1
|
Borges AKM, Adams VM, Alves RRN, Oliveira TPR. Integrating local ecological knowledge into systematic conservation planning for seahorse conservation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e70027. [PMID: 40444904 PMCID: PMC12124176 DOI: 10.1111/cobi.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 06/02/2025]
Abstract
Successful long-term conservation relies on strategic planning for pragmatic actions to mitigate threats. Prioritizing actions and areas to support conservation goals in the most cost-effective scenario becomes crucial in resource-limited environments. However, planning and management can be challenging in data-limited contexts. Incorporating local ecological knowledge (LEK) into conservation planning is an underexplored method of addressing these knowledge gaps. We utilized systematic conservation planning to identify key sites for seahorse threat management in a complex social-ecological system in a protected area. Through participatory mapping and interviews with artisanal fishers, we gathered insights about seahorses, threats to them, and their socioeconomic significance for the local community. We compared LEK-derived seahorse conservation priorities with spatial priorities identified using Marxan and with LEK-derived and science-derived data to explore LEK's contribution to spatial planning for a data-poor species and to explore different seahorse threat management scenarios. The LEK-derived and science-derived seahorse abundance Marxan scenarios had a strong spatial agreement, emphasizing LEK's role in conservation planning. Furthermore, LEK-derived data filled key data gaps on the distribution and nature of water-based threats. Threat management scenarios for land and water-based threat management had distinct spatial patterns. Incorporating LEK into decision-making empowered local communities and thus fostered community-based management. These findings offer insights into conservation planning in data-deficient scenarios and can aid decision makers and local stakeholders in inclusive conservation strategies. Our results identified priorities for seahorse conservation in the Rio Formoso Estuary and our methods offer a transferable approach for participatory and interdisciplinary planning, which are essential for biodiversity conservation and livelihoods maintenance.
Collapse
Affiliation(s)
- Anna Karolina Martins Borges
- Programa de Pós‐Graduação em Etnobiologia e Conservação da NaturezaUniversidade Federal Rural de PernambucoRecifePEBrazil
- LAPEC ‐ Laboratório de Peixes e Conservação MarinhaUniversidade Estadual da ParaíbaJoão PessoaPBBrazil
| | - Vanessa M. Adams
- School of Geography, Planning, and Spatial SciencesUniversity of TasmaniaHobartTasmaniaAustralia
- Centre for Marine Socioecology, Institute for Marine and Antarctic Studies, College of Sciences and EngineeringUniversity of TasmaniaHobartTasmaniaAustralia
| | - Rômulo Romeu Nóbrega Alves
- Programa de Pós‐Graduação em Etnobiologia e Conservação da NaturezaUniversidade Federal Rural de PernambucoRecifePEBrazil
- Departamento de BiologiaUniversidade Estadual da ParaíbaCampina GrandePBBrazil
| | - Tacyana Pereira Ribeiro Oliveira
- Programa de Pós‐Graduação em Etnobiologia e Conservação da NaturezaUniversidade Federal Rural de PernambucoRecifePEBrazil
- LAPEC ‐ Laboratório de Peixes e Conservação MarinhaUniversidade Estadual da ParaíbaJoão PessoaPBBrazil
- Centro de Ciências Biológicas e Sociais AplicadasUniversidade Estadual da ParaíbaJoão PessoaPBBrazil
- Seahorse, Pipefish and Seadragon Specialist GroupInternational Union for Conservation of Nature (IUCN) Species Survival CommissionGlandSwitzerland
| |
Collapse
|
2
|
Halliwell B, Holland BR, Yates LA. Multi-response phylogenetic mixed models: concepts and application. Biol Rev Camb Philos Soc 2025; 100:1294-1316. [PMID: 40192008 PMCID: PMC12120399 DOI: 10.1111/brv.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 06/01/2025]
Abstract
The scale and resolution of trait databases and molecular phylogenies is increasing rapidly. These resources permit many open questions in comparative biology to be addressed with the right statistical tools. Multi-response (MR) phylogenetic mixed models (PMMs) offer great potential for multivariate analyses of trait evolution. While flexible and powerful, these methods are not often employed by researchers in ecology and evolution, reflecting a specialised and technical literature that creates barriers to usage for many biologists. Here we present a practical and accessible guide to MR-PMMs. We begin with a review of single-response (SR) PMMs to introduce key concepts and outline the limitations of this approach for characterising patterns of trait coevolution. We emphasise MR-PMMs as a preferable approach for analyses involving multiple species traits, due to the explicit decomposition of trait covariances. We discuss multilevel models, multivariate models of evolution, and extensions to non-Gaussian response traits. We highlight techniques for causal inference using graphical models, as well as advanced topics including prior specification and latent factor models. Using simulated data and visual examples, we discuss interpretation, prediction, and model validation. We implement many of the techniques discussed in example analyses of plant functional traits to demonstrate the general utility of MR-PMMs in handling complex real-world data sets. Finally, we discuss the emerging synthesis of comparative techniques made possible by MR-PMMs, highlight strengths and weaknesses, and offer practical recommendations to analysts. To complement this material, we provide online tutorials including side-by-side model implementations in two popular R packages, MCMCglmm and brms.
Collapse
Affiliation(s)
- Ben Halliwell
- School of Natural Sciences, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
| | - Barbara R. Holland
- School of Natural Sciences, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
| | - Luke A. Yates
- School of Natural Sciences, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Private Bag 55University of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
3
|
Xiao Q, Shi XD, Shi L, Yao ZY, Chen YH, Yang WZ, Liao ZY, Qi Y. Enhanced risk assessment framework integrating distribution dynamics, genetically inferred populations, and morphological traits of Diploderma lizards. Zool Res 2025; 46:15-26. [PMID: 39757017 DOI: 10.24272/j.issn.2095-8137.2024.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Assessing the threat status of species in response to global change is critical for biodiversity monitoring and conservation efforts. However, current frameworks, even the IUCN Red List, often neglect critical factors such as genetic diversity and the impacts of climate and land-use changes, hindering effective conservation planning. To address these limitations, we developed an enhanced extinction risk assessment framework using Diploderma lizards as a model. This framework incorporates long-term field surveys, environmental data, and land-use information to predict distributional changes for 10 recently described Diploderma species on the Qinghai-Xizang Plateau, which hold ecological significance but remain underassessed in conservation assessment. By integrating the distribution data and genetically inferred effective population sizes ( Ne), we conducted scenario analyses and used a rank-sum approach to calculate Risk ranking scores (RRS) for each species. This approach revealed significant discrepancies with the IUCN Red List assessments. Notably, D. yangi and D. qilin were identified as facing the highest extinction risk. Furthermore, D. vela, D. batangense, D. flaviceps, D. dymondi, D. yulongense, and D. laeviventre, currently classified as "Least Concern", were found to warrant reclassification as "Vulnerable" due to considerable threat from projected range contractions. Exploring the relationship between morphology and RRS revealed that traits such as snout-vent length and relative tail length could serve as potential predictors of extinction risk, offering preliminary metrics for assessing species vulnerability when comprehensive data are unavailable. This study enhances the precision of extinction risk assessment frameworks and demonstrates their capacity to refine and update risk assessments, especially for lesser-known taxa.
Collapse
Affiliation(s)
- Qi Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiu-Dong Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Lin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Zhong-Yi Yao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - You-Hua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Wei-Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
| | - Zi-Yan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China. E-mail:
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610299, China
- Mangkang Ecological Station, Xizang Ecological Safety Monitor Network, Changdu, Xizang 854500, China. E-mail:
| |
Collapse
|
4
|
Lucas PM, Di Marco M, Cazalis V, Luedtke J, Neam K, Brown MH, Langhammer PF, Mancini G, Santini L. Using comparative extinction risk analysis to prioritize the IUCN Red List reassessments of amphibians. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14316. [PMID: 38946355 PMCID: PMC11589027 DOI: 10.1111/cobi.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/02/2024]
Abstract
Assessing the extinction risk of species based on the International Union for Conservation of Nature (IUCN) Red List (RL) is key to guiding conservation policies and reducing biodiversity loss. This process is resource demanding, however, and requires continuous updating, which becomes increasingly difficult as new species are added to the RL. Automatic methods, such as comparative analyses used to predict species RL category, can be an efficient alternative to keep assessments up to date. Using amphibians as a study group, we predicted which species are more likely to change their RL category and thus should be prioritized for reassessment. We used species biological traits, environmental variables, and proxies of climate and land-use change as predictors of RL category. We produced an ensemble prediction of IUCN RL category for each species by combining 4 different model algorithms: cumulative link models, phylogenetic generalized least squares, random forests, and neural networks. By comparing RL categories with the ensemble prediction and accounting for uncertainty among model algorithms, we identified species that should be prioritized for future reassessment based on the mismatch between predicted and observed values. The most important predicting variables across models were species' range size and spatial configuration of the range, biological traits, climate change, and land-use change. We compared our proposed prioritization index and the predicted RL changes with independent IUCN RL reassessments and found high performance of both the prioritization and the predicted directionality of changes in RL categories. Ensemble modeling of RL category is a promising tool for prioritizing species for reassessment while accounting for models' uncertainty. This approach is broadly applicable to all taxa on the IUCN RL and to regional and national assessments and may improve allocation of the limited human and economic resources available to maintain an up-to-date IUCN RL.
Collapse
Affiliation(s)
- Pablo Miguel Lucas
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevillaSpain
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
| | - Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Jennifer Luedtke
- IUCN SSC Amphibian Specialist GroupTorontoOntarioCanada
- Re:wildAustinTexasUSA
| | - Kelsey Neam
- IUCN SSC Amphibian Specialist GroupTorontoOntarioCanada
- Re:wildAustinTexasUSA
| | | | | | - Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
| |
Collapse
|
5
|
Du C, Feng X, Chen Z, Qiao G. Predicting Potential Distribution of Teinopalpus aureus Integrated Multiple Factors and Its Threatened Status Assessment. INSECTS 2024; 15:879. [PMID: 39590478 PMCID: PMC11594619 DOI: 10.3390/insects15110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
The accurate prediction of the niche and the potential distribution of a species is a fundamental and key content for biodiversity related research in ecology and biogeography, especially for protected species. Biotic interactions have a significant impact on species distribution but are often overlooked by SDMs. Therefore, it is crucial to incorporate biotic interaction factors into SDMs to improve their predictive performance. The Teinopalpus aureus Mell, 1923 is endemic to high altitudes in southern East Asia, renowned for its exceptional beauty and rarity. Despite the significant conservation value, its spatial distribution remains unclear. This study integrated climate data, host plants, and empirical expert maps to predict its potential distribution. The results indicated that utilizing the species richness of host plants as a surrogate for biotic interactions was a simple and effective way to significantly improve the predictive performance of the SDMs. The current suitable distribution of T. aureus and its host plants is highly fragmented, primarily concentrated in the Nanling and Wuyi Mountains, and consisting of numerous isolated small populations. Given climate change, their distribution is significantly shrinking, increasing the threatened level in the future. Especially for the population of T. aureus hainani Lee, the likelihood of extinction is extremely high. Abiotic factors not only directly affect the distribution of T. aureus but also indirectly impact it through the host plants. This was evident in the delayed response of T. aureus to climate change compared to its host plants, which is called the "hysteresis effect" caused by biotic interactions. Overall, we tentatively suggest regarding T. aureus as a vulnerable species. In the future, multiple measures could be taken to indirectly protect the feeding and habitat resources of T. aureus by conserving host plants, thereby enhancing its survival prospects.
Collapse
Affiliation(s)
- Congcong Du
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- Key Laboratory of Ecology of Rare & Endangered Species & Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (X.F.); (Z.C.)
- Guangxi Key Laboratory of Rare & Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
- College of Life Science, Guangxi Normal University, Guilin 541006, China
| | - Xueyu Feng
- Key Laboratory of Ecology of Rare & Endangered Species & Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (X.F.); (Z.C.)
- Guangxi Key Laboratory of Rare & Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
- College of Life Science, Guangxi Normal University, Guilin 541006, China
| | - Zhilin Chen
- Key Laboratory of Ecology of Rare & Endangered Species & Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (X.F.); (Z.C.)
- Guangxi Key Laboratory of Rare & Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
- College of Life Science, Guangxi Normal University, Guilin 541006, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
6
|
Høiberg MA, Stadler K, Verones F. Disentangling marine plastic impacts in Life Cycle Assessment: Spatially explicit Characterization Factors for ecosystem quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175019. [PMID: 39059661 DOI: 10.1016/j.scitotenv.2024.175019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Inputs of persistent plastic items to marine environments continue to pose a serious and long-term threat to marine fauna and ecosystem health, justifying further interventions on local and global scales. While Life Cycle Assessment (LCA) is frequently used for sustainability evaluations by industries and policymakers, plastic leakage to the environment and its subsequent impacts remains absent from the framework. Incorporating plastic pollution in the assessments requires development of both inventories and impact assessment methods. Here, we propose spatially explicit Characterization Factors (CF) for quantifying the impacts of plastic entanglement on marine megafauna (mammals, birds and reptiles) on a global scale. We utilize Lagrangian particle tracking and a Species Sensitivity Distribution (SSD) model along with species susceptibility records to estimate potential entanglement impacts stemming from lost plastic-based fishing gear. By simulating plastic losses from fishing hotspots within all Exclusive Economic Zones (EEZs) we provide country-specific impact estimates for use in LCA. The impacts were found to be similar across regions, although the median CF associated with Oceania was higher compared to Europe, Africa and Asia. Our findings underscore the presence of susceptible species across the world and the transboundary issue of plastic pollution. We discuss the application of the factors and identify areas of further refinement that can contribute towards a comprehensive assessment of macroplastic pollution in sustainability assessments. Degradation and beaching rates for different types of fishing gear remain a research gap, along with population-level effects on marine taxa beyond surface breathing megafauna. Increasing the coverage of impacts specific to the marine realm in LCA alongside other stressors can facilitate informed decision-making towards more sustainable marine resource management.
Collapse
Affiliation(s)
- Marthe A Høiberg
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Konstantin Stadler
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francesca Verones
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Maire E, Robinson JPW, McLean M, Arif S, Zamborain-Mason J, Cinner JE, Ferse SCA, Graham NAJ, Hoey AS, MacNeil MA, Mouillot D, Hicks CC. Managing nutrition-biodiversity trade-offs on coral reefs. Curr Biol 2024; 34:4612-4622.e5. [PMID: 39293442 DOI: 10.1016/j.cub.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Coral reefs support an incredible abundance and diversity of fish species, with reef-associated fisheries providing important sources of income, food, and dietary micronutrients to millions of people across the tropics. However, the rapid degradation of the world's coral reefs and the decline in their biodiversity may limit their capacity to supply nutritious and affordable seafood while meeting conservation goals for sustainability. Here, we conduct a global-scale analysis of how the nutritional quality of reef fish assemblages (nutritional contribution to the recommended daily intake of calcium, iron, and zinc contained in an average 100 g fish on the reef) relates to key environmental, socioeconomic, and ecological conditions, including two key metrics of fish biodiversity. Our global analysis of more than 1,600 tropical reefs reveals that fish trophic composition is a more important driver of micronutrient concentrations than socioeconomic and environmental conditions. Specifically, micronutrient density increases as the relative biomass of herbivores and detritivores increases at lower overall biomass or under high human pressure. This suggests that the provision of essential micronutrients can be maintained or even increase where fish biomass decreases, reinforcing the need for policies that ensure sustainable fishing, and that these micronutrients are retained locally for nutrition. Furthermore, we found a negative association between micronutrient density and two metrics of fish biodiversity, revealing an important nutrition-biodiversity trade-off. Protecting reefs with high levels of biodiversity maintains key ecosystem functions, whereas sustainable fisheries management in locations with high micronutrient density could sustain the essential supply of micronutrients to coastal human communities.
Collapse
Affiliation(s)
- Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| | - James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Suchinta Arif
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Joshua E Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sebastian C A Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany; Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | | | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France; Institut Universitaire de France, Paris, France
| | - Christina C Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
8
|
Mendes SB, Olesen JM, Memmott J, Costa JM, Timóteo S, Dengucho AL, Craveiro L, Heleno R. Evidence of a European seed dispersal crisis. Science 2024; 386:206-211. [PMID: 39388550 DOI: 10.1126/science.ado1464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Seed dispersal is crucial for ecosystem persistence, especially in fragmented landscapes, such as those common in Europe. Ongoing defaunation might compromise effective seed dispersal, but the conservation status of pairwise interactions remains unknown. With a literature review, we reconstructed the first European-wide seed dispersal network and evaluated the conservation status of interactions by assessing each interacting partner's IUCN (International Union for Conservation of Nature) conservation status and population trends. We found that a third of the disperser species and interactions face potential extinction and that 30% of the plant species have most of their dispersers threatened or declining. Our study reveals a developing seed dispersal crisis in Europe and highlights large knowledge gaps regarding the dispersers and conservation status of zoochorous plants, urging further scrutiny and action to conserve the seed dispersal service.
Collapse
Affiliation(s)
- Sara Beatriz Mendes
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | | | - Jane Memmott
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - José Miguel Costa
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sérgio Timóteo
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Laura Dengucho
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Leonardo Craveiro
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ruben Heleno
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
9
|
Steigerwald E, Chen J, Oshiro J, Vredenburg VT, Catenazzi A, Koo MS. Microreserves are an important tool for amphibian conservation. Commun Biol 2024; 7:1177. [PMID: 39300233 PMCID: PMC11413221 DOI: 10.1038/s42003-024-06510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/26/2024] [Indexed: 09/22/2024] Open
Abstract
Initiatives to protect 30% of Earth by 2030 prompt evaluation of how to efficiently target shortcomings in the global protected area (PA) network. Focusing on amphibians, the most vulnerable vertebrate class, we illustrate the conservation value of microreserves, a term we employ here to refer to reserves of <10 km2. We report that the network continues to under-represent threatened amphibians and that, despite this clear shortcoming in land-based conservation, the creation of PAs protecting amphibians slowed after 2010. By proving something previously assumed-that amphibians generally have smaller ranges than other terrestrial vertebrates-we demonstrate that microreserves could protect a substantial portion of many amphibian ranges, particularly threatened species. We find existing microreserves are capable of hosting an amphibian species richness similar to PAs 1000-10,00X larger, and we show that amphibians' high beta diversity means that microreserves added to a growing PA network cover amphibian species 1.5-6x faster than larger size categories. We propose that stemming global biodiversity loss requires that we seriously consider the conservation potential of microreserves, using them to capture small-range endemics that may otherwise be omitted from the PA network entirely.
Collapse
Affiliation(s)
- Emma Steigerwald
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Julia Chen
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Julianne Oshiro
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Vance T Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA.
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Centro de Ornitología y Biodiversidad, Lima, Peru
| | - Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
10
|
Kandolo BS, Yessoufou K, Kganyago M. Effectiveness of South Africa's network of protected areas: Unassessed vascular plants predicted to be threatened using deep neural networks are all located in protected areas. Ecol Evol 2024; 14:e70229. [PMID: 39224161 PMCID: PMC11368562 DOI: 10.1002/ece3.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Globally, we are in the midst of a biodiversity crisis and megadiverse countries become key targets for conservation. South Africa, the only country in the world hosting three biodiversity hotspots within its borders, harbours a tremendous diversity of at-risk species deserving to be protected. However, the lengthy risk assessment process and the lack of required data to complete assessments is a serious limitation to conservation since several species may slide into extinction while awaiting risk assessment. Here, we employed a deep neural network model integrating species climatic and geographic features to predict the conservation status of 116 unassessed plant species. Our analysis involved in total of 1072 plant species and 96,938 occurrence points. The best-performing model exhibits high accuracy, reaching up to 83.6% at the binary classification and 56.8% at the detailed classification. Our best-performing model at the binary classification predicts that 32% (25 species) and 8% (3 species) of Data Deficient and Not-Evaluated species respectively, are likely threatened, amounting to a proportion of 24.1% of unassessed species facing a risk of extinction. Interestingly, all unassessed species predicted to be threatened are in protected areas, revealing the effectiveness of South Africa's network of protected areas in conservation, although these likely threatened species are more abundant outside protected areas. Considering the limitation in assessing only species with available data, there remains a possibility of a higher proportion of unassessed species being imperilled.
Collapse
Affiliation(s)
- Bahati Samuel Kandolo
- Department of Geography, Environmental Management and Energy StudiesUniversity of JohannesburgJohannesburgSouth Africa
| | - Kowiyou Yessoufou
- Department of Geography, Environmental Management and Energy StudiesUniversity of JohannesburgJohannesburgSouth Africa
| | - Mahlatse Kganyago
- Department of Geography, Environmental Management and Energy StudiesUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
11
|
Lamb IP, Massam MR, Mills SC, Bryant RG, Edwards DP. Global threats of extractive industries to vertebrate biodiversity. Curr Biol 2024; 34:3673-3684.e4. [PMID: 39067452 DOI: 10.1016/j.cub.2024.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
Mining is a key driver of land-use change and environmental degradation globally, with the variety of mineral extraction methods used impacting biodiversity across scales. We use IUCN Red List threat assessments of all vertebrates to quantify the current biodiversity threat from mineral extraction, map the global hotspots of threatened biodiversity, and investigate the links between species' habitat use and life-history traits and threat from mineral extraction. Nearly 8% (4,642) of vertebrates are assessed as threatened by mineral extraction, especially mining and quarrying, with fish at particularly high risk. The hotspots of mineral extraction-induced threat are pantropical, as well as a large proportion of regional diversity threatened in northern South America, West Africa, and the Arctic. Species using freshwater habitats are particularly at risk, while the effects of other ecological traits vary between taxa. As the industry expands, it is vital that mineral resources in vulnerable biodiversity regions are managed in accordance with sustainable development goals.
Collapse
Affiliation(s)
- Ieuan P Lamb
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Michael R Massam
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Simon C Mills
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Robert G Bryant
- School of Geography and Planning, University of Sheffield, Sheffield S10 2TN, UK
| | - David P Edwards
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
12
|
Loiseau N, Mouillot D, Velez L, Seguin R, Casajus N, Coux C, Albouy C, Claverie T, Duhamet A, Fleure V, Langlois J, Villéger S, Mouquet N. Inferring the extinction risk of marine fish to inform global conservation priorities. PLoS Biol 2024; 22:e3002773. [PMID: 39208027 PMCID: PMC11361419 DOI: 10.1371/journal.pbio.3002773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
While extinction risk categorization is fundamental for building robust conservation planning for marine fishes, empirical data on occurrence and vulnerability to disturbances are still lacking for most marine teleost fish species, preventing the assessment of their International Union for the Conservation of Nature (IUCN) status. In this article, we predicted the IUCN status of marine fishes based on two machine learning algorithms, trained with available species occurrences, biological traits, taxonomy, and human uses. We found that extinction risk for marine fish species is higher than initially estimated by the IUCN, increasing from 2.5% to 12.7%. Species predicted as Threatened were mainly characterized by a small geographic range, a relatively large body size, and a low growth rate. Hotspots of predicted Threatened species peaked mainly in the South China Sea, the Philippine Sea, the Celebes Sea, the west coast Australia and North America. We also explored the consequences of including these predicted species' IUCN status in the prioritization of marine protected areas through conservation planning. We found a marked increase in prioritization ranks for subpolar and polar regions despite their low species richness. We suggest to integrate multifactorial ensemble learning to assess species extinction risk and offer a more complete view of endangered taxonomic groups to ultimately reach global conservation targets like the extending coverage of protected areas where species are the most vulnerable.
Collapse
Affiliation(s)
- Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Raphaël Seguin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | | | - Camille Albouy
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Thomas Claverie
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- ENTROPIE, Univ La Réunion, IRD, IFREMER, Univ Nouvelle-Calédonie, CNRS, Saint-Denis, France CUFR of Mayotte, Dembeni, France
| | - Agnès Duhamet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Valentine Fleure
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- ZooParc de Beauval & Beauval Nature, Saint-Aignan, France
| | | | | | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- FRB–CESAB, Montpellier, France
| |
Collapse
|
13
|
Westerlaken M. Digital twins and the digital logics of biodiversity. SOCIAL STUDIES OF SCIENCE 2024; 54:575-597. [PMID: 38511604 DOI: 10.1177/03063127241236809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Biodiversity is a multidimensional concept that can be understood and measured in many different ways. However, the next generation of digital technologies for biodiversity monitoring currently being funded and developed fail to engage its multidimensional and relational aspects. Based on empirical data from interviews, a conference visit, online meetings, webinars, and project reports, this study articulates four digital logics that structure how biodiversity becomes monitored and understood within recent technological developments. The four digital logics illustrate how intensified practices of capturing, connecting, simulating, and computing produce particular techno-scientific formats for creating biodiversity knowledge. While ongoing projects advance technological development in areas of automation, prediction, and the creation of large-scale species databases, their developmental processes structurally limit the future of biodiversity technology. To better address the complex challenges of the global biodiversity crisis, it is crucial to develop digital technologies and practices that can engage with a wider range of perspectives and understandings of relational and multidimensional approaches to biodiversity.
Collapse
|
14
|
Hennelly LM, Sarwar G, Fatima H, Werhahn G, Abbas FI, Khan AM, Mahmood T, Kachel S, Kubanychbekov Z, Waseem MT, Zahra Naqvi R, Hamid A, Abbas Y, Aisha H, Waseem M, Farooq M, Sacks BN. Genomic analysis of wolves from Pakistan clarifies boundaries among three divergent wolf lineages. J Hered 2024; 115:339-348. [PMID: 37897187 DOI: 10.1093/jhered/esad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
Among the three main divergent lineages of gray wolf (Canis lupus), the Holarctic lineage is the most widespread and best studied, particularly in North America and Europe. Less is known about Tibetan (also called Himalayan) and Indian wolf lineages in southern Asia, especially in areas surrounding Pakistan where all three lineages are thought to meet. Given the endangered status of the Indian wolf in neighboring India and unclear southwestern boundary of the Tibetan wolf range, we conducted mitochondrial and genome-wide sequencing of wolves from Pakistan and Kyrgyzstan. Sequences of the mitochondrial D-loop region of 81 wolves from Pakistan indicated contact zones between Holarctic and Indian lineages across the northern and western mountains of Pakistan. Reduced-representation genome sequencing of eight wolves indicated an east-to-west cline of Indian to Holarctic ancestry, consistent with a contact zone between these two lineages in Pakistan. The western boundary of the Tibetan lineage corresponded to the Ladakh region of India's Himalayas with a narrow zone of admixture spanning this boundary from the Karakoram Mountains of northern Pakistan into Ladakh, India. Our results highlight the conservation significance of Pakistan's wolf populations, especially the remaining populations in Sindh and Southern Punjab that represent the highly endangered Indian lineage.
Collapse
Affiliation(s)
- Lauren M Hennelly
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - Ghulam Sarwar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hira Fatima
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Geraldine Werhahn
- IUCN SCC Canid Specialist Group, Oxford, United Kingdom
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Tubney, United Kingdom
| | | | - Abdul M Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tariq Mahmood
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | - Muhammad T Waseem
- Zoological Science Division, Pakistan Museum of Natural History, Islamabad, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul Hamid
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Yasir Abbas
- Central Karakoram National Park, Skardu, Pakistan
| | - Hamera Aisha
- World Wildlife Fund, Pakistan, Islamabad, Pakistan
| | | | - Muhammad Farooq
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Gilbert NA, Blommel CM, Farr MT, Green DS, Holekamp KE, Zipkin EF. A multispecies hierarchical model to integrate count and distance-sampling data. Ecology 2024; 105:e4326. [PMID: 38845219 DOI: 10.1002/ecy.4326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 07/02/2024]
Abstract
Integrated community models-an emerging framework in which multiple data sources for multiple species are analyzed simultaneously-offer opportunities to expand inferences beyond the single-species and single-data-source approaches common in ecology. We developed a novel integrated community model that combines distance sampling and single-visit count data; within the model, information is shared among data sources (via a joint likelihood) and species (via a random-effects structure) to estimate abundance patterns across a community. Parameters relating to abundance are shared between data sources, and the model can specify either shared or separate observation processes for each data source. Simulations demonstrated that the model provided unbiased estimates of abundance and detection parameters even when detection probabilities varied between the data types. The integrated community model also provided more accurate and more precise parameter estimates than alternative single-species and single-data-source models in many instances. We applied the model to a community of 11 herbivore species in the Masai Mara National Reserve, Kenya, and found considerable interspecific variation in response to local wildlife management practices: Five species showed higher abundances in a region with passive conservation enforcement (median across species: 4.5× higher), three species showed higher abundances in a region with active conservation enforcement (median: 3.9× higher), and the remaining three species showed no abundance differences between the two regions. Furthermore, the community average of abundance was slightly higher in the region with active conservation enforcement but not definitively so (posterior mean: higher by 0.20 animals; 95% credible interval: 1.43 fewer animals, 1.86 more animals). Our integrated community modeling framework has the potential to expand the scope of inference over space, time, and levels of biological organization, but practitioners should carefully evaluate whether model assumptions are met in their systems and whether data integration is valuable for their applications.
Collapse
Affiliation(s)
- Neil A Gilbert
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Caroline M Blommel
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew T Farr
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - David S Green
- Institute for Natural Resources, Portland State University, Portland, Oregon, USA
| | - Kay E Holekamp
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Elise F Zipkin
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
16
|
Biondo MV, Burki RP, Aguayo F, Calado R. An Updated Review of the Marine Ornamental Fish Trade in the European Union. Animals (Basel) 2024; 14:1761. [PMID: 38929380 PMCID: PMC11201242 DOI: 10.3390/ani14121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Wild-caught fish from coral reefs, one of the most threatened ecosystems on the planet, continue to supply the marine aquarium trade. Despite customs and veterinary checks during imports, comprehensive data on this global industry remain scarce. This study provides consolidated data on the largest import market by value, the European Union (EU): a 24-million-euro annual trade value, detailing the main exporting and importing countries, as well as the species and families of the 26 million specimens imported between 2014 and 2021. A watchlist alert system based on the number of specimens traded, import trends, and vulnerability index according to FishBase and the IUCN Red List conservation status is presented, providing key information on which species should require closer scrutiny by authorities. While the European TRAde Control and Expert System (TRACES) electronically monitors the movement of live animals to respond quickly to biosecurity risks, one-third of marine ornamental fish imported lack species-level information. With minor adjustments, TRACES holds the potential to significantly enhance data granularity and the monitoring of wildlife trade, with marine ornamental fish being an interesting case study to validate this approach.
Collapse
Affiliation(s)
| | | | - Francisco Aguayo
- Faculty of Higher Studies Cuautitlán, National Autonomous University of Mexico, Mexico City 54714, Mexico
| | - Ricardo Calado
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Cui Y, Carmona CP, Wang Z. Identifying global conservation priorities for terrestrial vertebrates based on multiple dimensions of biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14205. [PMID: 37855155 DOI: 10.1111/cobi.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/28/2022] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
The Kunming-Montreal Global Biodiversity Framework of the Convention on Biological Diversity calls for an expansion of the current protected areas (PAs) to cover at least 30% of global land and water areas by 2030 (i.e., the 30×30 target). Efficient spatial planning for PA expansion is an urgent need for global conservation practice. A spatial prioritization framework considering multiple dimensions of biodiversity is critical for improving the efficiency of the spatial planning of PAs, yet it remains a challenge. We developed an index for the identification of priority areas based on functionally rare, evolutionarily distinct, and globally endangered species (FREDGE) and applied it to 21,536 terrestrial vertebrates. We determined species distributions, conservation status (global endangerment), molecular phylogenies (evolutionary distinctiveness), and life-history traits (functional rarity). Madagascar, Central America, and the Andes were of high priority for the conservation of multiple dimensions of terrestrial vertebrate biodiversity. However, 68.8% of grid cells in these priority areas had <17% of their area covered by PAs, and these priority areas were under intense anthropogenic and climate change threats. These results highlight the difficulties of conserving multiple dimensions of biodiversity. Our global analyses of the geographical patterns of multiple dimensions of terrestrial vertebrate biodiversity demonstrate the insufficiency of the conservation of different biodiversity dimensions, and our index, based on multiple dimensions of biodiversity, provides a useful tool for guiding future spatial prioritization of PA expansion to achieve the 30×30 target under serious pressures.
Collapse
Affiliation(s)
- Yu Cui
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Gjedde P, Carrer F, Pettersen JB, Verones F. Effect factors for marine invasion impacts on biodiversity. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2024; 29:1756-1763. [PMID: 39220436 PMCID: PMC11358188 DOI: 10.1007/s11367-024-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/09/2024] [Indexed: 09/04/2024]
Abstract
Purpose Marine vertebrate populations have halved in the past decades, and invasive species are a major driver for this loss. While many model the spread of invasive species, a model to assess impacts of marine invasions, after introduction, has hitherto been missing. We present the first regionalized effect factors for marine invasions. These factors gauge differences in biodiversity impacts after invasions, enabling life cycle impact assessments to highlight biodiversity impacts from invasive species. Methods Alien species are species that are introduced by humans to ecosystems where they are not native. We combine data from the IUCN red list and the MarINvaders database to identify the potentially disappeared fraction of native species within each marine coastal ecoregion after alien introduction. The effect factors indicate the biodiversity impact from invasions per alien introduction. However, the IUCN red list has a performance bias between taxonomic groups, and both the IUCN and the harmonized citizen science data from MarINvaders have a geographic observer's bias. We address some of this bias by evaluating the number of threatened species per number of assessed species, as well as including machine-learning derived data for data deficient species. Results and discussion The resulting regional effect factors demonstrate high effects of invasions at high latitudes, which is in line with other findings. Our approach is founded on continuously growing citizen science data and so reflects the biases and uncertainties that follow with this uneven way of data sampling. On the other hand, the continuous data collection by citizen scientists will improve data coverage and thus improve the model. Vice versa, the model itself may be motivation for citizens scientists to collect more data. Conclusion The effect of marine invasions presented herein reflects current global information on the issue viewed in a perspective relevant for life cycle impact assessments. The developed effect factors can be used for further assessments that will aid decision-making for policies, industries, and consumers to work towards minimizing impacts of marine invasions and are developed to be compatible with different relevant fate factors. Supplementary Information The online version contains supplementary material available at 10.1007/s11367-024-02325-7.
Collapse
Affiliation(s)
- Philip Gjedde
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Fabio Carrer
- Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
19
|
Browne RK, Luo Q, Wang P, Mansour N, Kaurova SA, Gakhova EN, Shishova NV, Uteshev VK, Kramarova LI, Venu G, Vaissi S, Taheri-Khas Z, Heshmatzad P, Bagaturov MF, Janzen P, Naranjo RE, Swegen A, Strand J, McGinnity D, Dunce I. Ecological Civilisation and Amphibian Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs (RBCs). Animals (Basel) 2024; 14:1455. [PMID: 38791672 PMCID: PMC11117272 DOI: 10.3390/ani14101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Intergenerational justice entitles the maximum retention of Earth's biodiversity. The 2022 United Nations COP 15, "Ecological Civilisation: Building a Shared Future for All Life on Earth", is committed to protecting 30% of Earth's terrestrial environments and, through COP 28, to mitigate the effects of the climate catastrophe on the biosphere. We focused this review on three core themes: the need and potential of reproduction biotechnologies, biobanks, and conservation breeding programs (RBCs) to satisfy sustainability goals; the technical state and current application of RBCs; and how to achieve the future potentials of RBCs in a rapidly evolving environmental and cultural landscape. RBCs include the hormonal stimulation of reproduction, the collection and storage of sperm and oocytes, and artificial fertilisation. Emerging technologies promise the perpetuation of species solely from biobanked biomaterials stored for perpetuity. Despite significant global declines and extinctions of amphibians, and predictions of a disastrous future for most biodiversity, practical support for amphibian RBCs remains limited mainly to a few limited projects in wealthy Western countries. We discuss the potential of amphibian RBCs to perpetuate amphibian diversity and prevent extinctions within multipolar geopolitical, cultural, and economic frameworks. We argue that a democratic, globally inclusive organisation is needed to focus RBCs on regions with the highest amphibian diversity. Prioritisation should include regional and international collaborations, community engagement, and support for RBC facilities ranging from zoos and other institutions to those of private carers. We tabulate a standard terminology for field programs associated with RBCs for publication and media consistency.
Collapse
Affiliation(s)
| | - Qinghua Luo
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Q.L.); (P.W.)
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Pei Wang
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China; (Q.L.); (P.W.)
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Nabil Mansour
- Fujairah Research Centre (FRC), Al-Hilal Tower 3003, Fujairah P.O. Box 666, United Arab Emirates;
| | - Svetlana A. Kaurova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Edith N. Gakhova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Natalia V. Shishova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Victor K. Uteshev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (S.A.K.); (E.N.G.); (N.V.S.); (V.K.U.)
| | - Ludmila I. Kramarova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Govindappa Venu
- Centre for Applied Genetics, Department of Zoology, Jnana Bharathi Campus, Bangalore University, Bengaluru 560056, India;
- Evolving Phylo Lab, Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Somaye Vaissi
- Department of Biology, Faculty of Science, Razi University, Kermanshah 57146, Iran; (S.V.); (Z.T.-K.)
| | - Zeynab Taheri-Khas
- Department of Biology, Faculty of Science, Razi University, Kermanshah 57146, Iran; (S.V.); (Z.T.-K.)
| | - Pouria Heshmatzad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138, Iran;
| | - Mikhail F. Bagaturov
- IUCN/SSC/Athens Institute for Education and Research/Zoological Institute RAS, St. Petersburg 199034, Russia;
| | - Peter Janzen
- Verband Deutscher Zoodirectoren/Justus-von-Liebig-Schule, 47166 Duisburg, Germany;
| | - Renato E. Naranjo
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Giovanni, Farina 566 y Baltra, San Rafael, Quito 171102, Ecuador;
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan 2308, Australia;
| | - Julie Strand
- Department of Animal and Veterinary Science, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark;
| | - Dale McGinnity
- Ectotherm Department, Nashville Zoo at Grassmere, Nashville, TN 37211, USA;
| | | |
Collapse
|
20
|
Hilario-Husain BA, Tanalgo KC, Guerrero SJC, Garcia FGN, Lerios TE, Garcia MEZ, Alvaro-Ele RJ, Manampan-Rubio M, Murray SA, Casim LF, Delos Reyes JL, Dela Cruz KC, Abdullah SS, Balase SMP, Respicio JMV, Lidasan AK, Buday ZS, Cabasan MTN, Pimentel JL, Tamon FJM, Agduma AR. Caught in the crossfire: biodiversity conservation paradox of sociopolitical conflict. NPJ BIODIVERSITY 2024; 3:10. [PMID: 39242669 PMCID: PMC11332208 DOI: 10.1038/s44185-024-00044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/12/2024] [Indexed: 09/09/2024]
Abstract
The current state of global biodiversity is confronted with escalating threats arising from human-induced environmental changes and a growing array of unpredictable challenges. However, effective conservation efforts are often hindered by limited knowledge, especially in developing economies such as the Philippines. The limitations imposed by these shortfalls in biodiversity knowledge hamper the capacity to protect biodiversity in light of the continuing extinction crisis. Our study revealed that areas with higher conflict levels exhibited lower species richness, fewer occurrence records, and reduced forest cover. This finding provides initial evidence for the relationship between sociopolitical conflict and biodiversity in the Philippines. We posit that the security risks caused by sociopolitical conflicts could have a negative impact on conservation efforts, particularly in terms of monitoring and implementing measures to protect natural resources. The links that bind armed conflict and biodiversity conservation are multifaceted and complex issues that warrant greater scientific and political attention. Finally, we identified 10 meaningful approaches to address shortfalls in biodiversity knowledge in conflicted areas, particularly incorporating conflict-sensitive approaches, considering the geopolitical context and conflict dynamics to adapt and align their strategies with local realities for more effective conservation efforts.
Collapse
Affiliation(s)
- Bona Abigail Hilario-Husain
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Krizler Cejuela Tanalgo
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines.
| | - Sarrah Jane C Guerrero
- Department of Development Communication, College of Arts and Social Sciences, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Francisco Gil N Garcia
- Department of Agricultural Economics, College of Business, Development Economics and Management, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Tessie E Lerios
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - May Eva Z Garcia
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Renee Jane Alvaro-Ele
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Meriam Manampan-Rubio
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Sedra A Murray
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Lothy F Casim
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Molecular Parasitology Research Laboratory, Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Jamaica L Delos Reyes
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Kier Celestial Dela Cruz
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Sumaira S Abdullah
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Shiela Mae Prince Balase
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Jeaneth Magelen V Respicio
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Asraf K Lidasan
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Zafrullah S Buday
- Dungguan, Datu Montawal 9610, Maguindanao del Sur, Bangsamoro Autonomous Region in Muslim Mindanao, Marawi, Philippines
| | - Ma Teodora N Cabasan
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Nematology Research Laboratory, Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Jonald L Pimentel
- Department of Mathematics and Statistics, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Florie Jane M Tamon
- Department of Social Science and Philosophy, College of Arts and Social Sciences, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
| | - Angelo Rellama Agduma
- Ecology and Conservation Research Laboratory (Eco/Con Lab), Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Department of Biological Sciences, College of Science and Mathematics, University of Southern Mindanao, Kabacan, 9407, Cotabato, Philippines
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
21
|
Bachman SP, Brown MJM, Leão TCC, Nic Lughadha E, Walker BE. Extinction risk predictions for the world's flowering plants to support their conservation. THE NEW PHYTOLOGIST 2024; 242:797-808. [PMID: 38437880 DOI: 10.1111/nph.19592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
More than 70% of all vascular plants lack conservation status assessments. We aimed to address this shortfall in knowledge of species extinction risk by using the World Checklist of Vascular Plants to generate the first comprehensive set of predictions for a large clade: angiosperms (flowering plants, c. 330 000 species). We used Bayesian Additive Regression Trees (BART) to predict the extinction risk of all angiosperms using predictors relating to range size, human footprint, climate, and evolutionary history and applied a novel approach to estimate uncertainty of individual species-level predictions. From our model predictions, we estimate 45.1% of angiosperm species are potentially threatened with a lower bound of 44.5% and upper bound of 45.7%. Our species-level predictions, with associated uncertainty estimates, do not replace full global, or regional Red List assessments, but can be used to prioritise predicted threatened species for full Red List assessment and fast-track predicted non-threatened species for Least Concern assessments. Our predictions and uncertainty estimates can also guide fieldwork, inform systematic conservation planning and support global plant conservation efforts and targets.
Collapse
|
22
|
Goudarzi F, Doxa A, Hemami MR, Mazaris AD. Thermal vulnerability of sea turtle foraging grounds around the globe. Commun Biol 2024; 7:347. [PMID: 38514821 PMCID: PMC10958041 DOI: 10.1038/s42003-024-06013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Anticipating and mitigating the impacts of climate change on biodiversity requires a comprehensive understanding on key habitats utilized by species. Yet, such information for high mobile marine megafauna species remains limited. Here, we compile a global database comprising published satellite tracking data (n = 1035 individuals) to spatially delineate foraging grounds for seven sea turtle species and assess their thermal stability. We identified 133 foraging areas distributed around the globe, of which only 2% of the total surface is enclosed within an existing protected area. One-third of the total coverage of foraging hotspots is situated in high seas, where conservation focus is often neglected. Our analyses revealed that more than two-thirds of these vital marine habitats will experience new sea surface temperature (SST) conditions by 2100, exposing sea turtles to potential thermal risks. Our findings underline the importance of global ocean conservation efforts, which can meet climate challenges even in remote environments.
Collapse
Affiliation(s)
- Forough Goudarzi
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University (SBU), Tehran, Iran.
| | - Aggeliki Doxa
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
- Department of Biology, University of Crete, University Campus Vouton, 70013, Heraklion, Greece
| | - Mahmoud-Reza Hemami
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
23
|
Panigada V, Bodey TW, Friedlaender A, Druon JN, Huckstädt LA, Pierantonio N, Degollada E, Tort B, Panigada S. Targeting fin whale conservation in the North-Western Mediterranean Sea: insights on movements and behaviour from biologging and habitat modelling. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231783. [PMID: 38455994 PMCID: PMC10915541 DOI: 10.1098/rsos.231783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Biologging and habitat modelling are key tools supporting the development of conservation measures and mitigating the effects of anthropogenic pressures on marine species. Here, we analysed satellite telemetry data and foraging habitat preferences in relation to chlorophyll-a productivity fronts to understand the movements and behaviour of endangered Mediterranean fin whales (Balaenoptera physalus) during their spring-summer feeding aggregation in the North-Western Mediterranean Sea. Eleven individuals were equipped with Argos satellite transmitters across 3 years, with transmissions averaging 23.5 ± 11.3 days. Hidden Markov Models were used to identify foraging behaviour, revealing how individuals showed consistency in their use of seasonal core feeding grounds; this was supported by the distribution of potential foraging habitat. Importantly, tracked whales spent most of their time in areas with no explicit protected status within the study region. This highlights the need for enhanced time- and place-based conservation actions to mitigate the effects of anthropogenic impacts for this species, notably ship strike risk and noise disturbance in an area of exceptionally high maritime traffic levels. These findings strengthen the need to further assess critical habitats and Important Marine Mammal Areas that are crucial for focused conservation, management and mitigation efforts.
Collapse
Affiliation(s)
- Viola Panigada
- Tethys Research Institute, c/o Acquario Civico, Viale G.B. Gadio 2, 20121 Milano, Italy
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Thomas W. Bodey
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Ari Friedlaender
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jean-Noël Druon
- Joint Research Centre, (JRC), European Commission, Ispra, Italy
| | - Luis A. Huckstädt
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| | - Nino Pierantonio
- Tethys Research Institute, c/o Acquario Civico, Viale G.B. Gadio 2, 20121 Milano, Italy
| | | | - Beatriu Tort
- Associació EDMAKTUB, 08393 Barcelona, Catalonia, Spain
| | - Simone Panigada
- Tethys Research Institute, c/o Acquario Civico, Viale G.B. Gadio 2, 20121 Milano, Italy
| |
Collapse
|
24
|
Gumbs R, Scott O, Bates R, Böhm M, Forest F, Gray CL, Hoffmann M, Kane D, Low C, Pearse WD, Pipins S, Tapley B, Turvey ST, Jetz W, Owen NR, Rosindell J. Global conservation status of the jawed vertebrate Tree of Life. Nat Commun 2024; 15:1101. [PMID: 38424441 PMCID: PMC10904806 DOI: 10.1038/s41467-024-45119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups-such as testudines, crocodylians, amphibians and chondrichthyans-as conservation priorities from a phylogenetic perspective.
Collapse
Affiliation(s)
- Rikki Gumbs
- Zoological Society of London, London, NW1 4RY, UK.
- Science and Solutions for a Changing Planet DTP, Grantham Institute, Imperial College London, London, SW7 2AZ, UK.
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, SL5 7PY, UK.
| | - Oenone Scott
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, SL5 7PY, UK
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Ryan Bates
- Zoological Society of London, London, NW1 4RY, UK
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, SL5 7PY, UK
| | - Monika Böhm
- Global Center for Species Survival, Indianapolis Zoological Society, Indianapolis, IN, 46222, USA
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | | | | - Daniel Kane
- Zoological Society of London, London, NW1 4RY, UK
| | - Christopher Low
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, WC1E 6BT, UK
| | - William D Pearse
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, SL5 7PY, UK
| | - Sebastian Pipins
- Science and Solutions for a Changing Planet DTP, Grantham Institute, Imperial College London, London, SW7 2AZ, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- On the Edge, London, SW3 2JJ, UK
| | | | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, 06511, USA
| | | | - James Rosindell
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
25
|
Borgelt J, Dorber M, Géron C, Kuipers KJJ, Huijbregts MAJ, Verones F. What Is the Impact of Accidentally Transporting Terrestrial Alien Species? A New Life Cycle Impact Assessment Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38332475 PMCID: PMC10882960 DOI: 10.1021/acs.est.3c08500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Alien species form one of the main threats to global biodiversity. Although Life Cycle Assessment attempts to holistically assess environmental impacts of products and services across value chains, ecological impacts of the introduction of alien species are so far not assessed in Life Cycle Impact Assessment. Here, we developed country-to-country-specific characterization factors, expressed as the time-integrated potentially disappeared fraction (PDF; regional and global) of native terrestrial species due to alien species introductions per unit of goods transported [kg] between two countries. The characterization factors were generated by analyzing global data on first records of alien species, native species distributions, and their threat status, as well as bilateral trade partnerships from 1870-2019. The resulting characterization factors vary over several orders of magnitude, indicating that impact greatly varies per transportation route and trading partner. We showcase the applicability and relevance of the characterization factors for transporting 1 metric ton of freight to France from China, South Africa, and Madagascar. The results suggest that the introduction of alien species can be more damaging for terrestrial biodiversity as climate change impacts during the international transport of commodities.
Collapse
Affiliation(s)
- Jan Borgelt
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7034, Norway
| | - Martin Dorber
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7034, Norway
| | - Charly Géron
- Biodiversity and Landscape, TERRA research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
- Plants and Ecosystems, University of Antwerp, Wilrijk 2610, Belgium
- . CNRS, ECOBIO (Écosystèmes, Biodiversité, Évolution), UMR, University of Rennes, Rennes 6553, France
| | - Koen J J Kuipers
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, GL 6500, Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, GL 6500, Netherlands
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7034, Norway
| |
Collapse
|
26
|
Sanders E, Wassens S, Michael DR, Nimmo DG, Turner JM. Extinction risk of the world's freshwater mammals. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14168. [PMID: 37563953 DOI: 10.1111/cobi.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The continued loss of freshwater habitats poses a significant threat to global biodiversity. We reviewed the extinction risk of 166 freshwater aquatic and semiaquatic mammals-a group rarely documented as a collective. We used the International Union for the Conservation of Nature Red List of Threatened Species categories as of December 2021 to determine extinction risk. Extinction risk was then compared among taxonomic groups, geographic areas, and biological traits. Thirty percent of all freshwater mammals were listed as threatened. Decreasing population trends were common (44.0%), including a greater rate of decline (3.6% in 20 years) than for mammals or freshwater species as a whole. Aquatic freshwater mammals were at a greater risk of extinction than semiaquatic freshwater mammals (95% CI -7.20 to -1.11). Twenty-nine species were data deficient or not evaluated. Large species (95% CI 0.01 to 0.03) with large dispersal distances (95% CI 0.03 to 0.15) had a higher risk of extinction than small species with small dispersal distances. The number of threatening processes associated with a species compounded their risk of extinction (95% CI 0.28 to 0.77). Hunting, land clearing for logging and agriculture, pollution, residential development, and habitat modification or destruction from dams and water management posed the greatest threats to these species. The basic life-history traits of many species were poorly known, highlighting the need for more research. Conservation of freshwater mammals requires a host of management actions centered around increased protection of riparian areas and more conscientious water management to aid the recovery of threatened species.
Collapse
Affiliation(s)
- Emmalie Sanders
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | - Skye Wassens
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Albury, New South Wales, Australia
| | - Damian R Michael
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Albury, New South Wales, Australia
| | - Dale G Nimmo
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Albury, New South Wales, Australia
| | - James M Turner
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, South Lanarkshire, UK
| |
Collapse
|
27
|
Boonman CCF, Serra-Diaz JM, Hoeks S, Guo WY, Enquist BJ, Maitner B, Malhi Y, Merow C, Buitenwerf R, Svenning JC. More than 17,000 tree species are at risk from rapid global change. Nat Commun 2024; 15:166. [PMID: 38167693 PMCID: PMC10761716 DOI: 10.1038/s41467-023-44321-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Trees are pivotal to global biodiversity and nature's contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.2%) of the assessed species have been exposed to increasing threats. Only 8.7% of these species are considered threatened by the IUCN Red List, whereas they include more than half of the Data Deficient species (57.8%). These findings suggest a substantial underestimation of threats and associated extinction risk for tree species in current assessments. We also map hotspots of tree species exposed to rapidly changing threats around the world. Our data-driven approach can strengthen the efforts going into expert-based IUCN Red List assessments by facilitating prioritization among species for re-evaluation, allowing for more efficient conservation efforts.
Collapse
Affiliation(s)
- Coline C F Boonman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Josep M Serra-Diaz
- Department of Ecology and Evolution and Eversource Energy Center, University of Connecticut, Storrs, CT, USA
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
| | - Selwyn Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Wen-Yong Guo
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Brian Maitner
- Department of Geography, University at Buffalo, Buffalo, NY, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, England, UK
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK
| | - Cory Merow
- Department of Ecology and Evolution and Eversource Energy Center, University of Connecticut, Storrs, CT, USA
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
28
|
Grunwald AL, Demos TC, Nguéagni Y, Tchamba MN, Monadjem A, Webala PW, Peterhans JCK, Patterson BD, Ruedas LA. A review of bats of the genus Pseudoromicia (Chiroptera: Vespertilionidae) with the description of a new species. SYST BIODIVERS 2023. [DOI: 10.1080/14772000.2022.2156002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda L. Grunwald
- Department of Biology and Museum of Vertebrate Biology, Portland State University, SRTC–247, Portland, P.O. Box 751, OR 97207–0751, USA
| | - Terrence C. Demos
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, 60605, IL, USA
| | - Yvette Nguéagni
- Department of Forestry, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Cameroon
| | - Martin N. Tchamba
- Department of Forestry, Faculty of Agronomy and Agricultural Sciences, University of Dschang, Cameroon
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Private Bag 4, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, P.O. Box 861, 20500, Kenya
| | | | - Bruce D. Patterson
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, 60605, IL, USA
| | - Luis A. Ruedas
- Department of Biology and Museum of Vertebrate Biology, Portland State University, SRTC–247, Portland, P.O. Box 751, OR 97207–0751, USA
| |
Collapse
|
29
|
Cazalis V, Santini L, Lucas PM, González-Suárez M, Hoffmann M, Benítez-López A, Pacifici M, Schipper AM, Böhm M, Zizka A, Clausnitzer V, Meyer C, Jung M, Butchart SHM, Cardoso P, Mancini G, Akçakaya HR, Young BE, Patoine G, Di Marco M. Prioritizing the reassessment of data-deficient species on the IUCN Red List. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14139. [PMID: 37394972 DOI: 10.1111/cobi.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Despite being central to the implementation of conservation policies, the usefulness of the International Union for Conservation of Nature (IUCN) Red List of Threatened Species is hampered by the 14% of species classified as data-deficient (DD) because information to evaluate these species' extinction risk was lacking when they were last assessed or because assessors did not appropriately account for uncertainty. Robust methods are needed to identify which DD species are more likely to be reclassified in one of the data-sufficient IUCN Red List categories. We devised a reproducible method to help red-list assessors prioritize reassessment of DD species and tested it with 6887 DD species of mammals, reptiles, amphibians, fishes, and Odonata (dragonflies and damselflies). For each DD species in these groups, we calculated its probability of being classified in a data-sufficient category if reassessed today from covariates measuring available knowledge (e.g., number of occurrence records or published articles available), knowledge proxies (e.g., remoteness of the range), and species characteristics (e.g., nocturnality); calculated change in such probability since last assessment from the increase in available knowledge (e.g., new occurrence records); and determined whether the species might qualify as threatened based on recent rate of habitat loss determined from global land-cover maps. We identified 1907 species with a probability of being reassessed in a data-sufficient category of >0.5; 624 species for which this probability increased by >0.25 since last assessment; and 77 species that could be reassessed as near threatened or threatened based on habitat loss. Combining these 3 elements, our results provided a list of species likely to be data-sufficient such that the comprehensiveness and representativeness of the IUCN Red List can be improved.
Collapse
Affiliation(s)
- Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Pablo M Lucas
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | | | - Ana Benítez-López
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Department of Zoology, Faculty of Science, University of Granada, Granada, Spain
| | - Michela Pacifici
- Global Mammal Assessment Programme, Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
- PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
| | - Monika Böhm
- Global Center for Species Survival, Indianapolis Zoological Society, Indianapolis, Indiana, USA
| | - Alexander Zizka
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | - Carsten Meyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Geosciences and Geography, Martin Luther University Halle-Wittenberg, Halle, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Martin Jung
- Biodiversity, Ecology and Conservation Group, Biodiversity and Natural Resources Management Programme, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Stuart H M Butchart
- BirdLife International, David Attenborough Building, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
| | - Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - H Reşit Akçakaya
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
- IUCN Species Survival Commission (SSC), Gland, Switzerland
| | | | - Guillaume Patoine
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
30
|
Tsukada E, Rodrigues CC, Jacintho JC, Franco-Belussi L, Jones-Costa M, Abdalla FC, Rocha TL, Salla RF. The amphibian's spleen as a source of biomarkers for ecotoxicity assessment: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165915. [PMID: 37532037 DOI: 10.1016/j.scitotenv.2023.165915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Amphibians are very sensitive to many environmental changes, so these animals are considered good bioindicator models for ecotoxicology. Given the importance of the amphibian spleen for hematopoietic and immune responses, this can be a key organ for the evaluation of biomarkers to monitor the health of individuals in nature or in captivity. In this systematic review, we searched databases and summarized the main findings concerning the amphibian spleen as a source of possible biomarkers applied in different scientific fields. The searches resulted in 83 articles published from 1923 to 2022, which applied the use of splenic samples to evaluate the effects of distinct stressors on amphibians. Articles were distributed in more than twenty countries, with USA, Europe, and Brazil, standing out among them. Publications focused mainly on anatomical and histomorphological characterization of the spleen, its physiology, and development. Recently, the use of splenic biomarkers in pathology and ecotoxicology began to grow but many gaps still need to be addressed in herpetological research. About 85 % of the splenic biomarkers showed responses to various stressors, which indicates that the spleen can provide numerous biomarkers to be used in many study fields. The limited amount of information on morphological description and splenic anatomy in amphibians may be a contributing factor to the underestimated use of splenic biomarkers in herpetological research around the world. We hope that this unprecedented review can instigate researchers to refine herpetological experimentation, using the spleen as a versatile and alternative source for biomarkers in ecotoxicology.
Collapse
Affiliation(s)
- Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Cândido C Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Lilian Franco-Belussi
- Departament of Biological Sciences, São Paulo State University, campus São José do Rio Preto, São Paulo, Brazil; Laboratory of Experimental Pathology (LAPex), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Monica Jones-Costa
- Department of Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fábio Camargo Abdalla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Structural and Functional Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Raquel F Salla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
31
|
Yáñez-Arenas A, Nakamura M, Trites AW, Reyes-Bonilla H, Hernández-Camacho CJ, Galván-Magaña F, Borcherding J, del Monte-Luna P. An integrated system to assess marine extinctions. PLoS One 2023; 18:e0293478. [PMID: 37883427 PMCID: PMC10602268 DOI: 10.1371/journal.pone.0293478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
More than 20 global marine extinctions and over 700 local extinctions have reportedly occurred during the past 500 years. However, available methods to determine how many of these species can be confidently declared true disappearances tend to be data-demanding, time-consuming, and not applicable to all taxonomic groups or scales of marine extinctions (global [G] and local [L]). We developed an integrated system to assess marine extinctions (ISAME) that can be applied to any taxonomic group at any geographic scale. We applied the ISAME method to 10 case studies to illustrate the possible ways in which the extinction status of marine species can be categorized as unverified, possibly extinct, or extinct. Of the 10 case studies we assessed, the ISAME method concludes that 6 should be categorized as unverified extinctions due to problems with species' identity and lack of reliable evidence supporting their disappearance (periwinkle-Littoraria flammea [G], houting-Coregonus oxyrinchus [G], long-spined urchin-Diadema antillarum [L], smalltooth sawfish-Pristis pectinata [L], and largetooth sawfish-P. pristis [L]). In contrast, ISAME classified the Guadalupe storm-petrel (Oceanodroma macrodactyla [G]) and the lost shark (Carcharhinus obsolerus [G]) as possibly extinct because the available evidence indicates that their extinction is plausible-while the largetooth sawfish [L] and Steller's sea cow (Hydrodamalis gigas [G]) were confirmed to be extinct. Determining whether a marine population or species is actually extinct or still extant is needed to guide conservation efforts and prevent further biodiversity losses.
Collapse
Affiliation(s)
| | - Miguel Nakamura
- Centro de Investigación en Matemáticas, Guanajuato, Gto., México
| | - Andrew W. Trites
- Institute For the Oceans and Fisheries, University of British Columbia, Vancouver BC, Canada
| | - Héctor Reyes-Bonilla
- Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, La Paz, BCS, México
| | | | | | - Jost Borcherding
- Institute For Zoology, General Ecology & Limnology, University of Cologne, Cologne, Germany
| | | |
Collapse
|
32
|
Mora JM, Ruedas LA. Updated list of the mammals of Costa Rica, with notes on recent taxonomic changes. Zootaxa 2023; 5357:451-501. [PMID: 38220635 DOI: 10.11646/zootaxa.5357.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 01/16/2024]
Abstract
Although Costa Rica occupies a mere 0.03% of the Earths land area, it nevertheless has recorded within its borders approximately 5% of the global diversity of mammals, thus making it one of the worlds megadiverse countries. Over the past ten years, 22 species have been added to the countrys inventory, bringing the total number known as here documented to 271; Chiroptera account for ten of these, having grown to 124 from 114; rodents have increased by eight species, from 47 to 55, with the caveat that we include three invasive species of Muridae that have gone feral. In contrast, the number of orders has decreased by one, by Artiodactyla incorporating the former Cetacea. Notes are provided for all taxonomic novelties since the last update. Since the first taxonomic compendium of the mammals of Costa Rica in 1869, the number of known species has grown by approximately 1.22 species year-1 (R2 = 0.96). Since 1983 however, this growth rate has been 1.64 species year-1 (R2 = 0.98). Despite this strong growth, an asymptote in the number of known species has not been reached. Conservation remains a primary need: over 60% of the countrys mammal species show population trends that are decreasing (13%), unknown (37%), or not assessed (11%), based on IUCN criteria. These analyses suggest that much remains to be known regarding the number of mammal species living in Costa Rica, but also that much more remains to be done to safeguard Costa Ricas exceptional biodiversity heritage.
Collapse
Affiliation(s)
- Jos Manuel Mora
- Department of Biology and Museum of Vertebrate Biology; Portland State University; Portland; Oregon 97207-0751; USA; Carrera de Gestin Ecoturstica; Sede Central; Universidad Tcnica Nacional; Alajuela; Costa Rica.
| | - Luis A Ruedas
- Department of Biology and Museum of Vertebrate Biology; Portland State University; Portland; Oregon 97207-0751; USA.
| |
Collapse
|
33
|
Finn C, Grattarola F, Pincheira-Donoso D. More losers than winners: investigating Anthropocene defaunation through the diversity of population trends. Biol Rev Camb Philos Soc 2023; 98:1732-1748. [PMID: 37189305 DOI: 10.1111/brv.12974] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
The global-scale decline of animal biodiversity ('defaunation') represents one of the most alarming consequences of human impacts on the planet. The quantification of this extinction crisis has traditionally relied on the use of IUCN Red List conservation categories assigned to each assessed species. This approach reveals that a quarter of the world's animal species are currently threatened with extinction, and ~1% have been declared extinct. However, extinctions are preceded by progressive population declines through time that leave demographic 'footprints' that can alert us about the trajectories of species towards extinction. Therefore, an exclusive focus on IUCN conservation categories, without consideration of dynamic population trends, may underestimate the true extent of the processes of ongoing extinctions across nature. In fact, emerging evidence (e.g. the Living Planet Report), reveals a widespread tendency for sustained demographic declines (an average 69% decline in population abundances) of species globally. Yet, animal species are not only declining. Many species worldwide exhibit stable populations, while others are even thriving. Here, using population trend data for >71,000 animal species spanning all five groups of vertebrates (mammals, birds, reptiles, amphibians and fishes) and insects, we provide a comprehensive global-scale assessment of the diversity of population trends across species undergoing not only declines, but also population stability and increases. We show a widespread global erosion of species, with 48% undergoing declines, while 49% and 3% of species currently remain stable or are increasing, respectively. Geographically, we reveal an intriguing pattern similar to that of threatened species, whereby declines tend to concentrate around tropical regions, whereas stability and increases show a tendency to expand towards temperate climates. Importantly, we find that for species currently classed by the IUCN Red List as 'non-threatened', 33% are declining. Critically, in contrast with previous mass extinction events, our assessment shows that the Anthropocene extinction crisis is undergoing a rapid biodiversity imbalance, with levels of declines (a symptom of extinction) greatly exceeding levels of increases (a symptom of ecological expansion and potentially of evolution) for all groups. Our study contributes a further signal indicating that global biodiversity is entering a mass extinction, with ecosystem heterogeneity and functioning, biodiversity persistence, and human well-being under increasing threat.
Collapse
Affiliation(s)
- Catherine Finn
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Florencia Grattarola
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Daniel Pincheira-Donoso
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
34
|
Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy A, Aowphol A, Jean A, Sosa-Bartuano Á, Fong G A, de Silva A, Fouquet A, Angulo A, Kidov AA, Muñoz Saravia A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B, Tjaturadi B, Martínez Rivera CC, Vásquez Almazán CR, Señaris C, Chandramouli SR, Strüssmann C, Cortez Fernández CF, Azat C, Hoskin CJ, Hilton-Taylor C, Whyte DL, Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ, Nagombi E, Najafi-Majd E, Quah ESH, Bolaños F, Xie F, Brusquetti F, Álvarez FS, Andreone F, Glaw F, Castañeda FE, Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán G, Ortega-Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailović J, Yang JH, Jianping J, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO, Gururaja KV, Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH, Meegaskumbura M, Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yánez-Muñoz MH, Scherz MD, Rödel MO, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M, Kouamé NG, García N, Gonwouo NL, Burrowes PA, Imbun PY, Wagner P, Kok PJR, Joglar RL, Auguste RJ, Brandão RA, Ibáñez R, von May R, Hedges SB, Biju SD, Ganesh SR, et alLuedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy A, Aowphol A, Jean A, Sosa-Bartuano Á, Fong G A, de Silva A, Fouquet A, Angulo A, Kidov AA, Muñoz Saravia A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B, Tjaturadi B, Martínez Rivera CC, Vásquez Almazán CR, Señaris C, Chandramouli SR, Strüssmann C, Cortez Fernández CF, Azat C, Hoskin CJ, Hilton-Taylor C, Whyte DL, Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ, Nagombi E, Najafi-Majd E, Quah ESH, Bolaños F, Xie F, Brusquetti F, Álvarez FS, Andreone F, Glaw F, Castañeda FE, Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán G, Ortega-Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailović J, Yang JH, Jianping J, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO, Gururaja KV, Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH, Meegaskumbura M, Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yánez-Muñoz MH, Scherz MD, Rödel MO, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M, Kouamé NG, García N, Gonwouo NL, Burrowes PA, Imbun PY, Wagner P, Kok PJR, Joglar RL, Auguste RJ, Brandão RA, Ibáñez R, von May R, Hedges SB, Biju SD, Ganesh SR, Wren S, Das S, Flechas SV, Ashpole SL, Robleto-Hernández SJ, Loader SP, Incháustegui SJ, Garg S, Phimmachak S, Richards SJ, Slimani T, Osborne-Naikatini T, Abreu-Jardim TPF, Condez TH, De Carvalho TR, Cutajar TP, Pierson TW, Nguyen TQ, Kaya U, Yuan Z, Long B, Langhammer P, Stuart SN. Ongoing declines for the world's amphibians in the face of emerging threats. Nature 2023; 622:308-314. [PMID: 37794184 PMCID: PMC10567568 DOI: 10.1038/s41586-023-06578-4] [Show More Authors] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023]
Abstract
Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.
Collapse
Affiliation(s)
- Jennifer A Luedtke
- Re:wild, Austin, TX, USA.
- IUCN SSC Amphibian Specialist Group, Toronto, Ontario, Canada.
| | - Janice Chanson
- Re:wild, Austin, TX, USA
- IUCN SSC Amphibian Specialist Group, Toronto, Ontario, Canada
| | - Kelsey Neam
- Re:wild, Austin, TX, USA
- IUCN SSC Amphibian Specialist Group, Toronto, Ontario, Canada
| | - Louise Hobin
- IUCN SSC Amphibian Specialist Group, Toronto, Ontario, Canada
| | | | - Alessandro Catenazzi
- Florida International University, Miami, FL, USA
- Centro de Ornitologia y Biodiversidad (CORBIDI), Lima, Peru
| | - Amaël Borzée
- IUCN SSC Amphibian Specialist Group, Toronto, Ontario, Canada
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Amir Hamidy
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Anchalee Aowphol
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Anderson Jean
- Action Pour la Sauvegarde de l'Ecologie en Haïti (ACSEH), Les Cayes, Haiti
- Environmental Protection In the Caribbean (EPIC), Maho, Sint Maarten
| | | | - Ansel Fong G
- Centro Oriental de Ecosistemas y Biodiversidad (BIOECO), Museo de Historia Natural "Tomás Romay", Santiago de Cuba, Cuba
| | - Anslem de Silva
- IUCN SSC Amphibian Specialist Group, Sri Lanka, Gampola, Sri Lanka
| | - Antoine Fouquet
- Laboratoire Évolution & Diversité Biologique, UMR 5174, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Ariadne Angulo
- IUCN SSC Amphibian Specialist Group, Toronto, Ontario, Canada
| | - Artem A Kidov
- Russian State Agrarian University-MTAA, Moscow, Russia
| | - Arturo Muñoz Saravia
- IUCN SSC Amphibian Specialist Group Bolivia, La Paz, Bolivia
- Animal Nutrition Unit, Department of Veterinary and Biosciences, Ghent University, Ghent, Belgium
| | - Arvin C Diesmos
- ASEAN Centre for Biodiversity, University of the Philippines Los Baños, Laguna, Philippines
- HerpWatch Pilipinas, Manila, Philippines
| | - Atsushi Tominaga
- Faculty of Education, University of the Ryukyus, Okinawa, Japan
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Biraj Shrestha
- SAVE THE FROGS!, Laguna Beach, CA, USA
- The University of Texas at Arlington, Arlington, TX, USA
| | - Brian Gratwicke
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Burhan Tjaturadi
- Center for Environmental Studies, Sanata Dharma University (CESSDU), Yogyakarta, Indonesia
| | - Carlos C Martínez Rivera
- Pinelands Preservation Alliance, Southampton Township, NJ, USA
- Centro de Conservación de Anfibios, Amaru Bioparque, Cuenca, Ecuador
| | - Carlos R Vásquez Almazán
- Museo de Historia Natural, Escuela de Biologia, Universidad de San Carlos, Guatemala City, Guatemala
- FUNDAECO, Guatemala City, Guatemala
| | - Celsa Señaris
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - S R Chandramouli
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, India
| | | | | | - Claudio Azat
- Sustainability Research Center & PhD Program in Conservation Medicine, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Conrad J Hoskin
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Damion L Whyte
- Department of Life Sciences, University of the West Indies Mona, Kingston, Jamaica
| | | | - Deanna H Olson
- Pacific Northwest Research Station, United States Department of Agriculture, Forest Service, Corvallis, OR, USA
| | - Diego F Cisneros-Heredia
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Quito, Ecuador
- Instituto Nacional de Biodiversidad INABIO, Quito, Ecuador
| | - Diego José Santana
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Elizah Nagombi
- The New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Elnaz Najafi-Majd
- Department of Zoology, Faculty of Science, Ege University, İzmir, Turkey
| | - Evan S H Quah
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| | - Federico Bolaños
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- CIBET (Museo de Zoología), Universidad de Costa Rica, San José, Costa Rica
| | - Feng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | | | | | | | - Frank Glaw
- Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany
| | | | - Fred Kraus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Gabriela Parra-Olea
- Instituto de Biologia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Chaves
- CIBET (Museo de Zoología), Universidad de Costa Rica, San José, Costa Rica
| | - Guido F Medina-Rangel
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | | | - H Mauricio Ortega-Andrade
- Biogeography and Spatial Ecology Research Group, Life Sciences Faculty, Universidad Regional Amazónica IKIAM, Tena, Ecuador
- Herpetology Division, Instituto Nacional de Biodiversidad, Quito, Ecuador
| | - Iberê F Machado
- Instituto Boitatá de Etnobiologia e Conservação da Fauna, Goiânia, Brazil
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Iuri Ribeiro Dias
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - J Nicolas Urbina-Cardona
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jelka Crnobrnja-Isailović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Jian-Huan Yang
- Kadoorie Farm and Botanic Garden, Hong Kong SAR, People's Republic of China
| | - Jiang Jianping
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | - Jigme Tshelthrim Wangyal
- University of New England, Armidale, New South Wales, Australia
- Bhutan Ecological Society, Thimphu, Bhutan
| | - Jodi J L Rowley
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences (BEES), University of New South Wales, Sydney, New South Wales, Australia
| | - John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
- Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, People's Republic of China
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kin Onn Chan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| | - Kotambylu Vasudeva Gururaja
- Srishti Manipal Institute of Art, Design and Technology, Manipal Academy of Higher Education, Manipal, India
| | - Kristiina Ovaska
- Biolinx Environmental Research, Victoria, British Columbia, Canada
- Royal British Columbia Museum, Victoria, British Columbia, Canada
| | | | - Luis Canseco-Márquez
- Laboratorio de Herpetología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Universidade Estadual de Campinas (Unicamp), São Paulo, Brazil
| | - Luis M Díaz
- Museo Nacional de Historia Natural de Cuba, La Habana, Cuba
| | - M Monirul H Khan
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Madhava Meegaskumbura
- Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, People's Republic of China
| | - Manuel E Acevedo
- Museo Nacional de Historia Natural "Jorge A. Ibarra", Ciudad de Guatemala, Guatemala
| | - Marcelo Felgueiras Napoli
- Instituto de Biologia, Campus Universitário de Ondina, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Marcos Vaira
- Instituto de Ecorregiones Andinas (INECOA, UNJu-Conicet), San Salvador de Jujuy, Argentina
| | - Margarita Lampo
- Instituto Venezolano de Investigaciones Científicas (IVIC), Miranda, Venezuela
- Fundación para el Desarrollo de las Ciencias Físicas, Matemáticas y Naturales (FUDECI), Caracas, Venezuela
| | - Mario H Yánez-Muñoz
- Unidad de Investigación, Instituto Nacional de Biodiversidad (INABIO), Quito, Ecuador
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mark-Oliver Rödel
- Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | - Maxon Fildor
- Action Pour la Sauvegarde de l'Ecologie en Haïti (ACSEH), Les Cayes, Haiti
| | - Mirza D Kusrini
- Faculty of Forestry & Environment, IPB University, Bogor, Indonesia
| | | | - Muhammad Rais
- Herpetology Lab, Department of Zoology, Wildlife and Fisheries, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - N'Goran G Kouamé
- Laboratoire de Biodiversité et Ecologie Tropicale, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Nieves García
- IUCN Species Survival Commission, Gland, Switzerland
| | - Nono Legrand Gonwouo
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Paul Y Imbun
- Zoology Unit, Research and Education Section, Sabah Parks, Kota Kinabalu, Malaysia
| | - Philipp Wagner
- Allwetterzoo, Münster, Germany
- Center for Biodiversity and Ecosystem, Villanova University, Villanova, PA, USA
| | - Philippe J R Kok
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Rafael L Joglar
- Rio Piedras Campus, University of Puerto Rico, San Juan, Puerto Rico
- Proyecto Coqui, San Juan, Puerto Rico
| | - Renoir J Auguste
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | | | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panama, República de Panamá
| | - Rudolf von May
- California State University Channel Islands, Camarillo, CA, USA
| | - S Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, PA, USA
| | - S D Biju
- Systematics Lab, Department of Environmental Studies, University of Delhi, Delhi, India
| | | | - Sally Wren
- IUCN SSC Amphibian Specialist Group, Toronto, Ontario, Canada
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Sandeep Das
- Centre for Research in Emerging Tropical Diseases, Department of Zoology, University of Calicut, Kerala, India
- EDGE of Existence programme, Conservation and Policy, Zoological Society of London, London, UK
| | | | - Sara L Ashpole
- Environmental Studies, St Lawrence University, Canton, NY, USA
- , Prescott, Ontario, Canada
| | | | | | | | - Sonali Garg
- Systematics Lab, Department of Environmental Studies, University of Delhi, Delhi, India
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Somphouthone Phimmachak
- Department of Biology, Faculty of Natural Sciences, National University of Laos, Vientiane, Laos
| | - Stephen J Richards
- Herpetology Department, South Australian Museum, Adelaide, South Australia, Australia
| | - Tahar Slimani
- Faculty of Sciences Sremlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Tamara Osborne-Naikatini
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| | | | - Thais H Condez
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Timothy P Cutajar
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences (BEES), University of New South Wales, Sydney, New South Wales, Australia
| | - Todd W Pierson
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Truong Q Nguyen
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | - Uğur Kaya
- Department of Zoology, Faculty of Science, Ege University, İzmir, Turkey
| | - Zhiyong Yuan
- School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | | | - Penny Langhammer
- Re:wild, Austin, TX, USA
- Arizona State University, Tempe, AZ, USA
| | - Simon N Stuart
- IUCN Species Survival Commission, Gland, Switzerland
- A Rocha International, London, UK
- Synchronicity Earth, London, UK
| |
Collapse
|
35
|
Ceballos G, Ehrlich PR. Mutilation of the tree of life via mass extinction of animal genera. Proc Natl Acad Sci U S A 2023; 120:e2306987120. [PMID: 37722053 PMCID: PMC10523489 DOI: 10.1073/pnas.2306987120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 09/20/2023] Open
Abstract
Mass extinctions during the past 500 million y rapidly removed branches from the phylogenetic tree of life and required millions of years for evolution to generate functional replacements for the extinct (EX) organisms. Here we show, by examining 5,400 vertebrate genera (excluding fishes) comprising 34,600 species, that 73 genera became EX since 1500 AD. Beyond any doubt, the human-driven sixth mass extinction is more severe than previously assessed and is rapidly accelerating. The current generic extinction rates are 35 times higher than expected background rates prevailing in the last million years under the absence of human impacts. The genera lost in the last five centuries would have taken some 18,000 y to vanish in the absence of human beings. Current generic extinction rates will likely greatly accelerate in the next few decades due to drivers accompanying the growth and consumption of the human enterprise such as habitat destruction, illegal trade, and climate disruption. If all now-endangered genera were to vanish by 2,100, extinction rates would be 354 (average) or 511 (for mammals) times higher than background rates, meaning that genera lost in three centuries would have taken 106,000 and 153,000 y to become EX in the absence of humans. Such mutilation of the tree of life and the resulting loss of ecosystem services provided by biodiversity to humanity is a serious threat to the stability of civilization. Immediate political, economic, and social efforts of an unprecedented scale are essential if we are to prevent these extinctions and their societal impacts.
Collapse
Affiliation(s)
- Gerardo Ceballos
- Departamento de Ecologia de la Biodiversidad, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Tercer Circuito Exterior SN, C.U., 04510Ciudad de Mexico, Mexico
| | - Paul R. Ehrlich
- Department of Biology, Center for Conservation Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
36
|
Zheng Y, Yuan C, Matsushita N, Lian C, Geng Q. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecol Evol 2023; 13:e10565. [PMID: 37753310 PMCID: PMC10518754 DOI: 10.1002/ece3.10565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cenococcum geophilum (C. geophilum) is a widely distributed ectomycorrhizal fungus that plays a crucial role in forest ecosystems worldwide. However, the specific ecological factors influencing its global distribution and how climate change will affect its range are still relatively unknown. In this study, we used the MaxEnt model optimized with the kuenm package to simulate changes in the distribution pattern of C. geophilum from the Last Glacial Maximum to the future based on 164 global distribution records and 17 environmental variables and investigated the key environmental factors influencing its distribution. We employed the optimal parameter combination of RM = 4 and FC = QPH, resulting in a highly accurate predictive model. Our study clearly shows that the mean temperature of the coldest quarter and annual precipitation are the key environmental factors influencing the suitable habitats of C. geophilum. Currently, appropriate habitats of C. geophilum are mainly distributed in eastern Asia, west-central Europe, the western seaboard and eastern regions of North America, and southeastern Australia, covering a total area of approximately 36,578,300 km2 globally. During the Last Glacial Maximum and the mid-Holocene, C. geophilum had a much smaller distribution area, being mainly concentrated in the Qinling-Huaihe Line region of China and eastern Peninsular Malaysia. As global warming continues, the future suitable habitat for C. geophilum is projected to shift northward, leading to an expected expansion of the suitable area from 9.21% to 21.02%. This study provides a theoretical foundation for global conservation efforts and biogeographic understanding of C. geophilum, offering new insights into its distribution patterns and evolutionary trends.
Collapse
Affiliation(s)
- Yexu Zheng
- College of ForestryShandong Agricultural UniversityTai'anChina
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chao Yuan
- College of ForestryFujian Agriculture and Forestry UniversityFuzhouChina
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| | - Qifang Geng
- College of ForestryShandong Agricultural UniversityTai'anChina
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life SciencesThe University of TokyoNishitokyo‐shiTokyoJapan
| |
Collapse
|
37
|
Ladle RJ, Alves-Martins F, Malhado AC, Reyes-García V, Courchamp F, Di Minin E, Roll U, Jarić I, Correia RA. Biocultural aspects of species extinctions. CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e22. [PMID: 40078689 PMCID: PMC11895756 DOI: 10.1017/ext.2023.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 03/14/2025]
Abstract
Predicting whether a species is likely to go extinct (or not) is one of the fundamental objectives of conservation biology, and extinction risk classifications have become an essential tool for conservation policy, planning and research. This sort of prediction is feasible because the extinction processes follow a familiar pattern of population decline, range collapse and fragmentation, and, finally, extirpation of sub-populations through a combination of genetic, demographic and environmental stochasticity. Though less well understood and rarely quantified, the way in which science and society respond to population decline, extirpation and species extinction can also have a profound influence, either negative or positive, on whether a species goes extinct. For example, species that are highly sought after by collectors and hobbyists can become more desirable and valuable as they become rarer, leading to increased demand and greater incentives for illegal trade - known as the anthropogenic Allee effect. Conversely, species that are strongly linked to cultural identity are more likely to benefit from sustainable management, high public support for conservation actions and fund-raising, and, by extension, may be partially safeguarded from extinction. More generally, human responses to impending extinctions are extremely complex, are highly dependent on cultural and socioeconomic context, and have typically been far less studied than the ecological and genetic aspects of extinction. Here, we identify and discuss biocultural aspects of extinction and outline how recent advances in our ability to measure and monitor cultural trends with big data are, despite their intrinsic limitations and biases, providing new opportunities for incorporating biocultural factors into extinction risk assessment.
Collapse
Affiliation(s)
- Richard J. Ladle
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Fernanda Alves-Martins
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Ana C.M. Malhado
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Victoria Reyes-García
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Institut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament d’Antropologia Social i Cultural, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Franck Courchamp
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Enrico Di Minin
- Helsinki Lab of Interdisciplinary Conservation Science, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, MidreshetBen-Gurion, Israel
| | - Ivan Jarić
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Ricardo A. Correia
- Helsinki Lab of Interdisciplinary Conservation Science, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
- Biodiversity Unit, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Moens M, Biesmeijer JC, Klumpers SGT, Marshall L. Are threatened species special? An assessment of Dutch bees in relation to land use and climate. Ecol Evol 2023; 13:e10326. [PMID: 37502308 PMCID: PMC10369158 DOI: 10.1002/ece3.10326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Red Lists are widely used as an indicator of the status and trends of biodiversity and are often used in directing conservation efforts. However, it is unclear whether species with a Least Concern status share a common relationship to environmental correlates compared to species that are on the Red List. To assess this, we focus here on the contribution and correlates of land use, climate, and soil to the occurrence of wild bees in the Netherlands. We used observation data and species distribution models to explain the relation between wild bees and the environment. Non-threatened bees had a relatively higher variable importance of the land use variables to their models, as opposed to the climate variables for the threatened bees. The threatened bees had a smaller extent of occurrence and occupied areas with more extreme climatic conditions. Bees with a Least Concern status showed more positive responses to urban green spaces and Red List species showed a different response to climatic variables, such as temperature and precipitation. Even though Red List bees were found in areas with a higher cover of natural areas, they showed a more selective response to natural land use types. Pastures and crops were the main contributing land use variables and showed almost exclusively a negative correlation with the distribution of all wild bees. This knowledge supports the implementation of appropriate, species-specific conservation measures, including the preservation of natural areas, and the improvement of land use practices in agricultural and urban areas, which may help mitigate the negative impacts of future global change on species' distributions.
Collapse
Affiliation(s)
- Merijn Moens
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | - Jacobus C. Biesmeijer
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenThe Netherlands
| | | | - Leon Marshall
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Agroecology Lab, Interfaculty School of BioengineeringUniversité libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
39
|
Rodríguez-Caro RC, Graciá E, Blomberg SP, Cayuela H, Grace M, Carmona CP, Pérez-Mendoza HA, Giménez A, Salguero-Gómez R. Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians. Nat Commun 2023; 14:1542. [PMID: 36977697 PMCID: PMC10050202 DOI: 10.1038/s41467-023-37089-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The Anthropocene is tightly associated with a drastic loss of species worldwide and the disappearance of their key ecosystem functions. The orders Testudines (turtles and tortoises) and Crocodilia (crocodiles, alligators, and gharials) contain numerous threatened, long-lived species for which the functional diversity and potential erosion by anthropogenic impacts remains unknown. Here, we examine 259 (69%) of the existing 375 species of Testudines and Crocodilia, quantifying their life history strategies (i.e., trade-offs in survival, development, and reproduction) from open-access data on demography, ancestry, and threats. We find that the loss of functional diversity in simulated extinction scenarios of threatened species is greater than expected by chance. Moreover, the effects of unsustainable local consumption, diseases, and pollution are associated with life history strategies. In contrast, climate change, habitat disturbance, and global trade affect species independent of their life history strategy. Importantly, the loss of functional diversity for threatened species by habitat degradation is twice that for all other threats. Our findings highlight the importance of conservation programmes focused on preserving the functional diversity of life history strategies jointly with the phylogenetic representativity of these highly threatened groups.
Collapse
Affiliation(s)
- R C Rodríguez-Caro
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain.
- Departamento de Ecología, Universidad de Alicante, San Vicent del Raspeig, 03690, Alicante, Spain.
| | - E Graciá
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - S P Blomberg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Cayuela
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, F-769622, Villeurbanne, France
| | - M Grace
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - C P Carmona
- Institute of Ecology and Earth Sciences, University of Tartu, 50409, Tartu, Estonia
| | - H A Pérez-Mendoza
- Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, 54090, Tlalnepantla, México
| | - A Giménez
- Departamento de Biología Aplicada, Universidad Miguel Hernández, Elche, 03202, Alicante, Spain
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312, Orihuela, Spain
| | - R Salguero-Gómez
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Max Plank Institute for Demographic Research, Konrad-Zuße Straße 1, 18057, Rostock, Germany.
| |
Collapse
|
40
|
Biocultural vulnerability exposes threats of culturally important species. Proc Natl Acad Sci U S A 2023; 120:e2217303120. [PMID: 36595703 PMCID: PMC9926262 DOI: 10.1073/pnas.2217303120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There are growing calls for conservation frameworks that, rather than breaking the relations between people and other parts of nature, capture place-based relationships that have supported social-ecological systems over the long term. Biocultural approaches propose actions based on biological conservation priorities and cultural values aligned with local priorities, but mechanisms that allow their global uptake are missing. We propose a framework to globally assess the biocultural status of specific components of nature that matter to people and apply it to culturally important species (CIS). Drawing on a literature review and a survey, we identified 385 wild species, mostly plants, which are culturally important. CIS predominate among Indigenous peoples (57%) and ethnic groups (21%). CIS have a larger proportion of Data-Deficient species (41%) than the full set of International Union for Conservation of Nature (IUCN) species (12%), underscoring the disregard of cultural considerations in biological research. Combining information on CIS biological conservation status (IUCN threatened status) and cultural status (language vitality), we found that more CIS are culturally Vulnerable or Endangered than they are biologically and that there is a higher share of bioculturally Endangered or Vulnerable CIS than of either biologically or culturally Endangered CIS measured separately. Bioculturally Endangered or Vulnerable CIS are particularly predominant among Indigenous peoples, arguably because of the high levels of cultural loss among them. The deliberate connection between biological and cultural values, as developed in our "biocultural status" metric, provides an actionable way to guide decisions and operationalize global actions oriented to enhance place-based practices with demonstrated long-term sustainability.
Collapse
|
41
|
Measuring the Impact of Conservation: The Growing Importance of Monitoring Fauna, Flora and Funga. DIVERSITY 2022. [DOI: 10.3390/d14100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many stakeholders, from governments to civil society to businesses, lack the data they need to make informed decisions on biodiversity, jeopardising efforts to conserve, restore and sustainably manage nature. Here we review the importance of enhancing biodiversity monitoring, assess the challenges involved and identify potential solutions. Capacity for biodiversity monitoring needs to be enhanced urgently, especially in poorer, high-biodiversity countries where data gaps are disproportionately high. Modern tools and technologies, including remote sensing, bioacoustics and environmental DNA, should be used at larger scales to fill taxonomic and geographic data gaps, especially in the tropics, in marine and freshwater biomes, and for plants, fungi and invertebrates. Stakeholders need to follow best monitoring practices, adopting appropriate indicators and using counterfactual approaches to measure and attribute outcomes and impacts. Data should be made openly and freely available. Companies need to invest in collecting the data required to enhance sustainability in their operations and supply chains. With governments soon to commit to the post-2020 global biodiversity framework, the time is right to make a concerted push on monitoring. However, action at scale is needed now if we are to enhance results-based management adequately to conserve the biodiversity and ecosystem services we all depend on.
Collapse
|