1
|
Hesami Z, Sabzehali F, Khorsand B, Alipour S, Sadeghi A, Asri N, Pazienza V, Houri H. Microbiota as a state-of-the-art approach in precision medicine for pancreatic cancer management: A comprehensive systematic review. iScience 2025; 28:112314. [PMID: 40276756 PMCID: PMC12019022 DOI: 10.1016/j.isci.2025.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Emerging evidence suggests that harnessing the microbiome holds promise for innovative diagnostic and therapeutic strategies in the management of pancreatic cancer (PC). This study aims to systematically summarize the microbial markers associated with PC and assess their potential application in clinical outcome. Forty-one studies were included to assess the associations between microbial markers and PC. Among these, 13 were developed prediction models related to the microbiome in which the highest diagnostic and prognostic model belong to blood and intratumor markers, respectively. Notably, findings that utilize microbiotas from various body sites were elucidated, demonstrating their importance as unique signatures in biomarker discovery for diverse clinical applications. This review provides unique perspectives on overcoming challenges in PC by highlighting potential microbial-related markers as non-invasive approaches. Further clinical studies should evaluate the utility and accuracy of key indicators in the microbiome as a personalized tool for managing PC.
Collapse
Affiliation(s)
- Zeinab Hesami
- Student Research Committee, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Sabzehali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Nista EC, Parello S, Brigida M, Amadei G, Saviano A, De Lucia SS, Petruzziello C, Migneco A, Ojetti V. Exploring the Role of Gut Microbiota and Probiotics in Acute Pancreatitis: A Comprehensive Review. Int J Mol Sci 2025; 26:3433. [PMID: 40244415 PMCID: PMC11989318 DOI: 10.3390/ijms26073433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Acute pancreatitis (AP) is a common and potentially severe gastrointestinal condition characterized by acute inflammation of the pancreas. The pathophysiology of AP is multifactorial and intricate, involving a cascade of events that lead to pancreatic injury and systemic inflammation. The progression of AP is influenced by many factors, including genetic predispositions, environmental triggers, and immune dysregulation. Recent studies showed a critical involvement of the gut microbiota in shaping the immune response and modulating inflammatory processes during AP. This review aims to provide a comprehensive overview of the emerging role of gut microbiota and probiotics in AP. We analyzed the implication of gut microbiota in pathogenesis of AP and the modification during an acute attack. The primary goals of microbiome-based therapies, which include probiotics, prebiotics, antibiotics, fecal microbiota transplantation, and enteral nutrition, are to alter the composition of the gut microbial community and the amount of metabolites derived from the microbiota. By resetting the entire flora or supplementing it with certain beneficial organisms and their byproducts, these therapeutic approaches aim to eradicate harmful microorganisms, reducing inflammation and avoiding bacterial translocation and the potential microbiota-based therapeutic target for AP from nutrition to pre- and probiotic supplementation to fecal transplantation.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Simone Parello
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Mattia Brigida
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
| | - Giulio Amadei
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Angela Saviano
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Sara Sofia De Lucia
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | | | - Alessio Migneco
- Fondazione Policlinico Gemelli, Istituiti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (E.C.N.); (S.P.); (G.A.); (A.S.); (S.S.D.L.); (A.M.)
| | - Veronica Ojetti
- Ospedale San Carlo di Nancy, GVM Research, 00165 Rome, Italy
- Department of Internal Medicine, UniCamillus International Medical University of Rome, 00131 Rome, Italy
| |
Collapse
|
3
|
Zhang XW, Li X, Yin Y, Wang M, Wang YF, Chen JY, Zhao YR. Effects of ursolic acid on growth performance, serum biochemistry, antioxidant capacity, and intestinal health of broilers. Animal 2025; 19:101385. [PMID: 39708735 DOI: 10.1016/j.animal.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Previous studies have shown that adding 450 mg/kg of ursolic acid (UA) can improve the growth performance of broilers. However, the specific mechanism is still unclear. Therefore, the purpose of this study was to further explore whether UA promotes the growth of broilers by affecting the intestinal environment of broilers. We randomly divided 120 broilers with similar BW (46.53 ± 0.05 g) into two groups. Each group had six replicates, with 10 broilers per replicate. The broilers were fed either the corn-soybean meal-basal diet (CON group) or the corn-soybean meal-basal diet supplemented with 450 mg/kg UA (UA group). This study lasted 42 days. Adding UA increased the daily weight gain and feed conversion ratio of broilers (P < 0.05). The UA group exhibited reduced aspartate aminotransferase, total cholesterol, interleukin 6 and interleukin 1, and triacylglycerol levels, with increased interleukin 10 and high-density lipoprotein cholesterol in serum (P < 0.05). The UA supplementation improved total antioxidant capacity, total superoxide dismutase, and glutathione peroxidase activity in serum (P < 0.05), and increased these levels in the jejunum (P < 0.05). It reduced malondialdehyde concentration in the jejunum and ileum (P < 0.05), improved jejunal morphology by increasing villus height and villus-to-crypt ratio, and decreased crypt depth (P < 0.05). Gene expression of zona occludens 1 and Claudin-1 was higher, while interleukin 6 was lower in the UA group (P < 0.05). Additionally, interleukin 10 gene expression in jejunal mucosa was higher (P < 0.05). Significant differences were observed in the abundance of Bacteroides, proteobacteria, and desulfurisation bacteria (P < 0.05), with higher Barnesiella and Clostridia_UCG-014, and lower Romboutsia in the UA group (P < 0.05). Barnesiella negatively correlated with interleukin 6, interleukin 1, and triacylglycerol, but positively correlated with interleukin 10 (P < 0.05). In conclusion, adding 450 mg/kg UA to broiler feed can improve serum and jejunal antioxidant capacity, reduce jejunal and ileal inflammation, improve jejunal morphology, and regulate caecal microbiota structure composition, promoting broiler growth.
Collapse
Affiliation(s)
- X W Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - X Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Y Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - M Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Y F Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - J Y Chen
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Y R Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Yan L, Xu J, Lou F, Dong Y, Lv S, Kang N, Luo Z, Liu Y, Pu J, Zhong X, Ji P, Xie P, Jin X. Alterations of oral microbiome and metabolic signatures and their interaction in oral lichen planus. J Oral Microbiol 2024; 16:2422164. [PMID: 39498115 PMCID: PMC11533246 DOI: 10.1080/20002297.2024.2422164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 11/07/2024] Open
Abstract
Background Oral lichen planus (OLP) is a chronic oral mucosal inflammatory disease with a risk of becoming malignant. Emerging evidence suggests that microbial imbalance plays an important role in the development of OLP. However, the association between the oral microbiota and the metabolic features in OLP is still unclear. Methods We conducted 16S rRNA sequencing and metabolomics profiling on 95 OLP patients and 105 healthy controls (HC).To study oral microbes and metabolic changes in OLP, we applied differential analysis, Spearman correlation analysis and four machine learning algoeithms. Results The alpha and beta diversity both differed between OLP and HC. After adjustment for gender and age, we found an increase in the relative abundance of Pseudomonas, Aggregatibacter, Campylobacter, and Lautropia in OLP, while 18 genera decreased in OLP. A total of 153 saliva metabolites distinguishing OLP from HC were identified. Notably, correlations were found between Oribacterium, specific lipid and amino acid metabolites, and OLP's clinical phenotype. Additionally, the combination of Pseudomonas, Rhodococcus and (±)10-HDoHE effectively distinguished OLP from HC. Conclusions Based on multi-omics data, this study provides comprehensive evidence of a novel interplay between oral microbiome and metabolome in OLP pathogenesis using the oral microbiota and metabolites of OLP patients.
Collapse
Affiliation(s)
- Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Jingyi Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Fangzhi Lou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yunmei Dong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Shiping Lv
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ning Kang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Zhuoyan Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Hong J, Fu Y, Chen X, Zhang Y, Li X, Li T, Liu Y, Fan M, Lin R. Gut microbiome changes associated with chronic pancreatitis and pancreatic cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:5781-5794. [PMID: 38847785 PMCID: PMC11392207 DOI: 10.1097/js9.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/19/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The study of changes in the microbiome in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) holds significant potential for developing noninvasive diagnostic tools as well as innovative interventions to alter the progression of diseases. This systematic review and meta-analysis aimed to analyze in detail the taxonomic and functional characteristics of the gut microbiome in patients with CP and PDAC. METHODS Two researchers conducted a systematic search across public databases to gather all published research up to June 2023. Diversity and gut microbiota composition are the main outcomes the authors focus on. RESULTS This meta-analysis included 14 studies, involving a total of 1511 individuals in the PDAC ( n =285), CP ( n =342), and control ( n =649) groups. Our results show a significant difference in the composition of gut microbiota between PDAC/CP patients compared to healthy controls (HC), as evidenced by a slight decrease in α-diversity, including Shannon (SMD=-0.33; P =0.002 and SMD=-0.59; P <0.001, respectively) and a statistically significant β-diversity ( P <0.05). The pooled results showed that at the phylum level, the proportion of Firmicutes was lower in PDAC and CP patients than in HC patients. At the genus level, more than two studies demonstrated that four genera were significantly increased in PDAC patients compared to HC (e.g. Escherichia-Shigella and Veillonella ). CP patients had an increase in four genera (e.g. Escherichia-Shigella and Klebsiella ) and a decrease in eight genera (e.g. Coprococcus and Bifidobacterium ) compared to HC. Functional/metabolomics results from various studies also showed differences between PDAC/CP patients and HC. In addition, this study found no significant differences in gut microbiota between PDAC and CP patients. CONCLUSIONS Current evidence suggests changes in gut microbiota is associated with PDAC/CP, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species. Further studies are needed to confirm these findings and explore therapeutic possibilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
8
|
Grodin EN, Burnette EM, Rodriguez C, Fulcher JA, Ray LA. The gut microbiome in alcohol use disorder and alcohol-associated liver disease: A systematic review of clinical studies. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1221-1242. [PMID: 38719790 PMCID: PMC11827555 DOI: 10.1111/acer.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 07/11/2024]
Abstract
Evidence suggests that a relationship exists between the gut microbiome and the pathogenesis of alcohol use disorder (AUD) and alcohol-associated liver disease (AALD). This systematic review identified studies that investigated the gut microbiome in individuals with an AUD or an AALD. A search was conducted on October 27, 2022, in PubMed, Web of Science, and Embase databases. Fifty studies satisfied eligibility criteria. Most studies found evidence for gut dysbiosis in individuals with AUD and AALD. Microbiome intervention studies have mostly been conducted in AALD patients; fecal microbial transplant interventions show the most promise. Because most studies were conducted cross-sectionally, the causal relationship between the gut microbiome and alcohol use is unknown. Furthermore, almost all studies have been conducted in predominantly male populations, leaving critical questions regarding sex differences and generalizability of the findings. The study summaries and recommendations provided in this review seek to identify areas for further research and to highlight potential gut microbial interventions for treating AUD and AALD.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Elizabeth M. Burnette
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Crystal Rodriguez
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, David Gefen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A. Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Lupu VV, Bratu RM, Trandafir LM, Bozomitu L, Paduraru G, Gimiga N, Ghiga G, Forna L, Ioniuc I, Petrariu FD, Puha B, Lupu A. Exploring the Microbial Landscape: Gut Dysbiosis and Therapeutic Strategies in Pancreatitis-A Narrative Review. Biomedicines 2024; 12:645. [PMID: 38540258 PMCID: PMC10967871 DOI: 10.3390/biomedicines12030645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
The gut microbiota is emerging as an important contributor to the homeostasis of the human body through its involvement in nutrition and metabolism, protection against pathogens, and the development and modulation of the immune system. It has therefore become an important research topic in recent decades. Although the association between intestinal dysbiosis and numerous digestive pathologies has been thoroughly researched, its involvement in pancreatic diseases constitutes a novelty in the specialized literature. In recent years, growing evidence has pointed to the critical involvement of the pancreas in regulating the intestinal microbiota, as well as the impact of the intestinal microbiota on pancreatic physiology, which implies the existence of a bidirectional connection known as the "gut-pancreas axis". It is theorized that any change at either of these levels triggers a response in the other component, hence leading to the evolution of pancreatitis. However, there are not enough data to determine whether gut dysbiosis is an underlying cause or a result of pancreatitis; therefore, more research is needed in this area. The purpose of this narrative review is to highlight the role of gut dysbiosis in the pathogenesis of acute and chronic pancreatitis, its evolution, and the prospect of employing the microbiota as a therapeutic intervention for pancreatitis.
Collapse
Affiliation(s)
| | - Roxana Mihaela Bratu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | - Gabriela Paduraru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (V.V.L.); (L.M.T.); (L.B.); (N.G.); (G.G.); (L.F.); (I.I.); (F.D.P.); (B.P.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Carvente CT, Ferraz MLCG, Toledo CFD. EVALUATING LACTOFERRIN AND CALPROTECTIN AS MARKERS OF INTESTINAL INFLAMMATION INCHRONIC PANCREATITIS. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e24003. [PMID: 38451674 DOI: 10.1590/s0004-2803.246102024-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The treatment of chronic pancreatitis does not consistently solve intestinal abnormalities, and despite the implementation of various therapeutic measures, patients often continue to experience persistent diarrhea. Therefore, it is imperative to recognize that diarrhea may stem from factors beyond pancreatic insufficiency, and intestinal inflammation emerges as a potential contributing factor. OBJECTIVE The aim of this study was to assess fecal lactoferrin and calprotectin levels as indicators of intestinal inflammation in patients with chronic pancreatitis experiencing persistent diarrhea. METHODS In this study, 23 male patients with chronic pancreatitis primarily attributed to alcohol consumption and presenting with diarrhea (classified as Bristol stool scale type 6 or 7), underwent a comprehensive evaluation of their clinical and nutritional status. Fecal lactoferrin and calprotectin levels were mea-sured utilizing immunoassay techniques. RESULTS The average age of the participants was 54.8 years, 43.5% had diabetes, and 73.9% were smokers. Despite receiving enzyme replacement therapy and refraining from alcohol for over 4 years, all participants exhibited persistent diarrhea, accompanied by elevated calprotectin and lactoferrin levels indicative of ongoing intestinal inflammation. CONCLUSION The findings of this study underscore that intestinal inflammation, as evidenced by elevated fecal biomarkers calprotectin and lactoferrin, may contribute to explaining the persistence of diarrhea in patients with chronic pancreatitis. BACKGROUND • Exploration of intestinal inflammation in chronic pancreatitis patients with altered bowel habits. BACKGROUND • Assessment of 23 patients using lactoferrin and calprotectin as intestinal inflammation biomarkers. BACKGROUND • Intestinal inflammation was detected in all patients; positive correlation between both biomarkers. BACKGROUND • Established connection between altered bowel habits and intestinal inflammation in chronic pancreatitis.
Collapse
Affiliation(s)
- Claudia Teresa Carvente
- Escola Paulista de Medicina, Universidade Federal de São Paulo, Departamento de Medicina, Disciplina de Gastroenterologia, São Paulo, SP, Brasil
| | - Maria Lúcia Cardoso Gomes Ferraz
- Escola Paulista de Medicina, Universidade Federal de São Paulo, Departamento de Medicina, Disciplina de Gastroenterologia, São Paulo, SP, Brasil
| | - Carlos Fischer de Toledo
- Escola Paulista de Medicina, Universidade Federal de São Paulo, Departamento de Medicina, Disciplina de Gastroenterologia, São Paulo, SP, Brasil
| |
Collapse
|
12
|
Kesh K, Tao J, Ghosh N, Jalodia R, Singh S, Dawra R, Roy S. Prescription opioids induced microbial dysbiosis worsens severity of chronic pancreatitis and drives pain hypersensitivity. Gut Microbes 2024; 16:2310291. [PMID: 38329115 PMCID: PMC10857465 DOI: 10.1080/19490976.2024.2310291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Opioids, such as morphine and oxycodone, are widely used for pain management associated with chronic pancreatitis (CP); however, their impact on the progression and pain sensitivity of CP has never been evaluated. This report investigates the impact of opioid use on the severity of CP, pain sensitivity, and the gut microbiome. C57BL/6 mice were divided into control, CP, CP with morphine/oxycodone, and either morphine or oxycodone alone groups. CP was induced by administration of caerulein (50ug/kg/h, i.p. hourly x7, twice a week for 10 weeks). The mouse-to-pancreas weight ratio, histology, and Sirius red staining were performed to measure CP severity. Tail flick and paw pressure assays were used to measure thermal and mechanical pain. DNA was extracted from the fecal samples and subjected to whole-genome shotgun sequencing. Germ-free mice were used to validate the role of gut microbiome in sensitizing acute pancreatic inflammation. Opioid treatment exacerbates CP by increasing pancreatic necrosis, fibrosis, and immune-cell infiltration. Opioid-treated CP mice exhibited enhanced pain hypersensitivity and showed distinct clustering of the gut microbiome compared to untreated CP mice, with severely compromised gut barrier integrity. Fecal microbiota transplantation (FMT) from opioid-treated CP mice into germ-free mice resulted in pancreatic inflammation in response to a suboptimal caerulein dose. Together, these analyses revealed that opioids worsen the severity of CP and induce significant alterations in pain sensitivity and the gut microbiome in a caerulein CP mouse model. Microbial dysbiosis plays an important role in sensitizing the host to pancreatic inflammation.
Collapse
Affiliation(s)
- Kousik Kesh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nillu Ghosh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Richa Jalodia
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
13
|
Esparteiro D, Fouquet G, Courtois A, Jedraszak G, Marticho L, Gourdel M, Billon-Crossouard S, Croyal M, Naassila M, Nguyen-Khac E, Marcq I. Serum bile acids profiles are altered without change of the gut microbiota composition following a seven-day prednisolone therapy in severe alcoholic hepatitis. Gut Microbes 2024; 16:2382767. [PMID: 39078043 PMCID: PMC11290774 DOI: 10.1080/19490976.2024.2382767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Severe Alcoholic Hepatitis (sAH) is an acute form of liver injury caused by chronic and heavy alcohol drinking. A one-month corticosteroids course is the only sAH reference treatment, and its interactions with the Gut Microbiota (GM), which is a key contributor to liver injury, remain unknown. To evaluate the evolution of the GM in sAH patients, we retrospectively investigated the composition of the GM of 27 sAH patients at the Amiens University Hospital before (D0) and after (D7) a 7-day corticotherapy course using fecal metagenomics sequencing. We also quantified fecal Short-Chain Fatty Acids (SCFA) and fecal and serum Bile Acids (BA), as well as serum Lipopolysaccharide-Binding Protein (LBP). Overall, the community and taxonomical analyses did not reveal any GM evolution between D0 and D7, nor did the SCFA profiles analysis. However, in serum but not fecal samples, the ratio of glyco-conjugated to tauro-conjugated BA was significantly reduced at D7, independently of the response to treatment, while two BA were enriched in non-responder patients. LBP concentration significantly diminished between D0 and D7, which may indicate an improvement of the gut barrier. The stability of the GM of sAH is interesting in the perspective of new treatments based on GM modulation.
Collapse
Affiliation(s)
- Damien Esparteiro
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Grégory Fouquet
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Anoïsia Courtois
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | | | - Léa Marticho
- CHU d’Amiens, Service d’Hépato-Gastro-Entérologie, Amiens, France
| | - Mathilde Gourdel
- CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
| | | | - Mikaël Croyal
- CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, l’Institut du Thorax, Nantes Université, Nantes, France
| | - Mickaël Naassila
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| | - Eric Nguyen-Khac
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
- CHU d’Amiens, Service d’Hépato-Gastro-Entérologie, Amiens, France
| | - Ingrid Marcq
- GRAP INSERM U1247, Universite de Picardie Jules Verne, Amiens, France
| |
Collapse
|
14
|
Cui Y, Jing C, Yue Y, Ning M, Chen H, Yuan Y, Yue T. Kefir Ameliorates Alcohol-Induced Liver Injury Through Modulating Gut Microbiota and Fecal Bile Acid Profile in Mice. Mol Nutr Food Res 2024; 68:e2300301. [PMID: 37933689 DOI: 10.1002/mnfr.202300301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Alcoholic liver disease (ALD) is the leading cause of liver-related deaths worldwide. Kefir has been studied for its properties of anti-obesity, rebuilding intestinal homeostasis, and alleviating non-alcoholic fatty liver disease. However, the possible role of kefir in the prevention or treatment of ALD has not been carefully considered. Here, it evaluated the protective effects of kefir supplementation on alcohol-induced liver injury. METHODS AND RESULTS C57BL/6J mice are fed to Lieber-DeCarli liquid diet containing alcohol to build ALD mouse model, followed by oral administration with kefir. Results indicate that kefir treatment improves liver pathological changes, decreases the expression levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and inflammatory markers, and increases antioxidant levels. Kefir supplementation also restores the intestinal barrier and altered microbial composition, indicates as increases of Blautia, Bacteroides, and Parasutterella and decreases in the Firmicutes/Bacteroidetes (F/B) ratio and populations of Psychrobacter, Bacillus, and Monoglobus. Moreover, kefir supplementation decreases the levels of total bile acids (BAs) and primary BAs and increases the secondary/primary BA ratio. Gut microbes play a key role in the conversion of primary to secondary fecal BAs. CONCLUSION Kefir can ameliorate ALD through regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Chun Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, China
| |
Collapse
|
15
|
Zhang C, Li G, Lu T, Liu L, Sui Y, Bai R, Li L, Sun B. The Interaction of Microbiome and Pancreas in Acute Pancreatitis. Biomolecules 2023; 14:59. [PMID: 38254659 PMCID: PMC10813032 DOI: 10.3390/biom14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Acute pancreatitis (AP) is a common acute abdomen disease characterized by the pathological activation of digestive enzymes and the self-digestion of pancreatic acinar cells. Secondary infection and sepsis are independent prognosticators for AP progression and increased mortality. Accumulating anatomical and epidemiological evidence suggests that the dysbiosis of gut microbiota affects the etiology and severity of AP through intestinal barrier disruption, local or systemic inflammatory response, bacterial translocation, and the regulatory role of microbial metabolites in AP patients and animal models. Recent studies discussing the interactions between gut microbiota and the pancreas have opened new scopes for AP, and new therapeutic interventions that target the bacteria community have received substantial attention. This review concentrates on the alterations of gut microbiota and its roles in modulating gut-pancreas axis in AP. The potential therapies of targeting microbes as well as the major challenges of applying those interventions are explored. We expect to understand the roles of microbes in AP diagnosis and treatment.
Collapse
Affiliation(s)
- Can Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Yuhang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Rui Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (C.Z.)
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| |
Collapse
|
16
|
Yue R, Wei X, Hao L, Dong H, Guo W, Sun X, Zhao J, Zhou Z, Zhong W. Promoting intestinal antimicrobial defense and microbiome symbiosis contributes to IL-22-mediated protection against alcoholic hepatitis in mice. Front Immunol 2023; 14:1289356. [PMID: 37908362 PMCID: PMC10613651 DOI: 10.3389/fimmu.2023.1289356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background The hepatoprotective effect of interleukin 22 (IL-22) has been reported in several models of liver injuries, including alcohol-associated liver disease (ALD). However, the intestinal role of IL-22 in alcoholic hepatitis remains to be elucidated. Methods Intestinal IL-22 levels were measured in mice fed with alcohol for 8 weeks. IL-22 was then administered to alcohol-fed mice to test its protective effects on alleviating alcoholic hepatitis, focusing on intestinal protection. Acute IL-22 treatment was conducted in mice to further explore the link between IL-22 and the induction of antimicrobial peptide (AMP). Intestinal epithelial cell-specific knockout of signal transducer and activator of transcription 3 (STAT3) mice were generated and used for organoid study to explore its role in IL-22-mediated AMP expression and gut barrier integrity. Results After alcohol feeding for 8 weeks, the intestinal levels of IL-22 were significantly reduced in mice. IL-22 treatment to alcohol-fed mice mitigated liver injury as indicated by normalized serum transaminase levels, improved liver histology, reduced lipid accumulation, and attenuated inflammation. In the intestine, alcohol-reduced Reg3γ and α-defensins levels were reversed by IL-22 treatment. IL-22 also improved gut barrier integrity and decreased endotoxemia in alcohol-fed mice. While alcohol feeding significantly reduced Akkermansia, IL-22 administration dramatically expanded this commensal bacterium in mice. Regardless of alcohol, acute IL-22 treatment induced a fast and robust induction of intestinal AMPs and STAT3 activation. By using in vitro cultured intestinal organoids isolated from WT mice and mice deficient in intestinal epithelial-STAT3, we further demonstrated that STAT3 is required for IL-22-mediated AMP expression. In addition, IL-22 also regulates intestinal epithelium differentiation as indicated by direct regulation of sodium-hydrogen exchanger 3 via STAT3. Conclusion Our study suggests that IL-22 not only targets the liver but also benefits the intestine in many aspects. The intestinal effects of IL-22 include regulating AMP expression, microbiota, and gut barrier function that is pivotal in ameliorating alcohol induced translocation of gut-derived bacterial pathogens and liver inflammation.
Collapse
Affiliation(s)
- Ruichao Yue
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Liuyi Hao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Haibo Dong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Wei Guo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
17
|
Yazici C, Thaker S, Castellanos KK, Al Rashdan H, Huang Y, Sarraf P, Boulay B, Grippo P, Gaskins HR, Danielson KK, Papachristou GI, Tussing-Humphreys L, Dai Y, Mutlu ER, Layden BT. Diet, Gut Microbiome, and Their End Metabolites Associate With Acute Pancreatitis Risk. Clin Transl Gastroenterol 2023; 14:e00597. [PMID: 37162146 PMCID: PMC10371326 DOI: 10.14309/ctg.0000000000000597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Diet and decreased gut microbiome diversity has been associated with acute pancreatitis (AP) risk. However, differences in dietary intake, gut microbiome, and their impact on microbial end metabolites have not been studied in AP. We aimed to determine differences in (i) dietary intake (ii) gut microbiome diversity and sulfidogenic bacterial abundance, and (iii) serum short-chain fatty acid (SCFA) and hydrogen sulfide (H 2 S) concentrations in AP and control subjects. METHODS This case-control study recruited 54 AP and 46 control subjects during hospitalization. Clinical and diet data and stool and blood samples were collected. 16S rDNA sequencing was used to determine gut microbiome alpha diversity and composition. Serum SCFA and H 2 S levels were measured. Machine learning (ML) model was used to identify microbial targets associated with AP. RESULTS AP patients had a decreased intake of vitamin D 3 , whole grains, fish, and beneficial eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids. AP patients also had lower gut microbiome diversity ( P = 0.021) and a higher abundance of sulfidogenic bacteria including Veillonella sp. and Haemophilus sp., which were associated with AP risk. Serum acetate and H 2 S concentrations were significantly higher in the AP group ( P < 0.001 and P = 0.043, respectively). ML model had 96% predictive ability to distinguish AP patients from controls. DISCUSSION AP patients have decreased beneficial nutrient intake and gut microbiome diversity. An increased abundance of H 2 S-producing genera in the AP and SCFA-producing genera in the control group and predictive ability of ML model to distinguish AP patients indicates that diet, gut microbiota, and their end metabolites play a key role in AP.
Collapse
Affiliation(s)
- Cemal Yazici
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarang Thaker
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karla K. Castellanos
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Haya Al Rashdan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yongchao Huang
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paya Sarraf
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian Boulay
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul Grippo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - H. Rex Gaskins
- Department of Animal Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Kirstie K. Danielson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ece R. Mutlu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
Maev IV, Levchenko AI, Galeeva JS, Andreev DN, Osipenko JV, Bordin DS, Ilyina EN. [Comparative analysis of the intestinal microbiota in patients with exocrine pancreatic insufficiency of various severity]. TERAPEVT ARKH 2023; 95:130-139. [PMID: 37167128 DOI: 10.26442/00403660.2023.02.202056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Exocrine pancreatic insufficiency (EPI) is a critical host factor in determining the composition of the gut microbiota. Diseases that cause exocrine insufficiency can affect the gut microbiome, which can potentiate disease progression and complications. To date, the relationship of exocrine insufficiency in various pancreatic (PA) pathologies, in chronic pancreatitis (CP), with dysbiotic changes in the intestinal microbiota (IM) has not been reliably studied. The available data are heterogeneous and contradictory, which determines the need for further research. AIM To conduct a comparative analysis of the taxonomic composition of the intestinal microbiota in patients with CP of various etiologies, without or with the presence of EPI of varying severity, as well as patients with severe EPI with a history of surgical intervention (SI) on the pancreas. MATERIALS AND METHODS A total of 85 patients were included in the study. Patients were divided into groups according to the severity of EPI: Group 1 (n=16) - patients with CP without EPI; Group 2 (n=11) - patients with CP and mild EPI; Group 3 (n=17) - patients with severe CP and EPI; Group 4 (n=41) - severe EPI in persons with a history of SI on the pancreas. Verification of CP was carried out according to clinical, anamnestic and instrumental data. The degree of EPI was determined by the level of pancreatic elastase-1 (PE-1) feces. Informed consent for the study was obtained for each patient, an anamnesis was collected, physical and laboratory examinations were performed, and a stool sample was obtained. DNA was extracted from each stool sample, the taxonomic composition of BM was determined by sequencing the bacterial 16S rRNA genes, followed by bioinformatic analysis. RESULTS We followed the changes in the gut microbiota from a group of patients with CP without EPI to a group with severe EPI, in those who underwent SI. At the level of the phylum, the IM of all groups showed the dominance of Firmicutes, with the lowest representation in the severe EPI group, both with SI and CP, and the growth of the Actinobacteria, Verrucomicrobiota and Fusobacteria types. The differential representation of childbirth varied: in patients with severe EPI and CP, compared with mild, statistically significant genera - Akkermansia, Ruminococcus gauvreauii group and Holdemanella; compared with CP without exocrine insufficiency, Prevotella, Ruminococcus gauvreauii group, Peptostreptococcus and Blautia dominated. The CP group with mild EPI was dominated by the following genera: Lachnospiraceae_ND 2004 group, Faecalitalea, Fusobacterium, Catenibacterium, Roseburia, Atopobium, Cloacibacillus, Clostridium innococum group, Ruminococcus torques group. All groups showed a low diversity of taxa with a predominance of opportunistic flora, including participants in oncogenesis. CONCLUSION The results of the study show that patients with CP of various etiologies and patients with severe EPI who underwent specific intervention on the pancreas have intestinal microbiota dysbiosis, the severity of which is significantly influenced by the degree of EPI.
Collapse
Affiliation(s)
- I V Maev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - A I Levchenko
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - J S Galeeva
- Research Institute for Systems Biology and Medicine
| | - D N Andreev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | | | - D S Bordin
- Yevdokimov Moscow State University of Medicine and Dentistry
- Loginov Moscow Clinical Scientific Center
- Tver State Medical University
| | - E N Ilyina
- Research Institute for Systems Biology and Medicine
| |
Collapse
|
19
|
Xu JJ, Meng YT, Zou WB, Zhao JL, Fang X, Zhang Y, Zhou W, Zhang L, Wang KX, Hu LH, Liao Z, Zhou CH, Zou DW. Cross-sectional evaluation of gut microbial-host cometabolites in patients with chronic pancreatitis. J Dig Dis 2023; 24:51-59. [PMID: 36795087 DOI: 10.1111/1751-2980.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/20/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVES Gut bacteria facilitate nutrient metabolism and generate small molecules that form part of the broader "metabolome". It is unclear whether these metabolites are disturbed in chronic pancreatitis (CP). This study aimed to evaluate the gut microbial-host cometabolites and their relationship in patients with CP. METHODS Fecal samples were collected from 40 patients with CP and 38 healthy family members. Each sample was examined with 16S rRNA gene profiling and gas chromatography time-of-flight mass spectrometry to estimate the relative abundances of specific bacterial taxa between the two groups and to profile any changes in the metabolome, respectively. Correlation analysis was used to evaluate the differences in metabolites and gut microbiota between the two groups. RESULTS The abundance of Actinobacteria was lower at the phylum level, and that of Bifidobacterium was lower at the genus level in the CP group. Eighteen metabolites had significantly different abundances and the concentrations of 13 metabolites were significantly different between the two groups. Oxoadipic acid and citric acid levels were positively correlated with Bifidobacterium abundance (r = 0.306 and 0.330, respectively, both P < 0.05), while the 3-methylindole concentration was negatively correlated with Bifidobacterium abundance (r = -0.252, P = 0.026) in CP. CONCLUSIONS Gut microbiome and host microbiome metabolic products might be altered in patients with CP. Evaluating gastrointestinal metabolite levels may further enhance our understanding of the pathogenesis and/or progression of CP.
Collapse
Affiliation(s)
- Jia Jia Xu
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Department of General Medicine, Beicai Community Health Service Center of Pudong New Area, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yu Ting Meng
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,Department of Hyperbaric Oxgen, Nanjing Benq Medical Center, Nanjing, Jiangsu Province, China
| | - Wen Bin Zou
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jiu Long Zhao
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Ling Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xuan Wang
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Liang Hao Hu
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Chun Hua Zhou
- Department of Gastroenterology, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duo Wu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Zeng XP, Zeng JH, Wang R, Wang W. Pathogenesis, diagnosis, and treatment of malnutrition in patients with chronic pancreatitis. Shijie Huaren Xiaohua Zazhi 2023; 31:92-97. [DOI: 10.11569/wcjd.v31.i3.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic pancreatitis (CP) is a persistent and progressive pancreatic inflammatory disease. Malnutrition is a common clinical manifestation in CP patients, which is mainly caused by pancreatic exocrine insufficiency but may also be related to pancreatic endocrine insufficiency and changes of living habit. At present, there is still a lack of gold standard for the diagnosis of malnutrition in patients with CP. Clinicians should comprehensively evaluate such patients through anthropometric parameters, test parameters, imaging diagnosis, pancreatic exocrine function detection, etc., detect malnutrition early, and take timely intervention measures, including improving diet and living habits, enteral/parenteral nutrition, pancreatic enzyme replacement therapy, acid suppressant adjuvant therapy, regulating intestinal flora, and administration of Chinese medicine. And endoscopic and surgical treatment should be used when necessary.
Collapse
Affiliation(s)
- Xiang-Peng Zeng
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| | - Jing-Hui Zeng
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| | - Rong Wang
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| | - Wen Wang
- Department of Gastroenterology, 900th Hospital of Joint Logistics Support Force, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
21
|
Zhang L, Long S, Wang H, Piao X. Dietary 25-hydroxycholecalciferol modulates gut microbiota and improves the growth, meat quality, and antioxidant status of growing-finishing pigs. Front Microbiol 2023; 13:1095509. [PMID: 36713223 PMCID: PMC9875081 DOI: 10.3389/fmicb.2022.1095509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction 25-Hydroxycholecalciferol (25OHD3) is the active metabolite of regular vitamin D3 in vivo, which has a stronger biological activity and is more easily absorbed by the intestine than regular vitamin D3. Our study aimed to detect the potential influences of 25OHD3 on pork quality, antioxidant status, and intestinal microbiota of growing-finishing pigs receiving low-phosphorus (P) diet. Methods and results Forty pigs [initial body weight (BW): 49.42 ± 4.01 kg] were allocated into two groups including low-P diet (CON group) and low-P diet supplemented with 50 μg/kg 25OHD3 (25OHD3 group). The whole experiment lasted for 88 days, including phase 1 (day 1-28), phase 2 (day 29-60), and phase 3 (day 61-88). The results showed that 25OHD3 supplementation tended to decrease feed conversion ratio in phase 3 and overall phase in comparison with the CON group. 25OHD3 increased (p < 0.05) serum contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and decreased (p < 0.05) serum bone-specific alkaline phosphatase level. 25OHD3 increased (p < 0.05) mucosal GSH-Px activity in the duodenum and ileum, and tended to increase redness value and the activities of total antioxidant capacity and SOD in longissimus dorsi. 25OHD3 significantly upregulated the mRNA level of copper/zinc superoxide dismutase, and tended to change the mRNA levels of nuclear factor E2-related factor 2 and kelch-like ECH-associated protein 1 in longissimus dorsi. Moreover, 25OHD3 supplementation decreased (p < 0.05) n-6/n-3 and iodine value in longissimus dorsi. For bone quality, 25OHD3 supplementation increased (p < 0.05) calcium content, bone mineral content, and breaking strength in the metacarpal bones. Moreover, the colonic abundance of Lactobacillus was significantly higher in pigs fed with 25OHD3, and exhibited a positive association with serum antioxidant status, pork quality, and bone characteristics. Conclusion Overall, the inclusion of 25OHD3 in low P diet partly improved production performance, meat quality, antioxidant capacity, bone properties, and gut microbiota composition of growing-finishing pigs.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China,China National Botanical Garden, Beijing, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongliang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China,*Correspondence: Hongliang Wang, ✉
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,Xiangshu Piao, ✉
| |
Collapse
|
22
|
Pectin in Metabolic Liver Disease. Nutrients 2022; 15:nu15010157. [PMID: 36615814 PMCID: PMC9824118 DOI: 10.3390/nu15010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
Alterations in the composition of the gut microbiota (dysbiosis) are observed in nutritional liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) and have been shown to be associated with the severity of both. Editing the composition of the microbiota by fecal microbiota transfer or by application of probiotics or prebiotics/fiber in rodent models and human proof-of-concept trials of NAFLD and ALD have demonstrated its possible contribution to reducing the progression of liver damage. In this review, we address the role of a soluble fiber, pectin, in reducing the development of liver injury in NAFLD and ALD through its impact on gut bacteria.
Collapse
|
23
|
Chen YQ, Liu JL. Advances in research of microbiome regulation as a therapy for liver failure. Shijie Huaren Xiaohua Zazhi 2022; 30:971-977. [DOI: 10.11569/wcjd.v30.i22.971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The intestinal flora of the human body is complex and diverse, and the structure and composition of the intestinal micro-ecosystem formed by the intestinal flora are complicated. Studies have shown that the imbalance of the intestinal micro-ecosystem is closely related to the occurrence and development of liver failure, and the degree of intestinal microecological imbalance is significantly correlated with the severity of liver failure. Therefore, the role of intestinal microbiome regulation in the treatment of liver failure and the improvement of prognosis has increasingly attracting the attention of scholars. However, due to the complexity of the composition and structure of the intestinal flora and its mechanism of action involved in the development of liver failure, the application of intestinal microbiome regulation in the clinic is limited to a certain extent. In this paper, we review the research progress of microbiome regulation as a therapy for liver failure.
Collapse
Affiliation(s)
- Yue-Qiao Chen
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Jia-Ling Liu
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
24
|
Potential Effects of 25-Hydroxycholecalciferol on the Growth Performance, Blood Antioxidant Capacity, Intestinal Barrier Function and Microbiota in Broilers under Lipopolysaccharide Challenge. Antioxidants (Basel) 2022; 11:antiox11112094. [PMID: 36358466 PMCID: PMC9686511 DOI: 10.3390/antiox11112094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Our experiment was to detect the effects of 25-hydroxycholecalciferol (25OHD3) on antioxidant capacity, immune status and gut health of broilers under lipopolysaccharide (LPS) challenge. In total, 108 male Arbor Acre broilers (48.5 ± 0.4 g) were allotted to three treatment groups containing six replicates for each group with six birds per replicate: (1) corn-soybean basal diet + injection of sterile saline (CON group); (2) corn-soybean basal diet + an injection of LPS (LPS group); (3) corn-soybean basal diet with 50 μg/kg 25OHD3 + injection of LPS (LPS + 25-D group). At the end of the experiment, birds were intraperitoneally injected with LPS in the LPS and LPS + 25-D groups based on the dosage of 5.0 mg/kg BW, or the equivalent volume of 0.9% sterile saline in the CON group. At 4 h postinjection, blood samples, jejunal and ileal tissues and cecal digesta were collected to analyze blood antioxidant capacity, intestinal barrier function and microbiota. The results showed that broilers challenged with LPS had significantly higher BW loss than the CON group, and 25OHD3 alleviated BW loss induced by the LPS challenge. 25OHD3 alleviated the LPS-induced decline (p < 0.05) in serum activities of superoxide dismutase (SOD) and immunoglobulin G (IgG), as well as prevented the LPS-induced increase (p < 0.05) in serum content of tumor necrosis factor-α (TNF-α). 25OHD3 significantly increased villus height in the jejunum and the relative mRNA abundance of Occludin in the jejunum and ileum, as well as prevented the LPS-induced increase in the jejunal content of interferon-γ (IFN-γ) compared with the LPS group. Compared with the LPS group, 25OHD3 significantly increased Lactobacillus abundance and decreased Lachnoclostridium abundance in the cecal digesta, as well as had the potential to enhance metabolite contents including propionate, isobutyrate, butyrate and total SCFA. The correlation analysis revealed that BW loss and serum contents of TNF-α, IL-1β and D-lactate were positively correlated with Lachnoclostridium and negatively correlated with Lactobacillus (p < 0.05). Overall, 25OHD3 partially improves the antioxidant status, immunity, intestinal barrier and microbial composition of broilers under the LPS challenge.
Collapse
|
25
|
Maev IV, Levchenko AI, Andreev DN. Changes in the Intestinal Microbiota in Patients with Chronic Pancreatitis: Systematizing Literature Data. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:17-26. [DOI: 10.22416/1382-4376-2022-32-4-17-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The purpose of the review. To systematize literature data on changes in the structure of the intestinal microbiota in patients with chronic pancreatitis (CP).Key findings. The human intestinal microbiota is a dynamically changing system that is constantly undergoing qualitative and quantitative changes, especially in several pathological conditions of the digestive system. At present, the differences in the intestinal microbiota in pancreatic diseases are poorly understood. The severe CP is associated with impaired synthesis of antimicrobial peptides, bicarbonates, and digestive enzymes by the pancreas, which is a risk factor for dysbiotic changes in the intestinal microbiota, consisting in the development of small intestinal bacterial overgrowth (SIBO) and gut dysbiosis. The results of two large meta-analyses show that about a third of CP patients have SIBO. The colonic microbiota in patients with CP is also characterized by dysbiotic disorders, primarily in the reduction of alpha-diversity. Some studies have shown that these patients have an increase in Firmicutes, while Bacteroides and Faecalibacterium are reduced. In addition, as a rule, in patients with CP, the growth of Escherichia, Shigella and Streptococcus is recorded.Conclusion. In general, scientific papers have revealed significant heterogeneity in the profiles of the intestinal microbiota in patients with CP. Thus, several questions remain open, prioritizing the further study of the intestinal microbiota in patients with CP for identifying the specifics of its structure that can personalize the selection of enzyme replacement therapy and restrict the unreasonable prescription of additional pharmacotherapy (the use of proton pump inhibitors and / or antibacterial drugs).
Collapse
Affiliation(s)
- I. V. Maev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - A. I. Levchenko
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - D. N. Andreev
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
26
|
The Role of the Microbiome in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14184479. [PMID: 36139638 PMCID: PMC9496841 DOI: 10.3390/cancers14184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pancreatic cancer is deadly cancer characterized by dense stroma creating an immunosuppressive tumor microenvironment. Accumulating evidences indicate that the microbiome plays an important role in pancreatic cancer development and progression via the local and systemic inflammation and immune responses. The alteration of the microbiome modulates the tumor microenvironment and immune system in pancreatic cancer, which affects the efficacy of chemotherapies including immune-targeted therapies. Understanding the role of microbiome and underlying mechanisms may lead to novel biomarkers and therapeutic strategies for pancreatic cancer. This review summarizes the current evidence on the role of the microbiome in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.
Collapse
|
27
|
Hou X, Rong C, Zhang Q, Song S, Cong Y, Zhang HT. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota. Int J Neuropsychopharmacol 2022; 26:70-79. [PMID: 36087271 PMCID: PMC9850663 DOI: 10.1093/ijnp/pyac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohol abuse is 1 of the most significant public health problems in the world. Chronic, excessive alcohol consumption not only causes alcohol use disorder (AUD) but also changes the gut and lung microbiota, including bacterial and nonbacterial types. Both types of microbiota can release toxins, further damaging the gastrointestinal and respiratory tracts; causing inflammation; and impairing the functions of the liver, lung, and brain, which in turn deteriorate AUD. Phosphodiesterases (PDEs) are critical in the control of intracellular cyclic nucleotides, including cyclic adenosine monophosphate and cyclic guanosine monophosphate. Inhibition of certain host PDEs reduces alcohol consumption and attenuates alcohol-related impairment. These PDEs are also expressed in the microbiota and may play a role in controlling microbiota-associated inflammation. Here, we summarize the influences of alcohol on gut/lung bacterial and nonbacterial microbiota as well as on the gut-liver/brain/lung axis. We then discuss the relationship between gut and lung microbiota-mediated PDE signaling and AUD consequences in addition to highlighting PDEs as potential targets for treatment of AUD.
Collapse
Affiliation(s)
- Xueqin Hou
- Correspondence: Xueqin Hou, PhD, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China ()
| | | | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Shuangshuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Yifan Cong
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Han-Ting Zhang
- Han-Ting Zhang, MD, PhD, Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266073, P.R. China ()
| |
Collapse
|
28
|
Jung JH, Kim SE, Suk KT, Kim DJ. Gut microbiota-modulating agents in alcoholic liver disease: Links between host metabolism and gut microbiota. Front Med (Lausanne) 2022; 9:913842. [PMID: 35935787 PMCID: PMC9354621 DOI: 10.3389/fmed.2022.913842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD) involves a wide spectrum of diseases, including asymptomatic hepatic steatosis, alcoholic hepatitis, hepatic fibrosis, and cirrhosis, which leads to morbidity and mortality and is responsible for 0.9% of global deaths. Alcohol consumption induces bacterial translocation and alteration of the gut microbiota composition. These changes in gut microbiota aggravate hepatic inflammation and fibrosis. Alteration of the gut microbiota leads to a weakened gut barrier and changes host immunity and metabolic function, especially related to bile acid metabolism. Modulation and treatment for the gut microbiota in ALD has been studied using probiotics, prebiotics, synbiotics, and fecal microbial transplantation with meaningful results. In this review, we focused on the interaction between alcohol and gut dysbiosis in ALD. Additionally, treatment approaches for gut dysbiosis, such as abstinence, diet, pro-, pre-, and synbiotics, antibiotics, and fecal microbial transplantation, are covered here under ALD. However, further research through human clinical trials is warranted to evaluate the appropriate gut microbiota-modulating agents for each condition related to ALD.
Collapse
Affiliation(s)
- Jang Han Jung
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| |
Collapse
|
29
|
Daley D. The Role of the Microbiome in Pancreatic Oncogenesis. Int Immunol 2022; 34:447-454. [PMID: 35863313 DOI: 10.1093/intimm/dxac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Bacterial dysbiosis is evolving as an advocate for carcinogenesis and has been associated with pancreatic cancer progression and survival outcomes. The gut and pancreas of cancer patients harbor a unique microbiome that differs significantly from that of healthy individuals. We believe that the pancreatic cancer microbiome regulates tumorigenesis by altering host cell function and modulating immune cells, skewing them towards an immunosuppressive phenotype. Moreover, altering this pathogenic microbiome may enhance the efficacy of current therapies in pancreatic cancer and improve survival outcomes. This review highlights the findings on microbial modulation across various pre-clinical and clinical studies and provides insight into the potential of targeting the microbiome for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Donnele Daley
- Department of Surgery, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Zafari N, Velayati M, Fahim M, Maftouh M, Pourali G, Khazaei M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Kiani MA, Avan A. Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: Molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305:120760. [PMID: 35787997 DOI: 10.1016/j.lfs.2022.120760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022]
Abstract
Alcohol-associated liver disease (ALD) comprises a spectrum of liver diseases that include: steatosis to alcohol-associated hepatitis, cirrhosis, and ultimately hepatocellular carcinoma. The pathophysiology and potential underlying mechanisms for alcohol-associated liver disease are unclear. Moreover, the treatment of ALD remains a challenge. Intestinal microbiota include bacteria, fungi, and viruses, that are now known to be important in the development of ALD. Alcohol consumption can change the gut microbiota and function leading to liver disease. Given the importance of interactions between intestinal microbiota, alcohol, and liver injury, the gut microbiota has emerged as a potential biomarker and therapeutic target. This review focuses on the potential mechanisms by which the gut microbiota may be involved in the pathogenesis of ALD and explains how this can be translated into clinical management. We discuss the potential of utilizing the gut microbiota signature as a biomarker in ALD patients. Additionally, we present an overview of the prospect of modulating the intestinal microbiota for the management of ALD.
Collapse
Affiliation(s)
- Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Fahim
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Mohammad Ali Kiani
- Department of Pediatrics, Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pediatric Gastroenterology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Park SH, Lee YS, Sim J, Seo S, Seo W. Alcoholic liver disease: a new insight into the pathogenesis of liver disease. Arch Pharm Res 2022; 45:447-459. [PMID: 35761115 DOI: 10.1007/s12272-022-01392-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Jaemin Sim
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Seonkyung Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Wonhyo Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea.
| |
Collapse
|
32
|
Zhao L, Wang S, Zhang N, Zhou J, Mehmood A, Raka RN, Zhou F, Zhao L. The Beneficial Effects of Natural Extracts and Bioactive Compounds on the Gut-Liver Axis: A Promising Intervention for Alcoholic Liver Disease. Antioxidants (Basel) 2022; 11:antiox11061211. [PMID: 35740108 PMCID: PMC9219895 DOI: 10.3390/antiox11061211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. It can cause fatty liver (steatosis), steatohepatitis, fibrosis, cirrhosis, and liver cancer. Alcohol consumption can also disturb the composition of gut microbiota, increasing the composition of harmful microbes and decreasing beneficial ones. Restoring eubiosis or preventing dysbiosis after alcohol consumption is an important strategy in treating ALD. Plant natural products and polyphenolic compounds exert beneficial effects on several metabolic disorders associated with ALD. Natural products and related phytochemicals act through multiple pathways, such as modulating gut microbiota, improving redox stress, and anti-inflammation. In the present review article, we gather information on natural extract and bioactive compounds on the gut-liver axis for the possible treatment of ALD. Supplementation with natural extracts and bioactive compounds promoted the intestinal tight junction, protected against the alcohol-induced gut leakiness and inflammation, and reduced endotoxemia in alcohol-exposed animals. Taken together, natural extracts and bioactive compounds have strong potential against ALD; however, further clinical studies are still needed.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
| | - Shaoxuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (J.Z.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (J.Z.)
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
- Department of Food Science and Technology, University of Haripur, Haripur 22620, Pakistan
| | - Rifat Nowshin Raka
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (N.Z.); (J.Z.)
- Correspondence: (F.Z.); (L.Z.)
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (S.W.); (A.M.); (R.N.R.)
- Correspondence: (F.Z.); (L.Z.)
| |
Collapse
|
33
|
Azad MAK, Jiang H, Ni H, Liu Y, Huang P, Fang J, Kong X. Diets Partially Replaced With Cassava Residue Modulate Antioxidant Capacity, Lipid Metabolism, and Gut Barrier Function of Huanjiang Mini-Pigs. Front Vet Sci 2022; 9:902328. [PMID: 35656170 PMCID: PMC9152454 DOI: 10.3389/fvets.2022.902328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Agricultural by-products have been identified as potential feed resources in animal production. The present study investigated the effects of cassava residue (CR) or fermented CR (FCR) on antioxidant capacity, immunity, gut barrier functions, and lipid metabolism in pigs. A total of 120 healthy Huanjiang mini-piglets were assigned into three groups, including control group (basal diet), CR group (basal diet + 5% CR), and FCR group (basal diet + 5% FCR). The experiment lasted for 30 days. The results showed that, dietary CR or FCR supplementation increased the jejunal catalase (CAT, P = 0.063) and glutathione peroxidase (GSH-Px, P < 0.05) levels and hepatic superoxide dismutase (SOD, P < 0.05) level while decreased (P = 0.077) ileal malondialdehyde (MDA) level, when compared with the control group. Dietary CR supplementation increased intestinal SOD and hepatic GSH-Px levels, whereas decreased jejunal and hepatic MDA levels (P < 0.05). Dietary CR supplementation increased the levels of secretory immunoglobulin A (sIgA) in the intestine and liver, as well as jejunal interleukin (IL)-10, ileal tumor necrosis factor (TNF)-α, and hepatic interferon (IFN)-γ, whereas dietary CR or FCR supplementation decreased the jejunal IL-1β level and increased hepatic IL-10 level (P < 0.05). In the intestinal microbiota analysis, dietary CR or FCR supplementation enhanced the colonic α-diversity and ileal Actinobacteria abundance, whereas decreased ileal Verrucomicrobia and colonic Tenericutes abundances (P < 0.05). In addition, dietary FCR supplementation increased Firmicutes and decreased Bacteroidetes abundances in the ileum and colon, whereas CR supplementation increased Escherichia-Shigella and decreased Terisporobacter abundances in the ileum (P < 0.05). Moreover, dietary CR or FCR supplementation up-regulated (P < 0.05) the gene expressions related to gut barrier functions of piglets. However, dietary CR supplementation showed negative impacts on hepatic lipid metabolism by up-regulating the expression of genes associated with fatty acid synthesis and triglyceride and lipid metabolism. In conclusion, dietary CR or FCR supplementation can maintain the health of piglets by increasing antioxidant capacity, gut barrier function, and altering the intestinal microbiota composition, but CR supplementation may increase the potential risk of abnormal lipid metabolism.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huijiao Jiang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hengjia Ni
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hengjia Ni
| | - Yating Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jun Fang
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Process in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- *Correspondence: Xiangfeng Kong
| |
Collapse
|
34
|
Guo P, Xue M, Teng X, Wang Y, Ren R, Han J, Zhang H, Tian Y, Liang H. Antarctic Krill Oil ameliorates liver injury in rats exposed to alcohol by regulating bile acids metabolism and gut microbiota. J Nutr Biochem 2022; 107:109061. [DOI: 10.1016/j.jnutbio.2022.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 10/25/2022]
|
35
|
Helsley RN, Miyata T, Kadam A, Varadharajan V, Sangwan N, Huang EC, Banerjee R, Brown AL, Fung KK, Massey WJ, Neumann C, Orabi D, Osborn LJ, Schugar RC, McMullen MR, Bellar A, Poulsen KL, Kim A, Pathak V, Mrdjen M, Anderson JT, Willard B, McClain CJ, Mitchell M, McCullough AJ, Radaeva S, Barton B, Szabo G, Dasarathy S, Garcia-Garcia JC, Rotroff DM, Allende DS, Wang Z, Hazen SL, Nagy LE, Brown JM. Gut microbial trimethylamine is elevated in alcohol-associated hepatitis and contributes to ethanol-induced liver injury in mice. eLife 2022; 11:e76554. [PMID: 35084335 PMCID: PMC8853661 DOI: 10.7554/elife.76554] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested. We used liquid chromatography tandem mass spectrometry to quantify the levels of microbe and host choline co-metabolites in healthy controls and AH patients, finding elevated levels of the microbial metabolite trimethylamine (TMA) in AH. In subsequent studies, we treated mice with non-lethal bacterial choline TMA lyase (CutC/D) inhibitors to blunt gut microbe-dependent production of TMA in the context of chronic ethanol administration. Indices of liver injury were quantified by complementary RNA sequencing, biochemical, and histological approaches. In addition, we examined the impact of ethanol consumption and TMA lyase inhibition on gut microbiome structure via 16S rRNA sequencing. We show the gut microbial choline metabolite TMA is elevated in AH patients and correlates with reduced hepatic expression of the TMA oxygenase flavin-containing monooxygenase 3 (FMO3). Provocatively, we find that small molecule inhibition of gut microbial CutC/D activity protects mice from ethanol-induced liver injury. CutC/D inhibitor-driven improvement in ethanol-induced liver injury is associated with distinct reorganization of the gut microbiome and host liver transcriptome. The microbial metabolite TMA is elevated in patients with AH, and inhibition of TMA production from gut microbes can protect mice from ethanol-induced liver injury.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of KentuckyLexingtonUnited States
| | - Tatsunori Miyata
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Anagha Kadam
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Emily C Huang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Amanda L Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kevin K Fung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - William J Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Chase Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Lucas J Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Rebecca C Schugar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Megan R McMullen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Annette Bellar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Kyle L Poulsen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Adam Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Vai Pathak
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Marko Mrdjen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - James T Anderson
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Belinda Willard
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Craig J McClain
- Department of Medicine, University of LouisvilleLouisvilleUnited States
| | - Mack Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Arthur J McCullough
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and AlcoholismBethesdaUnited States
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUnited States
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | | | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Daniela S Allende
- Department of Anatomical Pathology, Cleveland ClinicClevelandUnited States
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Cardiovascular Medicine, Heart and Vascular and Thoracic Institute, Cleveland ClinicClevelandUnited States
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland ClinicClevelandUnited States
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
36
|
Shukla PK, Meena AS, Pierre JF, Rao R. Central role of intestinal epithelial glucocorticoid receptor in alcohol- and corticosterone-induced gut permeability and systemic response. FASEB J 2022; 36:e22061. [PMID: 34861075 PMCID: PMC8647846 DOI: 10.1096/fj.202101424r] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 01/12/2023]
Abstract
Corticosterone, the stress hormone, exacerbates alcohol-associated tissue injury, but the mechanism involved is unknown. We examined the role of the glucocorticoid receptor (GR) in corticosterone-mediated potentiation of alcohol-induced gut barrier dysfunction and systemic response. Hepatocyte-specific GR-deficient (GRΔHC ) and intestinal epithelial-specific GR-deficient (GRΔIEC ) mice were fed ethanol, combined with corticosterone treatment. Intestinal epithelial tight junction integrity, mucosal barrier function, microbiota dysbiosis, endotoxemia, systemic inflammation, liver damage, and neuroinflammation were assessed. Corticosterone potentiated ethanol-induced epithelial tight junction disruption, mucosal permeability, and inflammatory response in GRΔHC mouse colon; these effects of ethanol and corticosterone were absent in GRΔIEC mice. Gut microbiota compositions in ethanol-fed GRΔHC and GRΔIEC mice were similar to each other. However, corticosterone treatment in ethanol-fed mice shifted the microbiota composition to distinctly different directions in GRΔHC and GRΔIEC mice. Ethanol and corticosterone synergistically elevated the abundance of Enterobacteriaceae and Escherichia coli and reduced the abundance of Lactobacillus in GRΔHC mice but not in GRΔIEC mice. In GRΔHC mice, corticosterone potentiated ethanol-induced endotoxemia and systemic inflammation, but these effects were absent in GRΔIEC mice. Interestingly, ethanol-induced liver damage and its potentiation by corticosterone were observed in GRΔHC mice but not in GRΔIEC mice. GRΔIEC mice were also resistant to ethanol- and corticosterone-induced inflammatory response in the hypothalamus. These data indicate that the intestinal epithelial GR plays a central role in alcohol- and corticosterone-induced gut barrier dysfunction, microbiota dysbiosis, endotoxemia, systemic inflammation, liver damage, and neuroinflammation. This study identifies a novel target for potential therapeutic for alcohol-associated tissue injury.
Collapse
Affiliation(s)
- Pradeep K. Shukla
- Department of PhysiologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Avtar S. Meena
- Department of PhysiologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA,Present address:
Center for Cellular and Molecular BiologyHyderabadTelanganaIndia
| | - Joseph F. Pierre
- Department of PediatricsCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - RadhaKrishna Rao
- Department of PhysiologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTennesseeUSA,Memphis Veterans Affairs Medical CenterMemphisTennesseeUSA
| |
Collapse
|
37
|
Tao J, Cheema H, Kesh K, Dudeja V, Dawra R, Roy S. Chronic pancreatitis in a caerulein-induced mouse model is associated with an altered gut microbiome. Pancreatology 2022; 22:30-42. [PMID: 34949545 PMCID: PMC8748396 DOI: 10.1016/j.pan.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chronic pancreatitis (CP) is an inflammatory disease of the pancreas with loss of exocrine/endocrine functions as well as development of fibrosis. Dysbiosis of gut microbiome has been shown to be involved in the pathogenesis of many disease processes. Therefore, we aim to investigate the alteration in gut microbiome associated with CP in caerulein-induced mouse model. METHODS CP was induced in C57Bl/6 by using caerulein injections (50 μg/kg/h, i.p., x7, twice weekly for 10 weeks). Stool samples were collected either one week after end of injection (10-week CP) or 6 weeks (16-week CP). DNA was extracted from stool samples and V4 region of 16S rDNA was sequenced for microbiome analysis. RESULTS CP was strongly associated with the alteration in the composition of the gut microbiome, evidenced by differences in α and β diversity. When β diversity was measured using both weighted and unweighted UniFrac distances, stool from control mice is significantly different from mice on 10-week or 16-week CP (q < 0.01). The α-diversity measured by Faith's phylogenetic diversity was lowest in stool from healthy control and highest in stool from mice with 16-week CP (p < 0.001). Bacteria taxa differentially enriched in CP samples were detected using linear discriminant analysis. Bacteria from genera Bifidobacterium, Akkermansia, and Desulfovibrio were enriched in samples from 10-week CP mice. Bacteria from genera Allobaculum, Prevotella, and Bacteroides were enriched in samples from 16-week CP mice. CONCLUSION Together, these analyses reveal pronounced alteration in the gut microbiome composition, diversity, and function when mice develop CP.
Collapse
Affiliation(s)
- J Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - H Cheema
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - K Kesh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - V Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - R Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA.
| | - S Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
38
|
Sethi M, Mohanty V, Mishra S, Dash J, Mahapatra S, Parida D, Mohapatra AP, Mishra R, Prasad P, Parida A, Senapati S. Targeted (PCR-based) screening of antibiotic resistance genes' prevalence in the gut microbiota of tribal people of Nabarangpur, Odisha, India. Lett Appl Microbiol 2021; 74:577-585. [PMID: 34957584 DOI: 10.1111/lam.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is a major public health concerns worldwide. The gut microbiota harbours multiple antibiotic-resistant genes (ARGs) that contribute to the existing and future microbial population in a community or ecosystem. This study aimed to investigate the prevalence of 35 antibiotic-resistance genes (ARGs) in the gut microbiota of the tribal people of Nabarangpur, Odisha, India. A total of 83 faecal samples were collected from three different tribes (Bhatra, Gond, and Paraja). Total faecal DNA was extracted and the simplex polymerase chain reaction (PCR) was performed to detect selected ARGs. Further analysis was done to estimate the incidence of these ARGs across these tribes based on alcohol consumption habits. We identified a higher prevalence of tetracycline resistance genes (tetW, tetQ, and tetM) in the gut microbiota among three populations. Further, a significant (p=0.024) difference in ARG prevalence against vancomycin in individuals with and without alcohol consumption habits was noticed. The overall distribution of ARGs among the three major tribes of this location was found to be very similar. Together, irrespective of the tribes, the people of this location have gut microbiota harbouring different kinds of ARGs and tetracycline-resistant genes are the most commonly found ARGs.
Collapse
Affiliation(s)
- Manisha Sethi
- Institute of Life Sciences, Bhubaneswar, Odisha, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | - Swayambara Mishra
- Institute of Life Sciences, Bhubaneswar, Odisha, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | - Deepti Parida
- Institute of Life Sciences, Bhubaneswar, Odisha, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Amlan Priyadarshee Mohapatra
- Institute of Life Sciences, Bhubaneswar, Odisha, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | - Punit Prasad
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | |
Collapse
|
39
|
Kim SE, Park JW, Kim HS, Jang MK, Suk KT, Kim DJ. The Role of Gut Dysbiosis in Acute-on-Chronic Liver Failure. Int J Mol Sci 2021; 22:11680. [PMID: 34769109 PMCID: PMC8584227 DOI: 10.3390/ijms222111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an important syndrome of liver failure that has a high risk of short-term mortality in patients with chronic liver disease. The development of ACLF is associated with proinflammatory precipitating events, such as infection, alcoholic hepatitis, and intense systemic inflammation. Recently, the role of the gut microbiome has increasingly emerged in human health and disease. Additionally, the gut microbiome might have a major role in the development of liver disease. In this review, we examine evidence to support the role of gut dysbiosis in cirrhosis and ACLF. Additionally, we explore the mechanism by which the gut microbiome contributes to the development of ACLF, with a focus on alcohol-induced liver disease.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ji Won Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Hyung Su Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
40
|
Li CX, Cui LH, Zhang LQ, Yang L, Zhuo YZ, Cui NQ, Zhang SK. Role of NLR family pyrin domain-containing 3 inflammasome in the activation of pancreatic stellate cells. Exp Cell Res 2021; 404:112634. [PMID: 34004193 DOI: 10.1016/j.yexcr.2021.112634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
NLRP3 inflammasome activation plays an important role in the development of pancreatic fibrosis. However, it is unclear whether the activation of the NLRP3 inflammasome is directly involved in the activation of Pancreatic stellate cells (PSCs). The aim of this study was to investigate the role and mechanism of the NLRP3 inflammasome in the activation of PSCs. In vivo, a rat model of chronic pancreatitis (CP) was induced by intravenous injection of dibutyltin dichloride (DBTC). In vitro, rat primary PSCs were isolated from pancreatic tissues and incubated with the NLRP3 inflammasome activator LPS, the NLRP3 inhibitor MCC950, or NLRP3 siRNA. The results showed that the expression of NLRP3, pro-Caspase-1, Caspase-1 and IL-18 was increased in the rat model of CP and during PSCs activation. LPS increased the protein levels of NLRP3, ASC, Caspase-1, IL-1β and IL-18 accompanied by the upregulation of α-SMA, Col I and FN expression. Moreover, MCC950 or NLPR3 siRNA decreased the expression of α-SMA, Col I, FN, TGF-β1 and p-Smad3. Furthermore, MCC950 reversed the LPS-induced upregulation of α-SMA, FN and Col Ⅰ expression in PSCs. This study revealed that the NLRP3 inflammasome is directly involved in the activation of PSCs in vivo and in vitro. Inhibiting NLRP3 suppresses the activation of PSCs through the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Cai-Xia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Li-Hua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Lan-Qiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Yu-Zhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China
| | - Nai-Qiang Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China; Hepatobiliary and Pancreatic Surgery, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Shu-Kun Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
41
|
Wrzosek L, Ciocan D, Hugot C, Spatz M, Dupeux M, Houron C, Lievin-Le Moal V, Puchois V, Ferrere G, Trainel N, Mercier-Nomé F, Durand S, Kroemer G, Voican CS, Emond P, Straube M, Sokol H, Perlemuter G, Cassard AM. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury. Gut 2021; 70:1299-1308. [PMID: 33004548 DOI: 10.1136/gutjnl-2020-321565] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Chronic alcohol consumption is an important cause of liver-related deaths. Specific intestinal microbiota profiles are associated with susceptibility or resistance to alcoholic liver disease in both mice and humans. We aimed to identify the mechanisms by which targeting intestinal microbiota can improve alcohol-induced liver lesions. DESIGN We used human associated mice, a mouse model of alcoholic liver disease transplanted with the intestinal microbiota of alcoholic patients and used the prebiotic, pectin, to modulate the intestinal microbiota. Based on metabolomic analyses, we focused on microbiota tryptophan metabolites, which are ligands of the aryl hydrocarbon receptor (AhR). Involvement of the AhR pathway was assessed using both a pharmacological approach and AhR-deficient mice. RESULTS Pectin treatment modified the microbiome and metabolome in human microbiota-associated alcohol-fed mice, leading to a specific faecal signature. High production of bacterial tryptophan metabolites was associated with an improvement of liver injury. The AhR agonist Ficz (6-formylindolo (3,2-b) carbazole) reduced liver lesions, similarly to prebiotic treatment. Conversely, inactivation of the ahr gene in alcohol-fed AhR knock-out mice abrogated the beneficial effects of the prebiotic. Importantly, patients with severe alcoholic hepatitis have low levels of bacterial tryptophan derivatives that are AhR agonists. CONCLUSIONS Improvement of alcoholic liver disease by targeting the intestinal microbiota involves the AhR pathway, which should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Laura Wrzosek
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Dragos Ciocan
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France.,Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, AP-HP, Clamart, Île-de-France, France
| | - Cindy Hugot
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Madeleine Spatz
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Margot Dupeux
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Camille Houron
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | | | - Virginie Puchois
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Gladys Ferrere
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Nicolas Trainel
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France
| | - Françoise Mercier-Nomé
- Inserm, CNRS, Institut Paris Saclay d'Innovation thérapeutique, Paris-Saclay University, Chatenay-Malabry, Île-de-France, France
| | - Sylvere Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave-Roussy, Villejuif, Île-de-France, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave-Roussy, Villejuif, Île-de-France, France.,U1138, INSERM, Paris, Île-de-France, France
| | - Cosmin Sebastian Voican
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France.,Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, AP-HP, Clamart, Île-de-France, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, University of Tours, Tours, Centre-Val de Loire, France.,Service de Médecine Nucléaire In Vitro, CHRU Tours, Tours, Centre, France
| | - Marjolène Straube
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne University, Paris, Île-de-France, France
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne University, Paris, Île-de-France, France.,Gastroenterology department, Saint-Antoine Hospital, AP-HP, Paris, Île-de-France, France
| | - Gabriel Perlemuter
- UMR996, Université Paris-Saclay, INSERM, Clamart, Île-de-France, France .,Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, AP-HP, Clamart, Île-de-France, France
| | | |
Collapse
|
42
|
Shang Q, Liu H, Wu D, Mahfuz S, Piao X. Source of fiber influences growth, immune responses, gut barrier function and microbiota in weaned piglets fed antibiotic-free diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:315-325. [PMID: 34258419 PMCID: PMC8245821 DOI: 10.1016/j.aninu.2020.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023]
Abstract
This study examined the impacts of different fiber sources on growth, immune status and gut health in weaned piglets fed antibiotic-free diets. Sixty piglets (BW = 8.18 ± 1.35 kg) were assigned to 3 dietary treatments based on BW and gender in a randomized complete block design (5 replicates/treatment and 4 piglets [2 barrows and 2 gilts]/replicate): (1) an antibiotic-free diet (control, CON); (2) CON + 6% wheat bran (WB); (3) CON + 4% sugar beet pulp (SBP). Dietary WB supplementation tended to increase ADG compared with CON from d 1 to 14 (P = 0.051) and from d 1 to 28 (P = 0.099). Supplementation of WB increased (P < 0.05) G:F compared with CON and SBP from d 1 to 14 and from d 1 to 28. Compared with CON, the addition of WB reduced (P < 0.05) diarrhea rate from d 1 to 14 and tended (P = 0.054) to reduce diarrhea rate from d 1 to 28. The addition of WB decreased (P < 0.05) serum diamine oxidase activity on d 14, and up-regulated (P < 0.05) ileal mRNA levels of occludin on d 28 when compared with CON. Piglets fed WB showed decreased (P < 0.05) serum interleukin-6 levels compared to those fed SBP and decreased (P < 0.05) ileal interleukin-8 levels compared to those fed CON and SBP on d 28. Supplementation of WB increased (P < 0.05) serum levels of immunoglobulin A (IgA), IgG and IgM compared with SBP on d 14, and increased (P < 0.05) the levels of serum IgA and ileal sIgA compared with CON and SBP on d 28. Piglets fed WB showed an enhanced (P < 0.05) α-diversity of cecal microbiota than those fed SBP, while piglets fed SBP showed reduced (P < 0.05) α-diversity of cecal microbiota than those fed CON. Compared with CON, the addition of WB elevated (P < 0.05) the abundance of Lachnospira and cecal butyric acid level. Piglets fed WB also showed increased (P < 0.05) abundances of Lachnospira and unclassified_f_Lachnospiraceae compared with those fed SBP. Collectively, the supplementation of WB to antibiotic-free diets improved performance, immune responses, gut barrier function and microbiota compared with the CON and SBP fed piglets. Therefore, supplementing weaned piglets with WB was more effective than SBP.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hansuo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Di Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
43
|
Ciocan D, Cassard AM, Becquemont L, Verstuyft C, Voican CS, El Asmar K, Colle R, David D, Trabado S, Feve B, Chanson P, Perlemuter G, Corruble E. Blood microbiota and metabolomic signature of major depression before and after antidepressant treatment: a prospective case-control study. J Psychiatry Neurosci 2021; 46:E358-E368. [PMID: 34008933 PMCID: PMC8327971 DOI: 10.1503/jpn.200159] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The microbiota interacts with the brain through the gut-brain axis, and a distinct dysbiosis may lead to major depressive episodes. Bacteria can pass through the gut barrier and be found in the blood. Using a multiomic approach, we investigated whether a distinct blood microbiome and metabolome was associated with major depressive episodes, and how it was modulated by treatment. METHODS In this case-control multiomic study, we analyzed the blood microbiome composition, inferred bacterial functions and metabolomic profile of 56 patients experiencing a current major depressive episode and 56 matched healthy controls, before and after treatment, using 16S rDNA sequencing and liquid chromatography coupled to tandem mass spectrometry. RESULTS The baseline blood microbiome in patients with a major depressive episode was distinct from that of healthy controls (patients with a major depressive episode had a higher proportion of Janthinobacterium and lower levels of Neisseria) and changed after antidepressant treatment. Predicted microbiome functions confirmed by metabolomic profiling showed that patients who were experiencing a major depressive episode had alterations in the cyanoamino acid pathway at baseline. High baseline levels of Firmicutes and low proportions of Bosea and Tetrasphaera were associated with response to antidepressant treatment. Based on inferred baseline metagenomic profiles, bacterial pathways that were significantly associated with treatment response were related to xenobiotics, amino acids, and lipid and carbohydrate metabolism, including tryptophan and drug metabolism. Metabolomic analyses showed that plasma tryptophan levels are independently associated with response to antidepressant treatment. LIMITATIONS Our study has some limitations, including a lack of information on blood microbiome origin and the lack of a validation cohort to confirm our results. CONCLUSION Patients with depression have a distinct blood microbiome and metabolomic signature that changes after treatment. Dysbiosis could be a new therapeutic target and prognostic tool for the treatment of patients who are experiencing a major depressive episode.
Collapse
Affiliation(s)
- Dragos Ciocan
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Anne-Marie Cassard
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Laurent Becquemont
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Céline Verstuyft
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Cosmin Sebastian Voican
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Khalil El Asmar
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Romain Colle
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Denis David
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Séverine Trabado
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Bruno Feve
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Philippe Chanson
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Gabriel Perlemuter
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| | - Emmanuelle Corruble
- From the INSERM UMRS 996 - Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Clamart, France (Ciocan, Cassard, Voican, Perlemuter); the University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, France (Ciocan, Cassard, Becquemont, Verstuyft, Voican, El Asmar, Colle, Trabado, Chanson, Perlemuter, Corruble); the APHP, Hepato-Gastroenterology and Nutrition, Antoine-Béclère Hospital, Clamart, France (Ciocan, Voican, Perlemuter); the Centre for Clinical Research (CRC), Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, France (Becquemont); the INSERM UMR-1178, CESP, "MOODS" Team, Le Kremlin-Bicêtre, France (Becquemont, Verstuyft, El Asmar, David, Corruble); the Department of Molecular Genetics, Pharmacogenetics and Hormones, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Becquemont, Verstuyft, Trabado); the Psychiatry Department, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Colle, Corruble); the University Paris-Saclay, University Paris-Sud, Faculty of Pharmacy, Chatenay-Malabry, 92 296, France (David); the INSERM 1185, University Paris-Saclay, University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, 94276, France (Trabado, Chanson); the Department of Endocrinology, Saint-Antoine Hospital, AP-HP, Sorbonne University, University Paris 6, Paris, France (Feve); the INSERM UMR S_938, Saint-Antoine Research Centre, Paris, France (Feve); and the Department of Endocrinology and Reproductive Diseases, Kremlin-Bicêtre Hospital, AP-HP, Le Kremlin-Bicêtre, 94275, France (Chanson)
| |
Collapse
|
44
|
Yu S, Xiong Y, Fu Y, Chen G, Zhu H, Mo X, Wu D, Xu J. Shotgun metagenomics reveals significant gut microbiome features in different grades of acute pancreatitis. Microb Pathog 2021; 154:104849. [PMID: 33781869 DOI: 10.1016/j.micpath.2021.104849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) has a broad spectrum of severity and is associated with considerable morbidity and mortality. Dysbiosis of gut microbiota may be associated with AP severity. AIMS We aimed to evaluate the composition and functional effects of gut microbiota in different grades of AP severity. METHODS We carried out shotgun metagenomic sequencing on rectal swab samples from three patients with mild acute pancreatitis (MAP), three with moderately severe acute pancreatitis (MSAP), three with severe acute pancreatitis (SAP) and three normal control persons (NOR). Differences analysis in gut microbiota composition and functional enrichment was performed. RESULTS Gut microbiota in AP patients was characterized by decreased species richness. The most representative gut microbiota in mild acute pancreatitis (MAP), moderately severe acute pancreatitis (MSAP), and severe acute pancreatitis (SAP) was Streptococcus, Escherichia-coli, and Enterococcus, respectively. Each of the three AP-associated genera could differentiate AP from healthy control population. Representative pathways associated with the glutathione metabolism, lipopolysaccharide biosynthesis, and amino acid metabolism (valine, leucine and isoleucine degradation) were enriched in MAP, MSAP, and SAP, respectively. CONCLUSIONS The study shows a potential association of gut microbiome composition and function to the progression of AP severity.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yangyang Xiong
- Department of Gastroenterology, National Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yangyang Fu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guorong Chen
- Department of Gastroenterology, National Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huadong Zhu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xun Mo
- Department of Intensive Care Unit, The Second People's Hospital of Guiyang, Guiyang, 550004, China
| | - Dong Wu
- Department of Gastroenterology, National Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China; Clinical Epidemiology Unit, International Clinical Epidemiology Network, Beijing, 100730, China.
| | - Jun Xu
- Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
45
|
Impact of drinking alcohol on gut microbiota: recent perspectives on ethanol and alcoholic beverage. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021; 157:1495-1524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Our gut harbours trillions of microorganisms essential for the maintenance of homeostasis and host physiology in health and disease. In the last decade, there has been a growing interest in understanding the bidirectional pathway of communication between our microbiota and the central nervous system. With regard to reward processes there is accumulating evidence from both animal and human studies that this axis may be a key factor in gating reward valence. Focusing on the mesocorticolimbic pathway, we will discuss how the intestinal microbiota is involved in regulating brain reward functions, both in natural (i.e. eating, social or sexual behaviours) and non-natural reinforcers (drug addiction behaviours including those relevant to alcohol, psychostimulants, opioids and cannabinoids). We will integrate preclinical and clinical evidence suggesting that the microbiota-gut-brain axis could be implicated in the development of disorders associated with alterations in the reward system and how it may be targeted as a promising therapeutic strategy. Cover Image for this issue: https://doi.org/10.1111/jnc.15065.
Collapse
Affiliation(s)
| | - Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Harriet Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Brubaker L, Luu S, Hoffman K, Wood A, Navarro Cagigas M, Yao Q, Petrosino J, Fisher W, Van Buren G. Microbiome changes associated with acute and chronic pancreatitis: A systematic review. Pancreatology 2021; 21:1-14. [PMID: 33376062 PMCID: PMC7869754 DOI: 10.1016/j.pan.2020.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Altered intestinal microbiota has been reported in pancreatic disorders, however, it remains unclear whether these changes alter the course of disease in patients with acute (AP) and chronic pancreatitis (CP), or whether these disease states alter the environment to enable pathogenic microbial composition changes to occur. We undertook a systematic review to characterize the gut microbiome in pancreatitis patients. METHODS MEDLINE and EMBASE were searched for studies on microbiota in pancreatitis published from January 1, 2000 to June 5, 2020. Animal studies, reviews, case reports, and non-English articles were excluded. A frequency analysis was performed for outcomes reported in ≥2 studies and studies were analyzed for risk of bias and quality of evidence. RESULTS 22 papers met inclusion criteria; 15 included AP, 7 included CP. No studies were appropriately designed to assess whether alterations in the gut microbiome exacerbate pancreatitis or develop as a result of pancreatitis. We did identify several patterns of microbiome changes that are associated with pancreatitis. The gut microbiome demonstrated decreased alpha diversity in 3/3 A P studies and 3/3 C P studies. Beta diversity analysis revealed differences in bacterial community composition in the gut microbiome in 2/2 A P studies and 3/3 C P studies. Functionally, gut microbiome changes were associated with infectious pathways in AP and CP. Several studies suffered from high risk of bias and inadequate quality. CONCLUSIONS Detecting differences in microbial composition associated with AP and CP may represent a diagnostic tool. Appropriately controlled longitudinal studies are needed to determine whether microbiome changes are causative or reactive in pancreatitis.
Collapse
Affiliation(s)
- L Brubaker
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - S Luu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Kl Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - A Wood
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - M Navarro Cagigas
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Q Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jf Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - W Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - G Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
48
|
Fairfield B, Schnabl B. Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Rep 2020; 3:100220. [PMID: 33598648 PMCID: PMC7868813 DOI: 10.1016/j.jhepr.2020.100220] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol-related liver disease characterises a broad spectrum of hepatic diseases that result from heavy alcohol use, and include alcohol-related steatosis, steatohepatitis, fibrosis, cirrhosis, and alcoholic hepatitis. Amongst heavy drinkers, progression to more severe forms of alcohol-related liver disease is not universal, with only 20% developing cirrhosis and up to one-third developing alcoholic hepatitis. Non-alcohol-related triggers for severe disease are not well understood, but the intestinal microbiome is thought to be a contributing factor. This review examines the role of the microbiome in mild alcohol-related liver disease, cirrhosis, and alcoholic hepatitis. While most of the literature discusses bacterial dysbiosis, we also discuss the available evidence on fungal (mycobiome) and virome alterations in patients with alcohol-related liver disease. Additionally, we explore the mechanisms by which the microbiome contributes to the pathogenesis of alcohol-related liver disease, including effects on intestinal permeability, bile acid dysregulation, and production of hepatotoxic virulence factors.
Collapse
Key Words
- AH, alcoholic hepatitis
- ALD, Alcohol-related liver disease
- AUD, alcohol use disorder
- Alcohol
- Bile acids
- CDR, cirrhosis dysbiosis ratio
- Cirrhosis
- FGF19, fibroblast growth factor 19
- FXR, farnesoid X receptor
- Hepatitis
- LPS, lipopolysaccharide
- MELD, model for end-stage liver disease
- Microbiome
- Mycobiome
- PAMPs, pathogen-associated molecular patterns
- PPI, proton pump inhibitor
- SCFA, short-chain fatty acid
- Virome
Collapse
Affiliation(s)
- Bradley Fairfield
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
49
|
Microbiota reprogramming for treatment of alcohol-related liver disease. Transl Res 2020; 226:26-38. [PMID: 32687975 PMCID: PMC7572584 DOI: 10.1016/j.trsl.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
In the past decade knowledge has expanded regarding the importance of the gut microbiota in maintaining intestinal homeostasis and overall health. During this same time, we have also gained appreciation for the role of the gut-liver axis in the development of liver diseases. Alcohol overconsumption is one of the leading causes of liver failure globally. However, not all people with alcohol use disorder progress to advanced stages of liver disease. With advances in technology to investigate the gut microbiome and metabolome, we are now beginning to delineate alcohol's effects on the gut microbiome in relation to liver disease. This review presents our current understanding on the role of the gut microbiota during alcohol exposure, and various therapeutic attempts that have been made to reprogram the gut microbiota with the goal of alleviating alcoholic-related liver disease.
Collapse
|
50
|
Lang S, Fairfied B, Gao B, Duan Y, Zhang X, Fouts DE, Schnabl B. Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes 2020; 12:1785251. [PMID: 32684075 PMCID: PMC7524371 DOI: 10.1080/19490976.2020.1785251] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS Alcoholic hepatitis is the most severe form of alcohol-related liver disease. While the gut microbiome is known to play a role in disease development and progression, less is known about specific compositional changes of the gut bacterial microbiome associated with disease severity. Therefore, the aim of our study was to correlate gut microbiota features with disease severity in alcoholic hepatitis patients. METHODS We used 16S rRNA gene sequencing on fecal samples from 74 alcoholic hepatitis patients, which were enrolled at 9 centers in Europe, the United States, and Mexico in a multi-center observational study. The relative abundance of gut bacterial taxa on genus level, as well as the microbiome diversity, was correlated to various clinical, laboratory, and histologic parameters. RESULTS We observed a negative correlation between the model for end-stage liver disease score and Shannon diversity, independent of potentially confounding factors (Padjust = 0.046). Alcoholic hepatitis patients with more severe disease had significantly decreased relative abundances of Akkermansia while the relative abundance of Veillonella was increased. We observed a reduction in the Bacteroides abundance (Padjust = 0.048) and Shannon diversity (Padjust = 0.018) in antibiotic-treated patients and patients receiving steroids had an increase in Veillonella abundance (Padjust = 0.005), which was both independent of potentially confounding factors. CONCLUSION We observed distinct changes in the gut bacterial microbiome of alcoholic hepatitis patients with more severe disease. The gut bacterial microbiome might be an attractive target to prevent and treat this deadly disease.
Collapse
Affiliation(s)
- Sonja Lang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bradley Fairfied
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Derrick E. Fouts
- J.Craig Venter Institute, Department for Genomic Medicine, Rockville, MD, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|