1
|
Inokuma K, Sasaki D, Shintani T, Inoue J, Oyama K, Noda Y, Maeda T, Yamada R, Matsuki Y, Kodama Y, Kondo A. Combination of probiotics enhancing butyrogenesis in colonic microbiota model of patients with ulcerative colitis. Appl Microbiol Biotechnol 2025; 109:117. [PMID: 40347262 PMCID: PMC12065738 DOI: 10.1007/s00253-025-13424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 05/12/2025]
Abstract
Administering beneficial bacteria as probiotics to restore the intestinal microbiota and its metabolic functions, such as butyrogenesis, is a promising treatment strategy in ulcerative colitis (UC). This study aimed to investigate the effect of a combination of probiotics, consisting of the lactic acid bacterium Weizmannia coagulans SANK70258 and the lactate-utilizing butyrate-producing bacteria Anaerostipes caccae or Clostridium butyricum, on the colonic environment using an in vitro colonic microbiota culture model with fecal inoculums from seven patients with UC. Co-inoculated W. coagulans and A. caccae neither inhibited each other's growth nor significantly affected the relative abundance of other bacterial species; however, the growth of W. coagulans was significantly inhibited when co-inoculated with C. butyricum. The relative abundance of pro-inflammatory bacteria (Escherichia sp. and unclassified Enterobacteriaceae) and Bifidobacterium spp. significantly decreased in W. coagulans-C. butyricum co-inoculated cultures. Inoculation with any of the probiotics alone did not increase butyrate production, whereas co-inoculation of W. coagulans with A. caccae or C. butyricum significantly increased the butyrate levels. Overall, the results suggested that W. coagulans and lactate-utilizing butyrate-producing bacteria in combination have synergistic effects through cross-feeding and can effectively restore butyrogenesis in the colonic environment of patients with UC. KEY POINTS: • Effects of probiotics were evaluated using in vitro microbiota model of UC colon. • W. coagulans and lactate-utilizing butyrate producers have synergistic effects. • Co-inoculation of W. coagulans with A. caccae or C. butyricum enhanced butyrogenesis.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Tomoya Shintani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Katsuaki Oyama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yuta Noda
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, 227-8502, Japan
| | - Takayuki Maeda
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, 227-8502, Japan
| | - Ryouichi Yamada
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Kanagawa, 227-8502, Japan
| | - Yasushi Matsuki
- Strategic Planning Office, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan.
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
2
|
Kramer CS, Monsegue A, Morwani-Mangnani J, Grootswagers P, Beekman M, Slagboom PE, Verdijk LB, de Groot LCPGM. Design of the VOILA-intervention study: A 12-week nutrition and resistance exercise intervention in metabolic or mobility compromised Dutch older adults and the response on immune-metabolic, gut and muscle health parameters. Mech Ageing Dev 2024; 222:112002. [PMID: 39490538 DOI: 10.1016/j.mad.2024.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Exercise and nutrition interventions can slow ageing-induced decline in physiology. However, effects are heterogeneous and usually studied separately per outcome domain. In the VOILA study, we simultaneously study various health outcomes relevant for older adults and the inter-individual heterogeneity in response to a lifestyle intervention. METHODS VOILA is a 12-week lifestyle intervention in 3 groups of older adults (≥60 years), with compromised mobility (n=50), compromised metabolic health (n=50), or recovering from total knee replacement (TKR, n=70, of which 20 randomized to standard care only). The intervention includes high-intensity resistance exercise training thrice weekly, nutritional counselling, and nutritional supplements every morning and evening (including 20-25 g whey protein and (evening only) 5.5 g Biotis™ GOS). We measure immune-metabolic, gut health, muscle mass and physical functioning at baseline and after completion of the intervention/standard care. An additional reference group of healthy older adults (n=50) will undergo baseline measurements only. DISCUSSION Improvements in various physiological systems are expected, but with differences between groups/individuals. This study will provide insights into how the physiological state of older adults influences the extent of lifestyle-induced health improvements to create better tailored interventions to attenuate biological ageing and improve the health span of subgroups and individuals.
Collapse
Affiliation(s)
- C S Kramer
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - A Monsegue
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - J Morwani-Mangnani
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P Grootswagers
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - M Beekman
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P E Slagboom
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - L B Verdijk
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - L C P G M de Groot
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| |
Collapse
|
3
|
Gościniak A, Lainé E, Cielecka-Piontek J. How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity. Molecules 2024; 29:5316. [PMID: 39598705 PMCID: PMC11596334 DOI: 10.3390/molecules29225316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The modulation of the gut microbiome through dietary components has garnered significant attention for its potential health benefits. Prebiotics, non-digestible food ingredients that promote the growth of beneficial gut bacteria, play a crucial role in maintaining gut health, enhancing immune function, and potentially preventing various metabolic and inflammatory disorders. This review explores the prebiotic activity of cyclodextrins and dextrans, focusing on their ability to influence gut microbiota composition and function. Both cyclodextrins and dextrans have demonstrated the capacity to promote the growth of beneficial bacterial populations, while also impacting short-chain fatty acid production, crucial for gut health.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Emmanuelle Lainé
- UMR 454 INRAe-UCA, Microbiology, Digestive Environment and Health (MEDIS), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
4
|
Farías C, Cisternas C, Caicedo A, Mercado L, Valenzuela R, Calderón H, Espinosa A, Videla LA, Muñoz LA. High-fiber basil seed flour reduces insulin resistance and hepatic steatosis in high-fat diet mice. NPJ Sci Food 2024; 8:90. [PMID: 39516211 PMCID: PMC11549410 DOI: 10.1038/s41538-024-00329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The incidence of insulin resistance (IR) and hepatic steatosis is increasing, with dietary fiber playing a protective role against these disorders. Ocimum basilicum L., widely used in food, pharmaceutical, and cosmetic industries, but their health-promoting properties remain underexplored. This study evaluated the effects of a fiber-rich fraction of partially defatted basil seeds (BSF) on IR, hepatic steatosis, and polyunsaturated fatty acid and short-chain fatty acid (SCFA) profiles in high-fat diet (HFD)-fed C57BL/6 J male mice. Mice were assigned to four groups and fed either a control diet or HFD, supplemented with BSF or oat flour for 4 weeks. HFD induced IR, hepatic steatosis, proinflammatory state, and a significant decreased in SCFA production. In contrast, supplementation with BSF attenuated IR, steatosis, liver damage, oxidative stress, and inflammation, while increasing n-3 polyunsaturated fatty acids in liver, adipocytes, and erythrocytes, and enhancing SCFA production, suggesting potential therapeutic benefits in managing these conditions.
Collapse
Affiliation(s)
- Camila Farías
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, 8380000, Chile
| | - Camila Cisternas
- School of Health Care Sciences , Universidad San Sebastián, Puerto Montt, Chile
| | - Angie Caicedo
- School of Agronomy, Faculty of Agronomy and Food Sciences , Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile
| | - Lorena Mercado
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, 8380000, Chile
- Universidad Andrés Bello, Medicina, Facultad Medicina, 8370035, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, 8380000, Chile
| | - Héctor Calderón
- Food Science Lab, Faculty of Medicine and Health Sciences, Universidad Central de Chile, Santiago, 8330546, Chile
| | - Alejandra Espinosa
- Center of Interdisciplinary Biomedical and Engineering Research for Health-MEDING. Universidad de Valparaíso, Valparaíso, Chile
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - L A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Loreto A Muñoz
- Food Science Lab, Faculty of Medicine and Health Sciences, Universidad Central de Chile, Santiago, 8330546, Chile.
| |
Collapse
|
5
|
Singh AK, Kumar P, Mishra SK, Rajput VD, Tiwari KN, Singh AK, Minkina T, Pandey AK, Upadhyay P. A Dual Therapeutic Approach to Diabetes Mellitus via Bioactive Phytochemicals Found in a Poly Herbal Extract by Restoration of Favorable Gut Flora and Related Short-Chain Fatty Acids. Appl Biochem Biotechnol 2024; 196:6690-6715. [PMID: 38393580 DOI: 10.1007/s12010-024-04879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, Mariahu PG College, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prabhat Upadhyay
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
6
|
Zhang S, Kang T, Malacrinò A, Zhang Z, Zhang Z, Lin W, Wu H. Pseudostellaria heterophylla improves intestinal microecology through modulating gut microbiota and metabolites in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6174-6185. [PMID: 38459926 DOI: 10.1002/jsfa.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Pseudostellaria heterophylla is a Chinese medicine and healthy edible that is widely used to for its immunomodulatory, antioxidant, antidiabetic and antitussive properties. However, the potential function of P. heterophylla in intestinal microecology remains unclear. In this study, we investigated the impact of P. heterophylla on immune functions and evaluated its potential to regulate the gut microbiota and metabolome. RESULTS The results showed that P. heterophylla significantly increased the content of red blood cells, total antioxidant capacity and expression of immune factors, and decreased platelet counts when compared to the control under cyclophosphamide injury. In addition, P. heterophylla altered the diversity and composition of the gut bacterial community; increased the abundance of potentially beneficial Akkermansia, Roseburia, unclassified Clostridiaceae, Mucispirillum, Anaeroplasma and Parabacteroides; and decreased the relative abundance of pathogenic Cupriavidus and Staphylococcus in healthy mice. Metabolomic analyses showed that P. heterophylla significantly increased the content of functional oligosaccharides, common oligosaccharides, vitamins and functional substances. Probiotics and pathogens were regulated by metabolites across 11 pathways in the bacterial-host co-metabolism network. CONCLUSION We demonstrated that P. heterophylla increased the abundance of probiotics and decreased pathogens, and further stimulated host microbes to produce beneficial secondary metabolites for host health. Our studies highlight the role of P. heterophylla in gut health and provide new insights for the development of traditional Chinese medicine in the diet. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengkai Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Kang
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| | - Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Zhen Zhang
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| | - Zhongyi Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Osawa R, Fukuda I, Shirai Y. Evaluating functionalities of food components by a model simulating human intestinal microbiota constructed at Kobe University. Curr Opin Biotechnol 2024; 87:103103. [PMID: 38447326 DOI: 10.1016/j.copbio.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
In this era of pandemics, reducing the risk of lifestyle-related diseases (LRD) by functional foods is of paramount importance. The conventional process of functional food development almost invariably involves in vitro, animal, and human intervention trials, but differences in intestinal environments between humans and experimental animals make it difficult to develop functional foods that are truly effective in humans. Thus, it is necessary to construct a model that simulates the human intestinal environment to evaluate the functionality of any food component before subjecting it to a human intervention trial. In this review, we provide an overview of a model simulating human intestinal microbiota constructed at Kobe University and its use as a tool to identify food components that contribute to the prevention and treatment of LRD.
Collapse
Affiliation(s)
- Ro Osawa
- Department of Agrobioscience, Graduate School of Agricultural Science & Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Itsuko Fukuda
- Department of Agrobioscience, Graduate School of Agricultural Science & Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science & Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
8
|
Thorman AW, Morrow AL, Groeneveld A, Nauta A, Newburg DS. Validation of collection and anaerobic fermentation techniques for measuring prebiotic impact on gut microbiota. Pharmacol Res 2024; 203:107169. [PMID: 38583688 DOI: 10.1016/j.phrs.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Defining the ability of prebiotic dietary carbohydrates to influence the composition and metabolism of the gut microbiota is central to defining their health impact in diverse individuals. Many clinical trials are using indirect methods. This study aimed to validate collection and fermentation methods enabling their use in the context of clinical studies. METHODS AND RESULTS Parameters tested included stool sample acquisition, storage, and growth conditions. Stool from 3 infants and 3 adults was collected and stored under varying conditions. Samples were cultured anaerobically for two days in the presence of prebiotics, whereupon optical density and pH were measured across time. Whole genome shotgun sequencing and NMR metabolomics were performed. Neither the type of collection vial (standard vial and two different BD anaerobic collection vials) nor cryopreservation (-80 °C or 4 °C) significantly influenced either microbial composition at 16 h of anaerobic culture or the principal components of the metabolome at 8 or 16 h. Metagenomic differences were driven primarily by subject, while metabolomic differences were driven by fermentation sugar (2'-fucosyllactose or dextrose). CONCLUSIONS These data identified a feasible and valid approach for prebiotic fermentation analysis of individual samples in large clinical studies: collection of stool microbiota using standard vials; cryopreservation prior to testing; and collecting fermentation read-out at 8 and 16 hr. Thus, fermentation analysis can be a valid technique for testing the effects of prebiotics on human fecal microbiota.
Collapse
Affiliation(s)
- Alexander W Thorman
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Kettering Labs, 160 Panzeca Way, Cincinnati, OH 45267, United States.
| | - Ardythe L Morrow
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Kettering Labs, 160 Panzeca Way, Cincinnati, OH 45267, United States.
| | - Andre Groeneveld
- FrieslandCampina, Bronland 20, Wageningen 6708 WH, the Netherlands.
| | - Arjen Nauta
- FrieslandCampina, Bronland 20, Wageningen 6708 WH, the Netherlands.
| | - David S Newburg
- University of Cincinnati College of Medicine, Department of Environmental and Public Health Sciences, Kettering Labs, 160 Panzeca Way, Cincinnati, OH 45267, United States.
| |
Collapse
|
9
|
Azhar G, Verma A, Robeson MS, Patyal P, Nookaew I, Sharma S, Pangle A, Che Y, Wolfe RR, Wei JY. Short-Term Ingestion of Essential Amino Acid Based Nutritional Supplements or Whey Protein Improves the Physical Function of Older Adults Independently of Gut Microbiome. Mol Nutr Food Res 2024; 68:e2300716. [PMID: 38426663 DOI: 10.1002/mnfr.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/02/2024] [Indexed: 03/02/2024]
Abstract
SCOPE Dietary proteins and essential amino acids (EAAs) are the major nutritional supplements that support the growth and activity of gut microbes contributing to the wellbeing of their host. This study hypothesizes that daily supplementation of the diet with either EAAs or whey protein for 12 weeks would improve the gut microbiome of older adults. METHODS AND RESULTS The stool samples are processed and subjected to Illumina-based 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing. In both groups, the most abundant families are found in order of relative abundance included: Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Rikenellaceae, Enterobacteriaceae, Oscillospiraceae, Tannerellaceae, and Akkermansiaceae, which indicate that these subjects are able to maintain a same healthy microbial diversity in their guts. A significant finding is a reduction of proinflammatory cytokine, interleukin-18 (IL-18) in the EAAs group. It also uses the standard 6-min walking test (6MWT) as a measure of cardiopulmonary fitness. At the end of the study, the subjects in the EAAs group perform significantly better in the 6MWT as compared to the whey group. CONCLUSION It seems plausible that the improved physical performance and reduced proinflammatory cytokine, IL-18 seen in the EAAs group, are independent of changes in gut microbiota.
Collapse
Affiliation(s)
- Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Amanda Pangle
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Yingni Che
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert R Wolfe
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
10
|
Ostrowska J, Samborowska E, Jaworski M, Toczyłowska K, Szostak-Węgierek D. The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet. Nutrients 2024; 16:266. [PMID: 38257159 PMCID: PMC10818948 DOI: 10.3390/nu16020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The main objective of this cross-sectional study was to analyze the influence of lifestyle factors (diet, physical activity, sleep) that can affect the concentration of fecal short-chain fatty acids (SCFAs) and SCFAs' potential role in modulating cardiometabolic disease risk by interacting with biochemical and body composition parameters. The study comprised 77 healthy, non-obese individuals aged 30-45 years who were assessed for the concentration of SCFAs in stool, diet, physical activity level, and sleep duration. Moreover, body composition measurement and patients' biochemical parameters were included in the analysis. We have indicated a significant negative correlation between several SCFAs (especially acetic acid (AA), isobutyric acid (IBA), butyric acid (BA), propionic acid (PA), isovaleric acid (IVA) and valeric acid (VA)) with BMI, VAT/SAT ratio (visceral to subcutaneous fat ratio), and percentage of fat mass in a group of females enrolled in the study as well as with waist circumference (WC) in case of both sexes included in the study. Moreover, the results of our study acknowledged the importance of a diet in shaping the SCFA profile-we noticed significant negative associations between energy and fat intake and some SCFAs in males (IBA, IVA, VA, isocaproic acid (ICA)). Further, we indicated that a high intake of fiber (insoluble and soluble) in both males and females results in an elevated concentration of the vast majority of SCFAs and the amount of SCFAs in total. This effect was particularly noticeable in the case of the soluble fraction of fiber. These correlations reflect the fact that diet shapes the composition of the gut microbiota and SCFAs (main microbial metabolites) are synthesized from dietary fiber. In addition, we noticed that in a group of women, the concentration of AA, PA, and ICA as well as the total concentration of SCFAs showed a significant positive association with their sleep duration. We concluded that SCFAs can have a potential role in modulating cardiometabolic disease risk by interacting with adiposity parameters and diet. In addition, this potential direct link between diet and SCFAs may at least partly contribute to sleep improvement.
Collapse
Affiliation(s)
- Joanna Ostrowska
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka 27, 01-445 Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Al. Dzieci Polskich 20, 04-360 Warsaw, Poland
| | - Klaudia Toczyłowska
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka 27, 01-445 Warsaw, Poland
| | - Dorota Szostak-Węgierek
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, E Ciołka 27, 01-445 Warsaw, Poland
| |
Collapse
|
11
|
Guo B, Zhang J, Zhang W, Chen F, Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut-brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit Rev Food Sci Nutr 2023; 65:265-286. [PMID: 37897083 DOI: 10.1080/10408398.2023.2272769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Neurodegenerative diseases associated with aging are often accompanied by cognitive decline and gut microbiota disorder. But the impact of gut microbiota on these cognitive disturbances remains incompletely understood. Short chain fatty acids (SCFAs) are major metabolites produced by gut microbiota during the digestion of dietary fiber, serving as an energy source for gut epithelial cells and/or circulating to other organs, such as the liver and brain, through the bloodstream. SCFAs have been shown to cross the blood-brain barrier and played crucial roles in brain metabolism, with potential implications in mediating Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanisms that SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, the dietary sources which determine these SCFAs production was not thoroughly evaluated yet. This comprehensive review explores the production of SCFAs by gut microbiota, their transportation through the gut-brain axis, and the potential mechanisms by which they influence age-related neurodegenerative disorders. Also, the review discusses the importance of dietary fiber sources and the challenges associated with harnessing dietary-derived SCFAs as promoters of neurological health in elderly individuals. Overall, this study suggests that gut microbiota-derived SCFAs and/or dietary fibers hold promise as potential targets and strategies for addressing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bingbing Guo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Inokuma K, Sasaki D, Kurata K, Ichikawa M, Otsuka Y, Kondo A. Sulfated and non-sulfated chondroitin affect the composition and metabolism of human colonic microbiota simulated in an in vitro fermentation system. Sci Rep 2023; 13:12313. [PMID: 37516730 PMCID: PMC10387111 DOI: 10.1038/s41598-023-38849-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Chondroitin sulfate (CS) is a family of glycosaminoglycans and have a wide range of applications in dietary supplements and pharmaceutical drugs. In this study, we evaluated the effects of several types of CS, differing in their sulfated positions, on the human colonic microbiota and their metabolites. CS (CSA, CSC, and CSE) and non-sulfated chondroitin (CH) were added into an in vitro human colonic microbiota model with fecal samples from 10 healthy individuals. CS addition showed a tendency to increase the relative abundance of Bacteroides, Eubacterium, and Faecalibacterium, and CSC and CSE addition significantly increased the total number of eubacteria in the culture of the Kobe University Human Intestinal Microbiota Model. CSE addition also resulted in a significant increase in short-chain fatty acid (SCFA) levels. Furthermore, addition with CSC and CSE increased the levels of a wide range of metabolites including lysine, ornithine, and Ile-Pro-Pro, which could have beneficial effects on the host. However, significant increases in the total number of eubacteria, relative abundance of Bacteroides, and SCFA levels were also observed after addition with CH, and the trends in the effects of CH addition on metabolite concentrations were identical to those of CSC and CSE addition. These results provide novel insight into the contribution of the colonic microbiota to the beneficial effects of dietary CS.
Collapse
Affiliation(s)
- Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Kaoru Kurata
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Megumi Ichikawa
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Yuya Otsuka
- Glycoscience, Central Research Laboratory, Seikagaku Corporation, 3-1253, Tateno, Higashiyamato, Tokyo, 207-0021, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-Cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
13
|
Zheng Y, Xu L, Zhang S, Liu Y, Ni J, Xiao G. Effect of a probiotic formula on gastrointestinal health, immune responses and metabolic health in adults with functional constipation or functional diarrhea. Front Nutr 2023; 10:1196625. [PMID: 37497057 PMCID: PMC10368241 DOI: 10.3389/fnut.2023.1196625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023] Open
Abstract
Objective Our aim was to determine the efficacy of four-week probiotic supplementation on gastrointestinal health. The secondary objectives were to assess probiotic effects on immune reaction, as well as weight control and metabolic health. Methods We conducted two randomized sub-trials, respectively, among subjects who were diagnosed with functional constipation (FC) or functional diarrhea (FDr) according to the Rome IV criteria. In each sub-trial, 70 eligible Chinese adults were randomized to receive a multi-strain probiotic combination or a placebo. Gastrointestinal symptoms, defecation habits, stool characteristics, blood and fecal biochemistry markers, anthropometrics measures, stress-associated responses, and intestinal flora changes were assessed at baseline and after probiotics intervention. Results Four weeks of probiotic supplementation reduced overall gastrointestinal symptoms scores in FC participants (p < 0.0001). Their mean weekly stool frequency increased from 3.3 times to 6.2 times; immune response and inflammation markers improved with increases in serum IgA, IFN-γ and fecal sIgA, and decrease in hsCRP; most components of lipid profile were significantly ameliorated, with increases in HDL-C and reductions in TC and TG; body weight, body mass index and basal metabolic rate decreased following probiotics consumption. For FDr participants, probiotics consumption markedly reduced overall gastrointestinal symptom scores (p < 0.0001); decreased stool frequency by 3 times per week; increased IgA, IFN-γ, sIgA concentrations, while lowered hsCRP and IL-4 levels. Both FC and FDr participants had improvement in the scores of defecation habits, anxiety or depression, and perceived stress. Probiotics supplementation promoted the production of all three major short-chain fatty acids. No changes were observed in LDL-C, IgG, IgM, IL-8, IL-10 and motilin. Conclusion Supplementation with the probiotic formula over a four-week period could help relieving gastrointestinal symptoms, improving satisfaction with defecation habits, emotional state and immune response, and ameliorating dysbacteriosis in participants with FC or FDr. It also had beneficial effects on lipid metabolism and weight control for FC participants.
Collapse
Affiliation(s)
- Yanyi Zheng
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| | - Leiming Xu
- Department of Gastroenterology, Shanghai Jiaotong University Affiliated Xinhua Hospital, Shanghai, China
| | - Silu Zhang
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| | - Yanwen Liu
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jiayi Ni
- Sprim (China) Consulting Co. Ltd., Shanghai, China
| | - Guoxun Xiao
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| |
Collapse
|
14
|
Sasaki D, Sasaki K, Abe A, Ozeki M, Kondo A. Effects of partially hydrolyzed guar gums of different molecular weights on a human intestinal in vitro fermentation model. J Biosci Bioeng 2023:S1389-1723(23)00113-5. [PMID: 37105857 DOI: 10.1016/j.jbiosc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Partially hydrolyzed guar gums (PHGGs) are prebiotic soluble dietary fibers. High molecular-weight PHGGs have rapid fermentation and high short-chain fatty acid (SCFA) productivity rates, compared to low molecular-weight PHGGs. Therefore, low molecular-weight PHGGs may have less pronounced prebiotic effects than high molecular-weight PHGGs. However, the effects of PHGGs of different molecular weights on the human intestinal microbiota, as well as their fermentation ability and prebiotic effects, have not been investigated. The aim of this study was to evaluate the effects of two PHGGs of different molecular weights, Sunfiber-R (SF-R; 20 kDa) and Sunfiber-V (SF-V; 5 kDa), on human colonic microbiota and SCFA production. A human intestinal in vitro fermentation model was operated by fecal samples with and without the PHGGs. The addition of 0.2% SF-R or SF-V increased the relative abundance of Bacteroides spp., especially that of Bacteroides uniformis. This increase corresponded to a significant (p = 0.030) and non-significant (p = 0.073) increase in propionate production in response to SF-R and SF-V addition, respectively. Both fibers increased the relative abundance of Faecalibacterium and stimulated an increase in the abundance of unclassified Lachnospiraceae and Bifidobacterium. In conclusion, the low molecular-weight PHGG exerted prebiotic effects on human colonic microbiota to increase SCFA production and bacteria that are beneficial to human health in a manner similar to that of the high molecular-weight forms of PHGG.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Makoto Ozeki
- Nutrition Division, Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
15
|
Maeta A, Katsukawa M, Hayase Y, Takahashi K. Intake of Soymilk-Okara Powder for 12 Weeks Decreases Body Fat and Increases Body Muscle in Japanese Adults: a Single-Arm Intervention Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:173-178. [PMID: 36472712 DOI: 10.1007/s11130-022-01030-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
Okara is a by-product of soymilk manufacturing and a rich source of protein and dietary fiber. This study investigates whether dietary soymilk-okara powder intake in the long term affects the body composition and gut microbiota flora in healthy Japanese adults. In total, 46 subjects (43 women) were enrolled. All subjects ingested 15 g of soymilk-okara powder every day for 12 weeks. Subjects' body composition was assessed over four weeks. At baseline and after intervention for 12 weeks, fecal short-chain fatty acid concentrations and microbiota percentages were measured. The body muscle weight significantly increased, and the percentage of body fat significantly decreased at 4, 8, and 12 weeks after the intervention. The increase in body muscle after 12 weeks was 0.6 kg (interquartile range:-0.03 to 1.0). The decrease in body fat was -0.9% (interquartile range: -1.6 to -0.2). There was a significant negative correlation between the changes in body fat and body muscle. For the fecal percentages of Coriobacteriaceae, Lactobacillales, Bacteroides, Clostridium cluster IV, and Clostridium cluster XI, there were significant differences between the baseline and 12 weeks after the intervention. Furthermore, there were significant negative correlations between the changes in body fat percentage and fecal acetic acid and propionic acid levels. Therefore, a dietary intake of 15 g of soymilk-okara powder for 12 weeks induced a decrease in body fat, an increase in body muscle, and a change in fecal microbiota flora. Soymilk-okara powder is effective in improving body composition and changing the intestinal microbiota flora in healthy Japanese adults.
Collapse
Affiliation(s)
- Akihiro Maeta
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Masahiro Katsukawa
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Yaeko Hayase
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Kyoko Takahashi
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
16
|
Akazawa H, Fukuda I, Kaneda H, Yoda S, Kimura M, Nomoto R, Ueda S, Shirai Y, Osawa R. Isolation and identification of hyaluronan-degrading bacteria from Japanese fecal microbiota. PLoS One 2023; 18:e0284517. [PMID: 37196002 DOI: 10.1371/journal.pone.0284517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/02/2023] [Indexed: 05/19/2023] Open
Abstract
Hyaluronan (HA) is a high-molecular-weight glycosaminoglycan and widely distributed in all connective tissues and organs with diverse biological functions. HA has been increasingly used as dietary supplements targeted to joint and skin health for humans. We here first report isolation of bacteria from human feces that are capable of degrading HA to lower molecular weight HA oligosaccharides (oligo-HAs). The bacteria were successfully isolated via a selective enrichment method, in which the serially diluted feces of healthy Japanese donors were individually incubated in an enrichment medium containing HA, followed by the isolation of candidate strains from streaked HA-containing agar plates and selection of HA-degrading strains by measuring HA using an ELISA. Subsequent genomic and biochemical assays identified the strains as Bacteroides finegoldii, B. caccae, B. thetaiotaomicron, and Fusobacterium mortiferum. Furthermore, our HPLC analysis revealed that the strains degraded HA to oligo-HAs of various lengths. Subsequent quantitative PCR assay targeting the HA degrading bacteria showed that their distribution in the Japanese donors varied. The evidence suggests that dietary HA is degraded by the human gut microbiota with individual variation to oligo-HAs components, which are more absorbable than HA, thereby exerting its beneficial effects.
Collapse
Affiliation(s)
- Hazuki Akazawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Itsuko Fukuda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Haruna Kaneda
- R&D Division, Kewpie Corporation, Sengawa Kewport, Chofu-shi, Tokyo, Japan
| | - Shoichi Yoda
- R&D Division, Kewpie Corporation, Sengawa Kewport, Chofu-shi, Tokyo, Japan
| | - Mamoru Kimura
- R&D Division, Kewpie Corporation, Sengawa Kewport, Chofu-shi, Tokyo, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Hyogo, Japan
| | - Shuji Ueda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
17
|
Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022; 10:microorganisms10122507. [PMID: 36557760 PMCID: PMC9787832 DOI: 10.3390/microorganisms10122507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary fiber is fermented by the human gut microbiota, producing beneficial microbial metabolites, such as short-chain fatty acids. Over the last few centuries, dietary fiber intake has decreased tremendously, leading to detrimental alternations in the gut microbiota. Such changes in dietary fiber consumption have contributed to the global epidemic of obesity, type 2 diabetes, and other metabolic disorders. The responses of the gut microbiota to the dietary changes are specific to the type, amount, and duration of dietary fiber intake. The intricate interplay between dietary fiber and the gut microbiota may provide clues for optimal intervention strategies for patients with type 2 diabetes and other noncommunicable diseases. In this review, we summarize current evidence regarding dietary fiber intake, gut microbiota modulation, and modification in human health, highlighting the type-specific cutoff thresholds of dietary fiber for gut microbiota and metabolic outcomes.
Collapse
|
18
|
Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 2022; 23:11245. [PMID: 36232548 PMCID: PMC9570195 DOI: 10.3390/ijms231911245] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Modulating the gut microbiome and its influence on human health is the subject of intense research. The gut microbiota could be associated not only with gastroenterological diseases but also with psychiatric disorders. The importance of factors such as stress, mode of delivery, the role of probiotics, circadian clock system, diet, and occupational and environmental exposure in the relationship between the gut microbiota and brain function through bidirectional communication, described as "the microbiome-gut-brain axis", is especially underlined. In this review, we discuss the link between the intestinal microbiome and the brain and host response involving different pathways between the intestinal microbiota and the nervous system (e.g., neurotransmitters, endocrine system, immunological mechanisms, or bacterial metabolites). We review the microbiota alterations and their results in the development of psychiatric disorders, including major depressive disorder (MDD), schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1 Street, 90-151 Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology and Experimental Immunology, MOLecoLAB: Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Mazowiecka 5 Street, 92-215 Lodz, Poland
| |
Collapse
|
19
|
Yao D, Yu Q, Xu L, Su T, Ma L, Wang X, Wu M, Li Z, Zhang D, Wang C. Wheat supplement with buckwheat affect gut microbiome composition and circulate short-chain fatty acids. Front Nutr 2022; 9:952738. [PMID: 36147303 PMCID: PMC9486400 DOI: 10.3389/fnut.2022.952738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Buckwheat has beneficial effects on human intestinal health, which is often compounded with wheat to make food. Therefore, the effect of cereals mixture via in vitro fermentation on gut microbes and short-chain fatty acids (SCFAs) were investigated in this study. The mixture of wheat and tartary buckwheat (WT) produced more lactate and acetate, and the mixture of wheat and sweet buckwheat (WE) produced more propionate and butyrate. Compared with wheat (WA), the relative abundance of some beneficial bacteria significantly increased, such as Sutterella in WT and Faecalibacterium in WE. Cereals mixture also affected the expression of functional genes, involved in metabolic pathways and carbohydrate-active enzymes (CAZymes) that modulated SCFAs generation. This study provides new insights into the effects of sweet and tartary buckwheat on intestinal function, which is beneficial to applying both types of buckwheat in practical.
Collapse
Affiliation(s)
- Di Yao
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Di Yao,
| | - Qiaoru Yu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lei Xu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tingting Su
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lixue Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengna Wu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
20
|
Cranberry Arabino-Xyloglucan and Pectic Oligosaccharides Induce Lactobacillus Growth and Short-Chain Fatty Acid Production. Microorganisms 2022; 10:microorganisms10071346. [PMID: 35889065 PMCID: PMC9319371 DOI: 10.3390/microorganisms10071346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous health benefits have been reported from the consumption of cranberry-derived products, and recent studies have identified bioactive polysaccharides and oligosaccharides from cranberry pomace. This study aimed to further characterize xyloglucan and pectic oligosaccharide structures from pectinase-treated cranberry pomace and measure the growth and short-chain fatty acid production of 86 Lactobacillus strains using a cranberry oligosaccharide fraction as the carbon source. In addition to arabino-xyloglucan structures, cranberry oligosaccharides included pectic rhamnogalacturonan I which was methyl-esterified, acetylated and contained arabino-galacto-oligosaccharide side chains and a 4,5-unsaturated function at the non-reducing end. When grown on cranberry oligosaccharides, ten Lactobacillus strains reached a final culture density (ΔOD) ≥ 0.50 after 24 h incubation at 32 °C, which was comparable to L. plantarum ATCC BAA 793. All strains produced lactic, acetic, and propionic acids, and all but three strains produced butyric acid. This study demonstrated that the ability to metabolize cranberry oligosaccharides is Lactobacillus strain specific, with some strains having the potential to be probiotics, and for the first time showed these ten strains were capable of growth on this carbon source. The novel cranberry pectic and arabino-xyloglucan oligosaccharide structures reported here combined with the Lactobacillus strains that can metabolize cranberry oligosaccharides and produce short-chain fatty acids, have excellent potential as health-promoting synbiotics.
Collapse
|
21
|
Nagata R, Morioka M, Fukuma N, Hayashi K, Iwami A, Han KH, Fukushima M. In vitro colonic fermentation characteristics of barley-koji differ from those of barley. Biosci Biotechnol Biochem 2022; 86:1286-1294. [PMID: 35767865 DOI: 10.1093/bbb/zbac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
Abstract
Barley-koji is prepared by inoculating barley, a beneficial prebiotic source, with the fungi Aspergillus luchuensis mut. kawachii. In this study, the prebiotic effects of barley-koji on human colonic microbiota were evaluated in vitro compared with barley, using pig feces. The enzyme-resistant fraction of following sample groups each were added to respective fermenters: cellulose, barley (Commander and β104), and barley-koji (Commander-koji and β104-koji). Short-chain fatty acid and ammonia-nitrogen production increased and decreased, respectively, in barley-koji and barley groups. Furthermore, the propionate concentration increased in the barley group, showing a positive correlation with the abundance of the genus Dialister. In the barley-koji group, however, acetate and n-butyrate concentrations increased during the early stages of incubation, and the relative abundance of the genus Megasphaera was higher than those of the other genera. Therefore, this study demonstrated that barley-koji might possess beneficial physiological properties for colonic fermentation, which differ from those of barley.
Collapse
Affiliation(s)
- Ryuji Nagata
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro, Japan, 080-8555
| | - Minami Morioka
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro, Japan, 080-8555
| | - Naoki Fukuma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro, Japan, 080-8555.,Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro, Japan, 080-8555
| | - Kei Hayashi
- Sanwa Shurui Co., Ltd., Yamamoto 2231-1, Usa, Oita, Japan, 879-0495
| | - Akihiko Iwami
- Sanwa Shurui Co., Ltd., Yamamoto 2231-1, Usa, Oita, Japan, 879-0495
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro, Japan, 080-8555.,Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro, Japan, 080-8555
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro, Japan, 080-8555
| |
Collapse
|
22
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
24
|
Walsh CM, Haasbroek C. The interaction between the microbiome, diet and health. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2021. [DOI: 10.1080/16070658.2021.1966226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Corinna May Walsh
- Department of Nutrition and Dietetics, University of the Free State, Bloemfontein, South Africa
| | - Carina Haasbroek
- Department of Nutrition and Dietetics, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
25
|
Lau TC, Fiebig-Comyn AA, Shaler CR, McPhee JB, Coombes BK, Schertzer JD. Low dietary fiber promotes enteric expansion of a Crohn's disease-associated pathobiont independent of obesity. Am J Physiol Endocrinol Metab 2021; 321:E338-E350. [PMID: 34280051 DOI: 10.1152/ajpendo.00134.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obesity is associated with metabolic, immunological, and infectious disease comorbidities, including an increased risk of enteric infection and inflammatory bowel disease such as Crohn's disease (CD). Expansion of intestinal pathobionts such as adherent-invasive Escherichia coli (AIEC) is a common dysbiotic feature of CD, which is amplified by prior use of oral antibiotics. Although high-fat, high-sugar diets are associated with dysbiotic expansion of E. coli, it is unknown if the content of fat or another dietary component in obesogenic diets is sufficient to promote AIEC expansion. Here, we found that administration of an antibiotic combined with feeding mice an obesogenic low-fiber, high-sucrose, high-fat diet (HFD) that is typically used in rodent-obesity studies promoted AIEC intestinal expansion. Even a short-term (i.e., 1 day) pulse of HFD feeding before infection was sufficient to promote AIEC expansion, indicating that the magnitude of obesity was not the main driver of AIEC expansion. Controlled-diet experiments demonstrated that neither dietary fat nor sugar were the key determinants of AIEC colonization, but that lowering dietary fiber from approximately 13% to 5%-6% was sufficient to promote the intestinal expansion of AIEC when combined with antibiotics in mice. When combined with antibiotics, lowering fiber promoted AIEC intestinal expansion to a similar extent as widely used HFDs in mice. However, lowering dietary fiber was sufficient to promote AIEC intestinal expansion without affecting body mass. Our results show that low dietary fiber combined with oral antibiotics are environmental factors that promote the expansion of Crohn's disease-associated pathobionts in the gut.NEW & NOTEWORTHY It is commonly thought that obesity or a high-fat diet alters pathogenic bacteria and promotes inflammatory gut diseases. We found that lower dietary fiber is a key factor that expands a gut pathobiont linked to Crohn's disease, independent of obesity status in mice.
Collapse
Affiliation(s)
- Trevor C Lau
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Aline A Fiebig-Comyn
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Christopher R Shaler
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity, and Diabetes Research, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Ezzamouri B, Shoaie S, Ledesma-Amaro R. Synergies of Systems Biology and Synthetic Biology in Human Microbiome Studies. Front Microbiol 2021; 12:681982. [PMID: 34531833 PMCID: PMC8438329 DOI: 10.3389/fmicb.2021.681982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
A number of studies have shown that the microbial communities of the human body are integral for the maintenance of human health. Advances in next-generation sequencing have enabled rapid and large-scale quantification of the composition of microbial communities in health and disease. Microorganisms mediate diverse host responses including metabolic pathways and immune responses. Using a system biology approach to further understand the underlying alterations of the microbiota in physiological and pathological states can help reveal potential novel therapeutic and diagnostic interventions within the field of synthetic biology. Tools such as biosensors, memory arrays, and engineered bacteria can rewire the microbiome environment. In this article, we review the computational tools used to study microbiome communities and the current limitations of these methods. We evaluate how genome-scale metabolic models (GEMs) can advance our understanding of the microbe-microbe and microbe-host interactions. Moreover, we present how synergies between these system biology approaches and synthetic biology can be harnessed in human microbiome studies to improve future therapeutics and diagnostics and highlight important knowledge gaps for future research in these rapidly evolving fields.
Collapse
Affiliation(s)
- Bouchra Ezzamouri
- Unit for Population-Based Dermatology Research, St John’s Institute of Dermatology, Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, United Kindom
- Faculty of Dentistry, Centre for Host-Microbiome Interactions, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Saeed Shoaie
- Faculty of Dentistry, Centre for Host-Microbiome Interactions, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Sasaki K, Mori T, Hoshi N, Sasaki D, Inoue J, Shinkura R, Kondo A. W27 IgA suppresses growth of Escherichia in an in vitro model of the human intestinal microbiota. Sci Rep 2021; 11:14627. [PMID: 34272464 PMCID: PMC8285510 DOI: 10.1038/s41598-021-94210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/05/2021] [Indexed: 01/04/2023] Open
Abstract
W27 monoclonal immunoglobulin A (IgA) suppresses pathogenic Escherichia coli cell growth; however, its effect on the human intestine remains unclear. We aimed to determine how W27 IgA affects the human colonic microbiota using the in vitro microbiota model. This model was established using fecal samples collected from 12 healthy volunteers; after anaerobic cultivation, each model was found to retain the genera found in the original human fecal samples. After pre-incubating W27 IgA with the respective fecal sample under aerobic conditions, the mixture of W27 IgA (final concentration, 0.5 μg/mL) and each fecal sample was added to the in vitro microbiota model and cultured under anaerobic conditions. Next-generation sequencing of the bacterial 16S rRNA gene revealed that W27 IgA significantly decreased the relative abundance of bacteria related to the genus Escherichia in the model. Additionally, at a final concentration of 5 μg/mL, W27 IgA delayed growth in the pure culture of Escherichia coli isolated from human fecal samples. Our study thus revealed the suppressive effect of W27 IgA on the genus Escherichia at relatively low-concentrations and the usefulness of an in vitro microbiota model to evaluate the effect of IgA as a gut microbiota regulator.
Collapse
Affiliation(s)
- Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
- BioPalette Co., Ltd., 6-3-7 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Tomoyuki Mori
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
28
|
Xiang S, Ye K, Li M, Ying J, Wang H, Han J, Shi L, Xiao J, Shen Y, Feng X, Bao X, Zheng Y, Ge Y, Zhang Y, Liu C, Chen J, Chen Y, Tian S, Zhu X. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. MICROBIOME 2021; 9:62. [PMID: 33736704 PMCID: PMC7977168 DOI: 10.1186/s40168-021-01029-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no-carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. RESULTS In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome. However, it increased all SCFAs, especially propionate in the lumen and butyrate in the mucosa, with a shift in its corresponding bacteria in vitro. Cross-feeding, a relationship in which one organism consumes metabolites excreted by the other, was observed among Lactobacillus reuteri, Bacteroides fragilis, and Escherichia coli in the utilization of xylitol. At the molecular level, we revealed that xylitol dehydrogenase (EC 1.1.1.14), xylulokinase (EC 2.7.1.17), and xylulose phosphate isomerase (EC 5.1.3.1) were key enzymes in xylitol metabolism and were present in Bacteroides and Lachnospiraceae. Therefore, they are considered keystone bacteria in xylitol digestion. Also, xylitol affected the metabolic pathway of propionate, significantly promoting the transcription of phosphate acetyltransferase (EC 2.3.1.8) in Bifidobacterium and increasing the production of propionate. CONCLUSIONS Our results revealed that those key enzymes for xylitol digestion from different bacteria can together support the growth of micro-ecology, but they also enhanced the concentration of propionate, which lowered pH to restrict relative amounts of Escherichia and Staphylococcus. Based on the cross-feeding and competition among those bacteria, xylitol can dynamically balance proportions of the gut microbiome to promote enzymes related to xylitol metabolism and SCFAs. Video Abstract.
Collapse
Affiliation(s)
- Shasha Xiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Kun Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324302 China
| | - Jian Ying
- Nutrition and Health Research Institute, COFCO Ltd., Beijing, 102209 China
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, 310018 China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121 China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Lihua Shi
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324302 China
| | - Jie Xiao
- Nutrition and Health Research Institute, COFCO Ltd., Beijing, 102209 China
| | - Yubiao Shen
- Yangtze Delta Institute of Tsinghua University, Jiaxing, 314000 China
| | - Xiao Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Xuan Bao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yiqing Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yin Ge
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yalin Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yuewen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| |
Collapse
|
29
|
The Kobe University Human Intestinal Microbiota Model for gut intervention studies. Appl Microbiol Biotechnol 2021; 105:2625-2632. [PMID: 33718974 DOI: 10.1007/s00253-021-11217-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The human gut harbors a complex microbial community that performs a range of metabolic, physiological, and immunological functions. The host and its inhabiting microorganisms are often referred to as a "superorganism." Dysbiosis of gut microflora has been associated with the pathogenesis of intestinal disorders including inflammatory bowel disease, colorectal cancer, and extra-intestinal disorders such as cardiovascular disease. Therefore, gut microbiome interventions are important for the prevention and treatment of diseases. However, ethical, economic, scientific, and time constraints limit the outcome of human intervention or animal studies targeting gut microbiota. We recently developed an in vitro batch fermentation model (the Kobe University Human Intestinal Microbiota Model, KUHIMM) that is capable of hosting a majority of gut microbial species in humans and also detects the metabolites produced by microorganisms in real time. In this mini review, we elucidated the characteristics of the KUHIMM and its applicability in analyzing the effect of diet, drugs, probiotics, and prebiotics on intestinal bacteria. In addition, we introduce as examples its application to disease models, such as ulcerative colitis, in which intestinal bacteria are intricately involved in the process of pathogenesis. We also discuss the potential of the KUHIMM in precision medicine. KEY POINTS: • In vitro gut fermentation model to simulate human colonic microbiota • Screening of potential prebiotics and probiotic candidates in healthy model • Construction of disease models of ulcerative colitis and coronary artery disease.
Collapse
|
30
|
Rauf A, Khalil AA, Rahman UU, Khalid A, Naz S, Shariati MA, Rebezov M, Urtecho EZ, de Albuquerque RDDG, Anwar S, Alamri A, Saini RK, Rengasamy KRR. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Crit Rev Food Sci Nutr 2021; 62:6034-6054. [PMID: 33703960 DOI: 10.1080/10408398.2021.1895064] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, the gut microbiota has emerged as an important frontier in understanding the human body's homeostasis and the development of diseases. Gut flora in human beings regulates various metabolic functionalities, including enzymes, amino acid synthesis, bio-transformation of bile acid, fermentation of non-digestible carbohydrates (NDCs), generation of indoles and polyamines (PAs), and production of short-chain fatty acids (SCFAs). Among all the metabolites produced by gut microbiota, SCFAs, the final product of fermentation of dietary fibers by gut microbiota, receive lots of attention from scientists due to their pharmacological and physiological characteristics. However, the molecular mechanisms underlying the role of SCFAs in the interaction between diet, gut microbiota, and host energy metabolism is still needed in-depth research. This review highlights the recent biotechnological advances in applying SCFAs as important metabolites to treat various diseases and maintain colonic health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Ubaid-Ur- Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Saima Naz
- Deaprtment of Biotechnology, Woman University Mardan, Mardan, Khyber Pakhtunkhwa (KP), Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian
- Prokhorov General Physics Institute of the, Russian Academy of Science, Moscow, Russian
| | | | | | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | - Abdulwahab Alamri
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | | | - Kannan R R Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North West Province, South Africa
| |
Collapse
|
31
|
Sasaki K, Sasaki D, Sasaki K, Nishidono Y, Yamamori A, Tanaka K, Kondo A. Growth stimulation of Bifidobacterium from human colon using daikenchuto in an in vitro model of human intestinal microbiota. Sci Rep 2021; 11:4580. [PMID: 33633259 PMCID: PMC7907203 DOI: 10.1038/s41598-021-84167-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Daikenchuto (DKT) is a Japanese traditional herbal (Kampo) medicine containing ginseng, processed ginger, and Japanese or Chinese pepper. We aimed to determine how DKT affects human colonic microbiota. An in vitro microbiota model was established using fecal inocula collected from nine healthy volunteers, and each model was found to retain operational taxonomic units similar to the ones in the original human fecal samples. DKT was added to the in vitro microbiota model culture at a concentration of 0.5% by weight. Next-generation sequencing of bacterial 16S rRNA gene revealed a significant increase in the relative abundance of bacteria related to the Bifidobacterium genus in the model after incubation with DKT. In pure cultures, DKT significantly promoted the growth of Bifidobacterium adolescentis, but not that of Fusobacterium nucleatum or Escherichia coli. Additionally, in pure cultures, B. adolescentis transformed ginsenoside Rc to Rd, which was then probably utilized for its growth. Our study reveals the in vitro bifidogenic effect of DKT that likely contributes to its beneficial effects on the human colon.
Collapse
Affiliation(s)
- Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Katsunori Sasaki
- Sumitomo Chemical, Co., Ltd., 27-1 Shinkawa 2-chome, Chuo-ku, Tokyo, 104-8260, Japan
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Akihiro Yamamori
- Sumitomo Chemical, Co., Ltd., 27-1 Shinkawa 2-chome, Chuo-ku, Tokyo, 104-8260, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
32
|
Liang D, Li N, Dai X, Zhang H, Hu H. Effects of different types of potato resistant starches on intestinal microbiota and short‐chain fatty acids under
in vitro
fermentation. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Liang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro‐products Processing Ministry of Agriculture and Rural Affairs Beijing100193China
| | - Nan Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro‐products Processing Ministry of Agriculture and Rural Affairs Beijing100193China
| | - Xiaofeng Dai
- Feed Research Institute Chinese Academy of Agricultural Sciences Ministry of Agriculture and Rural Affairs Beijing100193China
| | - Hong Zhang
- Hefei CAAS Nutridoer Co. Ltd.Academy of Food Nutrition and Health InnovationChinese Academy of Agricultural Sciences Hefei238000China
| | - Honghai Hu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro‐products Processing Ministry of Agriculture and Rural Affairs Beijing100193China
| |
Collapse
|
33
|
Chen M, Liu S, Imam KMSU, Sun L, Wang Y, Gu T, Wen B, Xin F. The Effect of Xylooligosaccharide, Xylan, and Whole Wheat Bran on the Human Gut Bacteria. Front Microbiol 2021; 11:568457. [PMID: 33424778 PMCID: PMC7794011 DOI: 10.3389/fmicb.2020.568457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Wheat bran is a cereal rich in dietary fibers that have high levels of ferulic acid, which has prebiotic effects on the intestinal microbiota and the host. Herein we explored the effect of xylooligosaccharide, xylan, and whole wheat bran on the human gut bacteria and screened for potential ferulic acid esterase genes. Using in vitro fermentation, we analyzed the air pressure, pH-value, and short-chain fatty acid levels. We also performed 16S rRNA gene and metagenomic sequencing. A Venn diagram analysis revealed that 80% of the core operational taxonomic units (OTUs) were shared among the samples, and most of the xylooligosaccharide treatment core OTUs (319/333 OTUs) were shared with the other two treatments’ core OTUs. A significant difference analysis revealed that the relative abundance of Dorea, Bilophila, and Sulfurovum in wheat bran treatment was higher than that in xylan and xylooligosaccharide treatments. The clusters of orthologous groups of proteins functional composition of all samples was similar to the microbiota composition of the control. Using metagenomic sequencing, we revealed seven genes containing the conserved residues, Gly-X-Ser-X-Gly, and the catalytic triad, Ser-His-Asp, which are thus potential ferulic acid esterase genes. All the results indicate that xylan and/or xylooligosaccharide, the main dietary fibers in wheat bran, plays a major role in in vitro fermentation by the human gut microbiota.
Collapse
Affiliation(s)
- Miao Chen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Dong L, Ariëns RMC, Tomassen MM, Wichers HJ, Govers C. In Vitro Studies Toward the Use of Chitin as Nutraceutical: Impact on the Intestinal Epithelium, Macrophages, and Microbiota. Mol Nutr Food Res 2020; 64:e2000324. [PMID: 33067879 PMCID: PMC7757189 DOI: 10.1002/mnfr.202000324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/17/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Chitin, the most abundant polysaccharide found in nature after cellulose, is known for its ability to support wound healing and to lower plasma-oxidized low-density lipoprotein (LDL) levels. Studies have also revealed immunomodulatory potential but contradicting results are often impossible to coalesce through usage of chitin of different or unknown physicochemical consistency. In addition, only a limited set of cellular models have been used to test the bioactivity of chitin. METHODS AND RESULTS Chitin is investigated with well-defined physicochemical consistency for its immunomodulatory potency using THP-1 macrophages, impact on intestinal epithelial barrier using Caco-2 cells, and fermentation by fecal-derived microbiota. Results show that chitin with a degree of acetylation (DA) of ≈83%, regardless of size, does not affect the intestinal epithelial barrier integrity. Large-sized chitin significantly increases acetic acid production by gut microbiota without altering the composition. Exposure of small-sized chitin to THP-1 macrophages lead to significantly increased secretion of IL-1β, IL-8, IL-10, and CXCL10 in a multi-receptor and clathrin-mediated endocytosis dependent manner. CONCLUSIONS These findings indicate that small-sized chitin does not harm the intestinal barrier nor affects SCFA secretion and microbiota composition, but does impact immune activity which could be beneficial to subjects in need of immune support or activation.
Collapse
Affiliation(s)
- Liyou Dong
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
- Laboratory of Food ChemistryWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Renata M. C. Ariëns
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Monic M. Tomassen
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Harry J. Wichers
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
- Laboratory of Food ChemistryWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| | - Coen Govers
- Wageningen Food and Biobased ResearchWageningen URBornse Weilanden 96708WGWageningenThe Netherlands
| |
Collapse
|
35
|
Jang EY, Hong KB, Chang YB, Shin J, Jung EY, Jo K, Suh HJ. In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber. Molecules 2020; 25:molecules25215201. [PMID: 33182247 PMCID: PMC7664926 DOI: 10.3390/molecules25215201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
This study measured the proliferative activity of malto-oligosaccharide (MOS) as a prebiotic against Bifidobacteria, resistance to digestion in vitro, and changes during in vitro fermentation by human fecal microorganisms. It consisted of 21.74%, 18.84%, and 11.76% of maltotriose, maltotetraose, and maltopentaose produced by amylase (HATT), respectively. When 1% of MOS was added to a modified PYF medium as the carbon source, proliferation of Bifidobacterium breve was increased significantly. During the in vitro digestion test, MOS was partially degraded by intestinal enzymes. Fermentation characteristics by human fecal microorganisms were evaluated by adding 1% galacto-oligosaccharide (GOS), as well as 1% and 2% MOS as carbon sources to the basal medium, respectively. In comparison with the addition of 1% of MOS and GOS, the total short chain fatty acid (SCFA) content increased over time when 2% of MOS was added. The species diversity and richness of intestinal microbiota increased significantly with 2% MOS compared to those with 1% GOS. In addition, the 2% addition of MOS reduced intestinal pathobiont microorganisms and increased commensal microorganisms including Bifidobacterium genus. Collectively, MOS produced by amylase increased the SCFA production and enhanced the growth of beneficial bacteria during in vitro fermentation by human fecal microbiota.
Collapse
Affiliation(s)
- Eun Yeong Jang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
| | - Ki-Bae Hong
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
| | - Jungcheul Shin
- Department of R&D, Neo Cremar Co., Ltd., Seoul 05702, Korea;
| | - Eun Young Jung
- Department of Home Economic Education, Jeonju University, Jeonju 55069, Korea;
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
- Correspondence: (K.J.); (H.J.S.); Tel.: +82-2-940-2764 (K.J.); +82-2-3290-5639 (H.J.S.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (E.Y.J.); (Y.B.C.)
- Correspondence: (K.J.); (H.J.S.); Tel.: +82-2-940-2764 (K.J.); +82-2-3290-5639 (H.J.S.)
| |
Collapse
|
36
|
Oba S, Sunagawa T, Tanihiro R, Awashima K, Sugiyama H, Odani T, Nakamura Y, Kondo A, Sasaki D, Sasaki K. Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic microbiota model. Sci Rep 2020; 10:17351. [PMID: 33060635 PMCID: PMC7562712 DOI: 10.1038/s41598-020-74379-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Yeast mannan (YM) is an indigestible water-soluble polysaccharide of the yeast cell wall, with a notable prebiotic effect on the intestinal microbiota. We previously reported that YM increased Bacteroides thetaiotaomicron abundance in in vitro rat faeces fermentation, concluding that its effects on human colonic microbiota should be investigated. In this study, we show the effects of YM on human colonic microbiota and its metabolites using an in vitro human faeces fermentation system. Bacterial 16S rRNA gene sequence analysis showed that YM administration did not change the microbial diversity or composition. Quantitative real-time PCR analysis revealed that YM administration significantly increased the relative abundance of Bacteroides ovatus and B. thetaiotaomicron. Moreover, a positive correlation was observed between the relative ratio (with or without YM administration) of B. thetaiotaomicron and B. ovatus (r = 0.92), suggesting that these bacteria utilise YM in a coordinated manner. In addition, YM administration increased the production of acetate, propionate, and total short-chain fatty acids. These results demonstrate the potential of YM as a novel prebiotic that selectively increases B. thetaiotaomicron and B. ovatus and improves the intestinal environment. The findings also provide insights that might be useful for the development of novel functional foods.
Collapse
Affiliation(s)
- Shunsuke Oba
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-21, Midori 1-Chome, Moriya-Shi, 302-0106, Japan.
| | - Tadahiro Sunagawa
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-21, Midori 1-Chome, Moriya-Shi, 302-0106, Japan
| | - Reiko Tanihiro
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-21, Midori 1-Chome, Moriya-Shi, 302-0106, Japan
| | - Kyoko Awashima
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-21, Midori 1-Chome, Moriya-Shi, 302-0106, Japan
| | - Hiroshi Sugiyama
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-21, Midori 1-Chome, Moriya-Shi, 302-0106, Japan
| | - Tetsuji Odani
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-21, Midori 1-Chome, Moriya-Shi, 302-0106, Japan
| | - Yasunori Nakamura
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 1-21, Midori 1-Chome, Moriya-Shi, 302-0106, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
37
|
Extracellular Vesicles Produced by Bifidobacterium longum Export Mucin-Binding Proteins. Appl Environ Microbiol 2020; 86:AEM.01464-20. [PMID: 32737132 DOI: 10.1128/aem.01464-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Extracellular proteins are important factors in host-microbe interactions; however, the specific factors that enable bifidobacterial adhesion and survival in the gastrointestinal (GI) tract are not fully characterized. Here, we discovered that Bifidobacterium longum NCC2705 cultured in bacterium-free supernatants of human fecal fermentation broth released a myriad of particles into the extracellular environment. The aim of this study was to characterize the physiological properties of these extracellular particles. The particles, approximately 50 to 80 nm in diameter, had high protein and double-stranded DNA contents, suggesting that they were extracellular vesicles (EVs). A proteomic analysis showed that the EVs primarily consisted of cytoplasmic proteins with crucial functions in essential cellular processes. We identified several mucin-binding proteins by performing a biomolecular interaction analysis of phosphoketolase, GroEL, elongation factor Tu (EF-Tu), phosphoglycerate kinase, transaldolase (Tal), and heat shock protein 20 (Hsp20). The recombinant GroEL and Tal proteins showed high binding affinities to mucin. Furthermore, the immobilization of these proteins on microbeads affected the permanence of the microbeads in the murine GI tract. These results suggest that bifidobacterial exposure conditions that mimic the intestine stimulate B. longum EV production. The resulting EVs exported several cytoplasmic proteins that may have promoted B. longum adhesion. This study improved our understanding of the Bifidobacterium colonization strategy in the intestinal microbiome.IMPORTANCE Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. Morphological observations revealed that extracellular appendages of bifidobacteria in complex microbial communities are important for understanding its adaptations to the GI tract environment. We identified dynamic extracellular vesicle (EV) production by Bifidobacterium longum in bacterium-free fecal fermentation broth that was strongly suggestive of differing bifidobacterial extracellular appendages in the GI tract. In addition, export of the adhesive moonlighting proteins mediated by EVs may promote bifidobacterial colonization. This study provides new insight into the roles of EVs in bifidobacterial colonization processes as these bacteria adapt to the GI environment.
Collapse
|
38
|
Sasaki D, Sasaki K, Kondo A. Glycosidic Linkage Structures Influence Dietary Fiber Fermentability and Propionate Production by Human Colonic Microbiota In Vitro. Biotechnol J 2020; 15:e1900523. [PMID: 32705786 DOI: 10.1002/biot.201900523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/12/2020] [Indexed: 01/27/2023]
Abstract
Some dietary fibers can be produced by starch modification; however, information regarding the relationships between glycosidic linkages and dietary fiber fermentability or the production of short-chain fatty acids is limited. Thus, these relationships are investigated using an in vitro model of human colonic microbiota, which approximates the bacterial species richness and diversity in inoculated fecal samples. Six dietary fibers with various glycosidic linkage contents are prepared. Each dietary fiber (final concentration: 1.0 wt%) is administered in vitro to human microbiota models 18 h after fecal samples are inoculated. The contents of (1 → 2) plus (1 → 3) linkages and β-linkages in the six dietary fibers negatively correlate with the fermentation speed and fermentation ratio of the indigestible parts of the dietary fibers (R2 = 0.8126 or 0.8306 and R2 = 0.9106 or 0.9673, respectively) 24 h after administering each dietary fiber. Further, the concentrations of propionate produced in vitro by human microbiota positively correlate with the fermentation speed and fermentation ratio (R2 = 0.9149 and 0.9581, respectively). The in vitro assay reveals that (1 → 2) plus (1 → 3) linkages and β-linkages in dietary fiber affect resistance to fermentation and propionate production by the human colonic microbiota.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
39
|
Maeta A, Katsukawa M, Inomoto Y, Hayase Y, Takahashi K. Intake of okara soup for 2 weeks for breakfast improved defecation habits in young Japanese women with self-reported constipation: A randomized, double-blind, placebo-controlled, intervention study. J Food Sci 2020; 85:3570-3576. [PMID: 32885419 DOI: 10.1111/1750-3841.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022]
Abstract
Okara is a byproduct of soymilk manufacturing and a rich source of protein and dietary fiber. We investigated whether okara intake improves the habit of defecation in young Japanese women (n = 52) with self-reported constipation. Subjects were categorized into placebo and test groups, who ingested soymilk (0.1 g fiber/meal) and okara (4.1 g fiber/meal) soups, respectively, every day for breakfast, for 2 weeks. Subjects' body composition, bowel movement frequency per week, and constipation assessment scale (CAS) and brief-type self-administered diet history questionnaire scores were assessed at baseline and after the intervention (Analysis 1). Further, subjects' bowel movement frequency per week and CAS scores were assessed during the 2-week follow-up (Analysis 2). There were no significant differences in age, anthropometric characteristics, nutrients intake, frequency of bowel movements per week, and total CAS scores between the placebo and test groups at baseline. After intervention, the total CAS score was significantly lower in the test group than in the placebo group. Moreover, the difference in the total CAS scores between baseline and after intervention was lower in the test group than in the placebo group, although not significant. The weekly frequency of bowel movement significantly increased for both placebo and test groups. The test group reported reduced abdominal bloating 2 weeks after the intervention, but the placebo group did not. The findings suggest that okara is effective in increasing the frequency of bowel movements and improving defecation habit in young women with self-reported constipation. PRACTICAL APPLICATION: Okara is an effective food to increase the frequency of bowel movements and to improve defecation habits in young women with self-reported constipation.
Collapse
Affiliation(s)
- Akihiro Maeta
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Masahiro Katsukawa
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Yasushi Inomoto
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Yaeko Hayase
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Kyoko Takahashi
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
| |
Collapse
|
40
|
Amylase-Producing Maltooligosaccharide Provides Potential Relief in Rats with Loperamide-Induced Constipation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5470268. [PMID: 32908561 PMCID: PMC7474349 DOI: 10.1155/2020/5470268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Constipation is a chronic disease caused by infrequent, inadequate, and difficult bowel movements. The present study aimed to evaluate the potential laxative effect of maltooligosaccharide (MOS) on loperamide-induced constipation in a rat model. In vitro experiments were conducted to evaluate the effect of MOS on the growth of lactic acid bacteria. Moreover, to examine the effect of MOS administration on Sprague-Dawley (SD) rats with loperamide-induced constipation, the drinking water for the rats was supplemented with 10% or 15% of MOS for 14 days, and, thereafter, the improvement in constipation was assessed. For this, the rats were divided into five groups: normal (Nor), loperamide-induced constipated (Con), positive control (15% of dual-oligosaccharide (DuO-15)), 10% MOS treated (MOS-10), and 15% MOS-treated (MOS-15). In an in vitro test, MOS treatment promoted the growth of lactic acid bacteria except Lactobacillus bulgaricus. Treatment with higher MOS dose relieved constipation in rats by improving the fecal pellet and water content. Furthermore, in the high MOS dose group, the cecal short-chain fatty acid levels significantly increased compared to those in the control group (P < 0.001). MOS treatment also improved the mucosal thickness as well as mucin secretion and increased the area of intestinal Cajal cells compared to that in the control group (P < 0.001). These findings suggest that MOS relieves constipation and has beneficial effect on the gastrointestinal tract, and, therefore, it can be used as an ingredient in functional foods for treating constipation or improving intestinal health.
Collapse
|
41
|
Yoshida N, Yamashita T, Kishino S, Watanabe H, Sasaki K, Sasaki D, Tabata T, Sugiyama Y, Kitamura N, Saito Y, Emoto T, Hayashi T, Takahashi T, Shinohara M, Osawa R, Kondo A, Yamada T, Ogawa J, Hirata KI. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci Rep 2020; 10:13009. [PMID: 32747669 PMCID: PMC7398928 DOI: 10.1038/s41598-020-69983-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Faecal lipopolysaccharides (LPS) have attracted attention as potent elements to explain a correlation between the gut microbiota and cardiovascular disease (CVD) progression. However, the underlying mechanism of how specific gut bacteria contribute to faecal LPS levels remains unclear. We retrospectively analysed the data of 92 patients and found that the abundance of the genus Bacteroides was significantly and negatively correlated with faecal LPS levels. The controls showed a higher abundance of Bacteroides than that in the patients with CVD. The endotoxin units of the Bacteroides LPS, as determined by the limulus amoebocyte lysate (LAL) tests, were drastically lower than those of the Escherichia coli LPS; similarly, the Bacteroides LPS induced relatively low levels of pro-inflammatory cytokine production and did not induce sepsis in mice. Fermenting patient faecal samples in a single-batch fermentation system with Bacteroides probiotics led to a significant increase in the Bacteroides abundance, suggesting that the human gut microbiota could be manipulated toward decreasing the faecal LPS levels. In the clinical perspective, Bacteroides decrease faecal LPS levels because of their reduced LAL activity; therefore, increasing Bacteroides abundance might serve as a novel therapeutic approach to prevent CVD via reducing faecal LPS levels and suppressing immune responses.
Collapse
Affiliation(s)
- Naofumi Yoshida
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Tomoya Yamashita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan.
| | - Shigenobu Kishino
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Hikaru Watanabe
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, 1528550, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 6578501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 6578501, Japan
| | - Tokiko Tabata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Yuta Sugiyama
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Nahoko Kitamura
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Yoshihiro Saito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Takuo Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Tomohiro Hayashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| | - Tomoya Takahashi
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, 1528550, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 6578501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, 6578501, Japan
| | - Takuji Yamada
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, 1528550, Japan
| | - Jun Ogawa
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Kyoto, 6068502, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 6500017, Japan
| |
Collapse
|
42
|
Han KH, Enomoto M, Pelpolage S, Nagata R, Fukuma N, Fukushima M. In vitro fermentation potential of the residue of Korean red ginseng root in a mixed culture of swine faecal bacteria. Food Funct 2020; 11:6202-6214. [PMID: 32588857 DOI: 10.1039/d0fo00423e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Agricultural by-products such as the ginseng residue contain dietary fibre. This study was aimed at investigating the intestinal fermentation potential of the residue of Korean red ginseng root using an in vitro simulator of the colon using swine fecal bacteria. pH-Controlled glass fermentors were used to conduct a small scale in vitro batch fermentation under anaerobic conditions for 48 h. One of the following substrates was included in each fermentor: commercial cellulose (CEL), xylooligosaccharide (XOS), and crude ginseng-insoluble fibre (CGF). The pH was lower (p < 0.05) and the production of total short chain fatty acid was increased (p < 0.05) in the XOS and CGF groups compared with the CEL group after 6 h of incubation. The α-diversity analysis of the microbial community at 48 h showed that the number of bacterial species was (p < 0.05) reduced in the XOS and CGF groups compared with that in the CEL group. β-Diversity of the microbial population at 48 h showed that all groups were clustered differently. The relative abundance of Bifidobacterium and Prevotella in the CGF group were significantly (p < 0.05) higher than those in the CEL and XOS groups. Ammonia nitrogen production in the XOS and CGF groups was (p < 0.05) lower after 6 h of incubation, and skatole production in the CGF group was (p < 0.05) lower at 48 h than that in the CEL group. These results suggested that the ginseng residue might be fermentable in the large intestine and thus would promote the maintenance of a healthy colonic environment in the host.
Collapse
Affiliation(s)
- Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
In vitro human colonic microbiota utilises D-β-hydroxybutyrate to increase butyrogenesis. Sci Rep 2020; 10:8516. [PMID: 32444846 PMCID: PMC7244492 DOI: 10.1038/s41598-020-65561-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
The ketone body D-β-hydroxybutyrate (DBHB) has gained attention owing to its cellular signalling function; however, its effect on the human colonic microbiota remains unclear. Here, DBHB dynamics in the human colon were investigated using an in vitro colonic microbiota model, which maintained most of the operational taxonomic units detected in the original faeces. Over 54% of 0.41% (w/v) DBHB was metabolised by microbiota models originating from seven faecal samples after 30 h of fermentation (regarded as DBHB utilisers); however, <19% of DBHB was metabolised by microbiota models from five faecal samples (regarded as non-utilisers of DBHB). In utilisers, DBHB administration increased the relative abundance of the genus Coprococcus, correlated with increased butyrogenesis. Increased butyrogenesis was not observed in DBHB non-utilisers. Based on PICRUSt analysis, the relative abundance of β-hydroxybutyrate dehydrogenase was maintained in microbiota models from DBHB utilisers following DBHB administration; however, it decreased in microbiota models from non-utilisers. After 21 h of fermentation, the intracellular glutamate concentration, which is indicative of growth, showed a positive correlation with DBHB utilisation (R2 = 0.70). Human colonic microbiotas with high growth activity demonstrate efficient utilisation of DBHB for increased butyrate production, which affords health benefits.
Collapse
|
44
|
Chen M, Fan B, Liu S, Imam KMSU, Xie Y, Wen B, Xin F. The in vitro Effect of Fibers With Different Degrees of Polymerization on Human Gut Bacteria. Front Microbiol 2020; 11:819. [PMID: 32477290 PMCID: PMC7242623 DOI: 10.3389/fmicb.2020.00819] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Human gut bacteria contribute significantly to human health and several studies have evaluated the effects of dietary fibers on human gut bacterial ecology. However, the relationship between different degrees of fiber polymerization and human gut bacteria is unknown. Here, we analyzed three fiber substrates with different degrees of polymerization, namely carboxymethylcellulose, β-glucans, and galactooligosaccharides. To probe the in vitro influence of the degree of polymerization of the fiber on human gut bacteria, we measured the pH, air pressure, and short-chain fatty acid content of fecal fermentation supplemented with these fiber substrates, and sequenced the 16S ribosomal RNA genes of the microbial community in the fiber-treated fermentations. The butyric acid concentration was shown to decline with decreasing degree of polymerization of the fiber. Illumina Miseq sequencing indicated that the degree of polymerization might have an influence on human gut microbial diversity and abundance. Principal coordinate analysis unveiled a relationship between the degree of fiber polymerization and the gut bacterial community. Specific microbiota operational taxonomic units (OTUs) within the genera Escherichia-Shigella, Fusobacterium, and Dorea were proportional to the degree of fiber significantly, whereas OTUs within the genera Bifidobacterium, Streptococcus, and Lactobacillus were inversely correlated with the degree of polymerization. Correlation analysis between the fiber degree of polymerization and gut bacteria may demonstrate the effect of fibers on gut microbiota, and subsequently, on human health.
Collapse
Affiliation(s)
- Miao Chen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingying Xie
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
45
|
Hatanaka M, Morita H, Aoyagi Y, Sasaki K, Sasaki D, Kondo A, Nakamura T. Effective bifidogenic growth factors cyclo-Val-Leu and cyclo-Val-Ile produced by Bacillus subtilis C-3102 in the human colonic microbiota model. Sci Rep 2020; 10:7591. [PMID: 32372037 PMCID: PMC7200657 DOI: 10.1038/s41598-020-64374-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Bifidobacterium species are known to fulfill important functions within the human colon. Thus, stimulating the activity of bifidobacteria is important to maintain host health. We revealed that culture supernatants of Bacillus subtilis C-3102 (referred to as C-3102) stimulated the growth of Bifidobacterium species. In this study, we isolated and identified six bifidogenic growth factors, which were cyclo (D-Val-D-Ile), cyclo (L-Val-D-Ile), cyclo (D-Val-L-Ile), cyclo (L-Val-L-Ile), cyclo (D-Val-L-Leu) and cyclo (L-Val-L-Leu). These six cyclic dipeptides increased the growth of Bifidobacterium species and had no effect on potentially harmful gut organisms. Moreover, supplementation with a mixture of these six cyclic dipeptides significantly increased the abundance of microorganisms related to the genus Bifidobacterium in a human colonic microbiota model culture system, although supplementation with a single type of dipeptide had no effect. These results show that cyclic dipeptides containing Val-Leu and Val-Ile produced by C-3102 could serve as bifidogenic growth factors in the gut microbial community.
Collapse
Affiliation(s)
- Misaki Hatanaka
- Research & Development Dept, Asahi Calpis Wellness Co., Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, Tokyo, 150-0022, Japan.
| | - Hiroto Morita
- Department of Microbiological Flora Technology, Core Technology Laboratories, Asahi Quality and Innovations Co., Ltd. 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, 252-0206, Japan
| | - Yumi Aoyagi
- Research & Development Dept, Asahi Calpis Wellness Co., Ltd., 4-1, 2-chome, Ebisu-Minami, Shibuya-ku, Tokyo, 150-0022, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Teppei Nakamura
- Department of Microbiological Flora Technology, Core Technology Laboratories, Asahi Quality and Innovations Co., Ltd. 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, 252-0206, Japan
| |
Collapse
|
46
|
Sasaki K, Sasaki D, Inoue J, Hoshi N, Maeda T, Yamada R, Kondo A. Bacillus coagulans SANK 70258 suppresses Enterobacteriaceae in the microbiota of ulcerative colitis in vitro and enhances butyrogenesis in healthy microbiota. Appl Microbiol Biotechnol 2020; 104:3859-3867. [PMID: 32146494 DOI: 10.1007/s00253-020-10506-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/01/2023]
Abstract
The aim of this study was to clarify the effect of the spore-forming and lactic acid-producing probiotic strain, Bacillus coagulans SANK 70258, on human colonic microbiota of healthy subjects and ulcerative colitis patients. A model culture system was employed to construct the in vitro human colonic microbiota, to retain the bacterial species richness and simulate the patient's disordered composition, from the fecal inoculum. Bacterial 16S rRNA gene sequencing confirmed that administration of B. coagulans SANK 70258 (at an initial concentration of 4 × 107-total cells/mL) suppressed bacteria related to the family Enterobacteriaceae in the microbiota models for both healthy subjects (P = 0.016) and ulcerative colitis patients (P = 0.023). In addition, administration of B. coagulans SANK 70258 increased bacteria related to the family Lachnospiraceae (P = 0.031), thereby enhancing butyrate production (P = 0.031) in the microbiota models of healthy subjects. However, these changes were not observed in the microbiota models of ulcerative colitis patients, likely owing to the low abundance of Lachnospiraceae species. This study demonstrates the potential of B. coagulans SANK 70258 to exhibit antimicrobial activity against harmful organisms in patients with ulcerative colitis, while improving the intestinal microenvironment by increasing butyrogenesis in healthy persons. KEY POINTS: • B. coagulans SANK 70258 treatment reduced colonic Enterobacteriaceae species. • B. coagulans SANK 70258 treatment enhanced butyrogenesis in healthy individuals. • B. coagulans SANK 70258 treatment increased Lachnospiraceae in healthy persons. • B. coagulans SANK 70258 improves the colonic microenvironment in ulcerative colitis.
Collapse
Affiliation(s)
- Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takayuki Maeda
- Biotechnology Laboratory, Science Innovation Center, Mitsubishi Chemical Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-8502, Japan
| | - Ryouichi Yamada
- Research and Development Center, Mitsubishi-Chemical Foods Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-8502, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
47
|
Shinohara R, Sasaki K, Inoue J, Hoshi N, Fukuda I, Sasaki D, Kondo A, Osawa R. Butyryl-CoA:acetate CoA-transferase gene associated with the genus Roseburia is decreased in the gut microbiota of Japanese patients with ulcerative colitis. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2019; 38:159-163. [PMID: 31763119 PMCID: PMC6856515 DOI: 10.12938/bmfh.18-029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/10/2019] [Indexed: 11/05/2022]
Abstract
Microbial production of butyrate is impaired in patients with ulcerative colitis (UC); however, this inhibition is not well understood in Japanese UC patients. Therefore, we quantitatively analyzed genes encoding butyryl-CoA:acetate CoA-transferase (but) and butyrate kinase (buk) in the gut microbiota of Japanese patients with UC and healthy volunteers (HVs). But showed higher levels than buk. Moreover, patients with UC showed significantly decreased levels of but associated with Roseburia sp./Eubacterium rectale compared with HVs. But, which is associated with Faecalibacterium sp., was maintained in patients with UC, with an unchanged relative abundance of Faecalibacterium sp. microorganisms in patients with UC compared with HVs.
Collapse
Affiliation(s)
- Ryohei Shinohara
- Division Food and Drug Evaluation Science, Department of Social/Community Medicine and Health Science, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Itsuko Fukuda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
48
|
In vitro approach to evaluate the fermentation pattern of inulin-rich food in obese individuals. Br J Nutr 2019; 123:472-479. [PMID: 31724526 DOI: 10.1017/s0007114519002915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alterations of the gut microbiome have been associated with obesity and metabolic disorders. The gut microbiota can be influenced by the intake of dietary fibres with prebiotic properties, such as inulin-type fructans. The present study tested the hypothesis that obese individuals subjected for 12 weeks to an inulin-enriched v. inulin-poor diet have differential faecal fermentation patterns. The fermentation of cellulose and inulin hydrolysates of six different inulin-rich and inulin-poor vegetables of both groups was analysed in vitro on faecal inocula. The results showed that the microbiota from obese patients who received a fructan-rich diet for 3 weeks produces more gas and total SCFA compared with the microbiota taken from the same individuals before the treatment. Obese individuals fed with a low-fructan diet produce less gas and less SCFA compared with the treated group. The present study highlighted profound changes in microbiota fermentation capacity obtained by prebiotic intervention in obese individuals, which favours the production of specific bioactive metabolites.
Collapse
|
49
|
Sasaki D, Sasaki K, Kadowaki Y, Aotsuka Y, Kondo A. Bifidogenic and butyrogenic effects of young barely leaf extract in an in vitro human colonic microbiota model. AMB Express 2019; 9:182. [PMID: 31721000 PMCID: PMC6854142 DOI: 10.1186/s13568-019-0911-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022] Open
Abstract
Young barley leaf extract (YBL) contains beneficial substances such as fructans, minerals, and vitamins. The effects of YBL administration on the human colonic microbiota and its production of metabolites were evaluated using an in vitro model culture system. Fermentations were started by inoculating fecal samples from nine healthy subjects, with or without 1.5% YBL. Bacterial 16S rRNA sequencing results confirmed that YBL administration significantly increased the relative abundances of bacteria related to the genus Bifidobacterium (p = 0.001, paired t-test) and those of the genera Faecalibacterium, Roseburia, Unclassified Ruminococcaceae, and Lachnospira (p = 0.013, p = 0.019, p = 0.028, and p = 0.034, respectively, paired t-test). Increased abundances of the latter genera corresponded to increased butyrate production in human colonic microbiota models following fermentation with 1.5% YBL, when compared to fermentation without 1.5% YBL (p = 0.006, Dunnett's test). In addition, YBL administration significantly increased the production levels of amino acids such as lysine, glutamate, serine, threonine, alanine, isoleucine, leucine, valine, and phenylalanine. Therefore, our results showed the health-promoting bifidogenic and butyrogenic effects of YBL.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Yasushi Kadowaki
- JPD Co., Ltd., 7-98 Kita-Itami, Itami-shi, Hyogo, 664-0831 Japan
| | - Yasuyuki Aotsuka
- JPD Co., Ltd., 7-98 Kita-Itami, Itami-shi, Hyogo, 664-0831 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
50
|
Kasuya N, Inoue N, Inoue Y, Murata I, Kanamoto I. Effect of vegetable juice consumption prior to eating rice on postprandial blood glucose and insulin levels. Exp Ther Med 2019; 18:3817-3822. [PMID: 31602248 PMCID: PMC6777328 DOI: 10.3892/etm.2019.8002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/30/2019] [Indexed: 01/14/2023] Open
Abstract
Vegetable juice has been demonstrated to attenuate the elevation of postprandial blood glucose when consumed prior to meals. The present study aimed to investigate the effect of pre-meal consumption of vegetable juice on blood glucose and insulin levels. A total of 10 healthy volunteers aged 20–29 years ingested 200 ml of either water, a sugar solution with the same sugar composition as the vegetable juice or vegetable juice 30 min prior to consuming the cooked rice, and their blood glucose and insulin levels were measured. At the time of rice consumption and 15 min thereafter, blood glucose and plasma insulin levels tended to be lower in the vegetable juice intake group compared with those in the sugar solution intake group. However, there were no significant differences in the kinetic parameters (incremental area under the glucose curve and maximum change in glucose concentration) between these two groups. These results suggest that the sugars contained in vegetable juice account for the suppression of postprandial hyperglycemia.
Collapse
Affiliation(s)
- Noriaki Kasuya
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakadoshi, Saitama 350-0295, Japan.,Flora Pharmacy Kawawada, Flora Co., Ltd., Mitoshi, Ibaraki 311-4153, Japan
| | - Nami Inoue
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakadoshi, Saitama 350-0295, Japan
| | - Yutaka Inoue
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakadoshi, Saitama 350-0295, Japan
| | - Isamu Murata
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakadoshi, Saitama 350-0295, Japan
| | - Ikuo Kanamoto
- Laboratory of Drug Safety Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakadoshi, Saitama 350-0295, Japan
| |
Collapse
|