1
|
Biały S, Bogunia-Kubik K. Uncovering the mysteries of human gamma delta T cells: from origins to novel therapeutics. Front Immunol 2025; 16:1543454. [PMID: 40276509 PMCID: PMC12018481 DOI: 10.3389/fimmu.2025.1543454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Gamma delta (γδ) T cells represent a unique and distinct population of lymphocytes that bridge the innate and adaptive immune responses. This functional duality positions them as one of the pivotal elements in the evolution and development of the human body's defense mechanisms. This review aims to provide a comprehensive and in-depth overview of γδ T cells, covering their origins, development, classification, and functional roles in immunology. Special attention is given to their involvement in the pathogenesis of autoimmune and cancer-related diseases-areas that remain subjects of intensive research with many unanswered questions. Additionally, this article explores the therapeutic potential of γδ T cells, which hold promise as a novel approach to treating various difficult-to-manage diseases. The review also presents an analysis of the latest clinical studies utilizing γδ T cells, emphasizing their emerging role in modern medicine. The ultimate goal of this work is to offer a holistic perspective on the current state of research on γδ T cells and their prospective applications in immunotherapy and cancer treatment, highlighting their potential to become a groundbreaking tool in future medical interventions.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of
Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
2
|
Zhao Y, Andoh T, Charles F, Reddy P, Paul K, Goar H, Durdana I, Golder C, Hardy A, Juntilla MM, Yang SR, Lin CY, Sagiv-Barfi I, Geller BS, Moore S, Thakkar D, Boyd-Kirkup JD, Peng Y, Ford JM, Telli ML, Zhang S, Kurian AW, West RB, Yue T, Lipchik AM, Snyder MP, Gruber JJ. VISTA-induced tumor suppression by a four amino acid intracellular motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.05.631401. [PMID: 39803490 PMCID: PMC11722267 DOI: 10.1101/2025.01.05.631401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
VISTA is a key immune checkpoint receptor under investigation for cancer immunotherapy; however, its signaling mechanisms remain unclear. Here we identify a conserved four amino acid (NPGF) intracellular motif in VISTA that suppresses cell proliferation by constraining cell-intrinsic growth receptor signaling. The NPGF motif binds to the adapter protein NUMB and recruits Rab11 endosomal recycling machinery. We identify and characterize a class of triple-negative breast cancers with high VISTA expression and low proliferative index. In tumor cells with high VISTA levels, the NPGF motif sequesters NUMB at endosomes, which interferes with epidermal growth factor receptor (EGFR) trafficking and signaling to suppress tumor growth. These effects do not require canonical VISTA ligands, nor a functioning immune system. As a consequence of VISTA expression, EGFR receptor remains abnormally phosphorylated and cannot propagate ligand-induced signaling. Mutation of the VISTA NPGF domain reverts VISTA-induced growth suppression in multiple breast cancer mouse models. These results define a mechanism by which VISTA represses NUMB to control malignant epithelial cell growth and signaling. They also define distinct intracellular residues that are critical for VISTA-induced cell-intrinsic signaling that could be exploited to improve immunotherapy.
Collapse
Affiliation(s)
- Yan Zhao
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Tina Andoh
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Fatima Charles
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Priyanka Reddy
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Kristina Paul
- Departments of Genetics, Stanford University, Palo Alto, CA, 94305
| | - Harsh Goar
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Ishrat Durdana
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Caiden Golder
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Ashley Hardy
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | | | - Soo-Ryum Yang
- Department Pathology, Stanford University, Palo Alto, CA, 94305
| | - Chien-Yu Lin
- Department Pathology, Stanford University, Palo Alto, CA, 94305
| | | | | | - Stephen Moore
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Dipti Thakkar
- Hummingbird Bioscience, 61 Science Park Road, #06-15/24, Singapore 117525
| | | | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75235
| | - James M. Ford
- Department Medicine, Stanford University, Palo Alto, CA, 94305
| | | | - Song Zhang
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 75235
| | | | - Robert B. West
- Department Pathology, Stanford University, Palo Alto, CA, 94305
| | - Tao Yue
- Departments of Surgery and Immunology, Center for Organogenesis Research and Trauma, UT Southwestern Medical Center, Dallas, TX 75235
| | - Andrew M. Lipchik
- Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Detroit, MI, 48201
| | | | - Joshua J. Gruber
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| |
Collapse
|
3
|
Duan Y, Ren X, Guo X, Xie J, Liu Z, Li L. VISTA in hematological malignancies: a review of the literature. Front Immunol 2024; 15:1466839. [PMID: 39742253 PMCID: PMC11685136 DOI: 10.3389/fimmu.2024.1466839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, tumor immunotherapy has become an active research area, with the emergence of immune checkpoint inhibitors (ICIs) revolutionizing immunotherapy. Clinical evidence indicates that programmed cell death protein 1 (PD-1) monoclonal antibodies and other drugs have remarkable therapeutic effects. V-domain Ig suppressor of T-cell activation (VISTA) is a new type of immune checkpoint receptor that is highly expressed in various tumors. It is co-expressed with PD-1, T-cell immunoglobulin domain, mucin domain-3 (Tim-3), T-cell immunoglobulin, and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and is associated with prognosis, which suggests that it may be a target for immunotherapy. As an immune checkpoint receptor with no mature drugs, VISTA is highly expressed in acute myeloid leukemia (AML), multiple myeloma (MM), and other hematological malignancies; however, its pathogenic mechanism should be defined to better guide treatment.
Collapse
Affiliation(s)
- Yuanjia Duan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Jiayi Xie
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| |
Collapse
|
4
|
Shao Y, Yang WY, Nanayakkara G, Saaoud F, Ben Issa M, Xu K, Lu Y, Jiang X, Mohsin S, Wang H, Yang X. Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4 +Foxp3 + Regulatory T Cell Immunosuppression. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100022. [PMID: 39926714 PMCID: PMC11804271 DOI: 10.53941/ijddp.2024.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.
Collapse
Affiliation(s)
- Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - William Y. Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Gayani Nanayakkara
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT84112, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Sadia Mohsin
- Aging + Cardiovascular Discovery Center (ACDC), Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| |
Collapse
|
5
|
Liu D, Chi LJ. Association Between VISTA and Vascular Cognitive Impairment in Older Chinese Adults: A Cross-Sectional Study. Clin Interv Aging 2024; 19:1939-1949. [PMID: 39600532 PMCID: PMC11590672 DOI: 10.2147/cia.s474209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Vascular cognitive impairment(VCI) ranks as the second most prevalent type of dementia.Increasing evidence has shown that inflammation and multi-faceted neuro-immune interactions integrate systemic and central inflammatory pathways, thereby inducing vascular tissue injury and contributing to the development of vascular cognitive impairment (VCI).V-type immunoglobulin-like suppressor of T cell activation (VISTA) is an Negative checkpoint regulators(NCR) that is associated with CNS homeostasis, interactions with peripheral immunity and CNS inflammation.The primary objective of this study was to seek the correlation between VISTA and VCI in patients with cardiovascular risk factors.Our secondary objective was to explore the potential of VISTA as a biomarker for VCI. Patients and Methods We enrolled individuals with cardiovascular risk factors in this cross-sectional study research and categorized them into two groups: without cognitive impairment (control) and with cognitive impairment (VCI). VISTA expression in peripheral blood mononuclear cells (PBMCs) was analyzed using relative quantitative polymerase chain reaction. VISTA expression was identified in monocyte subsets using flow cytometry. We use Enzyme linked immunosorbent assay to detect inflammatory factors in serum. Results In PBMC in patients with VCI, the expression of VSIR was significantly reduced. In contrast to controls, fasting glucose, fibrosis, and the levels of interleukin 6 (IL-6) in VCI patients were noticeably higher, and uric acid levels were significantly lower. Vsir mRNA expression in PBMCs correlated negatively with IL-6 levels, Trail Making Test B scores, and Hachinski scores and positively with Boston Naming Test scores. In intermediate monocytes, flow cytometry showed reduced Vsir expression, which was connected with VCI. The percentage of intermediate monocytes, uric acid, and the VISTA mean fluorescence intensity on intermediate monocytes were shown to be independent factors to VCI by multivariate logistic regression analysis. Conclusion Decreased VISTA promotes the occurrence of VCI in patients with cardiovascular risk factors by promoting monocytes toward the proinflammatory intermediate monocyte subset. VISTA may serve as a potential biomarker for distinguishing VCI in individuals with cardiovascular risk factors.
Collapse
Affiliation(s)
- Dan Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Li-Jun Chi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Zhang RJ, Kim TK. VISTA-mediated immune evasion in cancer. Exp Mol Med 2024; 56:2348-2356. [PMID: 39482534 PMCID: PMC11612309 DOI: 10.1038/s12276-024-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Over the past decade, V-domain immunoglobulin suppressor of T-cell activation (VISTA) has been established as a negative immune checkpoint molecule. Since the role of VISTA in inhibiting T-cell activation was described, studies have demonstrated other diverse regulatory functions in multiple immune cell populations. Furthermore, its relevance has been identified in human cancers. The role of VISTA in cancer immune evasion has been determined, but its mechanisms in the tumor microenvironment remain to be further elucidated. Understanding its contributions to cancer initiation, progression, and resistance to current treatments will be critical to its utility as a target for novel immunotherapies. Here, we summarize the current understanding of VISTA biology in cancer.
Collapse
Affiliation(s)
- Raymond J Zhang
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Liu S, Ji F, Ding Y, Ding B, Feng S, Brennick C, Lin H, Zhang T, Shen Y. VISTA: A promising target for overcoming immune evasion in gynecologic cancers. Int Immunopharmacol 2024; 138:112655. [PMID: 38986302 DOI: 10.1016/j.intimp.2024.112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but has shown limited efficacy in gynecologic cancers. VISTA (V-domain Ig suppressor of T-cell activation), a member of the B7 family, is emerging as another checkpoint that regulates the anti-tumor immune responses within the tumor microenvironment. This paper reviews the structure, expression, and mechanism of action of VISTA. Furthermore, it highlights recent advances in VISTA-blocking therapies and their potential in improving outcomes for patients with gynecologic cancers. By understanding the role of VISTA in mediating the immune evasion of gynecologic tumors, we can develop more effective combinatory treatment strategies that could overcome resistance to current ICB therapies.
Collapse
Affiliation(s)
- Sicong Liu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Feng Ji
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yue Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Bo Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Songwei Feng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Cory Brennick
- Department of Immunobiology, Yale University, New Haven, CT 06511, USA
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, New Haven, CT 06511, USA.
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China.
| |
Collapse
|
8
|
Cui N, Xu X, Zhou F. Single-cell technologies in psoriasis. Clin Immunol 2024; 264:110242. [PMID: 38750947 DOI: 10.1016/j.clim.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disorder. The primary manifestation of psoriasis arises from disturbances in the cutaneous immune microenvironment, but the specific functions of the cellular components within this microenvironment remain unknown. Recent advancements in single-cell technologies have enabled the detection of multi-omics at the level of individual cells, including single-cell transcriptome, proteome, and metabolome, which have been successfully applied in studying autoimmune diseases, and other pathologies. These techniques allow the identification of heterogeneous cell clusters and their varying contributions to disease development. Considering the immunological traits of psoriasis, an in-depth exploration of immune cells and their interactions with cutaneous parenchymal cells can markedly advance our comprehension of the mechanisms underlying the onset and recurrence of psoriasis. In this comprehensive review, we present an overview of recent applications of single-cell technologies in psoriasis, aiming to improve our understanding of the underlying mechanisms of this disorder.
Collapse
Affiliation(s)
- Niannian Cui
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaoqing Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Fusheng Zhou
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China.
| |
Collapse
|
9
|
Gray CC, Armstead BE, Chung CS, Chen Y, Ayala A. VISTA nonredundantly regulates proliferation and CD69low γδ T cell accumulation in the intestine in murine sepsis. J Leukoc Biol 2024; 115:1005-1019. [PMID: 38035776 PMCID: PMC11135620 DOI: 10.1093/jleuko/qiad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/21/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Sepsis is a dysregulated systemic immune response to infection i.e. responsible for ∼35% of in-hospital deaths at a significant fiscal healthcare cost. Our laboratory, among others, has demonstrated the efficacy of targeting negative checkpoint regulators (NCRs) to improve survival in a murine model of sepsis, cecal ligation and puncture (CLP). B7-CD28 superfamily member, V-domain immunoglobulin suppressor of T cell activation (VISTA), is an ideal candidate for strategic targeting in sepsis. VISTA is a 35 to 45 kDa type 1 transmembrane protein with unique biology that sets it apart from all other NCRs. We recently reported that VISTA-/- mice had a significant survival deficit post-CLP, which was rescued upon adoptive transfer of a VISTA-expressing pMSCV-mouse Foxp3-EF1α-GFP-T2A-puro stable Jurkat cell line (Jurkatfoxp3 T cells). Based on our prior study, we investigated the effector cell target of Jurkatfoxp3 T cells in VISTA-/- mice. γδ T cells are a powerful lymphoid subpopulation that require regulatory fine-tuning by regulatory T cells to prevent overt inflammation/pathology. In this study, we hypothesized that Jurkatfoxp3 T cells nonredundantly modulate the γδ T cell population post-CLP. We found that VISTA-/- mice have an increased accumulation of intestinal CD69low γδ T cells, which are not protective in murine sepsis. Adoptive transfer of Jurkatfoxp3 T cells decreased the intestinal γδ T cell population, suppressed proliferation, skewed remaining γδ T cells toward a CD69high phenotype, and increased soluble CD40L in VISTA-/- mice post-CLP. These results support a potential regulatory mechanism by which VISTA skews intestinal γδ T cell lineage representation in murine sepsis.
Collapse
MESH Headings
- Animals
- Sepsis/immunology
- Mice
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Cell Proliferation
- Humans
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Mice, Knockout
- Mice, Inbred C57BL
- Intestines/immunology
- Intestines/pathology
- Jurkat Cells
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
Collapse
Affiliation(s)
- Chyna C Gray
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, United States
| | - Brandon E Armstead
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, United States
- Pathobiology Graduate Program, Brown University, Box G-B495, Providence, RI 02912, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, United States
| | - Yaping Chen
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, United States
- Pathobiology Graduate Program, Brown University, Box G-B495, Providence, RI 02912, United States
| |
Collapse
|
10
|
Li S, Wang G, Ren Y, Liu X, Wang Y, Li J, Liu H, Yang J, Xing J, Zhang Y, He C, Xu S, Hou X, Li N. Expression and function of VISTA on myeloid cells. Biochem Pharmacol 2024; 222:116100. [PMID: 38428824 DOI: 10.1016/j.bcp.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
V-domain containing Ig Suppressor of T cell Activation (VISTA) is predominantly expressed on myeloid cells and functions as a ligand/receptor/soluble molecule. In inflammatory responses and immune responses, VISTA regulates multiple functions of myeloid cells, such as chemotaxis, phagocytosis, T cell activation. Since inflammation and immune responses are critical in many diseases, VISTA is a promising therapeutic target. In this review, we will describe the expression and function of VISTA on different myeloid cells, including neutrophils, monocytes, macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs). In addition, we will discuss whether the functions of VISTA on these cells impact the disease processing.
Collapse
Affiliation(s)
- Siyu Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Geng Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China.
| | - Xinyue Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jiaqiang Yang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Canxia He
- Health Science Center, Ningbo University, Ningbo, China.
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, China.
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China; Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
11
|
Nishizaki D, Kurzrock R, Miyashita H, Adashek JJ, Lee S, Nikanjam M, Eskander RN, Patel H, Botta GP, Nesline MK, Pabla S, Conroy JM, DePietro P, Sicklick JK, Kato S. Viewing the immune checkpoint VISTA: landscape and outcomes across cancers. ESMO Open 2024; 9:102942. [PMID: 38503143 PMCID: PMC10966162 DOI: 10.1016/j.esmoop.2024.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Optimizing immune checkpoint inhibitor (ICI) therapy may require identification of co-targetable checkpoint pathways via immune profiling. Herein, we analyzed the transcriptomic expression and clinical correlates of V-domain immunoglobulin suppressor of T-cell activation (VISTA), a promising targetable checkpoint. PATIENTS AND METHODS RNA sequencing was carried out on 514 tissues reflecting diverse advanced/metastatic cancers. Expression of eight immune checkpoint markers [lymphocyte-activation gene 3 (LAG-3), tumor necrosis factor receptor superfamily 14 (TNFRSF14), programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), programmed death-ligand 2 (PD-L2), B- and T-lymphocyte attenuator (BTLA), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), cytotoxic T-lymphocyte antigen 4 (CTLA-4)], in addition to VISTA, was analyzed, along with clinical outcomes. RESULTS High VISTA RNA expression was observed in 32% of tumors (66/514) and was the most common highly expressed checkpoint among the nine assessed. High VISTA expression was independently correlated with high BTLA, TIM-3, and TNFRSF14, and with a diagnosis of pancreatic, small intestine, and stomach cancer. VISTA transcript levels did not correlate with overall survival (OS) from metastatic/advanced disease in the pan-cancer cohort or with immunotherapy outcome (progression-free survival and OS from the start of ICI) in 217 ICI-treated patients. However, in ICI-treated pancreatic cancer patients (n = 16), median OS was significantly shorter (from immunotherapy initiation) for the high- versus not-high-VISTA groups (0.28 versus 1.21 years) (P = 0.047); in contrast, VISTA levels were not correlated with OS in 36 pancreatic cancer patients who did not receive ICI. CONCLUSION High VISTA expression correlates with high BTLA, TIM-3, and TNFRSF14 checkpoint-related molecules and with poorer post-immunotherapy survival in pancreatic cancer, consistent with prior literature indicating that VISTA is prominently expressed on CD68+ macrophages in pancreatic cancers and requiring validation in larger prospective studies. Immunomic analysis may be important for individualized precision immunotherapy.
Collapse
Affiliation(s)
- D Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla.
| | - R Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, USA; WIN Consortium, Paris, France
| | - H Miyashita
- Dartmouth Cancer Center, Hematology and Medical Oncology, Lebanon
| | - J J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore
| | - S Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla
| | - M Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla
| | - R N Eskander
- Center for Personalized Cancer Therapy and Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, Moores Cancer Center, La Jolla
| | - H Patel
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla
| | - G P Botta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla
| | | | | | | | | | - J K Sicklick
- Division of Surgical Oncology, Department of Surgery, Center for Personalized Cancer Therapy, University of California San Diego, La Jolla, USA
| | - S Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer Center, La Jolla.
| |
Collapse
|
12
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
13
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Wang B, Ou Z, Zhong W, Huang L, Liao W, Sheng Y, Guo Z, Chen J, Yang W, Chen K, Huang X, Yang T, Lin T, Huang J. Effective Antitumor Immunity Can Be Triggered by Targeting VISTA in Combination with a TLR3-Specific Adjuvant. Cancer Immunol Res 2023; 11:1656-1670. [PMID: 37847894 DOI: 10.1158/2326-6066.cir-23-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Resistance to anti-PD-1/PD-L1 treatment is often associated with accumulation of intratumoral inhibitory macrophages. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a nonredundant immune checkpoint that can induce both T-cell and myeloid-cell immunosuppression. In this study, we found that high levels of VISTA+ immune cells were associated with advanced stage bladder cancer and predicted poor survival in patients. A combination of high infiltration of VISTA+ immune cells and PD-L1+ immune cells or PD-1+ T cells predicted the worst survival. Flow cytometry and multiplex immunofluorescence analyses confirmed that VISTA expression was higher in macrophages than in T cells or neutrophils, and only VISTA+CD163+ macrophage density predicted poor prognosis in patients with bladder cancer. Toll-like receptor (TLR) agonists are known to trigger the innate immune response in macrophages. We found that the VISTA-specific mAb 13F3 augmented the ability of a TLR3-specific adjuvant to induce macrophage activation in vitro. In the MB49 syngeneic mouse model of bladder cancer, treatment with 13F3 curbed tumor growth and prolonged survival when combined with a TLR3-specific adjuvant. The combination treatment reduced the intratumoral frequency of CD206+ anti-inflammatory macrophages and levels of the immunosuppressive molecule TGFβ1, but it upregulated expression of immunostimulatory molecules (Ifna, Ifnb, and Trail) and increased the CD8+ T cell/regulatory T-cell ratio. These findings indicate that elevated VISTA expression in immune cells, particularly macrophages, is associated with an unfavorable prognosis in patients with bladder cancer and suggest that targeting VISTA in combination with a TLR3-specific adjuvant has translational potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Ziwei Ou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenjian Liao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Yiyu Sheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Zhixing Guo
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
| | - Junyu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Xiaodong Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Tenghao Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| |
Collapse
|
15
|
Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B, Jalali SA. VISTA and its ligands: the next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int 2023; 23:265. [PMID: 37936192 PMCID: PMC10631023 DOI: 10.1186/s12935-023-03116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel negative checkpoint receptor (NCR) primarily involved in maintaining immune tolerance. It has a role in the pathogenesis of autoimmune disorders and cancer and has shown promising results as a therapeutic target. However, there is still some ambiguity regarding the ligands of VISTA and their interactions with each other. While V-Set and Immunoglobulin domain containing 3 (VSIG-3) and P-selectin glycoprotein ligand-1(PSGL-1) have been extensively studied as ligands for VISTA, the others have received less attention. It seems that investigating VISTA ligands, reviewing their functions and roles, as well as outcomes related to their interactions, may allow an understanding of their full functionality and effects within the cell or the microenvironment. It could also help discover alternative approaches to target the VISTA pathway without causing related side effects. In this regard, we summarize current evidence about VISTA, its related ligands, their interactions and effects, as well as their preclinical and clinical targeting agents.
Collapse
Affiliation(s)
- Najibeh Shekari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Roy D, Gilmour C, Patnaik S, Wang LL. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors. Front Immunol 2023; 14:1264327. [PMID: 37928556 PMCID: PMC10620683 DOI: 10.3389/fimmu.2023.1264327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
The differentiation, survival, and effector function of tumor-specific CD8+ cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of proper costimulation and the abundant immunosuppressive mechanisms, tumor-specific T cells show a lack of persistence and exhausted and dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and failed antitumor immunity. These coinhibitory receptors are collectively called immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs) targeting these ICRs have become the cornerstone for cancer immunotherapy as they have established new clinical paradigms for an expanding range of previously untreatable cancers. Given the nonredundant yet convergent molecular pathways mediated by various ICRs, combinatorial immunotherapies are being tested to bring synergistic benefits to patients. In this review, we summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT, TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial strategies to improve existing ICI therapies.
Collapse
Affiliation(s)
- Dia Roy
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Cassandra Gilmour
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Sachin Patnaik
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
17
|
Lei X, Wang Y, Broens C, Borst J, Xiao Y. Immune checkpoints targeting dendritic cells for antibody-based modulation in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:145-179. [PMID: 38225102 DOI: 10.1016/bs.ircmb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells which link innate to adaptive immunity. DC play a central role in regulating antitumor T-cell responses in both tumor-draining lymph nodes (TDLN) and the tumor microenvironment (TME). They modulate effector T-cell responses via immune checkpoint proteins (ICPs) that can be either stimulatory or inhibitory. Functions of DC are often impaired by the suppressive TME leading to tumor immune escape. Therefore, better understanding of the mechanisms of action of ICPs expressed by (tumor-infiltrating) DC will lead to potential new treatment strategies. Genetic manipulation and high-dimensional analyses have provided insight in the interactions between DC and T-cells in TDLN and the TME upon ICP targeting. In this review, we discuss (tumor-infiltrating) DC lineage cells and tumor tissue specific "mature" DC states and their gene signatures in relation to anti-tumor immunity. We also review a number of ICPs expressed by DC regarding their functions in phagocytosis, DC activation, or inhibition and outline position in, or promise for clinical trials in cancer immunotherapy. Collectively, we highlight the critical role of DC and their exact status in the TME for the induction and propagation of T-cell immunity to cancer.
Collapse
Affiliation(s)
- Xin Lei
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yizhi Wang
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Chayenne Broens
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Zhang Y, Zhang X, Han J, Guo Y, Yang F, Li F, Zhu H, Shen Z, Huang Y, Mao R, Zhang J. Downregulated VISTA enhances Th17 differentiation and aggravates inflammation in patients with acute-on-chronic liver failure. Hepatol Int 2023; 17:1000-1015. [PMID: 36944807 DOI: 10.1007/s12072-023-10505-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND AIMS Persistent inflammatory response and immune activation are the core mechanisms underlying acute-on-chronic liver failure (ACLF). Previous studies have shown that deficiency of V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) exacerbates the progression of inflammatory diseases. We aimed to clarify the role of VISTA in the pathogenesis of ACLF. METHODS Blood and liver samples were collected from healthy subjects, stable cirrhosis, and ACLF patients to characterize VISTA expression and function. An ACLF mouse model was used to ascertain potential benefits of anti-VISTA monoclonal antibody (mAb) treatment. RESULTS VISTA expression was significantly reduced in the naïve and central memory CD4+ T cells from patients with ACLF. The expression of VISTA on CD4+ T cells was associated with disease severity and prognosis. VISTA downregulation contributed to the activation and proliferation of CD4+ T cells and enhanced the differentiation of T helper 17 cells (Th17) and secretion of inflammatory cytokines through the activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Moreover, agonistic anti-VISTA mAb treatment inhibited the activation and cytokine production of CD4+ T cells and reduced mortality and liver inflammation of the ACLF mice. CONCLUSIONS The decreased expression of VISTA may facilitate development of Th17 cells and promote the progression of inflammation in ACLF patients. These findings are helpful for elucidating the pathogenesis of ACLF and for the identification of new drug targets.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Department of Hepatitis Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Zheng M, Zhang Z, Yu L, Wang Z, Dong Y, Tong A, Yang H. Immune-checkpoint protein VISTA in allergic, autoimmune disease and transplant rejection. Front Immunol 2023; 14:1194421. [PMID: 37435070 PMCID: PMC10330820 DOI: 10.3389/fimmu.2023.1194421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Negative checkpoint regulators (NCRs) reduce the T cell immune response against self-antigens and limit autoimmune disease development. V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint in the B7 family, has recently been identified as one of the NCRs. VISTA maintains T cell quiescence and peripheral tolerance. VISTA targeting has shown promising results in treating immune-related diseases, including cancer and autoimmune disease. In this review, we summarize and discuss the immunomodulatory role of VISTA, its therapeutic potential in allergic, autoimmune disease, and transplant rejection, as well as the current therapeutic antibodies, to present a new method for regulating immune responses and achieving durable tolerance for the treatment of autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Yu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yijun Dong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Chmiel P, Gęca K, Michalski A, Kłosińska M, Kaczyńska A, Polkowski WP, Pelc Z, Skórzewska M. Vista of the Future: Novel Immunotherapy Based on the Human V-Set Immunoregulatory Receptor for Digestive System Tumors. Int J Mol Sci 2023; 24:9945. [PMID: 37373091 PMCID: PMC10297928 DOI: 10.3390/ijms24129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
While gastrointestinal tumors remain a multifactorial and prevalent group of malignancies commonly treated surgically in combination with chemotherapy and radiotherapy, advancements regarding immunotherapeutic approaches continue to occur. Entering a new era of immunotherapy focused on overcoming resistance to preceding therapies caused the emergence of new therapeutic strategies. A promising solution surfaces with a V-domain Ig suppressor of T-cell activation (VISTA), a negative regulator of a T-cell function expressed in hematopoietic cells. Due to VISTA's ability to act as both a ligand and a receptor, several therapeutic approaches can be potentially developed. A broad expression of VISTA was discovered on various tumor-growth-controlling cells, which proved to increase in specific tumor microenvironment (TME) conditions, thus serving as a rationale behind the development of new VISTA-targeting. Nevertheless, VISTA's ligands and signaling pathways are still not fully understood. The uncertain results of clinical trials suggest the need for future examining inhibitor agents for VISTA and implicating a double immunotherapeutic blockade. However, more research is needed before the breakthrough can be achieved. This review discusses perspectives and novel approaches presented in the current literature. Based on the results of the ongoing studies, VISTA might be considered a potential target in combined therapy, especially for treating gastrointestinal malignancies.
Collapse
|
21
|
Yuan D, Zhang Y, Liu W, He X, Chen W, Liu L, Yang L, Wang Y, Wu Y, Liu J. Transcriptome profiling reveals transcriptional regulation of VISTA in T cell activation. Mol Immunol 2023; 157:101-111. [PMID: 37004501 DOI: 10.1016/j.molimm.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a novel type of immune checkpoint. This study was performed to explore the potential mechanism by which different domains of VISTA affect T-cell activation and search for potential interacting proteins. METHODS Stably transfected Jurkat cell lines were constructed to overexpress human VISTA (VISTA-FL), cytoplasmic domain deletion mutants (VISTA-ΔECD) and extracellular domain deletion mutants (VISTA- ΔCD). Empty vector (EV) control cell lines were constructed. Four stable cell lines were subjected to transcriptome sequencing after stimulation with PMA and PHA. The differentially expressed genes (DEGs) were analysed to explore the potential pathway by which VISTA inhibits T-cell activation. Proteinprotein interaction (PPI) network analysis was used to search for potential interacting proteins of VISTA. RESULTS In this study, 1256 DEGs were identified in Jurkat-VISTA-FL cells, 740 DEGs in Jurkat-VISTA-ΔCD cells, and 5605 DEGs in Jurkat-VISTA-ΔECD cells compared with Jurkat-EV cells. DEGs were mainly enriched in pathways related to T-cell differentiation, T-cell receptor signalling pathway and T-cell migration in Jurkat-VISTA-ΔECD cells; with cholesterol biosynthesis in Jurkat-VISTA-ΔCD cells; and with the inflammatory response in Jurkat-VISTA-FL cells. HHLA2 and CTH were identified as potential partners that interact directly with VISTA. The results also show an indirect interaction between VISTA and PSGL-1. CONCLUSIONS This study revealed the pathways by which VISTA is involved in T-cell activation and identified the potential binding partners of VISTA through RNA-seq, providing valuable resources for developing in-depth studies of the action mechanisms of VISTA as a potential target for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Dingyi Yuan
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wanmei Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyu He
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Chen
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Liu Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yixin Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yinhao Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Li N, Yang S, Ren Y, Tai R, Liu H, Wang Y, Li J, Wang F, Xing J, Zhang Y, Zhu X, Xu S, Hou X, Wang G. Chemotherapy induces immune checkpoint VISTA expression in tumor cells via HIF-2alpha. Biochem Pharmacol 2023; 210:115492. [PMID: 36898416 DOI: 10.1016/j.bcp.2023.115492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Tumor cells can evade the innate and adaptive immune systems, which play important roles in tumor recurrence and metastasis. Malignant tumors that recur after chemotherapy are more aggressiveciscis, suggesting an increased ability of the surviving tumor cells to evade innate and adaptive immunity. Therefore, in order to reduce patient mortality, it is important to discover the mechanisms by which tumor cells develop resistance to chemotherapeutics. In the present study we focused on the tumor cells that survived chemotherapy. We found that chemotherapy could promote the expression of VISTA in tumor cells, and that this change was mediated by HIF-2α. In addition, VISTA overexpression on melanoma cells promoted immune evasion, and the application of the VISTA-blocking antibody 13F3 enhanced the therapeutic effect of carboplatin. These results offer an insight into the immune evasion of chemotherapy-resistant tumors, and provide a theoretical basis for the combined application of chemotherapy drugs and VISTA inhibitors to treat tumors.
Collapse
Affiliation(s)
- Na Li
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China; School of Medicine, Ningbo University, Ningbo, China
| | - Shanru Yang
- Department of Histology and Embryology, Harbin Medical University, Harbin, China; Department of Pathology, the First Hospital of Lanzhou University, Lanzhou, China
| | - Yan Ren
- School of Medicine, Ningbo University, Ningbo, China
| | - Risheng Tai
- Department of Histology and Embryology, Harbin Medical University, Harbin, China; The First Psychiatric Hospital of Harbin, Heilongjiang, China
| | - Hua Liu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yixuan Wang
- School of Medicine, Ningbo University, Ningbo, China
| | - Jianing Li
- School of Medicine, Ningbo University, Ningbo, China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo, China
| | - Jingjun Xing
- School of Medicine, Ningbo University, Ningbo, China
| | - Yanru Zhang
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoxia Zhu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, China.
| | - Geng Wang
- School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|
23
|
Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Mol Cancer 2023; 22:31. [PMID: 36793048 PMCID: PMC9930367 DOI: 10.1186/s12943-023-01722-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors (ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs combined with γδT cells as a good treatment option.
Collapse
Affiliation(s)
- Zhifei Gao
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Yifeng Bai
- grid.54549.390000 0004 0369 4060The Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Anqi Lin
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China
| | - Aimin Jiang
- grid.73113.370000 0004 0369 1660The Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- grid.216417.70000 0001 0379 7164The Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xin Chen
- The Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
24
|
Schaafsma E, Croteau W, Mohamed E, Nowak EC, Smits NC, Deng J, Sarde A, Webber CA, Rabadi D, Cheng C, Noelle R, Lines JL. VISTA Targeting of T-cell Quiescence and Myeloid Suppression Overcomes Adaptive Resistance. Cancer Immunol Res 2023; 11:38-55. [PMID: 36260656 PMCID: PMC10544831 DOI: 10.1158/2326-6066.cir-22-0116] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023]
Abstract
V domain immunoglobulin suppressor of T-cell activation (VISTA) is a premier target for cancer treatment due to its broad expression in many cancer types and enhanced expression upon development of adaptive immune checkpoint resistance. In the CT26 colorectal cancer model, monotherapy of small tumors with anti-VISTA resulted in slowed tumor growth. In a combination therapy setting, large CT26 tumors showed complete adaptive resistance to anti-PD-1/CTLA-4, but inclusion of anti-VISTA led to rejection of half the tumors. Mechanisms of enhanced antitumor immunity were investigated using single-cell RNA sequencing (scRNA-seq), multiplex image analysis, and flow cytometry of the tumor immune infiltrate. In both treatment models, anti-VISTA upregulated stimulated antigen presentation pathways and reduced myeloid-mediated suppression. Imaging revealed an anti-VISTA stimulated increase in contacts between T cells and myeloid cells, further supporting the notion of increased antigen presentation. scRNA-seq of tumor-specific CD8+ T cells revealed that anti-VISTA therapy induced T-cell pathways highly distinct from and complementary to those induced by anti-PD-1 therapy. Whereas anti-CTLA-4/PD-1 expanded progenitor exhausted CD8+ T-cell subsets, anti-VISTA promoted costimulatory genes and reduced regulators of T-cell quiescence. Notably, this is the first report of a checkpoint regulator impacting CD8+ T-cell quiescence, and the first indication that quiescence may be a target in the context of T-cell exhaustion and in cancer. This study builds a foundation for all future studies on the role of anti-VISTA in the development of antitumor immunity and provides important mechanistic insights that strongly support use of anti-VISTA to overcome the adaptive resistance seen in contemporary treatments involving PD-1 and/or CTLA-4. See related Spotlight by Wei, p. 3.
Collapse
Affiliation(s)
- Evelien Schaafsma
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Walburga Croteau
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - ElTanbouly Mohamed
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Elizabeth C. Nowak
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Nicole C. Smits
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jie Deng
- University of California, Los Angeles. Department of Radiation Oncology
| | - Aurelien Sarde
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | - Dina Rabadi
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Chao Cheng
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Randolph Noelle
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - J. Louise Lines
- Department of Microbiology and Immunology, Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
25
|
Gaikwad S, Agrawal MY, Kaushik I, Ramachandran S, Srivastava SK. Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy. Semin Cancer Biol 2022; 86:137-150. [PMID: 35341913 DOI: 10.1016/j.semcancer.2022.03.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint proteins (ICP) are currently one of the most novel and promising areas of immune-oncology research. This novel way of targeting tumor cells has shown favorable success over the past few years with some FDA approvals such as Ipilimumab, Nivolumab, Pembrolizumab etc. Currently, more than 3000 clinical trials of immunotherapeutic agents are ongoing with majority being ICPs. However, as the number of trials increase so do the challenges. Some challenges such as adverse side effects, non-specific binding on healthy tissues and absence of response in some subset populations are critical obstacles. For a safe and effective further therapeutic development of molecules targeting ICPs, understanding their mechanism at molecular level is crucial. Since ICPs are mostly membrane bound receptors, a number of downstream signaling pathways divaricate following ligand-receptor binding. Most ICPs are expressed on more than one type of immune cell populations. Further, the expression varies within a cell type. This naturally varied expression pattern adds to the difficulty of targeting specific effector immune cell types against cancer. Hence, understanding the expression pattern and cellular mechanism helps lay out the possible effect of any immunotherapy. In this review, we discuss the signaling mechanism, expression pattern among various immune cells and molecular interactions derived using interaction database analysis (BioGRID).
Collapse
Affiliation(s)
- Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
26
|
Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Kandasamy S, Ramesh T, Gopalakrishnan AV. The Cellular and Molecular Immunotherapy in Prostate Cancer. Vaccines (Basel) 2022; 10:vaccines10081370. [PMID: 36016257 PMCID: PMC9416492 DOI: 10.3390/vaccines10081370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
In recent history, immunotherapy has become a viable cancer therapeutic option. However, over many years, its tenets have changed, and it now comprises a range of cancer-focused immunotherapies. Clinical trials are currently looking into monotherapies or combinations of medicines that include immune checkpoint inhibitors (ICI), CART cells, DNA vaccines targeting viruses, and adoptive cellular therapy. According to ongoing studies, the discipline should progress by incorporating patient-tailored immunotherapy, immune checkpoint blockers, other immunotherapeutic medications, hormone therapy, radiotherapy, and chemotherapy. Despite significantly increasing morbidity, immunotherapy can intensify the therapeutic effect and enhance immune responses. The findings for the immunotherapy treatment of advanced prostate cancer (PCa) are compiled in this study, showing that is possible to investigate the current state of immunotherapy, covering new findings, PCa treatment techniques, and research perspectives in the field’s unceasing evolution.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
27
|
Li S, Li N, Yang S, Deng H, Li Y, Wang Y, Yang J, Lv J, Dong L, Yu G, Hou X, Wang G. The study of immune checkpoint inhibitors in chronic hepatitis B virus infection. Int Immunopharmacol 2022; 109:108842. [DOI: 10.1016/j.intimp.2022.108842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022]
|
28
|
Li N, Hou X, Huang S, Tai R, Lei L, Li S, Abuliz A, Wang G, Yang S. Biomarkers related to immune checkpoint inhibitors therapy. Biomed Pharmacother 2022; 147:112470. [PMID: 35074251 DOI: 10.1016/j.biopha.2021.112470] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy is an emerging cancer treatment. During treatment it is necessary to monitor the patient at all times and respond to any adverse reactions that may occur, such as immune-related adverse events and unconventional reactions. Biomarkers, the biochemical indicators that mark changes in the structure or function of systems, organs, tissues, and cells, may be used to predict and design treatment for such reactions. Anti-tumor immunotherapy biomarkers can be derived from the tumors themselves (e.g. negative regulatory molecules and dynamic changes in genome sequence) or from the immune system (e.g. peripheral blood cell population counts, various cytokines, tumor-infiltrating lymphocytes, and intestinal microbes). The development of biomarkers is important for monitoring the effect of treatment, assessing the patient's response to ICIs, determining adverse reactions, and predicting the direction of disease development. In addition, organ toxicity and systemic events also have an impact on the therapeutic effect of ICIs.
Collapse
Affiliation(s)
- Na Li
- School of Medicine, Ningbo University, Zhejiang 315211, China; Department of Histology and Embryology, Harbin Medical University, Heilongjiang 150081, China
| | - Xin Hou
- School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Shaogang Huang
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang 150081, China
| | - Risheng Tai
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang 150081, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Heilongjiang 150081, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Heilongjiang 150081, China
| | - Siyu Li
- School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Adina Abuliz
- School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Geng Wang
- School of Medicine, Ningbo University, Zhejiang 315211, China.
| | - Shanru Yang
- School of Medicine, Ningbo University, Zhejiang 315211, China; Department of Histology and Embryology, Harbin Medical University, Heilongjiang 150081, China.
| |
Collapse
|
29
|
Thakkar D, Paliwal S, Dharmadhikari B, Guan S, Liu L, Kar S, Tulsian NK, Gruber JJ, DiMascio L, Paszkiewicz KH, Ingram PJ, D Boyd-Kirkup J. Rationally targeted anti-VISTA antibody that blockades the C-C' loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner. J Immunother Cancer 2022; 10:e003382. [PMID: 35131861 PMCID: PMC8823246 DOI: 10.1136/jitc-2021-003382] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite significant progress in cancer immunotherapy in recent years, resistance to existing immune checkpoint therapies (ICT) is common. V-domain Ig suppressor of T cell activation (VISTA), a predominantly myeloid immune checkpoint regulator, represents a promising therapeutic target due to its role in suppressing proinflammatory antitumor responses in myeloid-enriched tumor microenvironments. However, uncertainty around the cognate VISTA ligand has made the development of effective anti-VISTA antibodies challenging. The expression of VISTA on normal immune cell subtypes argues for a neutralizing non-depleting antibody, however, previous reported anti-VISTA antibodies use IgG1 Fc isotypes that deplete VISTA+ cells by antibody dependent cellular cytotoxicity/complement dependent cytotoxicity and these antibodies have shown fast serum clearance and immune toxicities. METHOD Here we used a rational antibody discovery approach to develop the first Fc-independent anti-VISTA antibody, HMBD-002, that binds a computationally predicted functional epitope within the C-C-loop, distinct from other known anti-VISTA antibodies. This epitope is species-conserved allowing robust in vitro and in vivo testing of HMBD-002 in human and murine models of immune activation and cancer including humanized mouse models. RESULTS We demonstrate here that blockade by HMBD-002 inhibits VISTA binding to potential partners, including V-Set and Immunoglobulin domain containing 3, to reduce myeloid-derived suppression of T cell activity and prevent neutrophil migration. Analysis of immune cell milieu suggests that HMBD-002 treatment stimulates a proinflammatory phenotype characterized by a Th1/Th17 response, recapitulating a phenotype previously noted in VISTA knockout models. This mechanism of action is further supported by immune-competent syngenic and humanized mouse models of colorectal, breast and lung cancer where neutralizing VISTA, without depleting VISTA expressing cells, significantly inhibited tumor growth while decreasing infiltration of suppressive myeloid cells and increasing T cell activity. Finally, we did not observe either the fast serum clearance or immune toxicities that have been reported for IgG1 antibodies. CONCLUSION In conclusion, we have shown that VISTA-induced immune suppression can be reversed by blockade of the functional C-C' loop region of VISTA with a first-in-class rationally targeted and non-depleting IgG4 isotype anti-VISTA antibody, HMBD-002. This antibody represents a highly promising novel therapy in the VISTA-suppressed ICT non-responder population.
Collapse
Affiliation(s)
- Dipti Thakkar
- Stanford University School of Medicine, Stanford, California, USA
| | - Shalini Paliwal
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Siyu Guan
- Stanford University School of Medicine, Stanford, California, USA
| | - Lillian Liu
- Stanford University School of Medicine, Stanford, California, USA
| | - Shreya Kar
- Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Dolatkhah K, Alizadeh N, Mohajjel-Shoja H, Abdoli Shadbad M, Hajiasgharzadeh K, Aghebati-Maleki L, Baghbanzadeh A, Hosseinkhani N, Karim Ahangar N, Baradaran B. B7 immune checkpoint family members as putative therapeutics in autoimmune disease: An updated overview. Int J Rheum Dis 2022; 25:259-271. [PMID: 34994525 DOI: 10.1111/1756-185x.14273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/23/2022]
Abstract
Autoimmune diseases, especially among young people in the US, are one of the leading causes of morbidity and death. The immune responses are the fundamental pathogenicity of autoimmune disorders. The equilibrium between stimulatory and inhibitory signals is critical for the stimulation, migration, survival, and T cell-related immune responses. The B7 family can substantially regulate T cell-mediated immune responses. Nevertheless, recent breakthroughs in immune checkpoint blockade in cancer immunotherapy have facilitated autoimmune diseases, especially among the prone populations. In the current study, we tried to concisely review the role of the B7 family in regulating immune reactions and the influence of immune checkpoint inhibitors on autoimmunity development.
Collapse
Affiliation(s)
- Katayoun Dolatkhah
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mohajjel-Shoja
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Abstract
The V-domain Ig Suppressor of T-cell Activation (VISTA) is an immune checkpoint regulator that suppresses immune responses and is readily expressed on human and murine myeloid cells and T cells. This immunosuppressive pathway can be activated using VISTA agonists. Here, we report the development of murine anti-human VISTA (anti-hVISTA) monoclonal antibodies (mAbs), anti-hVISTA nanobodies (Nbs), and cross-reactive rat anti-murine/human VISTA (anti-hmVISTA) mAbs. All mAbs and Nbs generated bound to VISTA (human and/or murine) with dissociation constants in the sub-nanomolar or low nanomolar range. Competition analysis revealed that the selected Nbs bound the same or a nearby epitope(s) as the human VISTA-specific mAbs. However, the cross-reactive mAbs only partially competed with Nbs for binding to hVISTA. All mAbs and one Nb (hVISTANb7) were able to strongly detect VISTA expression on primary human monocytes. Importantly, the murine anti-hVISTA mAbs 7E12 and 7G5 displayed strong agonistic activity in human peripheral blood mononuclear cell cultures, while Nb7 and rat anti-hmVISTA mAbs 3C3, 7C6, 7C7, and 7G1 also behaved as hVISTA agonists, albeit to a lesser extent. Cross-reactive mAbs 7C7 and 7G1 further displayed agonistic potential in murine splenocyte assays. Importantly, mAb 7G1 significantly reduced inflammation associated with the murine model of imiquimod-induced psoriasis. These agonistic VISTA mAbs may represent therapeutic leads to treat inflammatory disorders.
Collapse
Affiliation(s)
| | - Amanda Sparkes
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Ema Romão
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Ixelles, Belgium
| | - Shrayasee Saha
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Jean Gariépy
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Ahluwalia P, Mondal AK, Sahajpal NS, Rojiani MV, Kolhe R. Gene signatures with therapeutic value: emerging perspective for personalized immunotherapy in renal cancer. Immunotherapy 2021; 13:1535-1547. [PMID: 34753298 DOI: 10.2217/imt-2021-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Renal cancer is one of the deadliest urogenital diseases. In recent years, the advent of immunotherapy has led to significant improvement in the management of patients with renal cancer. Although cancer immunotherapy and its combinations had benefited numerous patients, several challenges need to be addressed. Apart from the high costs of treatment, the lack of predictive biomarkers and toxic side-effects have impeded its wider applicability. To address these issues, new biomarkers are required to predict responsiveness and design personalized treatment strategies. Recent advances in the field of single-cell sequencing and multi-dimensional spatial transcriptomics have identified clinically relevant subtypes of renal cancer. Furthermore, there is emerging potential for gene signatures based on immune cells, non-coding RNAs, and pathways such as metabolism and RNA modification. In this review article, we have discussed recent progress in the identification of gene signatures with predictive and prognostic potential in renal cancer.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Mumtaz V Rojiani
- Department of Pharmacology, Penn State University College of Medicine, PA 17033, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
33
|
Jung CJ, Yang HJ, Bang SH, Lee WJ, Won CH, Lee MW, Song Y, Chang SE. Clinicoprognostic and Histopathological Features of Guttate and Plaque Psoriasis Based on PD-1 Expression. J Clin Med 2021; 10:jcm10215200. [PMID: 34768720 PMCID: PMC8584888 DOI: 10.3390/jcm10215200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Several studies have determined the correlation between programmed cell death protein-1 (PD-1) and chronic plaque psoriasis (CPP). However, limited studies have assessed the association between PD-1 expression and the clinicoprognostic and distinct clinicopathological characteristics of CPP and guttate psoriasis (GP). Twenty-nine patients with skin biopsy-confirmed CPP were recruited at the Asan Medical Center between January 2018 and June 2020, and 33 patients with biopsy-confirmed GP were enrolled between January 2002 and June 2020. The clinicoprognostic and histopathological characteristics were analyzed according to immunohistochemical PD-1 expression in the epidermal or dermal inflammatory infiltrates. The CPP and GP lesions were divided into PD-1-low and PD-1-high groups. The CPP epidermal PD-1-high group had typical histopathological changes and significantly higher psoriasis area and severity index scores (p = 0.014) and disease duration (p = 0.009) than the epidermal PD-1-low group. In patients with GP, compared with the dermal PD-1-high group, the dermal PD-1-low group exhibited significantly higher disease duration (p = 0.002) and relapse rate of plaque psoriasis (p = 0.005) and significantly lower relapse-free survival (p = 0.016). Upregulated epidermal PD-1 expression was correlated with the chronicity and severity of CPP, while downregulated dermal PD-1 expression was correlated with poor prognosis of GP.
Collapse
Affiliation(s)
- Chang-Jin Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (C.-J.J.); (H.-J.Y.); (S.-H.B.); (W.-J.L.); (C.-H.W.); (M.-W.L.)
| | - Hee-Joo Yang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (C.-J.J.); (H.-J.Y.); (S.-H.B.); (W.-J.L.); (C.-H.W.); (M.-W.L.)
| | - Seung-Hyun Bang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (C.-J.J.); (H.-J.Y.); (S.-H.B.); (W.-J.L.); (C.-H.W.); (M.-W.L.)
| | - Woo-Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (C.-J.J.); (H.-J.Y.); (S.-H.B.); (W.-J.L.); (C.-H.W.); (M.-W.L.)
| | - Chong-Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (C.-J.J.); (H.-J.Y.); (S.-H.B.); (W.-J.L.); (C.-H.W.); (M.-W.L.)
| | - Mi-Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (C.-J.J.); (H.-J.Y.); (S.-H.B.); (W.-J.L.); (C.-H.W.); (M.-W.L.)
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Sung-Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (C.-J.J.); (H.-J.Y.); (S.-H.B.); (W.-J.L.); (C.-H.W.); (M.-W.L.)
- Correspondence: ; Tel.: +82-2-3010-3460
| |
Collapse
|
34
|
Yang F, Zhang Y, Chen Z, Zhang L. VISTA Blockade Aggravates Bone Loss in Experimental Murine Apical Periodontitis. Front Immunol 2021; 12:738586. [PMID: 34691045 PMCID: PMC8529274 DOI: 10.3389/fimmu.2021.738586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
V-domain Ig suppressor of T cell activation (VISTA) is a novel coinhibitory immune checkpoint molecule that maintains immune homeostasis. The present study explored the role of VISTA in human and murine inflammatory tissues of apical periodontitis (AP). VISTA was upregulated in inflammatory tissues of human AP. In mice, the expression of VISTA gradually increased with the development of mouse experimental apical periodontitis (MAP), the CD3+ T cells, CD11b+ myeloid cells, and FOXP3+ regulatory T cells also gradually accumulated. Moreover, a blockade of VISTA using a mouse in vivo anti-VISTA antibody aggravated periapical bone loss and enhanced the infiltration of immune cells in an experimental mouse periapical periodontitis model. The collective results suggest that VISTA serves as a negative regulator of the development and bone loss of apical periodontitis.
Collapse
Affiliation(s)
- Fuhua Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Im E, Sim DY, Lee HJ, Park JE, Park WY, Ko S, Kim B, Shim BS, Kim SH. Immune functions as a ligand or a receptor, cancer prognosis potential, clinical implication of VISTA in cancer immunotherapy. Semin Cancer Biol 2021; 86:1066-1075. [PMID: 34428551 DOI: 10.1016/j.semcancer.2021.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/15/2023]
Abstract
Since cancer immunotherapy with immune checkpoint inhibitors of PD/PDL-1 and CTLA-4 limited efficacy to the patients due to resistance during the current decade, novel target is required for customized treatment due to tumor heterogeneity. V-domain Ig-containing suppressor of T cell activation (VISTA), a programmed death protein-1(PD-1) homolog expressed on T cells and on antigen presenting cells(APC), has emerged as a new target in several cancers. Though VISTA inhibitors including CA-170 are considered attractive in cancer immunotherapy to date, the information on VISTA as a potent biomarker of cancer prognosis and its combination therapy is still lacking to date. Thus, in this review, we discussed extracellular domain, ligands, expression, immune functions and clinical implications of VISTA and finally suggested conclusion and perspectives.
Collapse
Affiliation(s)
- Eunji Im
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Eon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woon Yi Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - SeongGyu Ko
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
36
|
Rothlin CV, Ghosh S. Lifting the innate immune barriers to antitumor immunity. J Immunother Cancer 2021; 8:jitc-2020-000695. [PMID: 32273348 PMCID: PMC7254113 DOI: 10.1136/jitc-2020-000695] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 12/17/2022] Open
Abstract
The immune system evolved for adequate surveillance and killing of pathogens while minimizing host damage, such as due to chronic or exaggerated inflammation and autoimmunity. This is achieved by negative regulators and checkpoints that limit the magnitude and time course of the immune response. Tumor cells often escape immune surveillance and killing. Therefore, disrupting the brakes built into the immune system should effectively boost the anticancer immune response. The success of anti-CTLA4, anti-PD-1 and anti-PD-L1 have firmly established this proof of concept. Since the response rate of anti-CTLA4, anti-PD-1 and anti-PD-L1 is still limited, there is an intense effort for the identification of new targets and development of approaches that can expand the benefits of immunotherapy to a larger patient pool. Additional T cell checkpoints are obvious targets; however, here we focus on the unusual suspects—cells that function to initiate and guide T cell activity. Innate immunity is both an obligate prerequisite for the initiation of adaptive immune responses and a requirement for the recruitment of activated T cells to the site of action. We discuss some of the molecules present in innate immune cells, including natural killer cells, dendritic cells, macrophages, myeloid-derived suppressor cells, endothelial cells and stromal cells, that can activate or enhance innate immune cell functions, and more importantly, the inhibitors or checkpoints present in these cells that restrain their functions. Boosting innate immunity, either by enhancing activator functions or, preferably, by blocking the inhibitors, may represent a new anticancer treatment modality or at least function as adjuvants to T cell checkpoint inhibitors.
Collapse
Affiliation(s)
- Carla V Rothlin
- Immunobiology, Yale School of Medicine, New Haven, CT 06519, United States .,Pharmacology, Yale School of Medicine, New Haven, CT 06519, United States
| | - Sourav Ghosh
- Pharmacology, Yale School of Medicine, New Haven, CT 06519, United States .,Neurology, Yale School of Medicine, New Haven, CT 06519, United States
| |
Collapse
|
37
|
Shibru B, Fey K, Fricke S, Blaudszun AR, Fürst F, Weise M, Seiffert S, Weyh MK, Köhl U, Sack U, Boldt A. Detection of Immune Checkpoint Receptors - A Current Challenge in Clinical Flow Cytometry. Front Immunol 2021; 12:694055. [PMID: 34276685 PMCID: PMC8281132 DOI: 10.3389/fimmu.2021.694055] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immunological therapy principles are increasingly determining modern medicine. They are used to treat diseases of the immune system, for tumors, but also for infections, neurological diseases, and many others. Most of these therapies base on antibodies, but small molecules, soluble receptors or cells and modified cells are also used. The development of immune checkpoint inhibitors is amazingly fast. T-cell directed antibody therapies against PD-1 or CTLA-4 are already firmly established in the clinic. Further targets are constantly being added and it is becoming increasingly clear that their expression is not only relevant on T cells. Furthermore, we do not yet have any experience with the long-term systemic effects of the treatment. Flow cytometry can be used for diagnosis, monitoring, and detection of side effects. In this review, we focus on checkpoint molecules as target molecules and functional markers of cells of the innate and acquired immune system. However, for most of the interesting and potentially relevant parameters, there are still no test kits suitable for routine use. Here we give an overview of the detection of checkpoint molecules on immune cells in the peripheral blood and show examples of a possible design of antibody panels.
Collapse
Affiliation(s)
- Benjamin Shibru
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katharina Fey
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | - Friederike Fürst
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Max Weise
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sabine Seiffert
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Maria Katharina Weyh
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andreas Boldt
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Hosseinkhani N, Derakhshani A, Shadbad MA, Argentiero A, Racanelli V, Kazemi T, Mokhtarzadeh A, Brunetti O, Silvestris N, Baradaran B. The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead. Front Immunol 2021; 12:676181. [PMID: 34093577 PMCID: PMC8172140 DOI: 10.3389/fimmu.2021.676181] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoints (ICs) have pivotal roles in regulating immune responses. The inhibitory ICs in the tumor microenvironment (TME) have been implicated in the immune evasion of tumoral cells. Therefore, identifying and targeting these inhibitory ICs might be critical for eliminating tumoral cells. V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel inhibitory IC that is expressed on myeloid cells, lymphoid cells, and tumoral cells; therefore, VISTA can substantially regulate innate and adaptive anti-tumoral immune responses. Besides, growing evidence indicates that VISTA blockade can enhance the sensitivity of tumoral cells to conventional IC-based immunotherapy, e.g., cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors. In this regard, the current study aimed to review the current evidence about the structure and expression pattern of VISTA, its role in TME, the clinicopathological significance of VISTA, and its prognostic values in various cancers. Besides, this review intended to collect the lessons from the recent pre-clinical and clinical studies and propose a strategy to overcome tumor immune-resistance states.
Collapse
Affiliation(s)
- Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Antonella Argentiero
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Borggrewe M, Kooistra SM, Wesseling EM, Gierschek FL, Brummer ML, Nowak EC, Medeiros-Furquim T, Otto TA, Lee SW, Noelle RJ, Eggen BJL, Laman JD. VISTA regulates microglia homeostasis and myelin phagocytosis, and is associated with MS lesion pathology. Acta Neuropathol Commun 2021; 9:91. [PMID: 34006329 PMCID: PMC8130385 DOI: 10.1186/s40478-021-01186-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) is a negative checkpoint regulator (NCR) that is involved in T-cell quiescence, inhibition of T-cell activation, and in myeloid cells regulates cytokine production, chemotaxis, phagocytosis, and tolerance induction. In the central nervous system (CNS), VISTA is expressed by microglia, the resident macrophage of the parenchyma, and expression is decreased during neuroinflammation; however, the function of VISTA in microglia is unknown. Here, we extensively analyzed VISTA expression in different MS lesion stages and characterized the function of VISTA in the CNS by deleting VISTA in microglia. VISTA is differentially expressed in distinct MS lesion stages. In mice, VISTA deletion in Cx3Cr1-expressing cells induced a more amoeboid microglia morphology, indicating an immune-activated phenotype. Expression of genes associated with cell cycle and immune-activation was increased in VISTA KO microglia. In response to LPS and during experimental autoimmune encephalomyelitis (EAE), VISTA KO and WT microglia shared similar transcriptional profiles and VISTA deletion did not affect EAE disease progression or microglia responses. VISTA KO in microglia in vitro decreased the uptake of myelin. This study demonstrates that VISTA is involved in microglia function, which likely affects healthy CNS homeostasis and neuroinflammation.
Collapse
|
40
|
Hu X, Qie C, Jiang J, Xie X, Chen W, Liu W, Liu J. M351-0056 is a novel low MW compound modulating the actions of the immune-checkpoint protein VISTA. Br J Pharmacol 2021; 178:1445-1458. [PMID: 33450048 PMCID: PMC9328666 DOI: 10.1111/bph.15357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/13/2020] [Accepted: 12/20/2020] [Indexed: 01/29/2023] Open
Abstract
Background and Purpose The protein V‐domain immunoglobulin suppressor of T‐cell activation (VISTA) is a novel immune‐checkpoint molecule that belongs to the B7 family and regulates a broad spectrum of immune responses. So far, low MW compounds targeting VISTA for the treatment of autoimmune diseases or inflammation, have not been identified. Experimental Approach We developed a homology modelling for VISTA 3D structure and subsequent virtual screening for low MW ligands binding to VISTA. Visualization of the binding postures of docked ligands with protein VISTA indicated that compound M351‐0056 targeted VISTA. The biological activities of compound M351‐0056 targeting VISTA were investigated in vitro using monocytes and T cells and in vivo, using mice with imiquimod‐induced dermatitis. Key Results The KD value of M351‐0056 for human VISTA‐extracellular domain was 12.60 ± 3.84 μM as assessed by microscale thermophoresis. M351‐0056 decreased cytokine secretion from PBMCs or human CD4+ T cells, suppressed proliferation of PBMCs and enhanced expression of Foxp3+ T cells. These effects of M351‐0056 modulating VISTA involved the JAK2–STAT2 pathway. Daily administration of M351‐0056 ameliorated imiquimod‐induced psoriasis‐like dermatitis. Expression of mRNA and protein of inflammatory cytokines in psoriatic lesions was decreased after M351‐0056 treatment. Conclusion and Implications The compound M351‐0056 showed high affinity for VISTA and may modulate its immune function in vitro and in vivo. Our finding provides a lead compound for therapeutically enhancing VISTA‐mediated pathways to benefit the treatment of autoimmune diseases or inflammation.
Collapse
Affiliation(s)
- Xinlei Hu
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Chenxin Qie
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xiaoxue Xie
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Wenting Chen
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Wanmei Liu
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- Jiangsu Key Lab of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
41
|
ElTanbouly MA, Zhao Y, Schaafsma E, Burns CM, Mabaera R, Cheng C, Noelle RJ. VISTA: A Target to Manage the Innate Cytokine Storm. Front Immunol 2021; 11:595950. [PMID: 33643285 PMCID: PMC7905033 DOI: 10.3389/fimmu.2020.595950] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the success of immunotherapy targeting immunoregulatory receptors (immune checkpoints) in cancer have generated enthusiastic support to target these receptors in a wide range of other immune related diseases. While the overwhelming focus has been on blockade of these inhibitory pathways to augment immunity, agonistic triggering via these receptors offers the promise of dampening pathogenic inflammatory responses. V-domain Ig suppressor of T cell activation (VISTA) has emerged as an immunoregulatory receptor with constitutive expression on both the T cell and myeloid compartments, and whose agonistic targeting has proven a unique avenue relative to other checkpoint pathways to suppress pathologies mediated by the innate arm of the immune system. VISTA agonistic targeting profoundly changes the phenotype of human monocytes towards an anti-inflammatory cell state, as highlighted by striking suppression of the canonical markers CD14 and Fcγr3a (CD16), and the almost complete suppression of both the interferon I (IFN-I) and antigen presentation pathways. The insights from these very recent studies highlight the impact of VISTA agonistic targeting of myeloid cells, and its potential therapeutic implications in the settings of hyperinflammatory responses such as cytokine storms, driven by dysregulated immune responses to viral infections (with a focus on COVID-19) and autoimmune diseases. Collectively, these findings suggest that the VISTA pathway plays a conserved, non-redundant role in myeloid cell function.
Collapse
Affiliation(s)
- Mohamed A. ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Yanding Zhao
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Evelien Schaafsma
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | - Rodwell Mabaera
- Department of Medicine, Norris Cotton Cancer Center, Lebanon, NH, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
42
|
VISTA: A Mediator of Quiescence and a Promising Target in Cancer Immunotherapy. Trends Immunol 2021; 42:209-227. [PMID: 33495077 PMCID: PMC8088836 DOI: 10.1016/j.it.2020.12.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
V-domain Ig suppressor of T cell activation (VISTA) is a B7 family member that maintains T cell and myeloid quiescence and is a promising target for combination cancer immunotherapy. During inflammatory challenges, VISTA activity reprograms macrophages towards reduced production of proinflammatory cytokines and increased production of interleukin (IL)-10 and other anti-inflammatory mediators. The interaction of VISTA with its ligands is regulated by pH, and the acidic pH ~6.0 in the tumor microenvironment (TME) facilitates VISTA binding to P-selectin glycoprotein ligand 1 (PSGL-1). Targeting intratumoral pH might be a way to reduce the immunoinhibitory activity of the VISTA pathway and enhance antitumor immune responses. We review differences among VISTA therapeutics under development as candidate immunotherapies, focusing on VISTA binding partners and the unique structural features of this interaction.
Collapse
|
43
|
Reva BA, Omelchenko T, Nair SS, Tewari AK. Immune Escape in Prostate Cancer: Known and Predicted Mechanisms and Targets. Urol Clin North Am 2021; 47:e9-e16. [PMID: 33446324 DOI: 10.1016/j.ucl.2020.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Complex immune evasion mechanisms and lack of biomarkers predicting responsiveness to immune checkpoint blockade therapies compromise immunotherapy's therapeutic efficacy for patients with prostate cancer. The authors review established and nominated immune evasion mechanisms in prostate cancer and discuss how the precise treatment strategies can be developed to improve efficacy of immunotherapy.
Collapse
Affiliation(s)
- Boris A Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Tatiana Omelchenko
- Cell Biology Program, Sloan Kettering Institute at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sujit S Nair
- The Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1272, New York, NY 10029, USA
| | - Ashutosh K Tewari
- The Department of Urology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1272, New York, NY 10029, USA
| |
Collapse
|
44
|
Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020; 77:3693-3710. [PMID: 32006051 PMCID: PMC11104895 DOI: 10.1007/s00018-020-03459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is considered as an effective method for cancer treatment owing to the induction of specific and long-lasting anti-cancer effects. Immunotherapeutic strategies have shown significant success in human malignancies, particularly in prostate cancer (PCa), a major global health issue regarding its high metastatic rates. In fact, the first cancer vaccine approved by FDA was Provenge, which has been successfully used for treatment of PCa. Despite the remarkable success of cancer immunotherapy in PCa, many of the developed immunotherapy methods show poor therapeutic outcomes. Immunosuppression in tumor microenvironment (TME) induced by non-functional T cells (CD4+ and CD8+), tolerogenic dendritic cells (DCs), and regulatory T cells, has been reported to be the main obstacle to the effectiveness of anti-tumor immune responses induced by an immunotherapy method. The present review particularly focuses on the latest findings of the immune checkpoints (ICPs), including CTLA-4, PD-1, PD-L1, LAG-3, OX40, B7-H3, 4-1BB, VISTA, TIM-3, and ICOS; these checkpoints are able to have immune modulatory effects on the TME of PCa. This paper further discusses different approaches in ICPs targeting therapy and summarizes the latest advances in the clinical application of ICP-targeted therapy as monotherapy or in combination with other cancer therapy modalities in PCa.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saied Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasrin Maleki-Dizaji
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Barghi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Geng Q, Rohondia SO, Khan HJ, Jiao P, Dou QP. Small molecules as antagonists of co-inhibitory pathways for cancer immunotherapy: a patent review (2018-2019). Expert Opin Ther Pat 2020; 30:677-694. [PMID: 32715813 DOI: 10.1080/13543776.2020.1801640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic antibodies blocking co-inhibitory pathways do not attack tumor cells directly, but instead bind to their targeted proteins and mobilize the immune system to eradicate tumors. However, only a small fraction of patients with certain cancer types can benefit from the antibodies. Additionally, antibodies have shown serious immune-related adverse events in certain patients. Small-molecule antagonists may be a complementary and potentially synergistic approach to antibodies for patients with various cancers. AREAS COVERED The authors review the small molecules as antagonists of co-inhibitory pathway proteins, summarize their preliminary SARs, discuss biochemistry assays used in patents for the development of small molecules as novel antagonists. EXPERT OPINION The disclosed pharmacophores of small molecules as co-inhibitory pathway antagonists are represented by biphenyl derivatives, biaryl derivatives, teraryl derivatives, quateraryl derivatives, and oxadiazole/thiadiazole derivatives. However, these antagonists are still inferior to therapeutic antibodies in their inhibitory activities due to relatively flat of human co-inhibitory pathways proteins. Allosteric modulators may be an alternative approach. The more safety and efficacy evaluation trials of small-molecule antagonists targeting co-inhibitory pathways should be performed to demonstrate the proof-of-principle that small-molecule antagonists can result in sustained safety and antitumor response in the near future.
Collapse
Affiliation(s)
- Qiaohong Geng
- Department of Chemistry, Qilu Normal University , Jinan, China
| | - Sagar O Rohondia
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University , Detroit, MI, USA
| | - Harras J Khan
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University , Detroit, MI, USA
| | - Peifu Jiao
- Department of Chemistry, Qilu Normal University , Jinan, China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University , Detroit, MI, USA
| |
Collapse
|
46
|
Exploring the VISTA of microglia: immune checkpoints in CNS inflammation. J Mol Med (Berl) 2020; 98:1415-1430. [PMID: 32856125 PMCID: PMC7525281 DOI: 10.1007/s00109-020-01968-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Negative checkpoint regulators (NCR) are intensely pursued as targets to modulate the immune response in cancer and autoimmunity. A large variety of NCR is expressed by central nervous system (CNS)-resident cell types and is associated with CNS homeostasis, interactions with peripheral immunity and CNS inflammation and disease. Immunotherapy blocking NCR affects the CNS as patients can develop neurological issues including encephalitis and multiple sclerosis (MS). How these treatments affect the CNS is incompletely understood, since expression and function of NCR in the CNS are only beginning to be unravelled. V-type immunoglobulin-like suppressor of T cell activation (VISTA) is an NCR that is expressed primarily in the haematopoietic system by myeloid and T cells. VISTA regulates T cell quiescence and activation and has a variety of functions in myeloid cells including efferocytosis, cytokine response and chemotaxis. In the CNS, VISTA is predominantly expressed by microglia and macrophages of the CNS. In this review, we summarize the role of NCR in the CNS during health and disease. We highlight expression of VISTA across cell types and CNS diseases and discuss the function of VISTA in microglia and during CNS ageing, inflammation and neurodegeneration. Understanding the role of VISTA and other NCR in the CNS is important considering the adverse effects of immunotherapy on the CNS, and in view of their therapeutic potential in CNS disease.
Collapse
|
47
|
Qie C, Jiang J, Liu W, Hu X, Chen W, Xie X, Liu J. Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of skin macrophages in Vsir -/- murine psoriasis. Theranostics 2020; 10:10483-10497. [PMID: 32929361 PMCID: PMC7482809 DOI: 10.7150/thno.45614] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel inhibitory immune checkpoint molecule. Vsir-/- mice have exacerbated psoriasis-like skin inflammation. The immune cell subsets involved in inflammation in Vsir-/- psoriatic mice are largely unknown. We have used scRNA-seq as an unbiased profiling strategy to study the heterogeneity of immune cells at a single cell level in the skin of Vsir-/- psoriatic mice. Methods: In the present study, the right ear and shaved back skin of wild type and Vsir-/- mice were treated with IMQ for 5 consecutive days to induce psoriasis-like dermatitis. Then, the single-cell RNA sequencing analysis of mouse back skin lesions was performed using 10 × Genomics technique. Results: We identified 12 major cell subtypes among 23,258 cells. The major populations of the skin cells included macrophages, dendritic cells and fibroblasts. Macrophages constituted the main immune cell population in the WT (61.29%) and Vsir-/- groups (77.7%). It should be noted that DCs and fibroblasts were expanded in the Vsir-/- psoriatic mice. Furthermore, the gene expression signatures were assessed. We observed that Hspb1 and Cebpb were significantly upregulated in the Vsir-/- psoriatic mice. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these subsets and uncovered putative functions of each cell type. Date analysis resulted in the discovery of a number of novel psoriasis-associated genes in Vsir-/- mice. Conclusion: We present a comprehensive single-cell landscape of the skin immune cells in Vsir-/- psoriatic mice. These unprecedented data uncovered the transcriptional landscape and phenotypic heterogeneity of skin macrophages in psoriasis and identified their gene expression signature suggesting specialized functions in Vsir-/- mice. Our findings will open novel opportunities to investigate the role of VISTA in driving psoriasis.
Collapse
Affiliation(s)
- Chenxin Qie
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwei Jiang
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
- Nanjing Gemini Biotechnology Co. Ltd, Nanjing, 210009, China
| | - Wanmei Liu
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinlei Hu
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenting Chen
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxue Xie
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Liu
- Jiangsu key lab of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
48
|
Fitz NF, Wolfe CM, Playso BE, Biedrzycki RJ, Lu Y, Nam KN, Lefterov I, Koldamova R. Trem2 deficiency differentially affects phenotype and transcriptome of human APOE3 and APOE4 mice. Mol Neurodegener 2020; 15:41. [PMID: 32703241 PMCID: PMC7379780 DOI: 10.1186/s13024-020-00394-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder influenced by aging and genetic risk factors. The inheritance of APOEε4 and variants of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are major genetic risk factors for AD. Recent studies showed that APOE binds to TREM2, thus raising the possibility of an APOE-TREM2 interaction that can modulate AD pathology. METHODS The aim of this study was to investigate this interaction using complex AD model mice - a crossbreed of Trem2ko and APP/PSEN1dE9 mice expressing human APOE3 or APOE4 isoforms (APP/E3 and APP/E4 respectively), and their WT littermates (E3 and E4), and evaluate cognition, steady-state amyloid load, plaque compaction, plaque growth rate, glial response, and brain transcriptome. RESULTS In both, APP/E3 and APP/E4 mice, Trem2 deletion reduced plaque compaction but did not significantly affect steady-state plaque load. Importantly, the lack of TREM2 increased plaque growth that negatively correlated to the diminished microglia barrier, an effect most pronounced at earlier stages of amyloid deposition. We also found that Trem2 deficiency significantly decreased plaque-associated APOE protein in APP/E4 but not in APP/E3 mice in agreement with RNA-seq data. Interestingly, we observed a significant decrease of Apoe mRNA expression in plaque-associated microglia of APP/E4/Trem2ko vs APP/E4 mice. The absence of TREM2, worsened cognitive performance in APP transgenic mice but not their WT littermates. Gene expression analysis identified Trem2 signature - a cluster of highly connected immune response genes, commonly downregulated as a result of Trem2 deletion in all genotypes including APP and WT littermates. Furthermore, we identified sets of genes that were affected in TREM2- and APOE isoform-dependent manner. Among them were Clec7a and Csf1r upregulated in APP/E4 vs APP/E3 mice, a result further validated by in situ hybridization analysis. In contrast, Tyrobp and several genes involved in the C1Q complement cascade had a higher expression level in APP/E3 versus their APP/E4 counterparts. CONCLUSIONS Our data demonstrate that lack of Trem2 differentially impacts the phenotype and brain transcriptome of APP mice expressing human APOE isoforms. The changes probably reflect the different effect of APOE isoforms on amyloid deposition.
Collapse
Affiliation(s)
- Nicholas F. Fitz
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Cody M. Wolfe
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Brittany E. Playso
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Richard J. Biedrzycki
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Yi Lu
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Kyong Nyon Nam
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Iliya Lefterov
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Radosveta Koldamova
- Department of Environmental & Occupational Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
49
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
50
|
Mohammadzadeh A. Co-inhibitory receptors, transcription factors and tolerance. Int Immunopharmacol 2020; 84:106572. [DOI: 10.1016/j.intimp.2020.106572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
|