1
|
Gentès MC, Langlois-Deshaies R, Raymond Y, Barrette J, Labrie S. Simulating the activity of the natural antimicrobial system of milk on the growth of selected cultures involved in cheesemaking and ripening. Food Microbiol 2025; 128:104737. [PMID: 39952752 DOI: 10.1016/j.fm.2025.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
The impact of three antimicrobial proteins (lactoferrin, lactoperoxidase, lysozyme) on the growth of cultures involved in cheesemaking and ripening was studied. Strains were grown in the optimal media growth of each strain or in cheese simulated environment. The media were supplemented with the antimicrobial proteins together (MIX; 1:1:1) or individually at concentrations found in milk (1x) and cheese (2.5x). Growth properties were evaluated using a novel approach by combining flow cytometry and spectrophotometric assay. Flow cytometry measures cell viability (live/injured/dead cells; total cells). Lactococcus cremoris CUC-C (starter culture) was stimulated by lactoperoxidase and lysozyme reaching higher optical density and total cells than control (without antimicrobial proteins). In cheese simulated environment, the live cells of L. cremoris CUC-C increased of more than 30% in the MIX condition without an increase in total cells. Flow cytometry allowed to show this protective effect. For cultures involved in ripening, the total cells of Lactiplantibacillus plantarum ATCC 14917 and Lacticaseibacillus paracasei subsp. tolerans LMA-1802 decreased of 1 log in the MIX condition. Although the same log reduction, different inhibition behavior was observed. Live cells for Lpb. plantarum ATCC 14917 remained unchanged while for Lcb. paracasei LMA-1802, injured cells increased. These observations were only possible by flow cytometry. The higher concentration (2.5x) tended to decrease the growth properties (lower maximal rate, longer lag phase) of strains as compared to the lower one (1x). The strain-dependent sensitivity to the three antimicrobial proteins underlines the importance of evaluating their effect on cultures prior cheesemaking to ensure proper functionality.
Collapse
Affiliation(s)
- Marie-Claude Gentès
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, QC, Canada; STELA Dairy Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| | - Rachel Langlois-Deshaies
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, QC, Canada; STELA Dairy Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Yves Raymond
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, QC, Canada
| | - Julie Barrette
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, QC, Canada
| | - Steve Labrie
- Department of Food Sciences, FSAA, Université Laval, Quebec City, QC, Canada; STELA Dairy Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
2
|
Choe HW, Kim D, Choi YJ, Koh HG, Park WK. Influence of Microalgal Cell Division Tendency on OD to DCW Conversion Factor and Chlorophyll Contents. J Microbiol Biotechnol 2025; 35:e2412049. [PMID: 40223249 PMCID: PMC12010089 DOI: 10.4014/jmb.2412.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025]
Abstract
As the importance of achieving a carbon-neutral society grow, research on the production of microalgal bioproducts have gained significant attention. Among the production processes, cultivation has emerged as a critical step as it determines overall productivity and feasibility. However, changes in cell properties during cultivation pose challenges, and there is currently no direct method to simultaneously assess cell growth, cellular division properties and cell enlargement. In this study, two green algae (Chlorella sp. ABC001 and Chlorella sp. HS2) were cultivated under photo and mixotrophic conditions to evaluate their growth, cell size profile, and changes in optical density. The mixotrophic condition resulted in 2.1 and 1.6-fold higher biomass yields than the photoautotrophic condition for ABC001 and HS2, respectively at day 4. Over the 4-day cultivation, cell sizes ranged from 2.51 to 5.57 μm for ABC001 and from 2.56 to 4.41 μm for HS2. By analyzing changes in the conversion factor between dry cell weight (DCW) and optical density (OD), it was observed that variations in the slope correlated with changes in cell size. Additionally, chlorophyll content fluctuated during cultivation, reaching maximum levels (14.34 and 16.58 μg/mg biomass, respectively) under phototrophic condition on day 2. This study highlights the relationship between cell division tendencies, DCW, cell size, and OD, demonstrating their critical role in determining cellular component content. For future optimization of algal product production processes, further research on these cellular differentiation mechanisms will be essential.
Collapse
Affiliation(s)
- Hyung Woon Choe
- Department of Chemistry, Sangmyung University, Seoul 03016, Republic of Korea
| | - DanA Kim
- Department of Chemistry, Sangmyung University, Seoul 03016, Republic of Korea
| | - Young Jun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Advanced Materials Program, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological & Chemical Engineering, Hongik University, Sejong-si 30016, Republic of Korea
| | - Won-Kun Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Advanced Materials Program, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Mlinarić N, Zore A, Veselinovic V, Trtić N, Dolić O, Štukelj R, Abram A, Učakar A, Adamović T, Vidrih R, Rojko F, Kasemets K, Kahru A, Bohinc K. Antimicrobial Activity of Poly(methyl methacrylate) Doped with CuO and ZnO Nanoparticles. ACS OMEGA 2025; 10:13060-13072. [PMID: 40224428 PMCID: PMC11983175 DOI: 10.1021/acsomega.4c10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Oral health represents a significant factor in general health and life quality. A significant number of people are affected by tooth loss during their lifetimes, especially in the older population. Poly(methyl methacrylate) (PMMA) resins are the preferred option for replacing missing teeth due to the material stability, easy handling, low toxicity, and most importantly biocompatibility with human tissue. Even though PMMA is the preferable material for denture preparation, it is susceptible to microbial colonization, which can induce the development of oral infections. This study aimed to increase the antimicrobial effect of PMMA and compare the antimicrobial properties of PMMA incorporated with different amounts (2 and 5 wt %) of zinc oxide (ZnO; primary size 62.4 nm ± 16.7 nm) and copper oxide (CuO; primary size 434.0 nm ± 118.5 nm) nanoparticles to determine their antimicrobial effects on Gram-positive bacteria Staphylococcus aureus and yeast Candida albicans-pathogenic microbes often found on dentures. To understand the adhesion of microorganisms to PMMA-modified surfaces, the following surface properties were measured: roughness, contact angle, and ζ potential. In addition, CIE (the International Commission on Illumination) color parameters of the materials were determined. The bacterial adhesion was measured by viable plate counts and scanning electron microscopy. Our study showed that 5 wt % ZnO added to PMMA yields a promising denture material that is esthetically acceptable and shows antimicrobial properties toward both, Staphylococcus aureus and Candida albicans.
Collapse
Affiliation(s)
| | - Anamarija Zore
- Faculty
of Health Sciences, University of Ljubljana, Zdravstvena pot, 1000 Ljubljana, Slovenia
| | - Valentina Veselinovic
- Faculty
of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Nataša Trtić
- Faculty
of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Olivera Dolić
- Faculty
of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Roman Štukelj
- Faculty
of Health Sciences, University of Ljubljana, Zdravstvena pot, 1000 Ljubljana, Slovenia
| | - Anže Abram
- Jožef
Stefan Institute, Jamova
cesta 39, 1000 Ljubljana, Slovenia
| | | | - Tijana Adamović
- Faculty
of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Rajko Vidrih
- Biotechnical
Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Franc Rojko
- Faculty
of Health Sciences, University of Ljubljana, Zdravstvena pot, 1000 Ljubljana, Slovenia
| | - Kaja Kasemets
- Laboratory
of Environmental Toxicology, National Institute
of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12628, Estonia
| | - Anne Kahru
- Laboratory
of Environmental Toxicology, National Institute
of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12628, Estonia
| | - Klemen Bohinc
- Faculty
of Health Sciences, University of Ljubljana, Zdravstvena pot, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Jeong SG, Lee Y, Jeong HS, Park SJ, Yeom J, Choi CH, Kim BG. Probiotic Antimicrobial Evaluation Via Real-Time Profiling of Bacterial Cell Proliferation Using Stochastic Kinetics. ACS Sens 2025; 10:1880-1888. [PMID: 40014036 PMCID: PMC11959587 DOI: 10.1021/acssensors.4c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Probiotic metabolites are gaining attention as potential antibiotic candidates against antibiotic-resistant bacteria. The disk diffusion test, by measuring bacterial aggregate responses, faces challenges in accurately evaluating antimicrobial efficacy when these responses to different probiotic strains are indistinguishable at a macroscopic level. Here, this study presents an analytical method for accurately evaluating antimicrobial activity by analyzing bacterial cell proliferation suppression at a microscopic level. This assay can be used in a coculture system, designed to continuously expose pathogenic bacteria growing on the bottom surface of the culture plate to probiotic metabolites, selectively released from porous capsules positioned above. Bacterial proliferation is optically monitored in real-time and tracked via a computer vision algorithm. Specifically, bacterial proliferation is quantified as their doubling time, calculated using a proposed stochastic kinetic model. This method identifies the most potent antimicrobial strains by determining which probiotic candidates most effectively extend the bacterial doubling time. In comparative experiments using the same strains, this proposed method demonstrated clear distinctions in the antimicrobial efficacy of each strain, unlike the disk diffusion test. Therefore, this approach provides a reliable solution for identifying superior probiotic strains, with potential for widespread use in discovering new antimicrobial agents.
Collapse
Affiliation(s)
- Seong-Geun Jeong
- Bio-MAX
Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Youjin Lee
- Department
of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic
of Korea
| | - Hye-Seon Jeong
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic
of Korea
| | - Seong Jun Park
- National
CRI-Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic
of Korea
- Department
of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinki Yeom
- Department
of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic
of Korea
- Department
of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 08826, Republic
of Korea
| | - Chang-Hyung Choi
- School
of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic
of Korea
| | - Byung-Gee Kim
- Bio-MAX
Institute, Seoul National University, Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering and Institute of Molecular
Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Thiruppathy D, Lekbua A, Coker J, Weng Y, Askarian F, Kousha A, Marotz C, Hauw A, Tjuanta M, Nizet V, Zengler K. Protocol for the development, assembly, and testing of a synthetic skin microbial community. STAR Protoc 2025; 6:103714. [PMID: 40138316 PMCID: PMC11985024 DOI: 10.1016/j.xpro.2025.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
A reproducible study system is essential for understanding the role of microbes in human skin health and disease. We present a protocol for constructing a synthetic microbial community (SkinCom) of nine strains dominant to native human skin microbiome. We describe steps for computing growth metrics, constructing communities, and extracting DNA and library preparation for shotgun sequencing. We detail steps for data preprocessing and analysis of community samples. We illustrate SkinCom's application with an epicutaneous murine model and downstream multiomic analysis. For complete details on the use and execution of this protocol, please refer to Lekbua et al.1.
Collapse
Affiliation(s)
- Deepan Thiruppathy
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA.
| | - Asama Lekbua
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0376, USA
| | - Joanna Coker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA
| | - Yuhan Weng
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093-0419, USA
| | - Fatemeh Askarian
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA
| | - Armin Kousha
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA
| | - Clarisse Marotz
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA
| | - Amber Hauw
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA
| | - Megan Tjuanta
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karsten Zengler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0403, USA; Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0418, USA.
| |
Collapse
|
6
|
Chen S, Huang PH, Kim H, Cui Y, Buie CR. MCount: An automated colony counting tool for high-throughput microbiology. PLoS One 2025; 20:e0311242. [PMID: 40106480 PMCID: PMC11957731 DOI: 10.1371/journal.pone.0311242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/16/2024] [Indexed: 03/22/2025] Open
Abstract
Accurate colony counting is crucial for assessing microbial growth in high-throughput workflows. However, existing automated counting solutions struggle with the issue of merged colonies, a common occurrence in high-throughput plating. To overcome this limitation, we propose MCount, the only known solution that incorporates both contour information and regional algorithms for colony counting. By optimizing the pairing of contours with regional candidate circles, MCount can accurately infer the number of merged colonies. We evaluate MCount on a precisely labeled Escherichia coli dataset of 960 images (15,847 segments) and achieve an average error rate of 3.99%, significantly outperforming existing published solutions such as NICE (16.54%), AutoCellSeg (33.54%), and OpenCFU (50.31%). MCount is user-friendly as it only requires two hyperparameters. To further facilitate deployment in scenarios with limited labeled data, we propose statistical methods for selecting the hyperparameters using few labeled or even unlabeled data points, all of which guarantee consistently low error rates. MCount presents a promising solution for accurate and efficient colony counting in application workflows requiring high throughput, particularly in cases with merged colonies.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Hyungseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yuhe Cui
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Cullen R. Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Iizuka K, Ochiai H, Iizuka Y, Tsuchida S, Umemura H, Somei J, Tanimichi Y, Miura K, Nakamura H, Nakayama T, Aida Y, Hatta Y, Takei M. Space disinfection using TiO2 photocatalyst reduces the incidence of febrile neutropenia in cancer patients. Sci Rep 2025; 15:8874. [PMID: 40087353 PMCID: PMC11909134 DOI: 10.1038/s41598-024-82229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/03/2024] [Indexed: 03/17/2025] Open
Abstract
Febrile neutropenia (FN) is life-threatening condition, and airborne microorganisms have been identified as one of the potential transmission routes. The objective of this study was to evaluate spatial sterilization using photocatalytic oxidative decomposition reactions which are effective to prevent FN. An air purifier equipped with a platinum-added titanium dioxide photocatalytic and LED light source (LED-TiO2 device) was installed in hospital rooms (per 21.5-35 m3) to investigate changes in FN incidence and airborne microorganism counts. Airborne microorganisms in the hospital rooms matched those responsible for nosocomial infections. The incidence of FN was significantly reduced after installation of the LED-TiO2 device [9/13 vs. 2/12, P-value (P) = 0.015]. The LED-TiO2 device decreased the number of airborne microorganisms in patient-free rooms by approximately 75% after 2 h [P < 0.001]. When patient was in the room, the number of airborne microorganisms increased with medical procedure. However, after 20 min of procedure, the number of airborne microorganisms was approximately 50% lower than without the device room [P = 0.019]. The LED-TiO2 device successfully achieved spatial disinfection of hospital rooms, and reduced the incidence of FN. Spatial disinfection using photocatalysts is considered an effective new infection prevention measure for patients with severe neutropenia undergoing cancer treatment.
Collapse
Affiliation(s)
- Kazuhide Iizuka
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan.
| | - Heihachiro Ochiai
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshikazu Iizuka
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sachio Tsuchida
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Hiroshi Umemura
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Junichi Somei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
- Kaltech Co., Ltd, Osaka, Japan
| | - Yumiko Tanimichi
- Department of Clinical Laboratory, Nihon University School of Medicine Itabashi Hospital, Tokyo, Japan
| | - Katsuhiro Miura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Imtiaz S, Saleem M. Fluorescence Spectroscopy Based Identification of Pseudomonas Aeruginosa and Escherichia Coli Suspensions. J Fluoresc 2025; 35:1381-1391. [PMID: 38334915 DOI: 10.1007/s10895-024-03608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
In this article, Fluorescence spectroscopy has been employed for the identification of Pseudomonas aeruginosa (PA) and Escherichia coli (E. coli) in water suspension. Emission spectra of PA and E. coli suspensions have been acquired by using excitation wavelengths from 270 to 420 nm with steps of 10 nm to explore their spectral features. It has been found that the emission spectra of tryptophan, tyrosine, NADH and FAD, being the intracellular biomolecules present in both bacteria, can be used as fingerprints for their identification, differentiation and quantification. Both bacterial strains can clearly be differentiated from water and from each other by using λex 270-290 nm through spectral analysis and from λex: 300-500 nm by applying statistical analysis. Furthermore, calibration curves for different bacterial loads of PA and E. coli suspensions have been produced between colonies forming units per ml (CFUs/ml) the integrated intensities of their emission spectra. CFUs/ml of both bacterial suspensions have been determined through plate count method which was used as cross-reference for the analysis of emission spectra of both bacterial suspensions. These curves may be used to estimate CFU/ml of both PA and E. coli in unknown water suspensions by determining the integrating intensity of their emission spectra.
Collapse
Affiliation(s)
- Sana Imtiaz
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, 45650, Nilore, Islamabad, Pakistan
| | - Muhammad Saleem
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, 45650, Nilore, Islamabad, Pakistan.
| |
Collapse
|
9
|
Kushkevych I, Dvořáková M, Dordevic D, Futoma-Kołoch B, Gajdács M, Al-Madboly LA, Abd El-Salam M. Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives. Comput Struct Biotechnol J 2025; 27:851-868. [PMID: 40115534 PMCID: PMC11925123 DOI: 10.1016/j.csbj.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, have become increasingly prevalent across all human generations. Despite advances in diagnosis, effective long-term therapeutic options remain limited, with many patients experiencing recurrent symptoms after treatment. The multifactorial origins of ulcerative colitis are widely recognized, but the intestinal microbiome, particularly bacteria from the Desulfovibrionaceae family, is thought to play a central role in the pathogenesis of the disease. These bacteria contribute significantly to gut microbial functions, yet their cytotoxic and viability characteristics under disease conditions remain poorly understood. Our review provides insights on recent advancements in methodologies for assessing the cytotoxicity and viability of anaerobic intestinal bacteria, with a specific focus on their relevance to gut health and disease. We introduce overview from current literature on modern techniques including flow cytometry, high-throughput screening, and molecular-based assays, highlighting their applications in understanding the role of Desulfovibrionaceae and other gut microbes in IBD pathogenesis. By bridging methodological advancements with functional implications, this review aims to enhance our understanding of gut microbiota-host interactions, which are crucial for maintaining health and preventing disease through immune modulation, where microbiota help regulate immune responses and prevent excessive inflammation; nutrient metabolism, including the breakdown of dietary fibers into short-chain fatty acids that support gut health; and colonization resistance, where beneficial microbes outcompete harmful pathogens to maintain microbial balance.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Michaela Dvořáková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Dani Dordevic
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno 612 42, Czech Republic
| | - Bożena Futoma-Kołoch
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, ul. S. Przybyszewskiego 63, Wrocław 51-148, Poland
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62-64, Szeged 6720, Hungary
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa 11152, Egypt
- Instituto de Formación Continua IL3, University of Barcelona, Barcelona 08018, Spain
| |
Collapse
|
10
|
Khasanshina ZR, Kornakov IA, Buslaeva EA, Kazakova AV, Ishchuk SA, Shmurak VI, Saparova VB, Latypov VF, Drai RV. Development of therapeutic peptide producers based on Escherichia coli BL21 and their cultivation technology. DRUG DEVELOPMENT & REGISTRATION 2025. [DOI: 10.33380/2305-2066-2025-14-1-1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Introduction. Peptides with a molecular weight of less than 5 kDa have been used in medicine and biotechnology over the past decade for the treatment of various diseases. However, chemical synthesis peptide has several disadvantages, including low yield, reduced efficiency, and high costs. An alternative approach to peptide production is the use of the Escherichia coli expression system. The development of effective peptide synthesis technology remains a critical task because of the low productivity of recombinant strains.Aim. Developing highly efficient strains of Escherichia coli BL21 expressing therapeutic peptides with a molecular weight of less than 5 kDa in E. coli and their cultivation technology.Materials and methods. Genetic constructs were obtained using the restriction-ligase method, and their authenticity was confirmed by Sanger sequencing. Cultivation technology was developed using the Design of Experiments approach. The cultivation condition was validated in the Biostat B bioreactor. Hybrid proteins were purified by metal-chelate chromatography, followed by hydrolysis ULP proteas to obtain the target peptides. The quantitative content of the target protein was determined by capillary electrophoresis, and the authenticity of the protein was confirmed by HPLC-MS and ELISA.Results and discussion. Highly efficient peptide-producing strains were developed. Cultivation conditions were optimized: рН 7.5 ± 0.5, cultivation temperature 37 °C, induction optical density 28 ± 2, IPTG concentration 0.05 мМ. The productivity of the producer strains was up to 4.82 ± 0.05 g/L. Furthermore, samples of the target peptides were isolated and purified.Conclusion. The productivity of peptides in this study were significantly higher than in previous research. The presented strategy for strain development, cultivation and purification technology can be used production of therapeutic peptides with diverse physical chemicals characteristics in the future.
Collapse
|
11
|
Wang C, Yang Y, Xu X, Wang D, Shi X, Liu L, Deng Y, Li L, Zhang T. The quest for environmental analytical microbiology: absolute quantitative microbiome using cellular internal standards. MICROBIOME 2025; 13:26. [PMID: 39871306 PMCID: PMC11773863 DOI: 10.1186/s40168-024-02009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND High-throughput sequencing has revolutionized environmental microbiome research, providing both quantitative and qualitative insights into nucleic acid targets in the environment. The resulting microbial composition (community structure) data are essential for environmental analytical microbiology, enabling characterization of community dynamics and assessing microbial pollutants for the development of intervention strategies. However, the relative abundances derived from sequencing impede comparisons across samples and studies. RESULTS This review systematically summarizes various absolute quantification (AQ) methods and their applications to obtain the absolute abundance of microbial cells and genetic elements. By critically comparing the strengths and limitations of AQ methods, we advocate the use of cellular internal standard-based high-throughput sequencing as an appropriate AQ approach for studying environmental microbiome originated from samples of complex matrices and high heterogeneity. To minimize ambiguity and facilitate cross-study comparisons, we outline essential reporting elements for technical considerations, and provide a checklist as a reference for environmental microbiome research. CONCLUSIONS In summary, we propose absolute microbiome quantification using cellular internal standards for environmental analytical microbiology, and we anticipate that this approach will greatly benefit future studies. Video Abstract.
Collapse
Affiliation(s)
- Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
- School of Public Health, The University of Hong Kong, Hong Kong, China.
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Andrew N, Trofe A, Laws E, Pathiraja G, Kalkar S, Ignatova T, Rathnayake H. Charge Capacitive Signatures at the Interface of E. coli/MOF Biohybrids to Create a Live Cell Biocapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411472. [PMID: 39828533 DOI: 10.1002/smll.202411472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 01/22/2025]
Abstract
The chemistry of the extracellular electron transfer (EET) process in microorganisms can be understood by interfacing them with abiotic materials that act as external redox mediators. These mediators capture and transfer extracellular electrons through redox reactions, bridging the microorganism and the electrode surface. Understanding this charge transfer process is essential for designing biocapacitors capable of modulating and storing charge signatures as capacitance at the electrode interface. Herein, a novel biointerfacial strategy is presented to investigate directional charge injection from a non-exoelectrogenic living microbe to an electrode surface using the porous metal-organic framework (MOF), MIL-88B. The biohybrid, formed by interfacing Escherichia coli (E. coli) with MIL-88B, demonstrates symbiotic interactions between the biotic and abiotic components, facilitating EET from E. coli to the electrode via the MOF. Acting as a redox mediator, the MOF catalyzes E. coli's exoelectrogenic activity, generating distinct charge capacitive signatures at the E. coli-MOF interface. This system integrates the capacitive signatures resulting from the EET process with the MOF's intrinsic pseudocapacitive properties and surface-controlled capacitive effects, functioning as a highly efficient biocapacitor. Furthermore, this approach of converting the biochemical energy of a non-exoelectrogenic microorganism into capacitive signatures opens a new pathway for translating biological signals into functional outputs, paving the way for autonomous biosensing platforms.
Collapse
Affiliation(s)
- Ndepana Andrew
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Eric Laws
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Swapna Kalkar
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Hemali Rathnayake
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| |
Collapse
|
13
|
Vander Elst N, Bellemans J, Lavigne R, Briers Y, Meyer E. Endolysin NC5 improves early cloxacillin treatment in a mouse model of Streptococcus uberis mastitis. Appl Microbiol Biotechnol 2024; 108:118. [PMID: 38204128 PMCID: PMC10781846 DOI: 10.1007/s00253-023-12820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Streptococcus uberis frequently causes bovine mastitis, an infectious udder disease with significant economic implications for dairy cows. Conventional antibiotics, such as cloxacillin, sometimes have limited success in eliminating S. uberis as a stand-alone therapy. To address this challenge, the study objective was to investigate the VersaTile engineered endolysin NC5 as a supplemental therapy to cloxacillin in a mouse model of bovine S. uberis mastitis. NC5 was previously selected based on its intracellular killing and biofilm eradicating activity. To deliver preclinical proof-of-concept of this supplemental strategy, lactating mice were intramammarily infected with a bovine S. uberis field isolate and subsequently treated with cloxacillin (30.0 μg) combined with either a low (23.5 μg) or high (235.0 μg) dose of NC5. An antibiotic monotherapy group, as well as placebo treatment, was included as controls. Two types of responders were identified: fast (n = 17), showing response after 4-h treatment, and slow (n = 10), exhibiting no clear response at 4 h post-treatment across all groups. The high-dose combination therapy in comparison with placebo treatment impacted the hallmarks of mastitis in the fast responders by reducing (i) the bacterial load 13,000-fold (4.11 ± 0.78 Δlog10; p < 0.001), (ii) neutrophil infiltration 5.7-fold (p > 0.05), and (iii) the key pro-inflammatory chemokine IL-8 13-fold (p < 0.01). These mastitis hallmarks typically followed a dose response dependent on the amount of endolysin added. The current in vivo study complements our in vitro data and provides preclinical proof-of-concept of NC5 as an adjunct to intramammary cloxacillin treatment. KEY POINTS: • Engineered endolysin NC5 was preclinically evaluated as add-on to cloxacillin treatment. • Two types of mice (slow and fast responding) were observed. • The add-on treatment decreased bacterial load, neutrophil influx, and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Niels Vander Elst
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium.
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium.
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Julie Bellemans
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 21, 3001, Heverlee, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
14
|
Liu S, Simińska-Stanny J, Yan L, Fan L, Ding X, Ma T, Guo W, Zhao Y, Li M, Chen J, Okoro OV, Shavandi A, Nie L. Bioactive ECM-mimicking nerve guidance conduit for enhancing peripheral nerve repair. Mater Today Bio 2024; 29:101324. [PMID: 39649251 PMCID: PMC11621582 DOI: 10.1016/j.mtbio.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Extensive research efforts are being directed towards identifying alternatives to autografts for the treatment of peripheral nerve injuries (PNIs) with engineered nerve conduits (NGCs) identified as having potential for PNI patients. These NGCs, however, may not fulfill the necessary criteria for a successful transplant, such as sufficient mechanical structural support and functionalization. To address the aforementioned limitations of NGCs, the present investigation explored the development of double cross-linked hydrogels (o-CSMA-E) that integrate the biocompatibility of porcine tendon extracellular matrix (ECM) with the antimicrobial and conductive properties of methacrylated quaternary chitosan. The hydrogels had matrices that could promote the growth of axons and the transmission of neural signals. The hydrogels were subsequently incorporated into a nanofibrous PLLA-ZnO sheath scaffold (ZnO@PLLA) to emulate the natural nerve structure, guiding cell growth and facilitating nerve regeneration. The collaboration of core and sheath materials in ZnO@PLLA/o-CSMA-E nerve guidance conduits resulted in enhanced migration of Schwann cells, formation of myelin sheaths, and improved locomotion performance in rats with sciatic nerve defects when in vivo studies were undertaken. Notably, the in vivo studies demonstrated the similarity between the newly developed engineered NGCs and autologous transplants, with the newly engineered NGCs possessing the potential to promote functional recovery by mimicking the tubular structure and ECM of nerves.
Collapse
Affiliation(s)
- Shuang Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Tengda Ma
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yingsong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianghai Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Oseweuba Valentine Okoro
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Armin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lei Nie
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
15
|
Kim MK, Chen Q, Echterhof A, Pennetzdorfer N, McBride RC, Banaei N, Burgener EB, Milla CE, Bollyky PL. A blueprint for broadly effective bacteriophage-antibiotic cocktails against bacterial infections. Nat Commun 2024; 15:9987. [PMID: 39609398 PMCID: PMC11604943 DOI: 10.1038/s41467-024-53994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Bacteriophage (phage) therapy is a promising therapeutic modality for multidrug-resistant bacterial infections, but its application is mainly limited to personalized therapy due to the narrow host range of individual phages. While phage cocktails targeting all possible bacterial receptors could theoretically confer broad coverage, the extensive diversity of bacteria and the complexity of phage-phage interactions render this approach challenging. Here, using screening protocols for identifying "complementarity groups" of phages using non-redundant receptors, we generate effective, broad-range phage cocktails that prevent the emergence of bacterial resistance. We also discover characteristic interactions between phage complementarity groups and particular antibiotic classes, facilitating the prediction of phage-antibiotic as well as phage-phage interactions. Using this strategy, we create three phage-antibiotic cocktails, each demonstrating efficacy against ≥96% of 153 Pseudomonas aeruginosa clinical isolates, including biofilm cultures, and demonstrate comparable efficacy in an in vivo wound infection model. We similarly develop effective Staphylococcus aureus phage-antibiotic cocktails and demonstrate their utility of combined cocktails against polymicrobial (mixed P. aeruginosa/S. aureus) cultures, highlighting the broad applicability of this approach. These studies establish a blueprint for the development of effective, broad-spectrum phage-antibiotic cocktails, paving the way for off-the-shelf phage-based therapeutics to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Minyoung Kevin Kim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nina Pennetzdorfer
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert C McBride
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Niaz Banaei
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Tang S, Xu C, Zhou Y, Shen Y, Zeng Q, Su D. Akkermansia muciniphila Growth Promoted by Lychee Major Flavonoid through Bacteroides uniformis Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24552-24560. [PMID: 39436683 DOI: 10.1021/acs.jafc.4c07429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) possesses health-promoting properties. Nevertheless, A. muciniphila enrichment remains a challenging endeavor. Quercetin-3-O-rutinose-7-O-α-l-rhamnoside (QRR), a flavonoid found in lychee pulp, has a unique double-substituted glycosylated structure, requiring a specific intestinal microbiota for effective metabolism. Here, QRR was fermented using a coculture of Bacteroides uniformis and A. muciniphila, and the interactions between the two were elucidated in terms of QRR regulation of microbial growth changes and metabolic properties. The results demonstrated that QRR effectively promoted the proliferation of A. muciniphila based on the metabolic action of B. uniformis in vitro, which was evidenced by a notable increase in the number of viable bacteria. Furthermore, the coculture sample exhibited a significant increase in SCFAs. Qualitative analysis of metabolites by UPLC-ESI-Triple-TOF-MS/MS showed that B. uniformis could release sugars on QRR to produce quercetin-3-O-glucoside-7-O-α-rhamnoside and further quercetin. In the coculture and B. uniformis culture, quercetin was converted to taxifolin, which was identified as a crucial intermediate in the metabolism of QRR. Notably, the metabolite kaempferol was only detected in the coculture. The present study reveals the interaction between QRR and the coculture of A. muciniphila and B. uniformis, providing a practical basis for the potential prebiotic value of QRR.
Collapse
Affiliation(s)
- Shuying Tang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Canhua Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yongqiang Zhou
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, P.R. China
| | - Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
17
|
Kim S, Lee YH. The Salmonella enterica EnvE is an Outer Membrane Lipoprotein and Its Gene Expression Leads to Transcriptional Repression of the Virulence Gene msgA. J Microbiol 2024; 62:1013-1022. [PMID: 39546166 DOI: 10.1007/s12275-024-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The envE gene of Salmonella enterica serovar Typhimurium is encoded within Salmonella Pathogenicity Island-11 (SPI-11) and is located immediately upstream of the virulence gene msgA (macrophage survival gene A) in the same transcriptional orientation. To date, the characteristics and roles of envE remain largely unexplored. In this study, we show that EnvE, a predicted lipoprotein, is localized on the outer membrane using sucrose gradient ultracentrifugation. Under oxidative stress conditions, envE transcription is suppressed, while msgA transcription is induced, indicating an inverse correlation between the mRNA levels of the two neighboring genes. Importantly, inactivation of envE leads to constitutive transcription of msgA regardless of the presence of oxidative stress. Moreover, trans-complementation of the envE mutant with a plasmid-borne envE fails to prevent the induction of msgA transcription, suggesting that envE functions as a cis-regulatory element rather than a trans-acting factor. We further show that both inactivation and complementation of envE confer wild-type levels of resistance to oxidative stress by ensuring the expression of msgA. Our data suggest that the S. enterica envE gene encodes an outer membrane lipoprotein, and its transcription represses msgA expression in a cis-acting manner, probably by transcriptional interference, although the exact molecular details are yet unclear.
Collapse
Affiliation(s)
- Sinyeon Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- MThera Pharma Co., Seoul, 07793, Republic of Korea
| | - Yong Heon Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, 47011, Republic of Korea.
| |
Collapse
|
18
|
Bellankimath AB, Chapagain C, Branders S, Ali J, Wilson RC, Johansen TEB, Ahmad R. Culture and amplification-free nanopore sequencing for rapid detection of pathogens and antimicrobial resistance genes from urine. Eur J Clin Microbiol Infect Dis 2024; 43:2177-2190. [PMID: 39283495 PMCID: PMC11534888 DOI: 10.1007/s10096-024-04929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/23/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE Urinary Tract Infections (UTIs) are among the most prevalent infections globally. Every year, approximately 150 million people are diagnosed with UTIs worldwide. The current state-of-the-art diagnostic methods are culture-based and have a turnaround time of 2-4 days for pathogen identification and susceptibility testing. METHODS This study first establishes an optical density culture-based method for spiking healthy urine samples with the six most prevalent uropathogens. Urine samples were spiked at clinically significant concentrations of 103-105 CFU/ml. Three DNA extraction kits (BioStic, PowerFood, and Blood and Tissue) were investigated based on the DNA yield, average processing time, elution volume, and the average cost incurred per extraction. After DNA extraction, the samples were sequenced using MinION and Flongle flow cells. RESULTS The Blood and Tissue kit outperformed the other kits based on the investigated parameters. Using nanopore sequencing, all the pathogens and corresponding genes were only identified at a spike concentration of 105 CFU/ml, achieved after 10 min and 3 hours of sequencing, respectively. However, some pathogens and antibiotic-resistance genes (ARG) could be identified from spikes at 103 colony formation units (CFU/mL). The overall turnaround time was five hours, from sample preparation to sequencing-based identification of pathogen ID and antimicrobial resistance genes. CONCLUSION This study demonstrates excellent promise in reducing the time required for informed antibiotic administration from 48 to 72 h to five hours, thereby reducing the number of empirical doses and increasing the chance of saving lives.
Collapse
Affiliation(s)
| | - Crystal Chapagain
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, Hamar, 2317, Norway
| | - Sverre Branders
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, Hamar, 2317, Norway
| | - Jawad Ali
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, Hamar, 2317, Norway
| | - Robert C Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, Hamar, 2317, Norway
| | - Truls E Bjerklund Johansen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, Hamar, 2317, Norway.
- Institute of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Hansine Hansens veg 18, Tromsø, 9019, Norway.
| |
Collapse
|
19
|
Pollack-Milgate S, Saitia S, Tang JX. Rapid growth rate of Enterobacter sp. SM3 determined using several methods. BMC Microbiol 2024; 24:403. [PMID: 39390418 PMCID: PMC11465882 DOI: 10.1186/s12866-024-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Bacterial growth rate, commonly reported in terms of doubling time, is frequently determined by one of two techniques: either by measuring optical absorption of a growing culture or by taking samples at different times during their growth phase, diluting them, spreading them on agar plates, incubating them, and counting the colonies that form. Both techniques require measurements of multiple repeats, as well careful assessment of reproducibility and consistency. Existing literature using either technique gives a wide range of growth rate values for even the most extensively studied species of bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This work aims to apply several methods to reliably determine the growth rate of a recently identified species of Enterobacteriaceae, called Enterobacter sp. SM3, and to compare that rate with that of a well-known wildtype E. coli strain KP437. RESULTS We extend conventional optical density (OD) measurements to determine the growth rate of Enterobacter sp. SM3. To assess the reliability of this technique, we compare growth rates obtained by fitting the OD data to exponential growth, applying a relative density method, and measuring shifts in OD curves following set factors of dilution. The main source of error in applying the OD technique is due to the reliance on an exponential growth phase with a short span. With proper choice of parameter range, however, we show that these three methods yield consistent results. We also measured the SM3 division rate by counting colony-forming units (CFU) versus time, yielding results consistent with the OD measurements. In lysogeny broth at 37oC, SM3 divides every 21 ± 3 min, notably faster than the RP437 strain of E. coli, which divides every 29 ± 2 min. CONCLUSION The main conclusion of this report is that conventional optical density (OD) measurements and the colony-forming units (CFU) method can yield consistent values of bacterial growth rate. However, to ensure the reproducibility and reliability of the measured growth rate of each bacterial strain, different methods ought to be applied in close comparison. The effort of checking for consistency among multiple techniques, as we have done in this study, is necessary to avoid reporting variable values of doubling time for particular species or strains of bacteria, as seen in the literature.
Collapse
Affiliation(s)
| | - Sanchi Saitia
- Department of Physics, Brown University, 182 Hope Street, Providence, RI, 02912, USA
| | - Jay X Tang
- Department of Physics, Brown University, 182 Hope Street, Providence, RI, 02912, USA.
| |
Collapse
|
20
|
Nieto C, Igler C, Singh A. Bacterial cell size modulation along the growth curve across nutrient conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614723. [PMID: 39386733 PMCID: PMC11463677 DOI: 10.1101/2024.09.24.614723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Under stable growth conditions, bacteria maintain cell size homeostasis through coordinated elongation and division. However, fluctuations in nutrient availability result in dynamic regulation of the target cell size. Using microscopy imaging and mathematical modelling, we examine how bacterial cell volume changes over the growth curve in response to nutrient conditions. We find that two rod-shaped bacteria, Escherichia coli and Salmonella enterica, exhibit similar cell volume distributions in stationary phase cultures irrespective of growth media. Cell resuspension in rich media results in a transient peak with a five-fold increase in cell volume ≈ 2h after resuspension. This maximum cell volume, which depends on nutrient composition, subsequently decreases to the stationary phase cell size. Continuous nutrient supply sustains the maximum volume. In poor nutrient conditions, cell volume shows minimal changes over the growth curve, but a markedly decreased cell width compared to other conditions. The observed cell volume dynamics translate into non-monotonic dynamics in the ratio between biomass (optical density) and cell number (colony-forming units), highlighting their non-linear relationship. Our findings support a heuristic model comparing modulation of cell division relative to growth across nutrient conditions and providing novel insight into the mechanisms of cell size control under dynamic environmental conditions.
Collapse
Affiliation(s)
- César Nieto
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Claudia Igler
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
21
|
Kumar D, Gayen A, Chandra M. Growth Phase Contribution in Dictating Drug Transport and Subcellular Accumulation inside Escherichia coli. ACS Infect Dis 2024; 10:3233-3244. [PMID: 39178142 DOI: 10.1021/acsinfecdis.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Depending upon nutrient availability, bacteria transit to multiple growth phases. The transition from the active to nongrowing phase results in reduced drug efficacy and, in some cases, even multidrug resistance. However, due to multiple alterations in the cell envelope, probing the drug permeation kinetics during growth phases becomes perplexing, especially across the Gram-negative bacteria's complex dual membrane envelope. To advance the understanding of drug permeation during the life cycle of Gram-negative bacteria, we sought to address two underlying objectives: (a) how changes are occurring inside the bacterial envelope during growth and (b) how the drug permeation and accumulation vary across both the membranes and in subcellular compartments during growth. Both objectives are met with the help of nonlinear optical technique second-harmonic generation spectroscopy (SHG). Specifically, using SHG, we probed the transport kinetics and accumulation of a quaternary ammonium compound (QAC), malachite green, inside Escherichia coli in various growth phases. Further insight about another QAC molecule, propidium iodide, is accomplished using fluorescence microscopy. Results indicate that actively growing cells have faster drug transport and higher cytoplasmic accumulation than slow- or nongrowing cells. In this regard, the rpoS gene plays a crucial role in limiting drug transport across the saturation phase cultures. Moreover, within a particular growth phase, membrane permeability undergoes gradual changes much before the subsequent growth phase commences. These outcomes signify the importance of reporting the growth phase and rate in drug efficacy studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anindita Gayen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center of Excellence: Tropical and Infectious Diseases, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
22
|
Imtiaz S, Saleem M. Fluorescence Spectroscopy Based Characterization of Pseudomonas Aeruginosa Suspension. J Fluoresc 2024; 34:2123-2131. [PMID: 37713016 DOI: 10.1007/s10895-023-03436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
In this article, optical characterization of Pseudomonas aeruginosa (PA) suspension has been performed by using Fluorescence spectroscopy. Optical density (OD) and plate count methods have been employed as a reference for the analysis of emission spectra of Pseudomonas aeruginosa in water suspension. Emission spectra of PA suspension has been acquired by using excitation wavelengths from 270 to 420 nm with step of 10 nm to explore its spectral behavior. It has been found that emission spectra of tryptophan, tyrosine, NADH and FAD, the intracellular biomolecules of bacteria, can be used as finger prints for the detection of Pseudomonas aeruginosa. Furthermore, the effect of water matrix on the spectral emission of Pseudomonas aeruginosa has been investigated that might be one of the limitation of Fluorescence spectroscopy for complex water matrices. Moreover, a calibration curve has been produced between ODs600 of Pseudomonas aeruginosa suspensions of different bacterial load and integrated intensities of the emission spectra of same samples. These ODs600 and integrating intensities have been further vetted through plate count method by determining their corresponding colony forming units per ml (CFU/ml). This calibration curve may be used to determine CFU/ml of Pseudomonas aeruginosa in water sample by determining integrating intensity of its emission spectrum.
Collapse
Affiliation(s)
- Sana Imtiaz
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, 45650, Nilore, Islamabad, Pakistan
| | - Muhammad Saleem
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, 45650, Nilore, Islamabad, Pakistan.
| |
Collapse
|
23
|
Baldo H, Ruiz-Valencia A, Cornette de Saint Cyr L, Ramadier G, Petit E, Belleville MP, Sanchez-Marcano J, Soussan L. Methane biohydroxylation into methanol by Methylosinus trichosporium OB3b: possible limitations and formate use during reaction. Front Bioeng Biotechnol 2024; 12:1422580. [PMID: 39253703 PMCID: PMC11381948 DOI: 10.3389/fbioe.2024.1422580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
Methane (CH4) hydroxylation into methanol (MeOH) by methanotrophic bacteria is an attractive and sustainable approach to producing MeOH. The model strain Methylosinus trichosporium OB3b has been reported to be an efficient hydroxylating biocatalyst. Previous works have shown that regardless of the bioreactor design or operation mode, MeOH concentration reaches a threshold after a few hours, but there are no investigations into the reasons behind this phenomenon. The present work entails monitoring both MeOH and formate concentrations during CH4 hydroxylation, where neither a gaseous substrate nor nutrient shortage was evidenced. Under the assayed reaction conditions, bacterial stress was shown to occur, but methanol was not responsible for this. Formate addition was necessary to start MeOH production. Nuclear magnetic resonance analyses with 13C-formate proved that the formate was instrumental in regenerating NADH; formate was exhausted during the reaction, but increased quantities of formate were unable to prevent MeOH production stop. The formate mass balance showed that the formate-to-methanol yield was around 50%, suggesting a cell regulation phenomenon. Hence, this study presents the possible physiological causes that need to be investigated further. Finally, to the best of our knowledge, this study shows that the reaction can be achieved in the native bacterial culture (i.e., culture medium containing added methanol dehydrogenase inhibitors) by avoiding the centrifugation steps while limiting the hands-on time and water consumption.
Collapse
Affiliation(s)
- Héloïse Baldo
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Azariel Ruiz-Valencia
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | | | - Guillaume Ramadier
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Eddy Petit
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Marie-Pierre Belleville
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - José Sanchez-Marcano
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Laurence Soussan
- Institut Européen des Membranes, IEM-UMR 5635, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| |
Collapse
|
24
|
Bultelle M, Casas A, Kitney R. Construction of a Calibration Curve for Lycopene on a Liquid-Handling Platform─Wider Lessons for the Development of Automated Dilution Protocols. ACS Synth Biol 2024; 13:2357-2375. [PMID: 39096303 PMCID: PMC11334188 DOI: 10.1021/acssynbio.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Liquid-handling is a fundamental operation in synthetic biology─all protocols involve one or more liquid-handling operations. It is, therefore, crucial that this step be carefully automated in order to unlock the benefits of automation (e.g., higher throughput, higher replicability). In the paper, we present a study, conducted at the London Biofoundry at SynbiCITE, that approaches liquid-handling and its reliable automation from the standpoint of the construction of the calibration curve for lycopene in dimethyl sulfoxide (DMSO). The study has important practical industrial applications (e.g., lycopene is a carotenoid of industrial interest, DMSO is a popular extractant). The study was also an effective testbed for the automation of liquid-handling. It necessitated the development of flexible liquid-handling methods, which can be generalizable to other automated applications. In addition, because lycopene/DMSO is a difficult mix, it was capable of revealing issues with automated liquid-handling protocols and stress-testing them. An important component of the study is the constraint that, due to the omnipresence of liquid-handling steps, errors should be controlled to a high standard. It is important to avoid such errors propagating to other parts of the protocol. To achieve this, a practical framework based on regression was developed and utilized throughout the study to identify, assess, and monitor transfer errors. The paper concludes with recommendations regarding automation of liquid-handling, which are applicable to a large set of applications (not just to complex liquids such as lycopene in DMSO or calibration curves).
Collapse
Affiliation(s)
- Matthieu Bultelle
- Department
of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Alexis Casas
- Department
of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Richard Kitney
- Department
of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| |
Collapse
|
25
|
Zaragoza N, Anderson GI, Allison-Logan S, Monir K, Furst AL. Novel delivery systems for controlled release of bacterial therapeutics. Trends Biotechnol 2024; 42:929-937. [PMID: 38310020 DOI: 10.1016/j.tibtech.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
As more is learned about the benefits of microbes, their potential to prevent and treat disease is expanding. Microbial therapeutics are less burdensome and costly to produce than traditional molecular drugs, often with superior efficacy. Yet, as with most medicines, controlled dosing and delivery to the area of need remain key challenges for microbes. Advances in materials to control small-molecule delivery are expected to translate to microbes, enabling similar control with equivalent benefits. In this perspective, recent advances in living biotherapeutics are discussed within the context of new methods for their controlled release. The integration of these advances provides a roadmap for the design, synthesis, and analysis of controlled microbial therapeutic delivery systems.
Collapse
Affiliation(s)
- Nadia Zaragoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace I Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kirmina Monir
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
de Hemptinne A, Gelin P, Bihi I, Kinet R, Thienpont B, De Malsche W. Exploring operational boundaries for acoustic concentration of cell suspensions. Appl Microbiol Biotechnol 2024; 108:387. [PMID: 38896136 PMCID: PMC11186915 DOI: 10.1007/s00253-024-13215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The development of a standardized, generic method for concentrating suspensions in continuous flow is challenging. In this study, we developed and tested a device capable of concentrating suspensions with an already high cell concentration to meet diverse industrial requirements. To address typical multitasking needs, we concentrated suspensions with high solid content under a variety of conditions. Cells from Saccharomyces cerevisiae, Escherichia coli, and Chinese hamster ovary cells were effectively focused in the center of the main channel of a microfluidic device using acoustophoresis. The main channel bifurcates into three outlets, allowing cells to exit through the central outlet, while the liquid evenly exits through all outlets. Consequently, the treatment separates cells from two-thirds of the surrounding liquid. We investigated the complex interactions between parameters. Increasing the channel depth results in a decrease in process efficiency, attributed to a decline in acoustic energy density. The study also revealed that different cell strains exhibit distinct acoustic contrast factors, originating from differences in dimensions, compressibility, and density values. Finally, a combination of high solid content and flow rate leads to an increase in diffusion through a phenomenon known as shear-induced diffusion. KEY POINTS: • Acoustic focusing in a microchannel was used to concentrate cell suspensions • The parameters influencing focusing at high concentrations were studied • Three different cell strains were successfully concentrated.
Collapse
Affiliation(s)
- Amaury de Hemptinne
- Department of Chemical Engineering, µFlow Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| | - Pierre Gelin
- Department of Chemical Engineering, µFlow Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Ilyesse Bihi
- Department of Chemical Engineering, µFlow Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | | | | | - Wim De Malsche
- Department of Chemical Engineering, µFlow Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
27
|
Pinto J, Tavakolian N, Li CB, Stelkens R. The relationship between cell density and cell count differs among Saccharomyces yeast species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001215. [PMID: 38863984 PMCID: PMC11165304 DOI: 10.17912/micropub.biology.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
There is a recent push to develop wild and non-domesticated Saccharomyces yeast strains into useful model systems for research in ecology and evolution. Yet, the variation between species and strains in important population parameters remains largely undescribed. Here, we investigated the relationship between two commonly used measures in microbiology to estimate growth rate - cell density and cell count - in 23 strains across all eight Saccharomyces species . We found that the slope of this relationship significantly differs among species and a given optical density (OD) does not translate into the same number of cells across species. We provide a cell number calculator based on our OD measurements for each strain used in this study. Surprisingly, we found a slightly positive relationship between cell size and the slope of the cell density-cell count relationship. Our results show that the strain- and species-specificity of the cell density and cell count relationship should be taken into account, for instance when running competition experiments requiring equal starting population sizes or when estimating the fitness of strains with different genetic backgrounds in experimental evolution studies.
Collapse
Affiliation(s)
- Javier Pinto
- Zoology Department, Stockholm University, Stockholm, Sweden
| | - Nik Tavakolian
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Rike Stelkens
- Zoology Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
28
|
Zhang HQ, Yu J, Lai JG, Yang GP, Liu LF, Jiang Y, Song XR, Chen YQ, Zhou HJ, Zhang Q. Influence of the community assemblage on sulfur distributions in the South China sea. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106481. [PMID: 38593647 DOI: 10.1016/j.marenvres.2024.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.
Collapse
Affiliation(s)
- Hao-Quan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Juan Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Jing-Guang Lai
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Long-Fei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yu Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xin-Ran Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yong-Qiao Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Hou-Jin Zhou
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Qi Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
29
|
Hameed T, Motsi N, Bignell E, Tanaka RJ. Inferring fungal growth rates from optical density data. PLoS Comput Biol 2024; 20:e1012105. [PMID: 38753887 PMCID: PMC11098479 DOI: 10.1371/journal.pcbi.1012105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Quantifying fungal growth underpins our ability to effectively treat severe fungal infections. Current methods quantify fungal growth rates from time-course morphology-specific data, such as hyphal length data. However, automated large-scale collection of such data lies beyond the scope of most clinical microbiology laboratories. In this paper, we propose a mathematical model of fungal growth to estimate morphology-specific growth rates from easy-to-collect, but indirect, optical density (OD600) data of Aspergillus fumigatus growth (filamentous fungus). Our method accounts for OD600 being an indirect measure by explicitly including the relationship between the indirect OD600 measurements and the calibrating true fungal growth in the model. Therefore, the method does not require de novo generation of calibration data. Our model outperformed reference models at fitting to and predicting OD600 growth curves and overcame observed discrepancies between morphology-specific rates inferred from OD600 versus directly measured data in reference models that did not include calibration.
Collapse
Affiliation(s)
- Tara Hameed
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Natasha Motsi
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Ji C, Xu H, Yu H, Cui Z, Fan J, Zhai Z. An online monitoring device for measuring the concentration of four types of in-situ microorganisms by using the near-infrared band. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123895. [PMID: 38262294 DOI: 10.1016/j.saa.2024.123895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Using optical density at 600 nm (OD600) to measure the microbial concentration is a popular approach due to its advantages like quick response and non-destructive. However, the OD600 measurement might be affected by the metabolic pigment, and it would become invalid when the solution dilution is insufficient. To overcome these issues, we proposed to adopt a more robust wavelength at 890 nm to quantify the attenuation of transmission light. After selecting this light source, we designed the light path and the circuit of the online monitoring device. Meanwhile, the random forest algorithm was introduced for temperature compensation and improving the stability of the device. This device was verified by monitoring the microbial concentration of four strains (Yeast, Bacillus, Arthrobacter, and Escherichia coli). The experimental result suggested that the mean absolute percentage error reached 4.11 %, 4.28 %, 4.49 %, and 4.53 % respectively, which is helpful to improve the accuracy of microbial concentration measurement.
Collapse
Affiliation(s)
- Chengming Ji
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huanliang Xu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongfeng Yu
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhongli Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiaqing Fan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhaoyu Zhai
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
31
|
Balser S, Röhrl M, Spormann C, Lindhorst TK, Terfort A. Selective Quantification of Bacteria in Mixtures by Using Glycosylated Polypyrrole/Hydrogel Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14243-14251. [PMID: 38442898 PMCID: PMC10959108 DOI: 10.1021/acsami.3c14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Here, we present a covalent nanolayer system that consists of a conductive and biorepulsive base layer topped by a layer carrying biorecognition sites. The layers are built up by electropolymerization of pyrrole derivatives that either carry polyglycerol brushes (for biorepulsivity) or glycoside moieties (as biorecognition sites). The polypyrrole backbone makes the resulting nanolayer systems conductive, opening the opportunity for constructing an electrochemistry-based sensor system. The basic concept of the sensor exploits the highly selective binding of carbohydrates by certain harmful bacteria, as bacterial adhesion and infection are a major threat to human health, and thus, a sensitive and selective detection of the respective bacteria by portable devices is highly desirable. To demonstrate the selectivity, two strains of Escherichia coli were selected. The first strain carries type 1 fimbriae, terminated by a lectin called FimH, which recognizes α-d-mannopyranosides, which is a carbohydrate that is commonly found on endothelial cells. The otherE. coli strain was of a strain that lacked this particular lectin. It could be demonstrated that hybrid nanolayer systems containing a very thin carbohydrate top layer (2 nm) show the highest discrimination (factor 80) between the different strains. Using electrochemical impedance spectroscopy, it was possible to quantify in vivo the type 1-fimbriated E. coli down to an optical density of OD600 = 0.0004 with a theoretical limit of 0.00005. Surprisingly, the selectivity and sensitivity of the sensing remained the same even in the presence of a large excess of nonbinding bacteria, making the system useful for the rapid and selective detection of pathogens in complex matrices. As the presented covalent nanolayer system is modularly built, it opens the opportunity to develop a broad band of mobile sensing devices suitable for various field applications such as bedside diagnostics or monitoring for bacterial contamination, e.g., in bioreactors.
Collapse
Affiliation(s)
- Sebastian Balser
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Michael Röhrl
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Carina Spormann
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Thisbe K. Lindhorst
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Andreas Terfort
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
32
|
Sharma A, Mishra A, Chhabra M. Rapid measurement of bacterial contamination in water: A catalase responsive-electrochemical sensor. Heliyon 2024; 10:e26724. [PMID: 38434288 PMCID: PMC10906405 DOI: 10.1016/j.heliyon.2024.e26724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
The present study describes the development of a potentiometric sensor for microbial monitoring in water based on catalase activity. The sensor comprises a MnO2-modified electrode that responds linearly to hydrogen peroxide (H2O2) from 0.16 M to 3.26 M. The electrode potential drops when the H2O2 solution is spiked with catalase or catalase-producing microorganisms that decompose H2O2. The sensor is responsive to different bacteria and their catalase activities. The electrochemical sensor exhibits a lower limit of detection (LOD) for Escherichia coli at 11 CFU/ml, Citrobacter youngae at 12 CFU/ml, and Pseudomonas aeruginosa at 23 CFU/ml. The sensor shows high sensitivity at 3.49, 3.02, and 4.24 mV/cm2dec for E. coli, C. youngae, and P. aeruginosa, respectively. The abiotic sensing electrode can be used multiple times without changing the response potential (up to 100 readings) with a shelf-life of over six months. The response time is a few seconds, with a total test time of 5 min. Additionally, the sensor effectively tested actual samples (drinking and grey water), which makes it a quick and reliable sensing tool. Therefore, the study offers a promising water monitoring tool with high sensitivity, stability, good detection limit, and minimum interference from other water contaminants.
Collapse
Affiliation(s)
| | | | - Meenu Chhabra
- Environmental Biotechnology Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur (IITJ), Jodhpur, 342030, Rajasthan, India
| |
Collapse
|
33
|
Liang G, Zong Y, Zou Y, Pang X, Zeng W, Zhu J, Yang S, Zhu Y. Sulfonated cellulose nanocrystal modified with ammonium salt as reinforcement in poly(lactic acid) composite films. Int J Biol Macromol 2024; 261:129673. [PMID: 38281528 DOI: 10.1016/j.ijbiomac.2024.129673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/26/2023] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Poly(lactic acid) (PLA) composites reinforced with cellulose nanocrystals (CNCs) are promising biodegradable materials. However, the poor compatibility and dispersion of CNCs in the PLA matrix remain a significant obstacle to improving the properties of composites. In this study, the modified CNC (CNC-D) was prepared through sulfonation treatment, followed by modification with didecyl dimethyl ammonium chloride (DDAC). Then, CNC-D was mixed with PLA to prepare composite films (PLA-CNC-D). The results revealed that the PLA-CNC-D had higher tensile strength and elongation at break than PLA-CNC at 3 wt% nanofiller content, increasing by 41.53 and 22.18 %, respectively. SEM and DSC analysis indicated that surface modification improved the compatibility and dispersion of CNC-D in the PLA matrix. The sulfonation process increased the anion content on the surface of CNC-D, enabling the CNC-D surface to adsorb more cationic DDAC, consequently sharply reducing the hydrophilicity of CNC-D. Moreover, the PLA-CNC-D exhibited excellent antibacterial activity against S. aureus and E. coli. In summary, this study provides a novel CNC modification approach to enhance the physical properties and antibacterial activity of PLA composite films, enlarging the application of degradable PLA composites.
Collapse
Affiliation(s)
- Ganbo Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yijun Zong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuyan Zou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangchao Pang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wei Zeng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianfei Zhu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Suwen Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuan Zhu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
34
|
Senavirathna MDHJ, Yan H. Flow velocity and light intensity combination is important for Microcystis aeruginosa physical suppression. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10991. [PMID: 38291777 DOI: 10.1002/wer.10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
The cyanobacterial response to flow velocity or light intensity deviates from the combined effect of both factors. The responses of Microcystis aeruginosa to different combinations of flow velocities and light intensities were tested. Growth (OD730 and protein), stress (catalase, ascorbate peroxidase, and glutathione peroxidase), and photosynthetic ability (chlorophyll-a and fluorescence) parameters of M. aeruginosa were measured to evaluate the effects of different combinations. Exposure to different flow velocity-light combinations significantly affected the growth and physiology of M. aeruginosa. Flow velocities of 0.4 m s-1 showed a prominent influence on most of the measured parameters compared with no flow velocity or higher flow velocity conditions. The 1.2-m s-1 flow velocity and high light intensity (1200 μmol m-2 s-1 ) exposure caused a significant elevation in oxidative stress. Lower velocities are beneficial for M. aeruginosa at light stress, whereas extreme velocities are adverse and elevate the stress. Two categories of light-velocity combinations were identified as preferred and extreme categories, depending on whether they suppressed or supported M. aeruginosa growth. In controlling cyanobacteria blooms using flow or high-intensity light, it is imperative to consider the interaction of these two factors, as their combined effects can significantly vary the stress levels in cyanobacteria. A new system, designed to minimize mechanical damage on M. aeruginosa, was used to generate flow velocities. Additionally, the combined effects of flow velocities and light intensities have been considered for the first time. PRACTITIONER POINTS: Flow velocity can influence the effect of light on Microcystis aeruginosa. High light exposure effect on Microcystis aeruginosa can be reduced by low flow velocity. High flow velocity and high light exposure increase the stress on Microcystis aeruginosa. Different light intensities and flow velocity combinations changed Microcystis aeruginosa stress physiology.
Collapse
Affiliation(s)
| | - Hongyu Yan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
35
|
Sardelli L, Campanile M, Boeri L, Donnaloja F, Fanizza F, Perottoni S, Petrini P, Albani D, Giordano C. A novel on-a-chip system with a 3D-bioinspired gut mucus suitable to investigate bacterial endotoxins dynamics. Mater Today Bio 2024; 24:100898. [PMID: 38204482 PMCID: PMC10776420 DOI: 10.1016/j.mtbio.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
The possible pathogenic impact of pro-inflammatory molecules produced by the gut microbiota is one of the hypotheses considered at the basis of the biomolecular dialogue governing the microbiota-gut-brain axis. Among these molecules, lipopolysaccharides (LPS) produced by Gram-negative gut microbiota strains may have a potential key role due to their toxic effects in both the gut and the brain. In this work, we engineered a new dynamic fluidic system, the MINERVA device (MI-device), with the potential to advance the current knowledge of the biological mechanisms regulating the microbiota-gut molecular crosstalk. The MI-device supported the growth of bacteria that are part of the intestinal microbiota under dynamic conditions within a 3D moving mucus model, with features comparable to the physiological conditions (storage modulus of 80 ± 19 Pa, network mesh size of 41 ± 3 nm), without affecting their viability (∼ 109 bacteria/mL). The integration of a fluidically optimized and user-friendly design with a bioinspired microenvironment enabled the sterile extraction and quantification of the LPS produced within the mucus by bacteria (from 423 ± 34 ng/mL to 1785 ± 91 ng/mL). Compatibility with commercially available Transwell-like inserts allows the user to precisely control the transport phenomena that occur between the two chambers by selecting the pore density of the insert membrane without changing the design of the system. The MI-device is able to provide the flow of sterile medium enriched with LPS directly produced by bacteria, opening up the possibility of studying the effects of bacteria-derived molecules on cells in depth, as well as the assessment and characterization of their effects in a physiological or pathological scenario.
Collapse
Affiliation(s)
- L. Sardelli
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - M. Campanile
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - L. Boeri
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - F. Donnaloja
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - F. Fanizza
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - S. Perottoni
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - P. Petrini
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - D. Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - C. Giordano
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| |
Collapse
|
36
|
Zada L, Anwar S, Imtiaz S, Saleem M, Shah AA. In vitro study: methylene blue-based antibacterial photodynamic inactivation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2024; 108:169. [PMID: 38261091 PMCID: PMC10806092 DOI: 10.1007/s00253-024-13009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Pseudomonas aeruginosa is one of the most antibiotic-resistant and opportunistic pathogens in immunocompromised and debilitated patients. It is considered the cause of most severe skin infections and is frequently found in hospital burn units. Due to its high antibiotic resistance, eliminating P. aeruginosa from skin infections is quite challenging. Therefore, this study aims to assess the novel in vitro antibacterial activity of methylene blue using a 635-nm diode laser to determine the effective power and energy densities for inhibition of P. aeruginosa. The strain was treated with various concentrations of methylene blue and 635-nm diode laser at powers of 300 mW/cm2 and 250 mW/cm2. The diode laser's potency in the photo-destruction of methylene blue and its degradation through P. aeruginosa were also evaluated. Colony-forming unit (CFU)/ml, fluorescence spectroscopy, optical density, and confocal microscopy were used to measure the bacterial killing effect. As a result, the significant decrease of P. aeruginosa was 2.15-log10, 2.71-log10, and 3.48-log10 at 60, 75, and 90 J/cm2 after excitation of MB for 240, 300, and 360 s at a power of 250 mW/cm2, respectively. However, a maximum decrease in CFU was observed by 2.54-log10 at 72 J/cm2 and 4.32-log10 at 90 and 108 J/cm2 after 300 mW/cm2 of irradiation. Fluorescence images confirmed the elimination of bacteria and showed a high degree of photo-destruction compared to treatment with methylene blue and light alone. In conclusion, MB-induced aPDT demonstrated high efficacy, which could be a potential approach against drug-resistant pathogenic bacteria. KEY POINTS: • Combination of methylene blue with 635-nm diode laser for antibacterial activity. • Methylene blue photosensitizer is employed as an alternative to antibiotics. • aPDT showed promising antibacterial activity against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Laiq Zada
- Applied Environmental and Geo-Microbiology Lab, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Agri & Biophotonics Laboratory, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Shahzad Anwar
- Agri & Biophotonics Laboratory, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan.
| | - Sana Imtiaz
- Agri & Biophotonics Laboratory, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Saleem
- Agri & Biophotonics Laboratory, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Aamer Ali Shah
- Applied Environmental and Geo-Microbiology Lab, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
37
|
Al-Ghamdi AY. Antibacterial ZnO@CeO 2 nanocrystals: Prospective material for control of foodborne pathogens. FOOD SCI TECHNOL INT 2024:10820132231226258. [PMID: 38258334 DOI: 10.1177/10820132231226258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Foodborne microbial infections are leading cause of many deadly illnesses. As a result, there is an anticipated need for the development of innovative packaging materials with effective antibacterial potential. This article describes preparation and characterization of innovative ZnO@CeO2 nanocrystals through a facile hydrothermal method, as well as their outstanding antibacterial properties. The ZnO@CeO2 nanocrystals used were prepared using precursors zinc acetate and cerium nitrate at 180°C. Various sophisticated physicochemical parameters were used to assess nanocrystals. The antibacterial activity was examined using minimum inhibitory concentration technique against four major foodborne pathogenic bacteria, namely Staphylococcus aureus (Gram positive), Escherichia coli, Salmonella typhimurium and Klebsiella pneumoniae (Gram negative) at four distinct concentrations (0-400 µg/mL). The in vitro cell compatibility test was done on fibroblasts. According to our findings, the lowest concentration of ZnO@CeO2 nanocrystals limiting development of tested strains is 100 µg/mL. Additionally, the results show that the combination of ZnO and CeO2 can be synergistic, resulting in ZnO@CeO2 nanocrystals with enhanced antibacterial activity. To summarize, unique ZnO@CeO2 nanocrystals with a high surface-to-volume ratio with outstanding antibacterial activity and no harmful impact to mouse fibroblasts were shaped. The ZnO@CeO2 can be utilized to competently suppress microbial growth spoiling the food and could be utilized as economical and efficient future packaging material for food industries.
Collapse
|
38
|
Waidner LA, Daniel CE, Kovar SE, Spain JC. Use of qPCR to monitor 2,4-dinitroanisole degrading bacteria in water and soil slurry cultures. J Ind Microbiol Biotechnol 2024; 51:kuae047. [PMID: 39580361 PMCID: PMC11631463 DOI: 10.1093/jimb/kuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Prediction and process monitoring during natural attenuation, bioremediation, and biotreatment require effective strategies for detection and enumeration of the responsible bacteria. The use of 2,4-dinitroanisole (DNAN) as a component of insensitive munitions leads to environmental contamination of firing ranges and manufacturing waste streams. Nocardioides sp. strain JS1661 degrades DNAN under aerobic conditions via a pathway involving an unusual DNAN demethylase. We used the deeply branched sequences of DNAN degradation functional genes as a target for development of a molecular method for detection of the bacteria. A qPCR assay was designed for the junction between dnhA and dnhB, the adjacent genes encoding DNAN demethylase. The assay allowed reproducible enumeration of JS1661 during growth in liquid media and soil slurries. Results were consistent with biodegradation of DNAN, accumulation of products, and classical biomass estimates, including most probable number and OD600. The results provide a sensitive and specific molecular method for prediction of degradation potential and process evaluation during degradation of DNAN. ONE-SENTENCE SUMMARY A unique target sequence in functional genes enables the design of a simple and specific qPCR assay for enumeration of aerobic 2,4-dinitroanisole-degrading bacteria in soil and water.
Collapse
Affiliation(s)
- Lisa A Waidner
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Carrie E Daniel
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Sarah E Kovar
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| |
Collapse
|
39
|
Grob A, Enrico Bena C, Di Blasi R, Pessina D, Sood M, Yunyue Z, Bosia C, Isalan M, Ceroni F. Mammalian cell growth characterisation by a non-invasive plate reader assay. Nat Commun 2024; 15:57. [PMID: 38167870 PMCID: PMC10761699 DOI: 10.1038/s41467-023-44396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Automated and non-invasive mammalian cell analysis is currently lagging behind due to a lack of methods suitable for a variety of cell lines and applications. Here, we report the development of a high throughput non-invasive method for tracking mammalian cell growth and performance based on plate reader measurements. We show the method to be suitable for both suspension and adhesion cell lines, and we demonstrate it can be adopted when cells are grown under different environmental conditions. We establish that the method is suitable to inform on effective drug treatments to be used depending on the cell line considered, and that it can support characterisation of engineered mammalian cells over time. This work provides the scientific community with an innovative approach to mammalian cell screening, also contributing to the current efforts towards high throughput and automated mammalian cell engineering.
Collapse
Affiliation(s)
- Alice Grob
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Chiara Enrico Bena
- Italian Institute for Genomic Medicine, Torino, Italy
- Université Paris-Saclay (INRAE), AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Daniele Pessina
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Matthew Sood
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Zhou Yunyue
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Carla Bosia
- Italian Institute for Genomic Medicine, Torino, Italy.
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
40
|
Kim LW, Osorio-Castillo V. Quantitative Analysis of the Inactivation Process of Internalized Bacteria in Dictyostelium Cells. Methods Mol Biol 2024; 2814:89-96. [PMID: 38954199 DOI: 10.1007/978-1-0716-3894-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The understanding of the inactivation process of ingested bacteria by phagocytes is a key focus in the field of host-pathogen interactions. Dictyostelium is a model organism that has been at the forefront of uncovering the mechanisms underlying this type of interaction. In this study, we describe an assay designed to measure the inactivation of Klebsiella aerogenes in the phagosomes of Dictyostelium discoideum.
Collapse
Affiliation(s)
- Lou W Kim
- Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| | - Victor Osorio-Castillo
- Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
41
|
Okoye CO, Gao L, Wu Y, Li X, Wang Y, Jiang J. Identification, characterization and optimization of culture medium conditions for organic acid-producing lactic acid bacteria strains from Chinese fermented vegetables. Prep Biochem Biotechnol 2024; 54:49-60. [PMID: 37114667 DOI: 10.1080/10826068.2023.2204507] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lactic acid bacteria (LAB) are widely exploited in fermented foods and are gaining attention for novel uses due to their safety as biopreservatives. In this study, several organic acid-producing LAB strains were isolated from fermented vegetables for their potential application in fermentation. We identified nine novel strains belonging to four genera and five species, Lactobacillus plantarum PC1-1, YCI-2 (8), YC1-1-4B, YC1-4 (4), and YC2-9, Lactobacillus buchneri PC-C1, Pediococcus pentosaceus PC2-1 (F2), Weissella hellenica PC1A, and Enterococcus sp. YC2-6. Based on the results of organic acids, acidification, growth rate, antibiotic activity and antimicrobial inhibition, PC1-1, YC1-1-4B, PC2-1(F2), and PC-C1 showed exceptional biopreservative potential. Additionally, PC-C1, YC1-1-4B, and PC2-1(F2) recorded higher (p < 0.05) growth by utilizing lower concentrations of glucose (20 g/L) and soy peptone (10 g/L) as carbon and nitrogen sources in optimized culture conditions (pH 6, temperature 32 °C, and agitation speed 180 rpm) at 24hr and acidification until 72hr in batch fermentation, which suggests their application as starter cultures in industrial fermentation.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang, China
- School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Beal J. Flow Cytometry Quantification of Transient Transfections in Mammalian Cells. Methods Mol Biol 2024; 2774:153-176. [PMID: 38441764 DOI: 10.1007/978-1-0716-3718-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Flow cytometry is a powerful quantitative assay supporting high-throughput collection of single-cell data with a high dynamic range. For flow cytometry to yield reproducible data with a quantitative relationship to the underlying biology, however, requires that (1) appropriate process controls are collected along with experimental samples, (2) these process controls are used for unit calibration and quality control, and (3) data are analyzed using appropriate statistics. To this end, this chapter describes methods for quantitative flow cytometry through the addition of process controls and analyses, thereby enabling better development, modeling, and debugging of engineered biological organisms. The methods described here have specifically been developed in the context of transient transfections in mammalian cells but may in many cases be adaptable to other categories of transfection and other types of cells.
Collapse
Affiliation(s)
- Jacob Beal
- Raytheon BBN Technologies, Cambridge, MA, USA.
| |
Collapse
|
43
|
De Wannemaeker L, Mey F, Bervoets I, Ver Cruysse M, Baldwin GS, De Mey M. Standardization of Fluorescent Reporter Assays in Synthetic Biology across the Visible Light Spectrum. ACS Synth Biol 2023; 12:3591-3607. [PMID: 37981737 PMCID: PMC10729763 DOI: 10.1021/acssynbio.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
In synthetic biology, Fluorescent reporters are frequently used to characterize the expression levels obtained from both genetic parts such as promoters and ribosome binding sites as well as from complex genetic circuits. To this end, plate readers offer an easy and high-throughput way of characterizing both the growth and fluorescence expression levels of cell cultures. However, despite the similar mode of action used in different devices, their output is not comparable due to intrinsic differences in their setup. Additionally, the generated output is expressed using arbitrary units, limiting reliable comparison of results to measurements taken within one single experiment using one specific plate reader, hampering the transferability of data across different plate readers and laboratories. This article presents an easy and accessible calibration method for transforming the device-specific output into a standardized output expressing the amount of fluorescence per well as a known equivalent fluorophore concentration per cell for fluorescent reporters spanning the visible light spectrum. This calibration method follows a 2-fold approach determining both the estimated number of cells and the equivalent chemical fluorophore concentration per well. It will contribute to the comparison of plate reader experiments between different laboratories across the world and will therefore greatly improve the reliability and exchange of both results and genetic parts between research groups.
Collapse
Affiliation(s)
- Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Friederike Mey
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Indra Bervoets
- Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michiel Ver Cruysse
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Geoff S Baldwin
- Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
44
|
Mwandira W, Mavroulidou M, Satheesh A, Gunn MJ, Gray C, Purchase D, Garelick J. An electrokinetic-biocementation study for clay stabilisation using carbonic anhydrase-producing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104916-104931. [PMID: 37702861 PMCID: PMC10567949 DOI: 10.1007/s11356-023-29817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
This study investigates the feasibility of biocementing clay soil underneath a railway embankment of the UK rail network via carbonic anhydrase (CA) biocementation, implementing the treatments electrokinetically. Compared to previous biocementation studies using the ureolytic route, the CA pathway is attractive as CA-producing bacteria can sequester CO2 to produce biocement. Clay soil samples were treated electrokinetically using biostimulation and bioaugmentation conditions to induce biocementation. The effects of the treatment were assessed in terms of undrained shear strength using the cone penetration test, moisture content, and calcium carbonate content measurements. Scanning electron microscopy (SEM) analyses were also conducted on soil samples before and after treatment to evaluate the reaction products. The results showed that upon biostimulation, the undrained shear strength of the soil increased uniformly throughout the soil, from 17.6 kPa (in the natural untreated state) to 106.6 kPa. SEM micrographs also showed a clear change in the soil structure upon biostimulation. Unlike biostimulation, bioaugmentation did not have the same performance, although a high amount of CaCO3 precipitates was detected, and bacteria were observed to have entered the soil. The prospects are exciting, as it was shown that it is possible to achieve a considerable strength increase by the biostimulation of native bacteria capturing CO2 while improving the soil strength, thus having the potential to contribute both to the resilience of existing railway infrastructure and to climate change mitigation.
Collapse
Affiliation(s)
- Wilson Mwandira
- Division of Civil and Building Services Engineering, London South Bank University, London, UK
| | - Maria Mavroulidou
- Division of Civil and Building Services Engineering, London South Bank University, London, UK.
| | - Anjali Satheesh
- Division of Civil and Building Services Engineering, London South Bank University, London, UK
| | - Michael John Gunn
- Division of Civil and Building Services Engineering, London South Bank University, London, UK
| | | | - Diane Purchase
- Faculty of Science and Technology, Middlesex University, London, UK
| | - Jonathan Garelick
- Network Rail-Eastern Region, One Stratford Place, Stratford City, London, E20, UK
| |
Collapse
|
45
|
Jakubec M, Rylandsholm FG, Rainsford P, Silk M, Bril'kov M, Kristoffersen T, Juskewitz E, Ericson JU, Svendsen JSM. Goldilocks Dilemma: LPS Works Both as the Initial Target and a Barrier for the Antimicrobial Action of Cationic AMPs on E. coli. Biomolecules 2023; 13:1155. [PMID: 37509189 PMCID: PMC10377513 DOI: 10.3390/biom13071155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative E. coli and AMPs is driven by lipopolysaccharides (LPS) that act as kinetic barriers for the binding of AMPs to the bacterial membrane. A combination of SPR and NMR experiments provide evidence suggesting that cationic AMPs first bind to the negatively charged LPS before reaching a binding place in the lipid bilayer. In the event that the initial LPS-binding is too strong (corresponding to a low dissociation rate), the cationic AMPs cannot effectively get from the LPS to the membrane, and their antimicrobial potency will thus be diminished. On the other hand, the AMPs must also be able to effectively interact with the membrane to exert its activity. The ability of the studied cyclic hexapeptides to bind LPS and to translocate into a lipid membrane is related to the nature of the cationic charge (arginine vs. lysine) and to the distribution of hydrophobicity along the molecule (alternating vs. clumped tryptophan).
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Fredrik G Rylandsholm
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Mitchell Silk
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Maxim Bril'kov
- Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Tone Kristoffersen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Eric Juskewitz
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - Johanna U Ericson
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| | - John Sigurd M Svendsen
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
46
|
Alhalwani AY, Davey RL, Repine JE, Huffman JA. L-ergothioneine reduces nitration of lactoferrin and loss of antibacterial activity associated with nitrosative stress. Biochem Biophys Rep 2023; 34:101447. [PMID: 36942322 PMCID: PMC10023959 DOI: 10.1016/j.bbrep.2023.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional antimicrobial, anti-inflammatory, and antioxidant protein that occurs naturally in mammals, most notably in exocrine gland tissues and fluids, such as in the eye. Nitrosative stress can promote changes to tyrosine and other amino acid residues of the protein, which also reduces the activity of LF. l-ergothioneine (ET) is a potent anti-inflammatory antioxidant present in the eye and other tissues through nutrition or supplementation and that may play a role in the prevention or treatment of a variety of diseases. Here we investigated the ability of ET to reduce 3-nitrotyrosine (NTyr) formation using two separate substrates, with the goal of determining whether ET can protect the antibacterial function of LF and other proteins when exposed separately to peroxynitrite and tetranitromethane as nitrating reagents. Native human LF was used as a simple protein substrate, and lamb corneal lysate was chosen as one example of mammalian tissue with a more complex mixture of proteins and other biomolecules. Nitration was monitored by absorbance and fluorescence spectroscopy as well as sandwich (nitrated LF) and direct NTyr (corneal lysate) enzyme-linked immunosorbent assays (ELISAs). We found that pretreatment with ET reduced chemical modification of both native LF and corneal lysate samples and loss of antibacterial LF function due to exposure to the nitrating reagents. These initial results suggest that ET, raised to sufficiently elevated levels, could be tailored as a therapeutic agent to reduce effects of nitrosative stress on LF and in turn sustain the protein activity.
Collapse
Affiliation(s)
- Amani Y. Alhalwani
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Rachel L. Davey
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - John E. Repine
- Webb-Waring Center, University of Colorado Denver, Aurora, CO, 80045, USA
| | - J. Alex Huffman
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
- Corresponding author.
| |
Collapse
|
47
|
Mager M, Pineda Hernandez H, Brandenburg F, López-Maury L, McCormick AJ, Nürnberg DJ, Orthwein T, Russo DA, Victoria AJ, Wang X, Zedler JAZ, Branco dos Santos F, Schmelling NM. Interlaboratory Reproducibility in Growth and Reporter Expression in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2023; 12:1823-1835. [PMID: 37246820 PMCID: PMC10278186 DOI: 10.1021/acssynbio.3c00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 05/30/2023]
Abstract
In recent years, a plethora of new synthetic biology tools for use in cyanobacteria have been published; however, their reported characterizations often cannot be reproduced, greatly limiting the comparability of results and hindering their applicability. In this interlaboratory study, the reproducibility of a standard microbiological experiment for the cyanobacterial model organism Synechocystis sp. PCC 6803 was assessed. Participants from eight different laboratories quantified the fluorescence intensity of mVENUS as a proxy for the transcription activity of the three promoters PJ23100, PrhaBAD, and PpetE over time. In addition, growth rates were measured to compare growth conditions between laboratories. By establishing strict and standardized laboratory protocols, reflecting frequently reported methods, we aimed to identify issues with state-of-the-art procedures and assess their effect on reproducibility. Significant differences in spectrophotometer measurements across laboratories from identical samples were found, suggesting that commonly used reporting practices of optical density values need to be supplemented by cell count or biomass measurements. Further, despite standardized light intensity in the incubators, significantly different growth rates between incubators used in this study were observed, highlighting the need for additional reporting requirements of growth conditions for phototrophic organisms beyond the light intensity and CO2 supply. Despite the use of a regulatory system orthogonal to Synechocystis sp. PCC 6803, PrhaBAD, and a high level of protocol standardization, ∼32% variation in promoter activity under induced conditions was found across laboratories, suggesting that the reproducibility of other data in the field of cyanobacteria might be affected similarly.
Collapse
Affiliation(s)
- Maurice Mager
- Institute
for Synthetic Microbiology, Heinrich Heine
University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Hugo Pineda Hernandez
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences,
Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Fabian Brandenburg
- Helmholtz
Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Luis López-Maury
- Instituto
de Bioquímica Vegetal y Fotosíntesis, University of Seville − CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento
de Bioquímica Vegetal y Biología Molecular, Facultad
de Biología, University of Seville, Avenida Reina Mercedes, 41012 Sevilla, Spain
| | - Alistair J. McCormick
- Institute
of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, 1.04 Daniel Rutherford Building, King’s
Buildings, EH9 3BF Edinburgh, U.K.
| | - Dennis J. Nürnberg
- Department
of Physics, Experimental Biophysics, Freie
University Berlin, Arnimallee
14, 14195 Berlin, Germany
- Dahlem
Centre of Plant Sciences, Freie Universität
Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Tim Orthwein
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - David A. Russo
- Institute
for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Angelo Joshua Victoria
- Institute
of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, 1.04 Daniel Rutherford Building, King’s
Buildings, EH9 3BF Edinburgh, U.K.
| | - Xiaoran Wang
- Department
of Physics, Experimental Biophysics, Freie
University Berlin, Arnimallee
14, 14195 Berlin, Germany
| | - Julie A. Z. Zedler
- Matthias
Schleiden Institute for Genetics, Bioinformatics and Molecular Botany,
Synthetic Biology of Photosynthetic Organisms, Friedrich Schiller University Jena, Dornburgerstrasse 159, 07743 Jena, Germany
| | - Filipe Branco dos Santos
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences,
Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Nicolas M. Schmelling
- Institute
for Synthetic Microbiology, Heinrich Heine
University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| |
Collapse
|
48
|
Stark MC, Joubert AM, Visagie MH. Molecular Farming of Pembrolizumab and Nivolumab. Int J Mol Sci 2023; 24:10045. [PMID: 37373192 DOI: 10.3390/ijms241210045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a class of immunotherapy agents capable of alleviating the immunosuppressive effects exerted by tumorigenic cells. The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most ubiquitous checkpoints utilized by tumorigenic cells for immune evasion by inducing apoptosis and inhibiting the proliferation and cytokine production of T lymphocytes. Currently, the most frequently used ICIs targeting the PD-1/PD-L1 checkpoint include monoclonal antibodies (mAbs) pembrolizumab and nivolumab that bind to PD-1 on T lymphocytes and inhibit interaction with PD-L1 on tumorigenic cells. However, pembrolizumab and nivolumab are costly, and thus their accessibility is limited in low- and middle-income countries (LMICs). Therefore, it is essential to develop novel biomanufacturing platforms capable of reducing the cost of these two therapies. Molecular farming is one such platform utilizing plants for mAb production, and it has been demonstrated to be a rapid, low-cost, and scalable platform that can be potentially implemented in LMICs to diminish the exorbitant prices, ultimately leading to a significant reduction in cancer-related mortalities within these countries.
Collapse
Affiliation(s)
- Michael C Stark
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Anna M Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Michelle H Visagie
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| |
Collapse
|
49
|
Tan N, Ong L, Shukal S, Chen X, Zhang C. High-Yield Biosynthesis of trans-Nerolidol from Sugar and Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37148252 DOI: 10.1021/acs.jafc.3c01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Isoprenoids, or terpenoids, have wide applications in food, feed, pharmaceutical, and cosmetic industries. Nerolidol, an acyclic C15 isoprenoid, is widely used in cosmetics, food, and personal care products. Current supply of nerolidol is mainly from plant extraction that is inefficient, costly, and of inconsistent quality. Here, we screened various nerolidol synthases from bacteria, fungi, and plants and found that the strawberry nerolidol synthase was most active in Escherichia coli. Through systematic optimization of the biosynthetic pathways, carbon sources, inducer, and genome editing, we constructed a series of deletion strains (single mutants ΔldhA, ΔpoxB, ΔpflB, and ΔtnaA; double mutants ΔadhE-ΔldhA; and triple mutants and beyond ΔadhE-ΔldhA-ΔpflB and ΔadhE-ΔldhA-ΔackA-pta) that produced high yields of 100% trans-nerolidol. In flasks, the highest nerolidol titers were 1.8 and 3.3 g/L in glucose-only and glucose-lactose-glycerol media, respectively. The highest yield reached 26.2% (g/g), >90% of the theoretic yield. In two-phase extractive fed-batch fermentation, our strain produced ∼16 g/L nerolidol within 4 days with about 9% carbon yield (g/g). In a single-phase fed-batch fermentation, the strain produced >6.8 g/L nerolidol in 3 days. To the best of our knowledge, our titers and productivity are the highest in the literature, paving the way for future commercialization and inspiring biosynthesis of other isoprenoids.
Collapse
Affiliation(s)
- Nicola Tan
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Leonard Ong
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Sudha Shukal
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Xixian Chen
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Congqiang Zhang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| |
Collapse
|
50
|
Wacogne B, Belinger Podevin M, Vaccari N, Koubevi C, Codjiová C, Gutierrez E, Bourgeois P, Davoine L, Robert-Nicoud M, Rouleau A, Frelet-Barrand A. Absorption/Attenuation Spectral Description of ESKAPEE Bacteria: Application to Seeder-Free Culture Monitoring, Mammalian T-Cell and Bacteria Mixture Analysis and Contamination Description. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094325. [PMID: 37177529 PMCID: PMC10181643 DOI: 10.3390/s23094325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Despite numerous innovations, measuring bacteria concentrations on a routine basis is still time consuming and ensuring accurate measurements requires careful handling. Furthermore, it often requires sampling small volumes of bacteria suspensions which might be poorly representative of the real bacteria concentration. In this paper, we propose a spectroscopy measurement method based on a description of the absorption/attenuation spectra of ESKAPEE bacteria. Concentrations were measured with accuracies less than 2%. In addition, mixing the mathematical description of the absorption/attenuation spectra of mammalian T-cells and bacteria allows for the simultaneous measurements of both species' concentrations. This method allows real-time, sampling-free and seeder-free measurement and can be easily integrated into a closed-system environment.
Collapse
Affiliation(s)
- Bruno Wacogne
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
- Centre d'Investigation Clinique, Centre Hospitalier Universitaire de Besançon, INSERM CIC 1431, 25030 Besançon, France
| | | | - Naïs Vaccari
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Claudia Koubevi
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Céline Codjiová
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Emilie Gutierrez
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Pauline Bourgeois
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Lucie Davoine
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | | | - Alain Rouleau
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | | |
Collapse
|