, while PE improved the poor growth performance. PGR piglets showed injured intestinal morphology, as evidenced by the reduced ratio of villus height to crypt depth (VH/CD) and goblet cell numbers in the jejunum and ileum. PE recovered the intestinal barrier injury by increasing VH/CD and goblet cell numbers. The decreased MUC2 mRNA and protein expressions were observed in the small intestine of PGR piglets, and PE remarkably increased the expression of MUC2. Mechanistically, PE increased the goblet cell differentiation promoting gene spdef mRNA levels and reduced the mRNA expressions involved in endoplasmic reticulum stress in the jejunal and ileal mucosa of PGR piglets. Overall, we found that PE alleviated growth retardation by regulating intestinal health and generalized its application in neonates.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Andong Zha
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Yulong Yin
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (N.W.); (C.W.); (M.Q.); (X.L.); (A.Z.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
30
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
31
|
Zhou Q, Shi R. Shared Genetic Features of Psoriasis and Myocardial Infarction: Insights From a Weighted Gene Coexpression Network Analysis. J Am Heart Assoc 2024; 13:e033893. [PMID: 38533976 PMCID: PMC11179746 DOI: 10.1161/jaha.123.033893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Increasing evidence suggests a higher propensity for acute myocardial infarction (MI) in patients with psoriasis. However, the shared mechanisms underlying this comorbidity in these patients remain unclear. This study aimed to explore the shared genetic features of psoriasis and MI and to identify potential biomarkers indicating their coexistence. METHODS AND RESULTS Data sets obtained from the gene expression omnibus were examined using a weighted gene coexpression network analysis approach. Hub genes were identified using coexpression modules and validated in other data sets and through in vitro cellular experiments. Bioinformatics tools, including the Human microRNA Disease Database, StarBase, and miRNet databases, were used to construct a ceRNA network and predict potential regulatory mechanisms. By applying weighted gene coexpression network analysis, we identified 2 distinct modules that were significant for both MI and psoriasis. Inflammatory and immune pathways were highlighted by gene ontology enrichment analysis of the overlapping genes. Three pivotal genes-Src homology and collagen 1, disruptor of telomeric silencing 1-like, and feline leukemia virus subgroup C cellular receptor family member 2-were identified as potential biomarkers. We constructed a ceRNA network that suggested the upstream regulatory roles of these genes in the coexistence of psoriasis and MI. CONCLUSIONS As potential therapeutic targets, Src homology and collagen 1, feline leukemia virus subgroup C cellular receptor family member 2, and disruptor of telomeric silencing 1-like provide novel insights into the shared genetic features between psoriasis and MI. This study paves the way for future studies focusing on the prevention of MI in patients with psoriasis.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular MedicineThird Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ruizheng Shi
- Department of Cardiovascular MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
32
|
Song T, Qi M, Zhu Y, Wang N, Liu Z, Li N, Yang J, Han Y, Wang J, Tao S, Ren Z, Yin Y, Zheng J, Tan B. Abnormal adipose tissue-derived microbes drive metabolic disorder and exacerbate postnatal growth retardation in piglet. LIFE METABOLISM 2024; 3:load052. [PMID: 39872217 PMCID: PMC11749387 DOI: 10.1093/lifemeta/load052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2025]
Abstract
Postnatal growth retardation (PGR) frequently occurs during early postnatal development of piglets and induces high mortality. To date, the mechanism of PGR remains poorly understood. Adipose tissue-derived microbes have been documented to be associated with several disorders of metabolism and body growth. However, the connection between microbial disturbance of adipose tissue and pig PGR remains unclear. Here, we investigated piglets with PGR and found that the adipose tissue of PGR piglets was characterized by metabolism impairment, adipose abnormality, and specific enrichment of culturable bacteria from Proteobacteria. Gavage of Sphingomonas paucimobilis, a species of Sphingomonas genus from the alphaproteobacteria, induced PGR in piglets. Moreover, this bacterium could also lead to metabolic disorders and susceptibility to acute stress, resulting in weight loss in mice. Mechanistically, multi-omics analysis indicated the changes in lipid metabolism as a response of adipose tissue to abnormal microbial composition. Further experimental tests proved that one of the altered lipids phosphatidylethanolamines could rescue the metabolism disorder and growth retardation, thereby suppressing the amount of Sphingomonas in the adipose tissue. Together, these results highlight that the microbe-host crosstalk may regulate the metabolic function of adipose tissue in response to PGR.
Collapse
Affiliation(s)
- Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yucheng Zhu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Zhibo Liu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Na Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiacheng Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanxu Han
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Shiyu Tao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuqing Ren
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410000, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
33
|
Wellford SA, Schwartzberg PL. Help me help you: emerging concepts in T follicular helper cell differentiation, identity, and function. Curr Opin Immunol 2024; 87:102421. [PMID: 38733669 PMCID: PMC11482284 DOI: 10.1016/j.coi.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Effective high-affinity, long-term humoral immunity requires T cell help provided by a subset of differentiated CD4+ T cells known as T follicular helper (Tfh) cells. Classically, Tfh cells provide contact-dependent help for the generation of germinal centers (GCs) in secondary lymphoid organs (SLOs). Recent studies have expanded the conventional definition of Tfh cells, revealing new functions, new descriptions of Tfh subsets, new factors regulating Tfh differentiation, and new roles outside of SLO GCs. Together, these data suggest that one Tfh is not equivalent to another, helping redefine our understanding of Tfh cells and their biology.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Cell Signalling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- Cell Signalling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Milling LE, Markson SC, Tjokrosurjo Q, Derosia NM, Streeter IS, Hickok GH, Lemmen AM, Nguyen TH, Prathima P, Fithian W, Schwartz MA, Hacohen N, Doench JG, LaFleur MW, Sharpe AH. Framework for in vivo T cell screens. J Exp Med 2024; 221:e20230699. [PMID: 38411617 PMCID: PMC10899089 DOI: 10.1084/jem.20230699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
In vivo T cell screens are a powerful tool for elucidating complex mechanisms of immunity, yet there is a lack of consensus on the screen design parameters required for robust in vivo screens: gene library size, cell transfer quantity, and number of mice. Here, we describe the Framework for In vivo T cell Screens (FITS) to provide experimental and analytical guidelines to determine optimal parameters for diverse in vivo contexts. As a proof-of-concept, we used FITS to optimize the parameters for a CD8+ T cell screen in the B16-OVA tumor model. We also included unique molecular identifiers (UMIs) in our screens to (1) improve statistical power and (2) track T cell clonal dynamics for distinct gene knockouts (KOs) across multiple tissues. These findings provide an experimental and analytical framework for performing in vivo screens in immune cells and illustrate a case study for in vivo T cell screens with UMIs.
Collapse
Affiliation(s)
- Lauren E. Milling
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel C. Markson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qin Tjokrosurjo
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole M. Derosia
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivy S.L. Streeter
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Grant H. Hickok
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashlyn M. Lemmen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyamvada Prathima
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - William Fithian
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Marc A. Schwartz
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Hacohen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John G. Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin W. LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
35
|
Raynor JL, Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med 2024; 221:e20221839. [PMID: 38411744 PMCID: PMC10899091 DOI: 10.1084/jem.20221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
36
|
Sharma P, Zhang X, Ly K, Zhang Y, Hu Y, Yongxin Ye A, Hu J, Kim JH, Lou M, Wang C, Celuzza Q, Kondo Y, Furukawa K, Bundle DR, Furukawa K, Alt FW, Winau F. The lipid globotriaosylceramide promotes germinal center B cell responses and antiviral immunity. Science 2024; 383:eadg0564. [PMID: 38359115 PMCID: PMC11404827 DOI: 10.1126/science.adg0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.
Collapse
Affiliation(s)
- Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kevin Ly
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Zhang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Yu Hu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Adam Yongxin Ye
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Jianqiao Hu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Ji Hyung Kim
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chong Wang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Quinton Celuzza
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Yuji Kondo
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - David R. Bundle
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Frederick W. Alt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Genetics, Harvard Medical School, The Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Krug A, Tosolini M, Madji Hounoum B, Fournié JJ, Geiger R, Pecoraro M, Emond P, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. Inhibition of choline metabolism in an angioimmunoblastic T-cell lymphoma preclinical model reveals a new metabolic vulnerability as possible target for treatment. J Exp Clin Cancer Res 2024; 43:43. [PMID: 38321568 PMCID: PMC10845598 DOI: 10.1186/s13046-024-02952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Angioimmunoblastic T-cell lymphoma (AITL) is a malignancy with very poor survival outcome, in urgent need of more specific therapeutic strategies. The drivers of malignancy in this disease are CD4+ follicular helper T cells (Tfh). The metabolism of these malignant Tfh cells was not yet elucidated. Therefore, we decided to identify their metabolic requirements with the objective to propose a novel therapeutic option. METHODS To reveal the prominent metabolic pathways used by the AITL lymphoma cells, we relied on metabolomic and proteomic analysis of murine AITL (mAITL) T cells isolated from our established mAITL model. We confirmed these results using AITL patient and healthy T cell expression data. RESULTS Strikingly, the mAITL Tfh cells were highly dependent on the second branch of the Kennedy pathway, the choline lipid pathway, responsible for the production of the major membrane constituent phosphatidylcholine. Moreover, gene expression data from Tfh cells isolated from AITL patient tumors, confirmed the upregulation of the choline lipid pathway. Several enzymes involved in this pathway such as choline kinase, catalyzing the first step in the phosphatidylcholine pathway, are upregulated in multiple tumors other than AITL. Here we showed that treatment of our mAITL preclinical mouse model with a fatty acid oxydation inhibitor, significantly increased their survival and even reverted the exhausted CD8 T cells in the tumor into potent cytotoxic anti-tumor cells. Specific inhibition of Chokα confirmed the importance of the phosphatidylcholine production pathway in neoplastic CD4 + T cells, nearly eradicating mAITL Tfh cells from the tumors. Finally, the same inhibitor induced in human AITL lymphoma biopsies cell death of the majority of the hAITL PD-1high neoplastic cells. CONCLUSION Our results suggest that interfering with choline metabolism in AITL reveals a specific metabolic vulnerability and might represent a new therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
| | - Blandine Madji Hounoum
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Inserm, Toulouse, France
- Labex TOUCAN, Toulouse, France
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrick Emond
- UMR iBrain, Université de Tours, Inserm, Tours, France
| | - Philippe Gaulard
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Département de Pathologie, 94010, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomedicale, Creteil, INSERMU955, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service Unité Hémopathies Lymphoides, 94010, Créteil, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, University Lyon1, CNRS, UMR5308, Lyon, 69007, France.
| |
Collapse
|
38
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Zhao L, Wang X, Li Z. A novel chimeric recombinant FliC-Pgp3 vaccine promotes immunoprotection against Chlamydia muridarum infection in mice. Int J Biol Macromol 2024; 258:128723. [PMID: 38101679 DOI: 10.1016/j.ijbiomac.2023.128723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The Pgp3 subunit vaccine elicits immune protection against Chlamydia trachomatis infection, but additional adjuvants are still required to enhance its immunoprotective efficacy. Flagellin can selectively stimulate immunity and act as an adjuvant. In this research, the FliC-Pgp3 recombinant was successfully expressed and purified. Tri-immunization with the FliC-Pgp3 vaccine in Balb/C mice induced rapid and persistent germinal center B-cell response and Tfh differentiation, promoting a significantly higher IgG antibody titer compared to the Pgp3 group. FliC-Pgp3 immunization primarily induced Th1-type cellular immunity, leading to higher levels of IFN-γ, TNF-α, and IL-2 secreted by CD4+ T cells than in Pgp3-vaccinated mice. Chlamydia muridarum challenge results showed that FliC-Pgp3-vaccinated mice exhibited more rapid clearance of Chlamydia muridarum colonization in the lower genital tract, ensuring a lower hydrosalpinx rate and cumulative score. Histological analysis showed reduced dilation and inflammatory infiltration in the oviduct and uterine horn of FliC-Pgp3-vaccinated mice compared to the PBS and Pgp3 control. Importantly, tri-immunization with FliC-Pgp3 effectively activated CD4+ T cells and dendritic cells, as confirmed by the adoptive transfer, resulting in better immune protection in recipient mice. In summary, the novel FliC-Pgp3 chimeric is hoped to be a novel vaccine with improved immunoprotection against Chlamydia muridarum.
Collapse
Affiliation(s)
- Lanhua Zhao
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Xinglv Wang
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| |
Collapse
|
40
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
41
|
Xie Q, Liao X, Huang B, Wang L, Liao G, Luo C, Wen S, Fang S, Luo H, Shu Y. The truncated IFITM3 facilitates the humoral immune response in inactivated influenza vaccine-vaccinated mice via interaction with CD81. Emerg Microbes Infect 2023; 12:2246599. [PMID: 37556756 PMCID: PMC10484049 DOI: 10.1080/22221751.2023.2246599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
A single-nucleotide polymorphism (SNP) rs12252-C of interferon-induced transmembrane protein 3 (IFITM3), resulting in a truncated IFITM3 protein lacking 21 N-terminus amino acids, is associated with severe influenza infection in the Chinese population. However, the effect of IFITM3 rs12252-C on influenza vaccination and the underlying mechanism is poorly understood. Here, we constructed a mouse model with a deletion of 21 amino acids at the N-terminus (NΔ21) of IFITM3 and then compared the antibody response between Quadrivalent influenza vaccine (QIV) immunized wild-type (WT) mice and NΔ21 mice. Significantly higher levels of haemagglutination inhibition (HI) titre, neutralizing antibodies (NAb), and immunoglobulin G (IgG) to H1N1, H3N2, B/Victory, and B/Yamagata viruses were observed in NΔ21 mice compared to WT mice. Correspondingly, the numbers of splenic germinal centre (GC) B cells, plasma cells, memory B cells, QIV-specific IgG+ antibody-secreting cells (ASC), and T follicular helper cells (TFH) in NΔ21 mice were higher compared with WT mice. Moreover, the 21-amino-acid deletion caused IFITM3 translocation from the endocytosis compartment to the periphery of cells, which also prevented the degradation of a co-stimulatory molecule of B cell receptor (BCR) CD81 on the cell surface. More importantly, a more interaction was observed between NΔ21 protein and CD81 compared to the interaction between IFITM3 and CD81. Overall, our study revealed a potential mechanism of NΔ21 protein enhancing humoral immune response by relocation to prevent the degradation of CD81, providing insight into SNP affecting influenza vaccination.
Collapse
Affiliation(s)
- Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bi Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Simin Wen
- Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, People’s Republic of China
| | - Shisong Fang
- Pathogenic Microorganism Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, People’s Republic of China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Podestà MA, Cavazzoni CB, Hanson BL, Bechu ED, Ralli G, Clement RL, Zhang H, Chandrakar P, Lee JM, Reyes-Robles T, Abdi R, Diallo A, Sen DR, Sage PT. Stepwise differentiation of follicular helper T cells reveals distinct developmental and functional states. Nat Commun 2023; 14:7712. [PMID: 38001088 PMCID: PMC10674016 DOI: 10.1038/s41467-023-43427-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Follicular helper T (Tfh) cells are essential for the formation of high affinity antibodies after vaccination or infection. Although the signals responsible for initiating Tfh differentiation from naïve T cells have been studied, the signals controlling sequential developmental stages culminating in optimal effector function are not well understood. Here we use fate mapping strategies for the cytokine IL-21 to uncover sequential developmental stages of Tfh differentiation including a progenitor-like stage, a fully developed effector stage and a post-effector Tfh stage that maintains transcriptional and epigenetic features without IL-21 production. We find that progression through these stages are controlled intrinsically by the transcription factor FoxP1 and extrinsically by follicular regulatory T cells. Through selective deletion of Tfh stages, we show that these cells control antibody dynamics during distinct stages of the germinal center reaction in response to a SARS-CoV-2 vaccine. Together, these studies demonstrate the sequential phases of Tfh development and how they promote humoral immunity.
Collapse
Affiliation(s)
- Manuel A Podestà
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Renal Division, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Cecilia B Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Hanson
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elsa D Bechu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Garyfallia Ralli
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel L Clement
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alos Diallo
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Debattama R Sen
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Chen C, Wang Z, Qin Y. CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Exp Hematol Oncol 2023; 12:95. [PMID: 37964355 PMCID: PMC10647168 DOI: 10.1186/s40164-023-00457-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is essentially an adaptive immunity weapon in prokaryotes against foreign DNA. This system inspires the development of genome-editing technology in eukaryotes. In biomedicine research, CRISPR has offered a powerful platform to establish tumor-bearing models and screen potential targets in the immuno-oncology field, broadening our insights into cancer genomics. In translational medicine, the versatile CRISPR/Cas9 system exhibits immense potential to break the current limitations of cancer immunotherapy, thereby expanding the feasibility of adoptive cell therapy (ACT) in treating solid tumors. Herein, we first explain the principles of CRISPR/Cas9 genome editing technology and introduce CRISPR as a tool in tumor modeling. We next focus on the CRISPR screening for target discovery that reveals tumorigenesis, immune evasion, and drug resistance mechanisms. Moreover, we discuss the recent breakthroughs of genetically modified ACT using CRISPR/Cas9. Finally, we present potential challenges and perspectives in basic research and clinical translation of CRISPR/Cas9. This review provides a comprehensive overview of CRISPR/Cas9 applications that advance our insights into tumor-immune interaction and lay the foundation to optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
44
|
Li F, Shi Z, Cheng M, Zhou Z, Chu M, Sun L, Zhou JC. Biology and Roles in Diseases of Selenoprotein I Characterized by Ethanolamine Phosphotransferase Activity and Antioxidant Potential. J Nutr 2023; 153:3164-3172. [PMID: 36963501 DOI: 10.1016/j.tjnut.2023.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Selenoprotein I (SELENOI) has been demonstrated to be an ethanolamine phosphotransferase (EPT) characterized by a nonselenoenzymatic domain and to be involved in the main synthetic branch of phosphatidylethanolamine (PE) in the endoplasmic reticulum. Therefore, defects of SELENOI may affect the health status through the multiple functions of PE. On the other hand, selenium (Se) is covalently incorporated into SELENOI as selenocysteine (Sec) in its peptide, which forms a Sec-centered domain as in the other members of the selenoprotein family. Unlike other selenoproteins, Sec-containing SELENOI was formed at a later stage of animal evolution, and the high conservation of the structural domain for PE synthesis across a wide range of species suggests the importance of EPT activity in supporting the survival and evolution of organisms. A variety of factors, such as species characteristics (age and sex), diet and nutrition (dietary Se and fat intakes), SELENOI-specific properties (tissue distribution and rank in the selenoproteome), etc., synergistically regulate the expression of SELENOI in a tentatively unclear interaction. The N- and C-terminal domains confer 2 distinct biochemical functions to SELENOI, namely PE regulation and antioxidant potential, which may allow it to be involved in numerous physiological processes, including neurological diseases (especially hereditary spastic paraplegia), T cell activation, tumorigenesis, and adipocyte differentiation. In this review, we summarize advances in the biology and roles of SELENOI, shedding light on the precise regulation of SELENOI expression and PE homeostasis by dietary Se intake and pharmaceutical or transgenic approaches to modulate the corresponding pathological status.
Collapse
Affiliation(s)
- Fengna Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhan Shi
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Minning Cheng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhongwei Zhou
- School of Medical, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ming Chu
- Department of Neurosurgery, The Third People's Hospital of Shenzhen, Shenzhen 518112, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China; Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou, China.
| |
Collapse
|
45
|
Jha SK, Imran M, Jha LA, Hasan N, Panthi VK, Paudel KR, Almalki WH, Mohammed Y, Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. ENVIRONMENTAL RESEARCH 2023; 236:116823. [PMID: 37543130 DOI: 10.1016/j.envres.2023.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The lack of knowledge about the absorption, distribution, metabolism, and excretion (ADME) of vaccines makes former biopharmaceutical optimization difficult. This was shown during the COVID-19 immunization campaign, where gradual booster doses were introduced.. Thus, understanding vaccine ADME and its effects on immunization effectiveness could result in a more logical vaccine design in terms of formulation, method of administration, and dosing regimens. Herein, we will cover the information available on vaccine pharmacokinetics, impacts of delivery routes and carriers on ADME, utilization and efficiency of nanoparticulate delivery vehicles, impact of dose level and dosing schedule on the therapeutic efficacy of vaccines, intracellular and endosomal trafficking and in vivo fate, perspective on DNA and mRNA vaccines, new generation sequencing and mathematical models to improve cancer vaccination and pharmacology, and the reported toxicological study of COVID-19 vaccines. Altogether, this review will enhance the reader's understanding of the pharmacokinetics of vaccines and methods that can be implied in delivery vehicle design to improve the absorption and distribution of immunizing agents and estimate the appropriate dose to achieve better immunogenic responses and prevent toxicities.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea; Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India.
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Laxmi Akhileshwar Jha
- H. K. College of Pharmacy, Mumbai University, Pratiksha Nagar, Jogeshwari, West Mumbai, 400102, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vijay Kumar Panthi
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney, 2007, Australia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 24381, Saudi Arabia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
46
|
Meyers S, Demeyer S, Cools J. CRISPR screening in hematology research: from bulk to single-cell level. J Hematol Oncol 2023; 16:107. [PMID: 37875911 PMCID: PMC10594891 DOI: 10.1186/s13045-023-01495-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023] Open
Abstract
The CRISPR genome editing technology has revolutionized the way gene function is studied. Genome editing can be achieved in single genes or for thousands of genes simultaneously in sensitive genetic screens. While conventional genetic screens are limited to bulk measurements of cell behavior, recent developments in single-cell technologies make it possible to combine CRISPR screening with single-cell profiling. In this way, cell behavior and gene expression can be monitored simultaneously, with the additional possibility of including data on chromatin accessibility and protein levels. Moreover, the availability of various Cas proteins leading to inactivation, activation, or other effects on gene function further broadens the scope of such screens. The integration of single-cell multi-omics approaches with CRISPR screening open the path to high-content information on the impact of genetic perturbations at single-cell resolution. Current limitations in cell throughput and data density need to be taken into consideration, but new technologies are rapidly evolving and are likely to easily overcome these limitations. In this review, we discuss the use of bulk CRISPR screening in hematology research, as well as the emergence of single-cell CRISPR screening and its added value to the field.
Collapse
Affiliation(s)
- Sarah Meyers
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium.
- Center for Cancer Biology, VIB, Leuven, Belgium.
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Qi L, Wang Y, Wang R, Wang M, Jablonska E, Zhou H, Su S, Jia Y, Zhang Y, Li Q, Wang T. Association of Plasma Selenium and Its Untargeted Metabolomic Profiling with Cervical Cancer Prognosis. Biol Trace Elem Res 2023; 201:4637-4648. [PMID: 36609649 DOI: 10.1007/s12011-022-03552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023]
Abstract
Selenium is an essential trace element that shows beneficial or adverse health effects depending on the dose. However, its role in the prognosis of cervical cancer (CC) has been less reported. We aimed to explore the association between selenium status and prognosis in CC patients with different prognoses and to elucidate the underlying mechanism of selenium in CC prognosis. This cross-sectional observational study had a case-control design at the Harbin Medical University Cancer Hospital and was conducted using 29 CC cases with poor prognosis and 29 CC cases with good prognosis. Plasma selenium levels were measured using an atomic fluorescence spectrometer. Untargeted metabolomics was used to identify metabolites. Plasma selenium levels of the poor prognosis group (49.90 ± 13.81 µg/L) were lower than that of the good prognosis group (59.38 ± 13.00 µg/L, t = 2.69, P = 0.009). In the logistic regression analysis, plasma selenium levels were associated with lower poor prognosis risk [odds ratio (OR) = 0.952, 95% CI: 0.909-0.998]. Receiver operating characteristic curve analysis revealed an optimal cut-off point of plasma selenium levels ≤ 47.68 µg/L for poor prognosis of CC. Based on the cut-off selenium levels, patients with different prognoses were divided into high and low selenium groups. Metabolomic analysis revealed six differential metabolites among different prognoses with low and high selenium levels, and the glycerophospholipid (GPL) metabolism was enriched. Plasma selenium levels were positively correlated with metabolite levels. Our findings provided evidence that low plasma selenium levels may associate with a poor prognosis of CC. Low plasma selenium levels might suppress GPL metabolism and influence the prognosis of CC. This finding requires confirmation in future prospective cohort studies.
Collapse
Affiliation(s)
- Lei Qi
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
- School of Public Health, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yuanyuan Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Ruixiang Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Mingxing Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Sw. Teresy 8 Street, 91-348, Lodz, Poland
| | - Huihui Zhou
- Department of Public Health, Jining Medical University, Jining, 272029, China
| | - Shengqi Su
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yuehui Jia
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yiyi Zhang
- Yantai Center for Disease Control and Prevention, No.17 Fuhou Road, Laishan District, Yantai, 264003, China
| | - Qi Li
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
| | - Tong Wang
- Institute of Keshan Disease, Chinese Center for Endemic Disease Control, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
48
|
Sharma P, Zhang X, Ly K, Zhang Y, Hu Y, Ye AY, Hu J, Kim JH, Lou M, Wang C, Celuzza Q, Kondo Y, Furukawa K, Bundle DR, Furukawa K, Alt FW, Winau F. The lipid Gb3 promotes germinal center B cell responses and anti-viral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559132. [PMID: 37790573 PMCID: PMC10542550 DOI: 10.1101/2023.09.23.559132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Influenza viruses escape immunity due to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. Here, we demonstrate that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 binds and disengages CD19 from its chaperone CD81 for subsequent translocation to the B cell receptor (BCR) complex to trigger signaling. Abundance of Gb3 amplifies the PI3-kinase/Akt/Foxo1 pathway to drive affinity maturation. Moreover, this lipid regulates MHC-II expression to increase diversity of T follicular helper (Tfh) and GC B cells reactive with subdominant epitopes. In influenza infection, Gb3 promotes broadly reactive antibody responses and cross-protection. Thus, we show that Gb3 determines affinity as well as breadth in B cell immunity and propose this lipid as novel vaccine adjuvant against viral infection. One Sentence Summary Gb3 abundance on GC B cells selects antibodies with high affinity and broad epitope reactivities, which are cross-protective against heterologous influenza infection.
Collapse
|
49
|
Gong M, Choi SC, Park YP, Zou X, Elshikha AS, Gerriets VA, Rathmell JC, Mohamazadeh M, Morel L. Transcriptional and metabolic programs promote the expansion of follicular helper T cells in lupus-prone mice. iScience 2023; 26:106774. [PMID: 37216123 PMCID: PMC10197114 DOI: 10.1016/j.isci.2023.106774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The expansion of follicular helper T (Tfh) cells, which is tightly associated with the development of lupus, is reversed by the inhibition of either glycolysis or glutaminolysis in mice. Here we analyzed the gene expression and metabolome of Tfh cells and naive CD4+ T (Tn) cells in the B6.Sle1.Sle2.Sle3 (triple congenic, TC) mouse model of lupus and its congenic B6 control. Lupus genetic susceptibility in TC mice drives a gene expression signature starting in Tn cells and expanding in Tfh cells with enhanced signaling and effector programs. Metabolically, TC Tn and Tfh cells showed multiple defective mitochondrial functions. TC Tfh cells also showed specific anabolic programs including enhanced glutamate metabolism, malate-aspartate shuttle, and ammonia recycling, as well as altered dynamics of amino acid content and their transporters. Thus, our study has revealed specific metabolic programs that can be targeted to specifically limit the expansion of pathogenic Tfh cells in lupus.
Collapse
Affiliation(s)
- Minghao Gong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xueyang Zou
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ahmed S. Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Valerie A. Gerriets
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mansour Mohamazadeh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
50
|
Gary EN, Tursi NJ, Warner BM, Cuismano G, Connors J, Parzych EM, Griffin BD, Bell MR, Ali AR, Frase D, Hojecki CE, Canziani GA, Chaiken I, Kannan T, Moffat E, Embury-Hyatt C, Wooton SK, Kossenkov A, Patel A, Kobasa D, Kutzler MA, Haddad EK, Weiner DB. Adenosine deaminase augments SARS-CoV-2 specific cellular and humoral responses in aged mouse models of immunization and challenge. Front Immunol 2023; 14:1138609. [PMID: 36999023 PMCID: PMC10043169 DOI: 10.3389/fimmu.2023.1138609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Despite numerous clinically available vaccines and therapeutics, aged patients remain at increased risk for COVID-19 morbidity. Furthermore, various patient populations, including the aged can have suboptimal responses to SARS-CoV-2 vaccine antigens. Here, we characterized vaccine-induced responses to SARS-CoV-2 synthetic DNA vaccine antigens in aged mice. Aged mice exhibited altered cellular responses, including decreased IFNγ secretion and increased TNFα and IL-4 secretion suggestive of TH2-skewed responses. Aged mice exhibited decreased total binding and neutralizing antibodies in their serum but significantly increased TH2-type antigen-specific IgG1 antibody compared to their young counterparts. Strategies to enhance vaccine-induced immune responses are important, especially in aged patient populations. We observed that co-immunization with plasmid-encoded adenosine deaminase (pADA)enhanced immune responses in young animals. Ageing is associated with decreases in ADA function and expression. Here, we report that co-immunization with pADA enhanced IFNγ secretion while decreasing TNFα and IL-4 secretion. pADA expanded the breadth and affinity SARS-CoV-2 spike-specific antibodies while supporting TH1-type humoral responses in aged mice. scRNAseq analysis of aged lymph nodes revealed that pADA co-immunization supported a TH1 gene profile and decreased FoxP3 gene expression. Upon challenge, pADA co-immunization decreased viral loads in aged mice. These data support the use of mice as a model for age-associated decreased vaccine immunogenicity and infection-mediated morbidity and mortality in the context of SARS-CoV-2 vaccines and provide support for the use of adenosine deaminase as a molecular adjuvant in immune-challenged populations.
Collapse
Affiliation(s)
- Ebony N. Gary
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Nicholas J. Tursi
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bryce M. Warner
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Gina Cuismano
- The Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jennifer Connors
- The Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elizabeth M. Parzych
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Bryan D. Griffin
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Matthew R. Bell
- The Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ali R. Ali
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Drew Frase
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Casey E. Hojecki
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Gabriela A. Canziani
- The Department of Biochemistry, Drexel University college of Medicine, Philadelphia, PA, United States
| | - Irwin Chaiken
- The Department of Biochemistry, Drexel University college of Medicine, Philadelphia, PA, United States
| | - Toshitha Kannan
- The Genomics Core, The Wistar Institute, Philadelphia, PA, United States
| | - Estella Moffat
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Carissa Embury-Hyatt
- National Center for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Sarah K. Wooton
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Andrew Kossenkov
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
- The Genomics Core, The Wistar Institute, Philadelphia, PA, United States
| | - Ami Patel
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Michele A. Kutzler
- The Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K. Haddad
- The Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
- The Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - David B. Weiner
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|