1
|
Vroman R, de Lichtervelde L, Singh Dolt K, Robertson G, Kriek M, Barbato M, Cholewa-Waclaw J, Kunath T, Downey P, Zagnoni M. A high-fidelity microfluidic platform reveals retrograde propagation as the main mechanism of α-Synuclein spread in human neurons. NPJ Parkinsons Dis 2025; 11:80. [PMID: 40254612 PMCID: PMC12009960 DOI: 10.1038/s41531-025-00936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
α-Synuclein (αSyn) is a major component of Lewy bodies and Lewy neurites, which are a pathological hallmark of Parkinson's disease (PD). Pathologically aggregated forms of αSyn can spread along neurites and induce the misfolding of normal αSyn. To elucidate how αSyn pathology propagates between brain areas, we developed a novel in vitro microfluidic platform to study the intracellular transport of preformed fibrils and the induction and spread of αSyn aggregates. Patient-derived midbrain dopaminergic (mDA) neurons were cultured in microfluidic devices designed to maintain unidirectional axonal connections between fluidically isolated mDA neuronal cultures for over 3 months. Using αSyn preformed fibrils to induce Lewy-like pathology, we found that anterograde spread of αSyn fibrils was slow and occurred at low levels, while retrograde spread was significantly more efficient. This is in line with observations in animal models and shows that the platform provides an innovative new tool for studying PD in vitro.
Collapse
Affiliation(s)
- Rozan Vroman
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Karamjit Singh Dolt
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Graham Robertson
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Michela Barbato
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Patrick Downey
- UCB Biopharma, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Michele Zagnoni
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
2
|
Monma N, Yamamoto H, Fujiwara N, Murota H, Moriya S, Hirano-Iwata A, Sato S. Directional intermodular coupling enriches functional complexity in biological neuronal networks. Neural Netw 2025; 184:106967. [PMID: 39756118 DOI: 10.1016/j.neunet.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Hierarchically modular organization is a canonical network topology that is evolutionarily conserved in the nervous systems of animals. Within the network, neurons form directional connections defined by the growth of their axonal terminals. However, this topology is dissimilar to the network formed by dissociated neurons in culture because they form randomly connected networks on homogeneous substrates. In this study, we fabricated microfluidic devices to reconstitute hierarchically modular neuronal networks in culture (in vitro) and investigated how non-random structures, such as directional connectivity between modules, affect global network dynamics. Embedding directional connections in a pseudo-feedforward manner suppressed excessive synchrony in cultured neuronal networks and enhanced the integration-segregation balance. Modeling the behavior of biological neuronal networks using spiking neural networks (SNNs) further revealed that modularity and directionality cooperate to shape such network dynamics. Finally, we demonstrate that for a given network topology, the statistics of network dynamics, such as global network activation, correlation coefficient, and functional complexity, can be analytically predicted based on eigendecomposition of the transition matrix in the state-transition model. Hence, the integration of bioengineering and cell culture technologies enables us not only to reconstitute complex network circuitry in the nervous system but also to understand the structure-function relationships in biological neuronal networks by bridging theoretical modeling with in vitro experiments.
Collapse
Affiliation(s)
- Nobuaki Monma
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hideaki Yamamoto
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan.
| | - Naoya Fujiwara
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Hakuba Murota
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Moriya
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Mateus JC, Melo P, Aroso M, Charlot B, Aguiar P. Influence of asymmetric microchannels in the structure and function of engineered neuronal circuits. Biofabrication 2025; 17:025022. [PMID: 39908667 DOI: 10.1088/1758-5090/adb2e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Understanding the intricate structure-function relationships of neuronal circuits is crucial for unraveling how the brain achieves efficient information transfer. In specific brain regions, like the hippocampus, neurons are organized in layers and form unidirectional connectivity, which is thought to help ensure controlled signal flow and information processing. In recent years, researchers have tried emulating these structural principles by providing cultured neurons with asymmetric environmental cues, namely microfluidics' microchannels, which promote directed axonal growth. Even though a few reports have claimed to achieve unidirectional connectivity ofin vitroneuronal circuits, given the lack of functional characterization, it remains unknown if this structural connectivity correlates with functional connectivity. We have replicated and tested the performance of asymmetric microchannel designs previously reported in the literature to be successful in promoting directed axonal growth, as well as other custom variations. A new variation of 'Arrowhead', termed 'Rams', was the best-performing motif with a ∼76% probability per microchannel of allowing strictly unidirectional connections at 14 din vitro. Importantly, we assessed the functional implications of these different asymmetric microchannel designs. For this purpose, we combined custom microfluidics with microelectrode array technology to record the electrophysiological activity of two segregated populations of hippocampal neurons ('Source' and 'Target'). This functional characterization revealed that up to ∼94% of the spiking activity recorded along microchannels with the 'Rams' motif propagates towards the 'Target' population. Moreover, our results indicate that these engineered circuits also tended to exhibit network-level synchronizations with defined directionality. Overall, this functional characterization of the structure-function relationships promoted by asymmetric microchannels has the potential to provide insights into how neuronal circuits use specific network architectures for effective computations. Moreover, the here-developed devices and approaches may be used in a wide range of applications, such as disease modeling or preclinical drug screening.
Collapse
Affiliation(s)
- J C Mateus
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - P Melo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - M Aroso
- INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal
| | - B Charlot
- Institut d'Electronique et des Systèmes, CNRS, University Montpellier, Montpellier, France
| | - P Aguiar
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Takada N, Hagiwara S, Abe N, Yamazaki R, Tsuneishi K, Yasuda K. Open-End Control of Neurite Outgrowth Lengths with Steep Bending Confinement Microchannel Patterns for Miswiring-Free Neuronal Network Formation. MICROMACHINES 2024; 15:1374. [PMID: 39597186 PMCID: PMC11596160 DOI: 10.3390/mi15111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Wiring technology to control the length and direction of neurite outgrowth and to connect them is one of the most crucial development issues for forming single-cell-based neuronal networks. However, with current neurite wiring technology, it has been difficult to stop neurite extension at a specific length and connect it to other neurites without causing miswiring due to over-extension. Here, we examined a novel method of wiring neurites without miswiring by controlling the length of neurites in open-ended bending microchannel arrays connected beyond the maximum bending angle of neurite outgrowth. First, we determined the maximum bending angle of neurite elongation to pass through the bending point of a bending microfluidic channel; the maximum angle (the critical angle) was 90°. Next, we confirmed the control of neurite outgrowth length in open-ended microchannels connected at 120°, an angle beyond the maximum bending angle. The neurites stopped when elongated to the bend point, and no further elongation was observed. Finally, we observed that in bending microchannel arrays connected at an angle of 120°, two neurite outgrowths stopped and contacted each other without crossing over the bend point. The results show that the steep bending connection pattern is a robust open-end neurite wiring technique that prevents over-extension and miswiring.
Collapse
Affiliation(s)
- Naoya Takada
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Soya Hagiwara
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Nanami Abe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Ryohei Yamazaki
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kazuhiro Tsuneishi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (N.T.); (S.H.); (N.A.); (R.Y.); (K.T.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Beck C, Killeen CT, Johnson SC, Kunze A. Nanomagnetic Guidance Shapes the Structure-Function Relationship of Developing Cortical Networks. NANO LETTERS 2024; 24:13564-13573. [PMID: 39432086 PMCID: PMC11529602 DOI: 10.1021/acs.nanolett.4c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
In this study, we implement large-scale nanomagnetic guidance on cortical neurons to guide dissociated neuronal networks during development. Cortical networks cultured over microelectrode arrays were exposed to functionalized magnetic nanoparticles, followed by magnetic field exposure to guide neurites over 14 days in vitro. Immunofluorescence of the axonal protein Tau revealed a greater number of neurites that were longer and aligned with the nanomagnetic force relative to nonguided networks. This was further confirmed through brightfield imaging on the microelectrode arrays during development. Spontaneous electrophysiological recordings revealed that the guided networks exhibited increased firing rates and frequency in force-aligned connectivity identified through Granger Causality. Applying this methodology across networks with nonuniform force directions increased local activity in target regions, identified as regions in the direction of the nanomagnetic force. Altogether, these results demonstrate that nanomagnetic forces guide the structure and function of dissociated cortical neuron networks at the millimeter scale.
Collapse
Affiliation(s)
- Connor
L. Beck
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Conner T. Killeen
- Department
of Microbiology, Montana State University, Bozeman, Montana 59717, United States
| | - Sara C. Johnson
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Anja Kunze
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
- Optical
Technology Center, Montana State University, Bozeman, Montana 59717, United States
- Montana
Nanotechnology Center, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
6
|
Hanssen KS, Winter-Hjelm N, Niethammer SN, Kobro-Flatmoen A, Witter MP, Sandvig A, Sandvig I. Reverse engineering of feedforward cortical-Hippocampal microcircuits for modelling neural network function and dysfunction. Sci Rep 2024; 14:26021. [PMID: 39472479 PMCID: PMC11522409 DOI: 10.1038/s41598-024-77157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Engineered biological neural networks are indispensable models for investigation of neural function and dysfunction from the subcellular to the network level. Notably, advanced neuroengineering approaches are of significant interest for their potential to replicate the topological and functional organization of brain networks. In this study, we reverse engineered feedforward neural networks of primary cortical and hippocampal neurons, using a custom-designed multinodal microfluidic device with Tesla valve inspired microtunnels. By interfacing this device with nanoporous microelectrodes, we show that the reverse engineered multinodal neural networks exhibit capacity for both segregated and integrated functional activity, mimicking brain network dynamics. To advocate the broader applicability of our model system, we induced localized perturbations with amyloid beta to study the impact of pathology on network functionality. Additionally, we demonstrate long-term culturing of subregion- and layer specific neurons extracted from the entorhinal cortex and hippocampus of adult Alzheimer's-model mice and rats. Our results thus highlight the potential of our approach for reverse engineering of anatomically relevant multinodal neural networks to study dynamic structure-function relationships in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Katrine Sjaastad Hanssen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Salome Nora Niethammer
- Division of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
7
|
Winter-Hjelm N, Sikorski P, Sandvig A, Sandvig I. Engineered cortical microcircuits for investigations of neuroplasticity. LAB ON A CHIP 2024; 24:4974-4988. [PMID: 39264326 DOI: 10.1039/d4lc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent advances in neural engineering have opened new ways to investigate the impact of topology on neural network function. Leveraging microfluidic technologies, it is possible to establish modular circuit motifs that promote both segregation and integration of information processing in the engineered neural networks, similar to those observed in vivo. However, the impact of the underlying topologies on network dynamics and response to pathological perturbation remains largely unresolved. In this work, we demonstrate the utilization of microfluidic platforms with 12 interconnected nodes to structure modular, cortical engineered neural networks. By implementing geometrical constraints inspired by a Tesla valve within the connecting microtunnels, we additionally exert control over the direction of axonal outgrowth between the nodes. Interfacing these platforms with nanoporous microelectrode arrays reveals that the resulting laminar cortical networks exhibit pronounced segregated and integrated functional dynamics across layers, mirroring key elements of the feedforward, hierarchical information processing observed in the neocortex. The multi-nodal configuration also facilitates selective perturbation of individual nodes within the networks. To illustrate this, we induced hypoxia, a key factor in the pathogenesis of various neurological disorders, in well-connected nodes within the networks. Our findings demonstrate that such perturbations induce ablation of information flow across the hypoxic node, while enabling the study of plasticity and information processing adaptations in neighboring nodes and neural communication pathways. In summary, our presented model system recapitulates fundamental attributes of the microcircuit organization of neocortical neural networks, rendering it highly pertinent for preclinical neuroscience research. This model system holds promise for yielding new insights into the development, topological organization, and neuroplasticity mechanisms of the neocortex across the micro- and mesoscale level, in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| | - Pawel Sikorski
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| |
Collapse
|
8
|
Habibey R, Striebel J, Meinert M, Latiftikhereshki R, Schmieder F, Nasiri R, Latifi S. Engineered modular neuronal networks-on-chip represent structure-function relationship. Biosens Bioelectron 2024; 261:116518. [PMID: 38924816 DOI: 10.1016/j.bios.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Brain function is substantially linked to the highly organized modular structure of neuronal networks. However, the structure of in vitro assembled neuronal circuits often exhibits variability, complicating the consistent recording of network functional output and its correlation to network structure. Therefore, engineering neuronal structures with predefined geometry and reproducible functional features is essential to precisely model in vivo neuronal circuits. Here, we engineered microchannel devices to assemble 2D and 3D modular networks. The microchannel devices were coupled with a multi-electrode array (MEA) electrophysiology system to enable recordings from circuits. Each network consisted of 64 modules connected to their adjacent modules by micron-sized channels. Modular circuits within microchannel devices showed enhanced activity and functional connectivity traits. This includes metrics such as connection weights, clustering coefficient, global efficiency, and the number of hub neurons with higher betweenness centrality. In addition, modular networks demonstrated an increased functional modularity score compared to the randomly formed circuits. Neurons within individual modules displayed uniform network characteristics and predominantly participated in their respective functional communities within the same or neighboring physical modules. These observations highlight that the modular network structure promotes the development of segregated functional connectivity traits while simultaneously enhancing the efficiency of overall network connectivity. Our findings emphasize the significant impact of physical constraints on the activity patterns and functional organization within engineered modular networks. These circuits, characterized by stable modular architecture and intricate functional dynamics-key features of the brain networks-offer a robust in vitro model for advancing neuroscience research.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany; CRTD - Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany; Dept. Neuroscience, Italian Institute of Technology. Genova, Italy.
| | - Johannes Striebel
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Melissa Meinert
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Roshanak Latiftikhereshki
- Department of Computer Engineering, Faculty of Engineering, Kermanshah Branch, Azad University, Kermanshah, Iran
| | - Felix Schmieder
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Rohollah Nasiri
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solna, Sweden
| | - Shahrzad Latifi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Neuroscience, Rockefeller Neuroscience Institute West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
9
|
Vinogradov A, Kapucu EF, Narkilahti S. Exploring Kainic Acid-Induced Alterations in Circular Tripartite Networks with Advanced Analysis Tools. eNeuro 2024; 11:ENEURO.0035-24.2024. [PMID: 39079743 PMCID: PMC11289587 DOI: 10.1523/eneuro.0035-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Brain activity implies the orchestrated functioning of interconnected brain regions. Typical in vitro models aim to mimic the brain using single human pluripotent stem cell-derived neuronal networks. However, the field is constantly evolving to model brain functions more accurately through the use of new paradigms, e.g., brain-on-a-chip models with compartmentalized structures and integrated sensors. These methods create novel data requiring more complex analysis approaches. The previously introduced circular tripartite network concept models the connectivity between spatially diverse neuronal structures. The model consists of a microfluidic device allowing axonal connectivity between separated neuronal networks with an embedded microelectrode array to record both local and global electrophysiological activity patterns in the closed circuitry. The existing tools are suboptimal for the analysis of the data produced with this model. Here, we introduce advanced tools for synchronization and functional connectivity assessment. We used our custom-designed analysis to assess the interrelations between the kainic acid (KA)-exposed proximal compartment and its nonexposed distal neighbors before and after KA. Novel multilevel circuitry bursting patterns were detected and analyzed in parallel with the inter- and intracompartmental functional connectivity. The effect of KA on the proximal compartment was captured, and the spread of this effect to the nonexposed distal compartments was revealed. KA induced divergent changes in bursting behaviors, which may be explained by distinct baseline activity and varied intra- and intercompartmental connectivity strengths. The circular tripartite network concept combined with our developed analysis advances importantly both face and construct validity in modeling human epilepsy in vitro.
Collapse
Affiliation(s)
- Andrey Vinogradov
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Emre Fikret Kapucu
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Susanna Narkilahti
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| |
Collapse
|
10
|
Bettamin L, Mathieu F, Marty FH, Blatche MC, Gonzalez-Dunia D, Suberbielle E, Larrieu G. Real-Time and High-Resolution Monitoring of Neuronal Electrical Activity and pH Variations Based on the Co-Integration of Nanoelectrodes and Chem-FinFETs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309055. [PMID: 38552225 DOI: 10.1002/smll.202309055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/18/2024] [Indexed: 07/05/2024]
Abstract
Developing new approaches amenable to the measurement of neuronal physiology in real-time is a very active field of investigation, as it will offer improved methods to assess the impact of diverse insults on neuronal homeostasis. Here, the development of an in vitro bio platform is reported which can record the electrical activity of cultured primary rat cortical neurons with extreme sensitivity, while simultaneously tracking the localized changes in the pH of the culture medium. This bio platform features passive vertical nanoprobes with ultra-high signal resolution (several mV amplitude ranges) and Chem-FinFETs (pH sensitivity of sub-0.1 pH units), covering an area as little as a neuronal soma. These multi-sensing units are arranged in an array to probe both chemically and electrically an equivalent surface of ≈ 0.5 mm2. A homemade setup is also developed which allows recording of multiplexed data in real-time (10 ps range) from the active chem-sensors and passive electrodes and which is used to operate the platform. Finally, a proof-of-concept is presented for a neuro-relevant application, by investigating the effect on neuronal activity of Amyloid beta oligomers, the main toxic peptide in Alzheimer's Disease, which reveals that exposure to amyloid beta oligomers modify the amplitude, but not the frequency, of neuronal firing, without any detectable changes in pH values along this process.
Collapse
Affiliation(s)
- Luca Bettamin
- LAAS-CNRS, CNRS, Université de Toulouse, Toulouse, 31031, France
- INFINITY, INSERM, CNRS, Université de Toulouse, Toulouse, 31031, France
| | - Fabrice Mathieu
- LAAS-CNRS, CNRS, Université de Toulouse, Toulouse, 31031, France
| | - Florent H Marty
- INFINITY, INSERM, CNRS, Université de Toulouse, Toulouse, 31031, France
| | | | | | - Elsa Suberbielle
- INFINITY, INSERM, CNRS, Université de Toulouse, Toulouse, 31031, France
| | - Guilhem Larrieu
- LAAS-CNRS, CNRS, Université de Toulouse, Toulouse, 31031, France
| |
Collapse
|
11
|
Pigareva Y, Gladkov A, Kolpakov V, Kazantsev VB, Mukhina I, Pimashkin A. The Profile of Network Spontaneous Activity and Functional Organization Interplay in Hierarchically Connected Modular Neural Networks In Vitro. MICROMACHINES 2024; 15:732. [PMID: 38930702 PMCID: PMC11205292 DOI: 10.3390/mi15060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Modern microtechnology methods are widely used to create neural networks on a chip with a connection architecture demonstrating properties of modularity and hierarchy similar to brain networks. Such in vitro networks serve as a valuable model for studying the interplay of functional architecture within modules, their activity, and the effectiveness of inter-module interaction. In this study, we use a two-chamber microfluidic platform to investigate functional connectivity and global activity in hierarchically connected modular neural networks. We found that the strength of functional connections within the module and the profile of network spontaneous activity determine the effectiveness of inter-modular interaction and integration activity in the network. The direction of intermodular activity propagation configures the different densities of inhibitory synapses in the network. The developed microfluidic platform holds the potential to explore function-structure relationships and efficient information processing in two- or multilayer neural networks, in both healthy and pathological states.
Collapse
Affiliation(s)
- Yana Pigareva
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Arseniy Gladkov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Vladimir Kolpakov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Victor B. Kazantsev
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Irina Mukhina
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Alexey Pimashkin
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| |
Collapse
|
12
|
Staii C. Nonlinear Growth Dynamics of Neuronal Cells Cultured on Directional Surfaces. Biomimetics (Basel) 2024; 9:203. [PMID: 38667214 PMCID: PMC11048115 DOI: 10.3390/biomimetics9040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
During the development of the nervous system, neuronal cells extend axons and dendrites that form complex neuronal networks, which are essential for transmitting and processing information. Understanding the physical processes that underlie the formation of neuronal networks is essential for gaining a deeper insight into higher-order brain functions such as sensory processing, learning, and memory. In the process of creating networks, axons travel towards other recipient neurons, directed by a combination of internal and external cues that include genetic instructions, biochemical signals, as well as external mechanical and geometrical stimuli. Although there have been significant recent advances, the basic principles governing axonal growth, collective dynamics, and the development of neuronal networks remain poorly understood. In this paper, we present a detailed analysis of nonlinear dynamics for axonal growth on surfaces with periodic geometrical patterns. We show that axonal growth on these surfaces is described by nonlinear Langevin equations with speed-dependent deterministic terms and gaussian stochastic noise. This theoretical model yields a comprehensive description of axonal growth at both intermediate and long time scales (tens of hours after cell plating), and predicts key dynamical parameters, such as speed and angular correlation functions, axonal mean squared lengths, and diffusion (cell motility) coefficients. We use this model to perform simulations of axonal trajectories on the growth surfaces, in turn demonstrating very good agreement between simulated growth and the experimental results. These results provide important insights into the current understanding of the dynamical behavior of neurons, the self-wiring of the nervous system, as well as for designing innovative biomimetic neural network models.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
13
|
Mateus JC, Sousa MM, Burrone J, Aguiar P. Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology. J Neurosci 2024; 44:e1446232023. [PMID: 38479812 PMCID: PMC10941245 DOI: 10.1523/jneurosci.1446-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/17/2024] Open
Abstract
The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.
Collapse
Affiliation(s)
- J C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M M Sousa
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - J Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - P Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
14
|
Lefebvre C, Vreulx AC, Dumortier C, Bégard S, Gelle C, Siedlecki-Wullich D, Colin M, Kilinc D, Halliez S. Integration of Microfluidic Devices with Microelectrode Arrays to Functionally Assay Amyloid-β-Induced Synaptotoxicity. ACS Biomater Sci Eng 2024; 10:1856-1868. [PMID: 38385618 DOI: 10.1021/acsbiomaterials.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most frequent cause of dementia. It is characterized by the accumulation in the brain of two pathological protein aggregates: amyloid-β peptides (Aβ) and abnormally phosphorylated tau. The progressive cognitive decline observed in patients strongly correlates with the synaptic loss. Many lines of evidence suggest that soluble forms of Aβ accumulate into the brain where they cause synapse degeneration. Stopping their spreading and/or targeting the pathophysiological mechanisms leading to synaptic loss would logically be beneficial for the patients. However, we are still far from understanding these processes. Our objective was therefore to develop a versatile model to assay and study Aβ-induced synaptotoxicity. We integrated a microfluidic device that physically isolates synapses from presynaptic and postsynaptic neurons with a microelectrode array. We seeded mouse primary cortical cells in the presynaptic and postsynaptic chambers. After functional synapses have formed in the synaptic chamber, we exposed them to concentrated conditioned media from cell lines overexpressing the wild-type or mutated amyloid precursor protein and thus secreting different levels of Aβ. We recorded the neuronal activity before and after exposition to Aβ and quantified Aβ's effects on the connectivity between presynaptic and postsynaptic neurons. We observed that the application of Aβ on the synapses for 48 h strongly decreased the interchamber connectivity without significantly affecting the neuronal activity in the presynaptic or postsynaptic chambers. Thus, through this model, we are able to functionally assay the impact of Aβ peptides (or other molecules) on synaptic connectivity and to use the latter as a proxy to study Aβ-induced synaptotoxicity. Moreover, since the presynaptic, postsynaptic, and synaptic chambers can be individually targeted, our assay provides a powerful tool to evaluate the involvement of candidate genes in synaptic vulnerability and/or test therapeutic strategies for AD.
Collapse
Affiliation(s)
- Camille Lefebvre
- Université de Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Anaïs-Camille Vreulx
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, 59019Lille ,France
| | - Corentin Dumortier
- Université de Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Séverine Bégard
- Université de Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Carla Gelle
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, 59019Lille ,France
| | - Dolores Siedlecki-Wullich
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, 59019Lille ,France
| | - Morvane Colin
- Université de Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Devrim Kilinc
- Université de Lille, Institut Pasteur de Lille, CHU Lille, INSERM U1167, LabEx DISTALZ, 59019Lille ,France
| | - Sophie Halliez
- Université de Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| |
Collapse
|
15
|
Zhang X, Dou Z, Kim SH, Upadhyay G, Havert D, Kang S, Kazemi K, Huang K, Aydin O, Huang R, Rahman S, Ellis‐Mohr A, Noblet HA, Lim KH, Chung HJ, Gritton HJ, Saif MTA, Kong HJ, Beggs JM, Gazzola M. Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306826. [PMID: 38161217 PMCID: PMC10953569 DOI: 10.1002/advs.202306826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro-electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built-in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell-derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long-term recording. Overall, this technology, termed "mind in vitro" to underscore the computing inspiration, provides an end-to-end solution that can be widely deployed due to its affordable (>10× cost reduction) and open-source nature, catering to the expanding needs of both conventional and unconventional electrophysiology.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Zhi Dou
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Seung Hyun Kim
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Gaurav Upadhyay
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Daniel Havert
- Department of PhysicsIndiana University BloomingtonBloomingtonIN47405USA
| | - Sehong Kang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Kimia Kazemi
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Kai‐Yu Huang
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Onur Aydin
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Raymond Huang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Saeedur Rahman
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Austin Ellis‐Mohr
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hayden A. Noblet
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Neuroscience ProgramUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Ki H. Lim
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hee Jung Chung
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Neuroscience ProgramUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Howard J. Gritton
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Comparative BiosciencesUniversity of Illinois at Urbana–ChampaignUrbanaIL61802USA
| | - M. Taher A. Saif
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hyun Joon Kong
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - John M. Beggs
- Department of PhysicsIndiana University BloomingtonBloomingtonIN47405USA
| | - Mattia Gazzola
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| |
Collapse
|
16
|
Lim J, Zoss PA, Powley TL, Lee H, Ward MP. A flexible, thin-film microchannel electrode array device for selective subdiaphragmatic vagus nerve recording. MICROSYSTEMS & NANOENGINEERING 2024; 10:16. [PMID: 38264708 PMCID: PMC10803373 DOI: 10.1038/s41378-023-00637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
The vagus nerve (VN) plays an important role in regulating physiological conditions in the gastrointestinal (GI) tract by communicating via the parasympathetic pathway to the enteric nervous system (ENS). However, the lack of knowledge in the neurophysiology of the VN and GI tract limits the development of advanced treatments for autonomic dysfunctions related to the VN. To better understand the complicated underlying mechanisms of the VN-GI tract neurophysiology, it is necessary to use an advanced device enabled by microfabrication technologies. Among several candidates including intraneural probe array and extraneural cuff electrodes, microchannel electrode array devices can be used to interface with smaller numbers of nerve fibers by securing them in the separate channel structures. Previous microchannel electrode array devices to interface teased nerve structures are relatively bulky with thickness around 200 µm. The thick design can potentially harm the delicate tissue structures, including the nerve itself. In this paper, we present a flexible thin film based microchannel electrode array device (thickness: 11.5 µm) that can interface with one of the subdiaphragmatic nerve branches of the VN in a rat. We demonstrated recording evoked compound action potentials (ECAP) from a transected nerve ending that has multiple nerve fibers. Moreover, our analysis confirmed that the signals are from C-fibers that are critical in regulating autonomic neurophysiology in the GI tract.
Collapse
Affiliation(s)
- Jongcheon Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN USA
| | - Peter A. Zoss
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Terry L. Powley
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Department of Psychological Sciences, Purdue University, West Lafayette, IN USA
- Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN USA
| | - Matthew P. Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
17
|
Anggraini D, Zhang T, Liu X, Okano K, Tanaka Y, Inagaki N, Li M, Hosokawa Y, Yamada S, Yalikun Y. Guided axon outgrowth of neurons by molecular gradients generated from femtosecond laser-fabricated micro-holes. Talanta 2024; 267:125200. [PMID: 37738745 DOI: 10.1016/j.talanta.2023.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Transplantation of scaffold-embedded guided neurons has been reported to increase neuronal regeneration following brain injury. However, precise axonal integration between host and transplant neurons to form functional synapses remains a major problem. Thus, a high-precision tool to actuate neuronal axon outgrowth in real-time conditions is required to attain robust axon regeneration. This study aims to establish a microfluidic platform for precise and real-time axon outgrowth guidance. METHODS A microfluidic device with a 4 μm thick thin-glass sheet as the neuron culture substrate is fabricated. Surface of the glass sheet is chemically modified to facilitate neuron attachment. Femtosecond (fs) laser is used to engrave the glass sheet to achieve micro-holes, where netrin-1 is released for directing the movement of the neuronal axon. RESULTS Numerical simulation and experimental data demonstrate that netrin-1 gradient is formed after it passes through the micro-hole. The neuronal response results show the outgrowth rate of the axon is significantly increased by netrin-1 gradient. Furthermore, a majority of neuronal axons exhibit guided outgrowth characterized by positive turning angles of axon displacement in the direction of netrin-1 gradients. CONCLUSION Integrating fs laser and microfluidic device facilitates controlled and instantaneous axon outgrowth in a non-invasive manner. SIGNIFICANCE The developed real-time microfluidic platform shows potential in the application for on-site neuronal transplantation, which is significant for the treatment of a range of neurological disorders and injuries.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xun Liu
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Kazunori Okano
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, 565-0871, Japan
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2122, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Sohei Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Lee H, Yi GS, Nam Y. Connectivity and network burst properties of in-vitro neuronal networks induced by a clustered structure with alginate hydrogel patterning. Biomed Eng Lett 2023; 13:659-670. [PMID: 37872997 PMCID: PMC10590365 DOI: 10.1007/s13534-023-00289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/25/2023] Open
Abstract
Modularity is one of the important structural properties that affect information processing and other functionalities of neuronal networks. Researchers have developed in-vitro clustered network models for reproducing the modularity, but it is still challenging to control the segregation and integration of several sub-populations of them. We cultured clustered networks with alginate patterning and collected the electrophysiological signals to investigate the changes in functional properties during the development. We built inter-connected neuronal clusters using alginate micro-patterning with a circular shape on the surface of the micro-electrode array. The neuronal clusters were enabled to be connected at 3 or 10 days-in-vitro (DIV) by removing the barrier. The neuronal signals from different types of networks were collected from 16 to 34 DIV, and functional characteristics were examined. Connectivity and burst motif analysis were carried out to find out the relation between the structure and function of the networks. Neuronal networks with clustered structure showed different activity properties from the random networks along the development. The clustered networks had more short-range connections compared to the random networks. In the network burst motif analysis, the clustered networks showed more various patterns and a slower propagation of the activation patterns. In this study, we successfully cultured neuronal networks with clustered structure, and the structure affected the functional properties. The network model suggested in this study will be a good solution for observing the effect of structure on function during their development. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00289-5.
Collapse
Affiliation(s)
- Hyungsub Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|
19
|
Liu Y, Yao X, Fan C, Zhang G, Luo X, Qian Y. Microfabrication and lab-on-a-chip devices promote in vitromodeling of neural interfaces for neuroscience researches and preclinical applications. Biofabrication 2023; 16:012002. [PMID: 37832555 DOI: 10.1088/1758-5090/ad032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Neural tissues react to injuries through the orchestration of cellular reprogramming, generating specialized cells and activating gene expression that helps with tissue remodeling and homeostasis. Simplified biomimetic models are encouraged to amplify the physiological and morphological changes during neural regeneration at cellular and molecular levels. Recent years have witnessed growing interest in lab-on-a-chip technologies for the fabrication of neural interfaces. Neural system-on-a-chip devices are promisingin vitromicrophysiological platforms that replicate the key structural and functional characteristics of neural tissues. Microfluidics and microelectrode arrays are two fundamental techniques that are leveraged to address the need for microfabricated neural devices. In this review, we explore the innovative fabrication, mechano-physiological parameters, spatiotemporal control of neural cell cultures and chip-based neurogenesis. Although the high variability in different constructs, and the restriction in experimental and analytical access limit the real-life applications of microphysiological models, neural system-on-a-chip devices have gained considerable translatability for modeling neuropathies, drug screening and personalized therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, People's Republic of China
| |
Collapse
|
20
|
Brofiga M, Losacco S, Poggio F, Zerbo RA, Milanese M, Massobrio P, Burlando B. Multiple neuron clusters on Micro-Electrode Arrays as an in vitro model of brain network. Sci Rep 2023; 13:15604. [PMID: 37730890 PMCID: PMC10511538 DOI: 10.1038/s41598-023-42168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Understanding the brain functioning is essential for governing brain processes with the aim of managing pathological network dysfunctions. Due to the morphological and biochemical complexity of the central nervous system, the development of general models with predictive power must start from in vitro brain network engineering. In the present work, we realized a micro-electrode array (MEA)-based in vitro brain network and studied its emerging dynamical properties. We obtained four-neuron-clusters (4N) assemblies by plating rat embryo cortical neurons on 60-electrode MEA with cross-shaped polymeric masks and compared the emerging dynamics with those of sister single networks (1N). Both 1N and 4N assemblies exhibited spontaneous electrical activity characterized by spiking and bursting signals up to global activation by means of network bursts. Data revealed distinct patterns of network activity with differences between 1 and 4N. Rhythmic network bursts and dominant initiator clusters suggested pacemaker activities in both assembly types, but the propagation of activation sequences was statistically influenced by the assembly topology. We proved that this rhythmic activity was ivabradine sensitive, suggesting the involvement of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and propagated across the real clusters of 4N, or corresponding virtual clusters of 1N, with dominant initiator clusters, and nonrandom cluster activation sequences. The occurrence of nonrandom series of identical activation sequences in 4N revealed processes possibly ascribable to neuroplasticity. Hence, our multi-network dissociated cortical assemblies suggest the relevance of pacemaker neurons as essential elements for generating brain network electrophysiological patterns; indeed, such evidence should be considered in the development of computational models for envisaging network behavior both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy
- ScreenNeuroPharm, Sanremo, Italy
| | - Serena Losacco
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| | - Fabio Poggio
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Roberta Arianna Zerbo
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genova, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, Systems Engineering (DIBRIS), University of Genova, Genova, Italy.
- National Institute for Nuclear Physics (INFN), Genova, Italy.
| | - Bruno Burlando
- Department of Pharmacy (DIFAR), University of Genova, Genova, Italy
| |
Collapse
|
21
|
Forró C, Musall S, Montes VR, Linkhorst J, Walter P, Wessling M, Offenhäusser A, Ingebrandt S, Weber Y, Lampert A, Santoro F. Toward the Next Generation of Neural Iontronic Interfaces. Adv Healthc Mater 2023; 12:e2301055. [PMID: 37434349 PMCID: PMC11468917 DOI: 10.1002/adhm.202301055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Indexed: 07/13/2023]
Abstract
Neural interfaces are evolving at a rapid pace owing to advances in material science and fabrication, reduced cost of scalable complementary metal oxide semiconductor (CMOS) technologies, and highly interdisciplinary teams of researchers and engineers that span a large range from basic to applied and clinical sciences. This study outlines currently established technologies, defined as instruments and biological study systems that are routinely used in neuroscientific research. After identifying the shortcomings of current technologies, such as a lack of biocompatibility, topological optimization, low bandwidth, and lack of transparency, it maps out promising directions along which progress should be made to achieve the next generation of symbiotic and intelligent neural interfaces. Lastly, it proposes novel applications that can be achieved by these developments, ranging from the understanding and reproduction of synaptic learning to live-long multimodal measurements to monitor and treat various neuronal disorders.
Collapse
Affiliation(s)
- Csaba Forró
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| | - Simon Musall
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute for ZoologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Viviana Rincón Montes
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
| | - John Linkhorst
- Chemical Process EngineeringRWTH AachenForckenbeckstr. 5152074AachenGermany
| | - Peter Walter
- Department of OphthalmologyUniversity Hospital RWTH AachenPauwelsstr. 3052074AachenGermany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH AachenForckenbeckstr. 5152074AachenGermany
- DWI Leibniz Institute for Interactive MaterialsRWTH AachenForckenbeckstr. 5052074AachenGermany
| | - Andreas Offenhäusser
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| | - Yvonne Weber
- Department of EpileptologyNeurology, RWTH AachenPauwelsstr. 3052074AachenGermany
| | - Angelika Lampert
- Institute of NeurophysiologyUniklinik RWTH AachenPauwelsstrasse 3052074AachenGermany
| | - Francesca Santoro
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| |
Collapse
|
22
|
Pigareva Y, Gladkov A, Kolpakov V, Bukatin A, Li S, Kazantsev VB, Mukhina I, Pimashkin A. Microfluidic Bi-Layer Platform to Study Functional Interaction between Co-Cultured Neural Networks with Unidirectional Synaptic Connectivity. MICROMACHINES 2023; 14:835. [PMID: 37421068 DOI: 10.3390/mi14040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 07/09/2023]
Abstract
The complex synaptic connectivity architecture of neuronal networks underlies cognition and brain function. However, studying the spiking activity propagation and processing in heterogeneous networks in vivo poses significant challenges. In this study, we present a novel two-layer PDMS chip that facilitates the culturing and examination of the functional interaction of two interconnected neural networks. We utilized cultures of hippocampal neurons grown in a two-chamber microfluidic chip combined with a microelectrode array. The asymmetric configuration of the microchannels between the chambers ensured the growth of axons predominantly in one direction from the Source chamber to the Target chamber, forming two neuronal networks with unidirectional synaptic connectivity. We showed that the local application of tetrodotoxin (TTX) to the Source network did not alter the spiking rate in the Target network. The results indicate that stable network activity in the Target network was maintained for at least 1-3 h after TTX application, demonstrating the feasibility of local chemical activity modulation and the influence of electrical activity from one network on the other. Additionally, suppression of synaptic activity in the Source network by the application of CPP and CNQX reorganized spatio-temporal characteristics of spontaneous and stimulus-evoked spiking activity in the Target network. The proposed methodology and results provide a more in-depth examination of the network-level functional interaction between neural circuits with heterogeneous synaptic connectivity.
Collapse
Affiliation(s)
- Yana Pigareva
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Arseniy Gladkov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Vladimir Kolpakov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Anton Bukatin
- Department of Nanobiotechnology, Alferov Saint-Petersburg National Research Academic University of the Russian Academy of Sciences, Saint Petersburg 194021, Russia
- Institute for Analytical Instrumentation of the RAS, Saint Petersburg 198095, Russia
| | - Sergei Li
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Victor B Kazantsev
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Irina Mukhina
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
- Central Research Laboratory, Cell Technology Department, Privolzhsky Research Medical University, Nizhny Novgorod 603005, Russia
| | - Alexey Pimashkin
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| |
Collapse
|
23
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
24
|
Xu S, Liu Y, Yang Y, Zhang K, Liang W, Xu Z, Wu Y, Luo J, Zhuang C, Cai X. Recent Progress and Perspectives on Neural Chip Platforms Integrating PDMS-Based Microfluidic Devices and Microelectrode Arrays. MICROMACHINES 2023; 14:709. [PMID: 37420942 PMCID: PMC10145465 DOI: 10.3390/mi14040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/09/2023]
Abstract
Recent years have witnessed a spurt of progress in the application of the encoding and decoding of neural activities to drug screening, diseases diagnosis, and brain-computer interactions. To overcome the constraints of the complexity of the brain and the ethical considerations of in vivo research, neural chip platforms integrating microfluidic devices and microelectrode arrays have been raised, which can not only customize growth paths for neurons in vitro but also monitor and modulate the specialized neural networks grown on chips. Therefore, this article reviews the developmental history of chip platforms integrating microfluidic devices and microelectrode arrays. First, we review the design and application of advanced microelectrode arrays and microfluidic devices. After, we introduce the fabrication process of neural chip platforms. Finally, we highlight the recent progress on this type of chip platform as a research tool in the field of brain science and neuroscience, focusing on neuropharmacology, neurological diseases, and simplified brain models. This is a detailed and comprehensive review of neural chip platforms. This work aims to fulfill the following three goals: (1) summarize the latest design patterns and fabrication schemes of such platforms, providing a reference for the development of other new platforms; (2) generalize several important applications of chip platforms in the field of neurology, which will attract the attention of scientists in the field; and (3) propose the developmental direction of neural chip platforms integrating microfluidic devices and microelectrode arrays.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Rujing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Montalà-Flaquer M, López-León CF, Tornero D, Houben AM, Fardet T, Monceau P, Bottani S, Soriano J. Rich dynamics and functional organization on topographically designed neuronal networks in vitro. iScience 2022; 25:105680. [PMID: 36567712 PMCID: PMC9768383 DOI: 10.1016/j.isci.2022.105680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/05/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed neuronal circuits, here we studied neuronal networks grown on polydimethylsiloxane (PDMS) topographical patterns shaped as either parallel tracks or square valleys. We followed the evolution of spontaneous activity in these cultures along 20 days in vitro using fluorescence calcium imaging. The networks were characterized by rich spatiotemporal activity patterns that comprised from small regions of the culture to its whole extent. Effective connectivity analysis revealed the emergence of spatially compact functional modules that were associated with both the underpinned topographical features and predominant spatiotemporal activity fronts. Our results show the capacity of spatial constraints to mold activity and functional organization, bringing new opportunities to comprehend the structure-function relationship in living neuronal circuits.
Collapse
Affiliation(s)
- Marc Montalà-Flaquer
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Institute of Neurosciences, University of Barcelona, E-08036 Barcelona, Spain
| | - Akke Mats Houben
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Tanguy Fardet
- Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France,University of Tübingen, Tübingen, Germany,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Pascal Monceau
- Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France
| | - Samuel Bottani
- Laboratoire Matière et Systèmes Complexes, Université de Paris, UMR 7057 CNRS, Paris, France
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain,Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain,Corresponding author
| |
Collapse
|
27
|
Clerc T, Boscq S, Attia R, Kaminski Schierle GS, Charrier B, Läubli NF. Cultivation and Imaging of S. latissima Embryo Monolayered Cell Sheets Inside Microfluidic Devices. Bioengineering (Basel) 2022; 9:bioengineering9110718. [PMID: 36421119 PMCID: PMC9687954 DOI: 10.3390/bioengineering9110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga Saccharina latissima to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane. We evaluate the specimen’s health based on various factors such as its growth rate, cell shape, and major developmental steps with regard to the device’s operating parameters and flow conditions before demonstrating its compatibility with state-of-the-art microscopy imaging technologies such as the skeletonisation of the specimen through calcofluor white-based vital staining of its cell contours as well as the immunolocalisation of the specimen’s cell wall. Furthermore, by making use of the on-chip characterisation capabilities, we investigate the influence of altered environmental illuminations on the embryonic development using blue and red light. Finally, live tracking of fluorescent microspheres deposited on the surface of the embryo permits the quantitative characterisation of growth at various locations of the organism.
Collapse
Affiliation(s)
- Thomas Clerc
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Samuel Boscq
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Rafaele Attia
- Ecology of Marine Plankton, Laboratory of Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Gabriele S. Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Bénédicte Charrier
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
- Correspondence: (B.C.); (N.F.L.)
| | - Nino F. Läubli
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Correspondence: (B.C.); (N.F.L.)
| |
Collapse
|
28
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
29
|
Chow SYA, Hu H, Osaki T, Levi T, Ikeuchi Y. Advances in construction and modeling of functional neural circuits in vitro. Neurochem Res 2022; 47:2529-2544. [PMID: 35943626 PMCID: PMC9463289 DOI: 10.1007/s11064-022-03682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Over the years, techniques have been developed to culture and assemble neurons, which brought us closer to creating neuronal circuits that functionally and structurally mimic parts of the brain. Starting with primary culture of neurons, preparations of neuronal culture have advanced substantially. Development of stem cell research and brain organoids has opened a new path for generating three-dimensional human neural circuits. Along with the progress in biology, engineering technologies advanced and paved the way for construction of neural circuit structures. In this article, we overview research progress and discuss perspective of in vitro neural circuits and their ability and potential to acquire functions. Construction of in vitro neural circuits with complex higher-order functions would be achieved by converging development in diverse major disciplines including neuroscience, stem cell biology, tissue engineering, electrical engineering and computer science.
Collapse
Affiliation(s)
- Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Huaruo Hu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Timothée Levi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- IMS laboratory, CNRS UMR 5218, University of Bordeaux, Talence, France
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Zhang J, Yang H, Wu J, Zhang D, Wang Y, Zhai J. Recent progresses in novel in vitro models of primary neurons: A biomaterial perspective. Front Bioeng Biotechnol 2022; 10:953031. [PMID: 36061442 PMCID: PMC9428288 DOI: 10.3389/fbioe.2022.953031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) diseases have been a growing threat to the health of humanity, emphasizing the urgent need of exploring the pathogenesis and therapeutic approaches of various CNS diseases. Primary neurons are directly obtained from animals or humans, which have wide applications including disease modeling, mechanism exploration and drug development. However, traditional two-dimensional (2D) monoculture cannot resemble the native microenvironment of CNS. With the increasing understanding of the complexity of the CNS and the remarkable development of novel biomaterials, in vitro models have experienced great innovation from 2D monoculture toward three-dimensional (3D) multicellular culture. The scope of this review includes the progress of various in vitro models of primary neurons in recent years to provide a holistic view of the modalities and applications of primary neuron models and how they have been connected with the revolution of biofabrication techniques. Special attention has been paid to the interaction between primary neurons and biomaterials. First, a brief introduction on the history of CNS modeling and primary neuron culture was conducted. Next, detailed progress in novel in vitro models were discussed ranging from 2D culture, ex vivo model, spheroid, scaffold-based model, 3D bioprinting model, and microfluidic chip. Modalities, applications, advantages, and limitations of the aforementioned models were described separately. Finally, we explored future prospects, providing new insights into how basic science research methodologies have advanced our understanding of the CNS, and highlighted some future directions of primary neuron culture in the next few decades.
Collapse
Affiliation(s)
- Jiangang Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyu Yang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dingyue Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiliang Zhai
- Departments of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jiliang Zhai,
| |
Collapse
|
31
|
Seo Y, Bang S, Son J, Kim D, Jeong Y, Kim P, Yang J, Eom JH, Choi N, Kim HN. Brain physiome: A concept bridging in vitro 3D brain models and in silico models for predicting drug toxicity in the brain. Bioact Mater 2022; 13:135-148. [PMID: 35224297 PMCID: PMC8843968 DOI: 10.1016/j.bioactmat.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, adverse reactions to pharmaceuticals have been evaluated using 2D in vitro models and animal models. However, with increasing computational power, and as the key drivers of cellular behavior have been identified, in silico models have emerged. These models are time-efficient and cost-effective, but the prediction of adverse reactions to unknown drugs using these models requires relevant experimental input. Accordingly, the physiome concept has emerged to bridge experimental datasets with in silico models. The brain physiome describes the systemic interactions of its components, which are organized into a multilevel hierarchy. Because of the limitations in obtaining experimental data corresponding to each physiome component from 2D in vitro models and animal models, 3D in vitro brain models, including brain organoids and brain-on-a-chip, have been developed. In this review, we present the concept of the brain physiome and its hierarchical organization, including cell- and tissue-level organizations. We also summarize recently developed 3D in vitro brain models and link them with the elements of the brain physiome as a guideline for dataset collection. The connection between in vitro 3D brain models and in silico modeling will lead to the establishment of cost-effective and time-efficient in silico models for the prediction of the safety of unknown drugs.
Collapse
Affiliation(s)
- Yoojin Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongtae Son
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihun Yang
- Next&Bio Inc., Seoul, 02841, Republic of Korea
| | - Joon-Ho Eom
- Medical Device Research Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
32
|
Kim JW, Choi YY, Park SH, Ha JH, Lee HU, Kang T, Sun W, Chung BG. Microfluidic electrode array chip for electrical stimulation-mediated axonal regeneration. LAB ON A CHIP 2022; 22:2122-2130. [PMID: 35388823 DOI: 10.1039/d1lc01158h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise manipulation of the neural stem cell (NSC)-derived neural differentiation is still challenging, and there is a technological barrier to regulate the axonal regeneration in a controlled manner. Here, we developed a microfluidic chip integrated with a microelectrode array as an axonal guidance platform. The microfluidic electrode array chip consisted of two compartments and a bridge microchannel that could isolate and guide the axons. We demonstrated that the NSCs were largely differentiated into neural cells as the electric field was applied to the microfluidic electrode array chip. We also confirmed the synergistic effects of the electrical stimulation (ES) and neurotrophic factor (NF) on axonal outgrowth. This microfluidic electrode array chip can serve as a central nervous system (CNS) model for axonal injury and regeneration. Therefore, it could be a potentially powerful tool for an in vitro model of the axonal regeneration.
Collapse
Affiliation(s)
- Ji Woon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | - Si-Hyung Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea.
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea.
| | - Bong Geun Chung
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
33
|
Mai P, Hampl J, Baca M, Brauer D, Singh S, Weise F, Borowiec J, Schmidt A, Küstner JM, Klett M, Gebinoga M, Schroeder IS, Markert UR, Glahn F, Schumann B, Eckstein D, Schober A. MatriGrid® Based Biological Morphologies: Tools for 3D Cell Culturing. Bioengineering (Basel) 2022; 9:bioengineering9050220. [PMID: 35621498 PMCID: PMC9138054 DOI: 10.3390/bioengineering9050220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid®s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account.
Collapse
Affiliation(s)
- Patrick Mai
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Jörg Hampl
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| | - Martin Baca
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Dana Brauer
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Sukhdeep Singh
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Frank Weise
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Justyna Borowiec
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - André Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Johanna Merle Küstner
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Maren Klett
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Michael Gebinoga
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
| | - Insa S. Schroeder
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany;
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (A.S.); (U.R.M.)
| | - Felix Glahn
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Berit Schumann
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Diana Eckstein
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06097 Halle, Germany; (F.G.); (B.S.); (D.E.)
| | - Andreas Schober
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, 98693 Ilmenau, Germany; (P.M.); (M.B.); (D.B.); (S.S.); (F.W.); (J.B.); (J.M.K.); (M.K.); (M.G.)
- Correspondence: (J.H.); (A.S.); Tel.: +49-3677-6933387 (A.S.)
| |
Collapse
|
34
|
Megarity D, Vroman R, Kriek M, Downey P, Bushell TJ, Zagnoni M. A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience. LAB ON A CHIP 2022; 22:1989-2000. [PMID: 35466333 DOI: 10.1039/d2lc00115b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Disorders of the central nervous system (CNS) represent a global health challenge and an increased understanding of the CNS in both physiological and pathophysiological states is essential to tackle the problem. Modelling CNS conditions is difficult, as traditional in vitro models fail to recapitulate precise microenvironments and animal models of complex disease often have limited translational validity. Microfluidic and organ-on-chip technologies offer an opportunity to develop more physiologically relevant and complex in vitro models of the CNS. They can be developed to allow precise cellular patterning and enhanced experimental capabilities to study neuronal function and dysfunction. To improve ease-of-use of the technology and create new opportunities for novel in vitro studies, we introduce a modular platform consisting of multiple, individual microfluidic units that can be combined in several configurations to create bespoke culture environments. Here, we report proof-of-concept experiments creating complex in vitro models and performing functional analysis of neuronal activity across modular interfaces. This platform technology presents an opportunity to increase our understanding of CNS disease mechanisms and ultimately aid the development of novel therapies.
Collapse
Affiliation(s)
- D Megarity
- Centre for Doctoral Training in Medical Devices and Health Technologies, Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - R Vroman
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| | | | - P Downey
- UCB Biopharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - T J Bushell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - M Zagnoni
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| |
Collapse
|
35
|
Girardin S, Clément B, Ihle SJ, Weaver S, Petr JB, Mateus JC, Duru J, Krubner M, Forró C, Ruff T, Fruh I, Müller M, Vörös J. Topologically controlled circuits of human iPSC-derived neurons for electrophysiology recordings. LAB ON A CHIP 2022; 22:1386-1403. [PMID: 35253810 PMCID: PMC8963377 DOI: 10.1039/d1lc01110c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Bottom-up neuroscience, which consists of building and studying controlled networks of neurons in vitro, is a promising method to investigate information processing at the neuronal level. However, in vitro studies tend to use cells of animal origin rather than human neurons, leading to conclusions that might not be generalizable to humans and limiting the possibilities for relevant studies on neurological disorders. Here we present a method to build arrays of topologically controlled circuits of human induced pluripotent stem cell (iPSC)-derived neurons. The circuits consist of 4 to 50 neurons with well-defined connections, confined by microfabricated polydimethylsiloxane (PDMS) membranes. Such circuits were characterized using optical imaging and microelectrode arrays (MEAs), suggesting the formation of functional connections between the neurons of a circuit. Electrophysiology recordings were performed on circuits of human iPSC-derived neurons for at least 4.5 months. We believe that the capacity to build small and controlled circuits of human iPSC-derived neurons holds great promise to better understand the fundamental principles of information processing and storing in the brain.
Collapse
Affiliation(s)
- Sophie Girardin
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Blandine Clément
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Stephan J Ihle
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Sean Weaver
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Jana B Petr
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - José C Mateus
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, Portugal
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Magdalena Krubner
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Csaba Forró
- Cui Laboratory, S285 290 Jane Stanford Way Stanford, Stanford, CA 94305, USA
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Isabelle Fruh
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Matthias Müller
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| |
Collapse
|
36
|
Hong N, Nam Y. Neurons-on-a-Chip: In Vitro NeuroTools. Mol Cells 2022; 45:76-83. [PMID: 35236782 PMCID: PMC8906998 DOI: 10.14348/molcells.2022.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.
Collapse
Affiliation(s)
- Nari Hong
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
| |
Collapse
|
37
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
38
|
Shimoda K, Watanabe H, Hondo Y, Sentoku M, Sakamoto K, Yasuda K. In Situ Agarose Microfabrication Technology Using Joule Heating of Micro Ionic Current for On-Chip Cell Network Analysis. MICROMACHINES 2022; 13:mi13020174. [PMID: 35208299 PMCID: PMC8880086 DOI: 10.3390/mi13020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Agarose microfabrication technology is one of the micropatterning techniques of cells having advantages of simple and flexible real-time fabrication of three-dimensional confinement microstructures even during cell cultivation. However, the conventional photothermal etching procedure of focused infrared laser on thin agarose layer has several limitations, such as the undesired sudden change of etched width caused by the local change of absorbance of the bottom surface of cultivation plate, especially on the indium-tin-oxide (ITO) wiring on the multi-electrode array (MEA) cultivation chip. To overcome these limitations, we have developed a new agarose etching method exploiting the Joule heating of focused micro ionic current at the tip of the micrometer-sized capillary tube. When 75 V, 1 kHz AC voltage was applied to the tapered microcapillary tube, in which 1 M sodium ion buffer was filled, the formed micro ionic current at the open end of the microcapillary tube melted the thin agarose layer and formed stable 5 μm width microstructures regardless the ITO wiring, and the width was controlled by the change of applied voltage squared. We also found the importance of the higher frequency of applied AC voltage to form the stable microstructures and also minimize the fluctuation of melted width. The results indicate that the focused micro ionic current can create stable local spot heating in the medium buffer as the Joule heating of local ionic current and can perform the same quality of microfabrication as the focused infrared laser absorption procedure with a simple set-up of the system and several advantages.
Collapse
Affiliation(s)
- Kenji Shimoda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (K.S.); (H.W.); (Y.H.); (M.S.); (K.S.)
| | - Haruki Watanabe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (K.S.); (H.W.); (Y.H.); (M.S.); (K.S.)
| | - Yoshitsune Hondo
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (K.S.); (H.W.); (Y.H.); (M.S.); (K.S.)
| | - Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (K.S.); (H.W.); (Y.H.); (M.S.); (K.S.)
| | - Kazufumi Sakamoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (K.S.); (H.W.); (Y.H.); (M.S.); (K.S.)
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (K.S.); (H.W.); (Y.H.); (M.S.); (K.S.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Correspondence:
| |
Collapse
|
39
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
40
|
Mateus JC, Lopes C, Aroso M, Costa AR, Gerós A, Meneses J, Faria P, Neto E, Lamghari M, Sousa MM, Aguiar P. Bidirectional flow of action potentials in axons drives activity dynamics in neuronal cultures. J Neural Eng 2021; 18. [PMID: 34891149 DOI: 10.1088/1741-2552/ac41db] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Objective. Recent technological advances are revealing the complex physiology of the axon and challenging long-standing assumptions. Namely, while most action potential (AP) initiation occurs at the axon initial segment in central nervous system neurons, initiation in distal parts of the axon has been reported to occur in both physiological and pathological conditions. The functional role of these ectopic APs, if exists, is still not clear, nor its impact on network activity dynamics.Approach. Using an electrophysiology platform specifically designed for assessing axonal conduction we show here for the first time regular and effective bidirectional axonal conduction in hippocampal and dorsal root ganglia cultures. We investigate and characterize this bidirectional propagation both in physiological conditions and after distal axotomy.Main results.A significant fraction of APs are not coming from the canonical synapse-dendrite-soma signal flow, but instead from signals originating at the distal axon. Importantly, antidromic APs may carry information and can have a functional impact on the neuron, as they consistently depolarize the soma. Thus, plasticity or gene transduction mechanisms triggered by soma depolarization can also be affected by these antidromic APs. Conduction velocity is asymmetrical, with antidromic conduction being slower than orthodromic.Significance.Altogether these findings have important implications for the study of neuronal functionin vitro, reshaping our understanding on how information flows in neuronal cultures.
Collapse
Affiliation(s)
- J C Mateus
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cdf Lopes
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Aroso
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - A R Costa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gerós
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,FEUP-Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - J Meneses
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development-Instituto Politécnico de Leiria, Marinha Grande, Portugal.,IBEB-Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - P Faria
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development-Instituto Politécnico de Leiria, Marinha Grande, Portugal
| | - E Neto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - M M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - P Aguiar
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
41
|
Pigareva YI, Antipova OO, Kolpakov VN, Martynova OV, Popova AA, Mukhina IV, Pimashkin AS, Es'kin VA. A Method for Recording the Bioelectrical Activity of Neural Axons upon Stimulation with Short Pulses of Infrared Laser Radiation. Sovrem Tekhnologii Med 2021; 12:21-27. [PMID: 34796015 PMCID: PMC8596240 DOI: 10.17691/stm2020.12.6.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 11/14/2022] Open
Abstract
The aim of the study was to develop a method for long-term non-invasive recording of the bioelectrical activity induced in isolated neuronal axons irradiated with short infrared (IR) pulses and to study the effect of radiation on the occurrence of action potentials in axons of a neuron culture in vitro. Materials and Methods Hippocampal cells of mouse embryos (E18) were cultured in microfluidic chips made of polydimethylsiloxane and containing microchannels for axonal growth at a distance of up to 800 μm. We studied the electrophysiological activity of a neuronal culture induced by pulses of focused laser radiation in the IR range (1907 and 2095 nm). The electrophysiological activity of the neuronal culture was recorded using a multichannel recording system (Multi Channel Systems, Germany). Results The developed microfluidic chip and the optical stimulation system combined with the multichannel registration system made it possible to non-invasively record the action potentials caused by pulsed IR radiation in isolated neuronal axons in vitro. The propagation of action potentials in axons was detected using extracellular microelectrodes when the cells were irradiated with a laser at a wavelength of 1907 nm with a radiation power of 0.2-0.5 W for pulses with a duration of 6 ms and 0.5 W for pulses with a duration of 10 ms. It was shown that the radiation power positively correlated with the occurrence rate of axonal response. Moreover, the probability of a response evoked by optical stimulation increased at short optical pulses. In addition, we found that more responses could be evoked by irradiating the neuronal cell culture itself rather than the axon-containing microchannels. Conclusion The developed method makes it possible to isolate the axons growing from cultured neurons into a microfluidic chip, stimulate the neurons with infrared radiation, and non-invasively record the axonal spiking. The proposed approach allowed us to study the characteristics of neuronal responses in cell cultures over a long (weeks) period of time. The method can be used both in fundamental research into the brain signaling system and in the development of a non-invasive neuro-interface.
Collapse
Affiliation(s)
- Ya I Pigareva
- Junior Researcher, Laboratory of Neuro-engineering, Research Institute of Neurosciences; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - O O Antipova
- Assistant, Laboratory of Neuro-engineering, Research Institute of Neurosciences; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - V N Kolpakov
- Junior Researcher, Laboratory of Neuro-engineering, Research Institute of Neurosciences; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - O V Martynova
- Engineer, Department of Electrodynamics, Faculty of Radiophysics; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - A A Popova
- PhD Student, Department of Electrodynamics, Faculty of Radiophysics; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - I V Mukhina
- Professor, Head of the Central Research Laboratory; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia Head of the Department of Normal Physiology named after N.Y. Belenkov; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia Professor, Department of Neurotechnology, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - A S Pimashkin
- Associate Professor, Department of Neurotechnology; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia; Researcher, Laboratory of Neuro-engineering, Research Institute of Neurosciences; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| | - V A Es'kin
- Associate Professor, Department of Electrodynamics, Faculty of Radiophysics National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
42
|
Ji J, Ren X, Zorlutuna P. Cardiac Cell Patterning on Customized Microelectrode Arrays for Electrophysiological Recordings. MICROMACHINES 2021; 12:mi12111351. [PMID: 34832763 PMCID: PMC8619285 DOI: 10.3390/mi12111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Cardiomyocytes (CMs) and fibroblast cells are two essential elements for cardiac tissue structure and function. The interactions between them can alter cardiac electrophysiology and thus contribute to cardiac diseases, such as arrhythmogenesis. One possible explanation is that fibroblasts can directly affect cardiac electrophysiology through electrical coupling with CMs. Therefore, detecting the electrical activities in the CM-fibroblast network is vital for understanding the coupling dynamics among them. Current commercialized platforms for studying cardiac electrophysiology utilize planar microelectrode arrays (MEAs) to record the extracellular field potential (FP) in real-time, but the prearranged electrode configuration highly limits the measurement capabilities at specific locations. Here, we report a custom-designed MEA device with a novel micropatterning method to construct a controlled network of neonatal rat CMs (rCMs) and fibroblast connections for monitoring the electrical activity of rCM-fibroblast co-cultures in a spatially controlled fashion. For the micropatterning of the co-culture, surface topographical features and mobile blockers were used to control the initial attachment locations of a mixture of rCMs and fibroblasts, to form separate beating rCM-fibroblast clusters while leaving empty space for fibroblast growth to connect these clusters. Once the blockers are removed, the proliferating fibroblasts connect and couple the separate beating clusters. Using this method, electrical activity of both rCMs and human-induced-pluripotent-stem-cell-derived cardiomyocytes (iCMs) was examined. The coupling dynamics were studied through the extracellular FP and impedance profile recorded from the MEA device, indicating that the fibroblast bridge provided an RC-type coupling of physically separate rCM-containing clusters and enabled synchronization of these clusters.
Collapse
|
43
|
Walczak PA, Perez-Esteban P, Bassett DC, Hill EJ. Modelling the central nervous system: tissue engineering of the cellular microenvironment. Emerg Top Life Sci 2021; 5:507-517. [PMID: 34524411 PMCID: PMC8589431 DOI: 10.1042/etls20210245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
With the increasing prevalence of neurodegenerative diseases, improved models of the central nervous system (CNS) will improve our understanding of neurophysiology and pathogenesis, whilst enabling exploration of novel therapeutics. Studies of brain physiology have largely been carried out using in vivo models, ex vivo brain slices or primary cell culture from rodents. Whilst these models have provided great insight into complex interactions between brain cell types, key differences remain between human and rodent brains, such as degree of cortical complexity. Unfortunately, comparative models of human brain tissue are lacking. The development of induced Pluripotent Stem Cells (iPSCs) has accelerated advancement within the field of in vitro tissue modelling. However, despite generating accurate cellular representations of cortical development and disease, two-dimensional (2D) iPSC-derived cultures lack an entire dimension of environmental information on structure, migration, polarity, neuronal circuitry and spatiotemporal organisation of cells. As such, researchers look to tissue engineering in order to develop advanced biomaterials and culture systems capable of providing necessary cues for guiding cell fates, to construct in vitro model systems with increased biological relevance. This review highlights experimental methods for engineering of in vitro culture systems to recapitulate the complexity of the CNS with consideration given to previously unexploited biophysical cues within the cellular microenvironment.
Collapse
Affiliation(s)
- Paige A. Walczak
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - Patricia Perez-Esteban
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| | - David C. Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, U.K
| | - Eric James Hill
- College of Health and Life Sciences, School of Biosciences, Aston University, Birmingham, U.K
| |
Collapse
|
44
|
Bang S, Hwang KS, Jeong S, Cho IJ, Choi N, Kim J, Kim HN. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomater 2021; 132:379-400. [PMID: 34157452 DOI: 10.1016/j.actbio.2021.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The neural circuits of the central nervous system are the regulatory pathways for feeling, motion control, learning, and memory, and their dysfunction is closely related to various neurodegenerative diseases. Despite the growing demand for the unraveling of the physiology and functional connectivity of the neural circuits, their fundamental investigation is hampered because of the inability to access the components of neural circuits and the complex microenvironment. As an alternative approach, in vitro human neural circuits show principles of in vivo human neuronal circuit function. They allow access to the cellular compartment and permit real-time monitoring of neural circuits. In this review, we summarize recent advances in reconstituted in vitro neural circuits using engineering techniques. To this end, we provide an overview of the fabrication techniques and methods for stimulation and measurement of in vitro neural circuits. Subsequently, representative examples of in vitro neural circuits are reviewed with a particular focus on the recapitulation of structures and functions observed in vivo, and we summarize their application in the study of various brain diseases. We believe that the in vitro neural circuits can help neuroscience and the neuropharmacology. STATEMENT OF SIGNIFICANCE: Despite the growing demand to unravel the physiology and functional connectivity of the neural circuits, the studies on the in vivo neural circuits are frequently limited due to the poor accessibility. Furthermore, single neuron-based analysis has an inherent limitation in that it does not reflect the full spectrum of the neural circuit physiology. As an alternative approach, in vitro engineered neural circuit models have arisen because they can recapitulate the structural and functional characteristics of in vivo neural circuits. These in vitro neural circuits allow the mimicking of dysregulation of the neural circuits, including neurodegenerative diseases and traumatic brain injury. Emerging in vitro engineered neural circuits will provide a better understanding of the (patho-)physiology of neural circuits.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
45
|
Tran HT, Lucas MS, Ishikawa T, Shahmoradian SH, Padeste C. A Compartmentalized Neuronal Cell-Culture Platform Compatible With Cryo-Fixation by High-Pressure Freezing for Ultrastructural Imaging. Front Neurosci 2021; 15:726763. [PMID: 34566569 PMCID: PMC8455873 DOI: 10.3389/fnins.2021.726763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
The human brain contains a wide array of billions of neurons and interconnections, which are often simplified for analysis in vitro using compartmentalized microfluidic devices for neuronal cell culturing, to better understand neuronal development and disease. However, such devices are traditionally incompatible for high-pressure freezing and high-resolution nanoscale imaging and analysis of their sub-cellular processes by methods including electron microscopy. Here we develop a novel compartmentalized neuronal co-culture platform allowing reconstruction of neuronal networks with high variable spatial control, which is uniquely compatible for high-pressure freezing. This cryo-fixation method is well-established to enable high-fidelity preservation of the reconstructed neuronal networks and their sub-cellular processes in a near-native vitreous state without requiring chemical fixatives. To direct the outgrowth of neurites originating from two distinct groups of neurons growing in the two different compartments, polymer microstructures akin to microchannels are fabricated atop of sapphire disks. Two populations of neurons expressing either enhanced green fluorescent protein (EGFP) or mCherry were grown in either compartment, facilitating the analysis of the specific interactions between the two separate groups of cells. Neuronally differentiated PC12 cells, murine hippocampal and striatal neurons were successfully used in this context. The design of this device permits direct observation of entire neuritic processes within microchannels by optical microscopy with high spatial and temporal resolution, prior to processing for high-pressure freezing and electron microscopy. Following freeze substitution, we demonstrate that it is possible to process the neuronal networks for ultrastructural imaging by electron microscopy. Several key features of the embedded neuronal networks, including mitochondria, synaptic vesicles, axonal terminals, microtubules, with well-preserved ultrastructures were observed at high resolution using focused ion beam - scanning electron microscopy (FIB-SEM) and serial sectioning - transmission electron microscopy (TEM). These results demonstrate the compatibility of the platform with optical microscopy, high-pressure freezing and electron microscopy. The platform can be extended to neuronal models of brain disease or development in future studies, enabling the investigation of subcellular processes at the nanoscale within two distinct groups of neurons in a functional neuronal pathway, as well as pharmacological testing and drug screening.
Collapse
Affiliation(s)
- Hung Tri Tran
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | - Miriam S. Lucas
- Scientific Center for Optical and Electron Microscopy ScopeM, ETH Zürich, Zurich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Celestino Padeste
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
46
|
Ming Y, Abedin MJ, Tatic-Lucic S, Berdichevsky Y. Microdevice for directional axodendritic connectivity between micro 3D neuronal cultures. MICROSYSTEMS & NANOENGINEERING 2021; 7:67. [PMID: 34567779 PMCID: PMC8433170 DOI: 10.1038/s41378-021-00292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/27/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Neuronal cultures are widely used in neuroscience research. However, the randomness of circuits in conventional cultures prevents accurate in vitro modeling of cortical development and of the pathogenesis of neurological and psychiatric disorders. A basic feature of cortical circuits that is not captured in standard cultures of dissociated cortical cells is directional connectivity. In this work, a polydimethylsiloxane (PDMS)-based device that achieves directional connectivity between micro 3D cultures is demonstrated. The device consists of through-holes for micro three-dimensional (μ3D) clusters of cortical cells connected by microtrenches for axon and dendrite guidance. The design of the trenches relies in part on the concept of axonal edge guidance, as well as on the novel concept of specific dendrite targeting. This replicates dominant excitatory connectivity in the cortex, enables the guidance of the axon after it forms a synapse in passing (an "en passant" synapse), and ensures that directional selectivity is preserved over the lifetime of the culture. The directionality of connections was verified morphologically and functionally. Connections were dependent on glutamatergic synapses. The design of this device has the potential to serve as a building block for the reconstruction of more complex cortical circuits in vitro.
Collapse
Affiliation(s)
- Yixuan Ming
- Department of Electrical & Computer Engineering, Lehigh University, Bethlehem, PA USA
| | - Md Joynal Abedin
- Department of Bioengineering, Lehigh University, Bethlehem, PA USA
| | - Svetlana Tatic-Lucic
- Department of Electrical & Computer Engineering, Lehigh University, Bethlehem, PA USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA USA
| | - Yevgeny Berdichevsky
- Department of Electrical & Computer Engineering, Lehigh University, Bethlehem, PA USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA USA
| |
Collapse
|
47
|
Sentoku M, Hashimoto H, Iida K, Endo M, Yasuda K. Photothermal Agarose Microfabrication Technology for Collective Cell Migration Analysis. MICROMACHINES 2021; 12:1015. [PMID: 34577661 PMCID: PMC8467839 DOI: 10.3390/mi12091015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022]
Abstract
Agarose photothermal microfabrication technology is one of the micropatterning techniques that has the advantage of simple and flexible real-time fabrication even during the cultivation of cells. To examine the ability and limitation of the agarose microstructures, we investigated the collective epithelial cell migration behavior in two-dimensional agarose confined structures. Agarose microchannels from 10 to 211 micrometer width were fabricated with a spot heating of a focused 1480 nm wavelength infrared laser to the thin agarose layer coated on the cultivation dish after the cells occupied the reservoir. The collective cell migration velocity maintained constant regardless of their extension distance, whereas the width dependency of those velocities was maximized around 30 micrometer width and decreased both in the narrower and wider microchannels. The single-cell tracking revealed that the decrease of velocity in the narrower width was caused by the apparent increase of aspect ratio of cell shape (up to 8.9). In contrast, the decrease in the wider channels was mainly caused by the increase of the random walk-like behavior of component cells. The results confirmed the advantages of this method: (1) flexible fabrication without any pre-designing, (2) modification even during cultivation, and (3) the cells were confined in the agarose geometry.
Collapse
Affiliation(s)
- Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
| | - Hiromichi Hashimoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
| | - Kento Iida
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
| | - Masaharu Endo
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan; (M.S.); (H.H.); (K.I.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| |
Collapse
|
48
|
Brofiga M, Pisano M, Raiteri R, Massobrio P. On the road to the brain-on-a-chip: a review on strategies, methods, and applications. J Neural Eng 2021; 18. [PMID: 34280903 DOI: 10.1088/1741-2552/ac15e4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
The brain is the most complex organ of our body. Such a complexity spans from the single-cell morphology up to the intricate connections that hundreds of thousands of neurons establish to create dense neuronal networks. All these components are involved in the genesis of the rich patterns of electrophysiological activity that characterize the brain. Over the years, researchers coming from different disciplines developedin vitrosimplified experimental models to investigate in a more controllable and observable way how neuronal ensembles generate peculiar firing rhythms, code external stimulations, or respond to chemical drugs. Nowadays, suchin vitromodels are namedbrain-on-a-chippointing out the relevance of the technological counterpart as artificial tool to interact with the brain: multi-electrode arrays are well-used devices to record and stimulate large-scale developing neuronal networks originated from dissociated cultures, brain slices, up to brain organoids. In this review, we will discuss the state of the art of the brain-on-a-chip, highlighting which structural and biological features a realisticin vitrobrain should embed (and how to achieve them). In particular, we identified two topological features, namely modular and three-dimensional connectivity, and a biological one (heterogeneity) that takes into account the huge number of neuronal types existing in the brain. At the end of this travel, we will show how 'far' we are from the goal and how interconnected-brain-regions-on-a-chip is the most appropriate wording to indicate the current state of the art.
Collapse
Affiliation(s)
- Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Marietta Pisano
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,CNR- Institute of Biophysics, Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,National Institute for Nuclear Physics (INFN), Genova, Italy
| |
Collapse
|
49
|
Tanaka Y, Watanabe H, Shimoda K, Sakamoto K, Hondo Y, Sentoku M, Sekine R, Kikuchi T, Yasuda K. Stepwise neuronal network pattern formation in agarose gel during cultivation using non-destructive microneedle photothermal microfabrication. Sci Rep 2021; 11:14656. [PMID: 34282174 PMCID: PMC8289850 DOI: 10.1038/s41598-021-93988-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/05/2021] [Indexed: 01/25/2023] Open
Abstract
Conventional neuronal network pattern formation techniques cannot control the arrangement of axons and dendrites because network structures must be fixed before neurite differentiation. To overcome this limitation, we developed a non-destructive stepwise microfabrication technique that can be used to alter microchannels within agarose to guide neurites during elongation. Micropatterns were formed in thin agarose layer coating of a cultivation dish using the tip of a 0.7 [Formula: see text]-diameter platinum-coated glass microneedle heated by a focused 1064-nm wavelength infrared laser, which has no absorbance of water. As the size of the heat source was 0.7 [Formula: see text], which is smaller than the laser wavelength, the temperature fell to 45 [Formula: see text] within a distance of 7.0 [Formula: see text] from the edge of the etched agarose microchannel. We exploited the fast temperature decay property to guide cell-to-cell connection during neuronal network cultivation. The first neurite of a hippocampal cell from a microchamber was guided to a microchannel leading to the target neuron with stepwise etching of the micrometer resolution microchannel in the agarose layer, and the elongated neurites were not damaged by the heat of etching. The results indicate the potential of this new technique for fully direction-controlled on-chip neuronal network studies.
Collapse
Affiliation(s)
- Yuhei Tanaka
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Haruki Watanabe
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Shimoda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kazufumi Sakamoto
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Yoshitsune Hondo
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Rikuto Sekine
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Takahito Kikuchi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
50
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|