1
|
Kim KS, Noh J, Kim BS, Koh H, Lee DW. Refining microbiome diversity analysis by concatenating and integrating dual 16S rRNA amplicon reads. NPJ Biofilms Microbiomes 2025; 11:57. [PMID: 40221450 PMCID: PMC11993755 DOI: 10.1038/s41522-025-00686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Understanding the role of human gut microbiota in health and disease requires insights into its taxonomic composition and functional capabilities. This study evaluates whether concatenating paired-end reads enhances data output for gut microbiome analysis compared to the merging approach across various regions of the 16S rRNA gene. We assessed this approach in both mock communities and Korean cohorts with or without ulcerative colitis. Our results indicate that using the direct joining method for the V1-V3 or V6-V8 regions improves taxonomic resolution compared to merging paired-end reads (ME) in post-sequencing data. While predicting microbial function based on 16S rRNA sequencing has inherent limitations, integrating sequencing reads from both the V1-V3 and V6-V8 regions enhanced functional predictions. This was confirmed by whole metagenome sequencing (WMS) of Korean cohorts, where our approach improved taxa detection that was lost using the ME method. Thus, we propose that the integrated dual 16S rRNA sequencing technique serves as a valuable tool for microbiome research by bridging the gap between amplicon sequencing and WMS.
Collapse
Affiliation(s)
- Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Jihye Noh
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, South Korea
| | - Bong-Soo Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
| | - Hong Koh
- Department of Pediatrics, Yonsei University College of Medicine, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Seoul, South Korea.
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
2
|
Bindels LB, Watts JEM, Theis KR, Carrion VJ, Ossowicki A, Seifert J, Oh J, Shao Y, Hilty M, Kumar P, Hildebrand F, Lovejoy C, Wigley P, Yu K, Zhang M, Zhang T, Walter J, Desai MS, Huws SA, Schriml LM, Ravel J, Fricke WF, Eloe-Fadrosh EA, Lee CK, Clavel T. A blueprint for contemporary studies of microbiomes. MICROBIOME 2025; 13:95. [PMID: 40200306 PMCID: PMC11977902 DOI: 10.1186/s40168-025-02091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
This editorial piece co-authored by the Senior Editors at Microbiome aims to highlight current challenges in the field of environmental and host-associated microbiome research. We also take the opportunity to clarify our expectations for the articles submitted to the journal. At Microbiome, we are seeking studies that provide either new mechanistic insights into the role of microbiomes in health and environmental systems or substantial conceptual or technical advances. Manuscripts need to meet high standards of language accuracy, quality of microbiome analyses, and data and protocol availability, including detailed reporting of wet-lab and in silico protocols, all of which can critically enhance transparency and reproducibility. We think that such efforts are essential to push the boundaries of our knowledge on microbiomes in a concerted, international effort.
Collapse
Affiliation(s)
- Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Welbio Department, WEL Research Institute, Wavre, Belgium.
| | - Joy E M Watts
- School of Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Víctor J Carrion
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Adam Ossowicki
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, Functional Microbiology of Livestock, University of Hohenheim, Stuttgart, Germany
| | - Julia Oh
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Yongqi Shao
- Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Purnima Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Connie Lovejoy
- Département de Biologie and Institut de Biologie Intégrative Et Des Systèmes, Université Laval, Québec, QC, Canada
| | - Paul Wigley
- Bristol Veterinary School, Langford Campus, University of Bristol, Bristol, UK
| | - Ke Yu
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Meiling Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Mahesh S Desai
- Nutrition, Microbiome and Immunity Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Sharon Ann Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University, Belfast, UK
| | - Lynn M Schriml
- Department of Epidemiology and Public Health, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Center for Advanced Microbiome Research and Innovation, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Charles K Lee
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| |
Collapse
|
3
|
Nikitashina L, Chen X, Radosa L, Li K, Straßburger M, Seelbinder B, Böhnke W, Vielreicher S, Nietzsche S, Heinekamp T, Jacobsen ID, Panagiotou G, Brakhage AA. The murine lung microbiome is disbalanced by the human-pathogenic fungus Aspergillus fumigatus resulting in enrichment of anaerobic bacteria. Cell Rep 2025; 44:115442. [PMID: 40111997 DOI: 10.1016/j.celrep.2025.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/06/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Here, we report significant changes in the composition of the lung microbiome and metabolome of mice under immune suppression, infection of immunosuppressed mice with virulent and avirulent strains of the clinically important human-pathogenic fungus Aspergillus fumigatus, and treatment with the clinically used antifungal drug voriconazole. Our data also indicate the important role of the gut microbiome for lung homeostasis mediated by the plasma metabolome. In the lung microbiome, DNA sequencing indicates that infection by A. fumigatus leads to a significant increase of anaerobic bacteria, most prominently of Ligilactobacillus murinus; the latter has been confirmed by qPCR analyses. We also isolated live bacteria, including L. murinus, from the murine lower respiratory tract. Co-cultivation of L. murinus and A. fumigatus leads to a reduction in oxygen concentration accompanied by an increase of L. murinus cells, suggesting that A. fumigatus establishes a microaerophilic niche, thereby promoting growth of anaerobic bacteria.
Collapse
Affiliation(s)
- Liubov Nikitashina
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Xiuqiang Chen
- Department of Microbiome Dynamics, Leibniz-HKI, 07745 Jena, Germany
| | - Lukas Radosa
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Kexin Li
- Department of Microbiome Dynamics, Leibniz-HKI, 07745 Jena, Germany
| | | | | | - Wibke Böhnke
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany; Research Group Microbial Immunology, Leibniz-HKI, 07745 Jena, Germany
| | - Sarah Vielreicher
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany; Research Group Microbial Immunology, Leibniz-HKI, 07745 Jena, Germany
| | - Sandor Nietzsche
- Electron Microscopy Center, University Hospital Jena, 07743 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Ilse D Jacobsen
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany; Research Group Microbial Immunology, Leibniz-HKI, 07745 Jena, Germany
| | - Gianni Panagiotou
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany; Department of Microbiome Dynamics, Leibniz-HKI, 07745 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany.
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
4
|
Wagner S, Weber M, Paul LS, Grümpel-Schlüter A, Kluess J, Neuhaus K, Fuchs TM. Absolute abundance calculation enhances the significance of microbiome data in antibiotic treatment studies. Front Microbiol 2025; 16:1481197. [PMID: 40196033 PMCID: PMC11973300 DOI: 10.3389/fmicb.2025.1481197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025] Open
Abstract
Background The intestinal microbiota contributes to the colonization resistance of the gut towards bacterial pathogens. Antibiotic treatment often negatively affects the microbiome composition, rendering the host more susceptible for infections. However, a correct interpretation of such a perturbation requires quantitative microbiome profiling to reflect accurately the direction and magnitude of compositional changes within a microbiota. Standard 16S rRNA gene amplicon sequencing of microbiota samples offers compositional data in relative, but not absolute abundancies, and the presence of multiple copies of 16S rRNA genes in bacterial genomes introduces bias into compositional data. We explored whether improved sequencing data analysis influences the significance of the effect exerted by antibiotics on the faecal microbiota of young pigs using two veterinary antibiotics. Calculation of absolute abundances, either by flow cytometry-based bacterial cell counts or by spike-in of synthetic 16S rRNA genes, was employed and 16S rRNA gene copy numbers (GCN) were corrected. Results Cell number determination exhibited large interindividual variability in two pig studies, using either tylosin or tulathromycin. Following tylosin application, flow cytometry-based cell counting revealed decreased absolute abundances of five families and ten genera. These results were not detectable by standard 16S analysis based on relative abundances. Here, GCN correction additionally uncovered significant decreases of Lactobacillus and Faecalibacterium. In another experimental setting with tulathromycin treatment, bacterial abundance quantification by flow cytometry and by a spike-in method yielded similar results only on the phylum level. Even though the spike-in method identified the decrease of four genera, analysis by fluorescence-activated cell sorting (FACS) uncovered eight significantly reduced genera, such as Prevotella and Paraprevotella upon antibiotic treatment. In contrast, analysis of relative abundances only showed a decrease of Faecalibacterium and Rikenellaceae RC9 gut group and, thus, a much less detailed antibiotic effect. Conclusion Flow cytometry is a laborious method, but identified a higher number of significant microbiome changes in comparison to common compositional data analysis and even revealed to be superior to a spike-in method. Calculation of absolute abundances and GCN correction are valuable methods that should be standards in microbiome analyses in veterinary as well as human medicine.
Collapse
Affiliation(s)
- Stefanie Wagner
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Weber
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | - Lena-Sophie Paul
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| | | | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Thilo M. Fuchs
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
5
|
Elena Schmitz J, Rahmann S. A comprehensive review and evaluation of species richness estimation. Brief Bioinform 2025; 26:bbaf158. [PMID: 40211980 PMCID: PMC11986355 DOI: 10.1093/bib/bbaf158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/21/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
MOTIVATION The statistical problem of estimating the total number of distinct species in a population (or distinct elements in a multiset), given only a small sample, occurs in various areas, ranging from the unseen species problem in ecology to estimating the diversity of immune repertoires. Accurately estimating the true richness from very small samples is challenging, in particular for highly diverse populations with many rare species. Depending on the application, different estimation strategies have been proposed that incorporate explicit or implicit assumptions about either the species distribution or about the sampling process. These methods are scattered across the literature, and an extensive overview of their assumptions, methodology, and performance is currently lacking. RESULTS We comprehensively review and evaluate a variety of existing methods on real and simulated data with different compositions of rare and abundant species. Our evaluation shows that, depending on species composition, different methods provide the most accurate richness estimates. Simple methods based on the observed number of singletons yield accurate asymptotic lower bounds for several of the tested simulated species compositions, but tend to underestimate the true richness for heterogeneous populations and small samples containing 1% to 5% of the population. When the population size is known, upsampling (extrapolating) estimators such as PreSeq and RichnEst yield accurate estimates of the total species richness in a sample that is up to 10 times larger than the observed sample. AVAILABILITY Source code for data simulation and richness estimation is available at https://gitlab.com/rahmannlab/speciesrichness.
Collapse
Affiliation(s)
- Johanna Elena Schmitz
- Algorithmic Bioinformatics, Center for Bioinformatics Saar, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Fakultät MI, Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Sven Rahmann
- Algorithmic Bioinformatics, Center for Bioinformatics Saar, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Fakultät MI, Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Weitzman CL, Brown GP, Day K, Shilton CM, Gibb K, Christian K. Protection against anuran lungworm infection may be mediated by innate defenses rather than their microbiome. Int J Parasitol 2025:S0020-7519(25)00021-9. [PMID: 39909191 DOI: 10.1016/j.ijpara.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Host-associated microbiomes provide protection against disease in diverse systems, through both direct and indirect interactions with invaders, although these interactions are less understood in the context of non-gut helminth infections in wildlife. Here, we used a widespread, invasive host-parasite system to better understand helminth-amphibian-microbiome dynamics. We focus on cane toads and their lungworm parasites, which invade the host through the skin, to study the interactions between lungworm infection abundance and skin and gut (colon) bacterial microbiomes. Through two experiments, first reducing skin bacterial loads, and second reducing bacterial diversity, we found no evidence of protection by skin bacteria against infection. We also did not find divergent gut communities dependent on lungworm infection, signifying little to no immune modulation from infection causing changes to gut communities, at least in the first month after initial parasite exposure. In light of previous work in the system, these results underscore the contribution of toads' innate susceptibility (including possible protection provided by skin secretions) rather than skin microbes in determining the chance of infection by these macroparasites.
Collapse
Affiliation(s)
- Chava L Weitzman
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia.
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - Kimberley Day
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| | - Catherine M Shilton
- Berrimah Veterinary Laboratories, Northern Territory Department of Primary Industries and Fisheries, Berrimah, NT 0828, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Brinkin, NT 0909, Australia
| |
Collapse
|
7
|
Hendrycks W, Mullens N, Bakengesa J, Kabota S, Tairo J, Backeljau T, Majubwa R, Mwatawala M, De Meyer M, Virgilio M. Deterministic and stochastic effects drive the gut microbial diversity in cucurbit-feeding fruit flies (Diptera, Tephritidae). PLoS One 2025; 20:e0313447. [PMID: 39854335 PMCID: PMC11759365 DOI: 10.1371/journal.pone.0313447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 01/26/2025] Open
Abstract
Insect diversity is closely linked to the evolution of phytophagy, with most phytophagous insects showing a strong degree of specialisation for specific host plants. Recent studies suggest that the insect gut microbiome might be crucial in facilitating the dietary (host plant) range. This requires the formation of stable insect-microbiome associations, but it remains largely unclear which processes govern the assembly of insect microbiomes. In this study, we investigated the role of deterministic and stochastic processes in shaping the assembly of the larval microbiome of three tephritid fruit fly species (Dacus bivittatus, D. ciliatus, Zeugodacus cucurbitae). We found that deterministic and stochastic processes play a considerable role in shaping the larval gut microbiome. We also identified 65 microbial ASVs (Amplicon sequence variants) that were associated with these flies, most belonging to the families Enterobacterales, Sphingobacterales, Pseudomonadales and Betaproteobacterales, and speculate about their relationship with cucurbit specialisation. Our data suggest that the larval gut microbiome assembly fits the "microbiome on a leash" model.
Collapse
Affiliation(s)
- Wouter Hendrycks
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Nele Mullens
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Jackline Bakengesa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
- Department of Biology, University of Dodoma, Dodoma, Tanzania
| | - Sija Kabota
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jenipher Tairo
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Thierry Backeljau
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
- Department of Biology, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | - Ramadhani Majubwa
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Maulid Mwatawala
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Marc De Meyer
- Department of Biology, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
| | | |
Collapse
|
8
|
Văcărean-Trandafir IC, Amărandi RM, Ivanov IC, Dragoș LM, Mențel M, Iacob Ş, Muşină AM, Bărgăoanu ER, Roată CE, Morărașu Ș, Țuțuianu V, Ciobanu M, Dimofte MG. Impact of antibiotic prophylaxis on gut microbiota in colorectal surgery: insights from an Eastern European stewardship study. Front Cell Infect Microbiol 2025; 14:1468645. [PMID: 39872941 PMCID: PMC11770057 DOI: 10.3389/fcimb.2024.1468645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Antibiotic overuse is driving a global rise in antibiotic resistance, highlighting the need for robust antimicrobial stewardship (AMS) initiatives to improve prescription practices. While antimicrobials are essential for treating sepsis and preventing surgical site infections (SSIs), they can inadvertently disrupt the gut microbiota, leading to postoperative complications. Treatment methods vary widely across nations due to differences in drug choice, dosage, and therapy duration, affecting antibiotic resistance rates, which can reach up to 51% in some countries. In Romania and the Republic of Moldova, healthcare practices for surgical antibiotic prophylaxis differ significantly despite similarities in genetics, culture, and diet. Romania's stricter healthcare regulations result in more standardized antibiotic protocols, whereas Moldova's limited healthcare funding leads to less consistent practices and greater variability in treatment outcomes. Methods This study presents the results of a prospective cross-border investigation involving 86 colorectal cancer patients from major oncological hospitals in Romania and Moldova. We analyzed fecal samples collected from patients before and 7 days post-antibiotic treatment, focusing on the V3-V4 region of the 16S rRNA gene. Results Our findings indicate that inconsistent antibiotic prophylaxis policies-varying in type, dosage, or therapy duration-significantly impacted the gut microbiota and led to more frequent dysbiosis compared to stricter prophylactic antibiotic practices (single dose, single product, limited time). Discussion We emphasize the need for standardized antibiotic prophylaxis protocols to minimize dysbiosis and its associated risks, promoting more effective antimicrobial use, particularly in low- and middle-income countries (LMICs).
Collapse
Affiliation(s)
| | | | | | | | - Mihaela Mențel
- TRANSCEND Research Centre, Regional Institute of Oncology, Iasi, Romania
| | - Ştefan Iacob
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ana-Maria Muşină
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Cristian Ene Roată
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ștefan Morărașu
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Valeri Țuțuianu
- Scientific Laboratory of Cancer Biology, Institute of Oncology, Chișinău, Moldova
| | - Marcel Ciobanu
- Surgical Oncology Department, Proctology, Institute of Oncology, Chișinău, Moldova
| | - Mihail-Gabriel Dimofte
- Second Surgical Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Surgery Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
9
|
Intze E, Schaubeck M, Pourjam M, Neuhaus K, Lagkouvardos I, Hitch TCA, Clavel T. The infant microbiota hopscotches between community states toward maturation-longitudinal stool parameters and microbiota development in a cohort of European toddlers. ISME COMMUNICATIONS 2025; 5:ycaf016. [PMID: 40083911 PMCID: PMC11905755 DOI: 10.1093/ismeco/ycaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
The development of the gut microbiome is critical during early life and is associated with infant health. To test whether this development is deterministic and how it is influenced by factors such as diet and mode of birth, we studied microbiota profiles and fecal parameters of 540 European infants, fed a synbiotic or control infant formula during their first year of life, up to 36 months of age. The diversity of the microbiota gradually increased until 36 months, at which point it resembled adult community states, indicating that microbiota maturation had occurred. However, distinct gut microbiota community states were observed that differed at each stage of maturation. The distribution of infants within the communities even at 36 months was significantly influenced by early life events, with a higher prevalence of infants born by cesarean section having the immature M36-C1 community state at 36 months. The microbial community state at one time point was not predictive of the next; instead, we observed hopscotching of the infant microbiota between different community states. This work provides new longitudinal data on the infant gut microbiome in relation to diet, suggesting that ecosystem development is not deterministic, but that early life events influence the community state of an individual's gut microbiota beyond infancy.
Collapse
Affiliation(s)
- Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, Heraklion 70013, Greece
| | | | - Mohsen Pourjam
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, Heraklion 70013, Greece
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| |
Collapse
|
10
|
DeCandia AL, Lu J, Hamblen EE, Brenner LJ, King JL, Gagorik CN, Schamel JT, Baker SS, Ferrara FJ, Booker M, Bridges A, Carrasco C, vonHoldt BM, Koepfli KP, Maldonado JE. Phylosymbiosis and Elevated Cancer Risk in Genetically Depauperate Channel Island Foxes. Mol Ecol 2025; 34:e17610. [PMID: 39655703 DOI: 10.1111/mec.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Examination of the host-associated microbiome in wildlife can provide critical insights into the eco-evolutionary factors driving species diversification and response to disease. This is particularly relevant for isolated populations lacking genomic variation, a phenomenon that is increasingly common as human activities create habitat 'islands' for wildlife. Here, we characterised the gut and otic microbial communities of one such species: Channel Island foxes (Urocyon littoralis). The gut microbiome provided evidence of phylosymbiosis by reflecting the host phylogeny, geographic proximity, history of island colonisation and contemporary ecological differences, whereas the otic microbiome primarily reflected geography and disease. Santa Catalina Island foxes are uniquely predisposed to ceruminous gland tumours following infection with Otodectes cynotis ear mites, while San Clemente and San Nicolas Island foxes exhibit ear mite infections without evidence of tumours. Comparative analyses of otic microbiomes revealed that mite-infected Santa Catalina and San Clemente Island foxes exhibited reduced bacterial diversity, skewed abundance towards the opportunistic pathogen Staphylococcus pseudintermedius and disrupted microbial community networks. However, Santa Catalina Island foxes uniquely harboured Fusobacterium and Prevotella bacteria as potential keystone taxa. These bacteria have previously been associated with colorectal cancer and may predispose Santa Catalina Island foxes to an elevated cancer risk. In contrast, mite-infected San Nicolas Island foxes maintained high bacterial diversity and robust microbial community networks, suggesting that they harbour more resilient microbiomes. Considered together, our results highlight the diverse eco-evolutionary factors influencing commensal microbial communities and their hosts and underscore how the microbiome can contribute to disease outcomes.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Department of Biology, Georgetown University, Washington, DC, USA
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Jasmine Lu
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | - Julie L King
- Catalina Island Conservancy, Avalon, California, USA
- Santa Clara Valley Habitat Agency, Morgan Hill, California, USA
| | - Calypso N Gagorik
- Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA
| | | | | | - Francesca J Ferrara
- Environmental Division - Environmental Planning and Conservation Branch, Naval Base Ventura County, Point Mugu, California, USA
| | - Melissa Booker
- Environmental Division, Naval Base Coronado, San Diego, California, USA
| | - Andrew Bridges
- Institute for Wildlife Studies, San Diego, California, USA
| | - Cesar Carrasco
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Bridgett M vonHoldt
- Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, Virginia, USA
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
11
|
Kiesewetter KN, Rawstern AH, Cline E, Ortiz GR, Santamaria F, Coronado‐Molina C, Sklar FH, Afkhami ME. Microbes in reconstructive restoration: Divergence in constructed and natural tree island soil fungi affects tree growth. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e70007. [PMID: 39950593 PMCID: PMC11827290 DOI: 10.1002/eap.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 02/17/2025]
Abstract
As ecosystems face unprecedented change and habitat loss, pursuing comprehensive and resilient habitat restoration will be integral to protecting and maintaining natural areas and the services they provide. Microbiomes offer an important avenue for improving restoration efforts as they are integral to ecosystem health and functioning. Despite microbiomes' importance, unresolved knowledge gaps hinder their inclusion in restoration efforts. Here, we address two critical gaps in understanding microbial roles in restoration-fungal microbiomes' importance in "reconstructive" restoration efforts and how management and restoration decisions interactively impact fungal communities and their cascading effects on trees. We combined field surveys, microbiome sequencing, and greenhouse experiments to determine how reconstructing an iconic landscape feature-tree islands-in the highly imperiled Everglades impacts fungal microbiomes and fungal effects on native tree species compared with their natural counterparts under different proposed hydrological management regimes. Constructed islands used in this research were built from peat soil and limestone collected from deep sloughs and levees nearby the restoration sites in 2003, providing 18 years for microbiome assembly on constructed islands. We found that while fungal microbiomes from natural and constructed tree islands exhibited similar diversity and richness, they differed significantly in community composition. These compositional differences arose mainly from changes to which fungal taxa were present on the islands rather than changes in relative abundances. Surprisingly, ~50% of fungal hub taxa (putative keystone fungi) from natural islands were missing on constructed islands, suggesting that differences in community composition of constructed island could be important for microbiome stability and function. The differences in fungal composition between natural and constructed islands had important consequences for tree growth. Specifically, these compositional differences interacted with hydrological regime (treatments simulating management strategies) to affect woody growth across the four tree species in our experiment. Taken together, our results demonstrate that reconstructing a landscape feature without consideration of microbiomes can result in diverging fungal communities that are likely to interact with management decisions leading to meaningful consequences for foundational primary producers. Our results recommend cooperation between restoration practitioners and ecologists to evaluate opportunities for active management and restoration of microbiomes during future reconstructive restoration.
Collapse
Affiliation(s)
| | | | - Eric Cline
- South Florida Water Management DistrictWest Palm BeachFloridaUSA
| | - Gina R. Ortiz
- Department of BiologyUniversity of MiamiCoral GablesFloridaUSA
| | | | | | - Fred H. Sklar
- South Florida Water Management DistrictWest Palm BeachFloridaUSA
| | | |
Collapse
|
12
|
Hafsi A, Moquet L, Hendrycks W, De Meyer M, Virgilio M, Delatte H. Evidence for a gut microbial community conferring adaptability to diet quality and temperature stressors in phytophagous insects: the melon fruit fly Zeugodacus cucurbitae (Diptera: Tephritidae) as a case study. BMC Microbiol 2024; 24:514. [PMID: 39627693 PMCID: PMC11613556 DOI: 10.1186/s12866-024-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The high invasiveness of phytophagous insects is related to their adaptability to various environments, that can be influenced by their associated microbial community. Microbial symbionts are known to play a key role in the biology, ecology, and evolution of phytophagous insects, but their abundance and diversity are suggested to be influenced by environmental stressors. In this work, using 16 S rRNA metabarcoding we aim to verify (1) if laboratory rearing affects microbial symbiont communities of Zeugodacus cucurbitae females, a cosmopolitan pest of cucurbitaceous crops (2) if temperature, diet quality, and antibiotic treatments affect microbial symbiont communities of both laboratory and wild populations, and (3) if changes in microbial symbiont communities due to temperature, diet and antibiotic affect longevity and fecundity of Z. cucurbitae. RESULTS The results showed that microbial diversity, particularly the β-diversity was significantly affected by insect origin, temperature, diet quality, and antibiotic treatment. The alteration of gut microbial symbionts, specifically Enterobacteriaceae, was associated with low fecundity and longevity of Z. cucurbitae females feeding on optimal diet only. Fecundity reduction in antibiotic treated females was more pronounced when flies were fed on a poor diet without protein. CONCLUSIONS our study proves the relationship between gut microbiome and host fitness under thermal and diet fluctuation highlighting the importance of microbial community in the adaptation of Z. cucurbitae to environmental stress. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Abir Hafsi
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France.
- Université de la Réunion, Saint Denis, La Réunion, 97400, France.
| | - Laura Moquet
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Wouter Hendrycks
- Royal Museum for Central Africa, Tervuren, Belgium
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, 2610, Belgium
| | | | | | - Hélène Delatte
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| |
Collapse
|
13
|
Li G, Srinivasan V, Tooker NB, Wang D, Yan Y, Onnis-Hayden A, Gu AZ. Distinct microdiversity of phosphate accumulating organisms (PAOs) between side-stream and conventional enhanced biological phosphorus removal (EBPR) systems with performance implications. WATER RESEARCH 2024; 266:122280. [PMID: 39213686 DOI: 10.1016/j.watres.2024.122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Polyphosphate Accumulating Organisms (PAOs) microdiversity is a key factor to elucidate the mechanisms involved in the side-stream enhanced biological phosphorus removal (S2EBPR) systems, which has been shown to improve the process stability over conventional EBPR. However, fast, effective and cost-efficient methods to resolve PAO microdiversity in real-world activate sludge samples is still in absence. In this study, we applied oligotyping analysis following the regular 16S rRNA gene amplicon sequencing standard operation pipeline (SOP) to resolve subgenus-level PAO oligotypes, which cannot be achieved using traditional 16S rRNA sequencing SOP. The identified oligotype profiles of PAO-containing genera Ca. Accumulibacter, Tetrasphaera and Comamonas showed distinguished community-level differences across 12 water resource recovery facilities (WRRFs), which would not be revealed at the genus level. The WRRF-level differences were observed larger than the temporal differences in the same WRRF, indicating intrinsic sub-genus level microdiversity fingerprint between EBPR/S2EBPR systems. The identified oligotypes can be associated with known PAO clades phylogenetically, suggesting that oligotyping can suffice as a fast and cost-efficient approach for PAO microdiversity profiling. In addition, network analysis can be used to identify coexistence patterns between oligotypes with respect to EBPR/S2EBPR configurations and performance, enabling more detailed analysis between EBPR system performance and PAOs microdiversity. Correlation analyses between oligotype profiles and key EBPR performance parameters revealed potential different biological functional traits among these PAO species with P-removal performance implications.
Collapse
Affiliation(s)
- Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Varun Srinivasan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - Dongqi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Yuan Yan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States; Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States.
| |
Collapse
|
14
|
Średnicka P, Roszko M, Emanowicz P, Wójcicki M, Popowski D, Kanabus J, Juszczuk-Kubiak E. Influence of bisphenol A and its analogues on human gut microbiota composition and metabolic activity: Insights from an in vitro model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177323. [PMID: 39489444 DOI: 10.1016/j.scitotenv.2024.177323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Food contamination is a primary route of human exposure to bisphenols (BPs), which are known to affect gut microbiota (GM) and intestinal health. This study comprehensively assessed the impact of bisphenol A (BPA) and three of its substitutes-bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF, the monomer of valPure V70) - on the taxonomic and functional profile of human GM using an in vitro model. Human GM was acutely exposed to 1 mM concentrations of these BPs during a 48 h anaerobic cultivation. We first examined the effects of BPA, BPS, BPF, and TMBPF on GM taxonomic and metabolic profiles, mainly focusing on short-chain fatty acids (SCFAs) production. We then evaluated the degradation potential of these BPs by GM and its influence on their estrogenic activity. Finally, we assessed the impact of GM metabolites from BPs-exposed cultures on the viability of intestinal epithelial cells (Caco-2). BPA, BPS, and BPF severely disrupted GM taxonomic composition and metabolite profiles, significantly reducing SCFAs production. In contrast, TMBPF exhibited the least disruptive effects, suggesting it may be a safer alternative. Although the GM did not biotransform the BPs, bioadsorption occurred, with affinity correlating to hydrophobicity in the order of TMBPF > BPA > BPF > BPS. GM reduced the estrogenic activity of BPs primarily through bioadsorption. However, exposure of gut epithelial cells to Post-Culture Supernatants of BPA, BPF, and TMBPF significantly reduced Caco-2 cell viability, indicating the potential formation of harmful GM-derived metabolites and/or a depletion of beneficial GM metabolites.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland; Natural Products & Food Research and Analysis - Pharmaceutical Technology, Faculty of Pharmacy, University of Antwerp, Universiteitplein 1, Wilrijk, Belgium
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| |
Collapse
|
15
|
Cappio Barazzone E, Diard M, Hug I, Larsson L, Slack E. Diagnosing and engineering gut microbiomes. EMBO Mol Med 2024; 16:2660-2677. [PMID: 39468301 PMCID: PMC11554810 DOI: 10.1038/s44321-024-00149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
The microbes, nutrients and toxins that we are exposed to can have a profound effect on the composition and function of the gut microbiome. Thousands of peer-reviewed publications link microbiome composition and function to health from the moment of birth, right through to centenarians, generating a tantalizing glimpse of what might be possible if we could intervene rationally. Nevertheless, there remain relatively few real-world examples where successful microbiome engineering leads to beneficial health effects. Here we aim to provide a framework for the progress needed to turn gut microbiome engineering from a trial-and-error approach to a rational medical intervention. The workflow starts with truly understanding and accurately diagnosing the problems that we are trying to fix, before moving on to developing technologies that can achieve the desired changes.
Collapse
Affiliation(s)
- Elisa Cappio Barazzone
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Médéric Diard
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Isabelle Hug
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Louise Larsson
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Khanal S, Imran M, Zhou XG, Antony-Babu S. Characterization of differences in seed endophytic microbiome in conventional and organic rice by amplicon-based sequencing and culturing methods. Microbiol Spectr 2024; 12:e0366223. [PMID: 39136439 PMCID: PMC11448069 DOI: 10.1128/spectrum.03662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/10/2024] [Indexed: 10/05/2024] Open
Abstract
The seed serves as the primary source for establishing microbial populations in plants across subsequent generations, influencing plant growth and overall health. Cropping conditions, especially farming practices, can influence the composition and functionality of the seed microbiome. Very little is known about the differences in seed microbiome between organic and conventional production systems. In this study, we characterized the endophytic microbial populations in seeds of rice grown under organic and conventional management practices through culture-dependent and -independent analyses. The V4 region of 16S rRNA was used for bacterial taxa identification, and the ITS1 region was used for the identification of fungal taxa. Our results revealed significantly higher Shannon and Simpson indices for bacterial diversity in the conventional farming system, whereas the fungal diversity was higher for observed, Shannon, and Simpson indices in the organic farming system. The cultivable endophytic bacteria were isolated and identified using the full-length 16S rRNA gene. There was no difference in culturable endophytic bacterial isolates in rice seeds grown under both conventional and organic farming systems. Among 33 unique isolates tested in vitro, three bacteria-Bacillus sp. ST24, Burkholderia sp. OR5, and Pantoea sp. ST25-showed antagonistic activities against Marasmius graminum, Rhizoctonia solani AG4, and R. solani AG11, the fungal pathogens causing seedling blight in rice. IMPORTANCE In this paper, we studied the differences in the endophytic microbial composition of rice seeds grown in conventional and organic farming systems. Our results demonstrate a greater bacterial diversity in conventional farming, while organic farming showcases a higher fungal diversity. Additionally, our research reveals the ability of seed bacterial endophytes to inhibit the growth of three fungal pathogens responsible for causing seedling blight in rice. This study provides valuable insights into the potential use of beneficial seed microbial endophytes for developing a novel microbiome-based strategy in the management of rice diseases. Such an approach has the potential to enhance overall plant health and improve crop productivity.
Collapse
Affiliation(s)
- Sabin Khanal
- Texas A&M AgriLife Research Center, Beaumont, Texas, USA
| | - Muhammad Imran
- Department of Plant Pathology, University of Faisalabad, Faisalabad, Pakistan
| | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, Texas, USA
| | - Sanjay Antony-Babu
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
17
|
Słowakiewicz M, Goraj W, Segit T, Wątor K, Dobrzyński D. Hydrochemical gradients driving extremophile distribution in saline and brine groundwater of southern Poland. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70030. [PMID: 39440899 PMCID: PMC11497496 DOI: 10.1111/1758-2229.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO4 contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO4 and Cl/HCO3 ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.
Collapse
Affiliation(s)
| | - Weronika Goraj
- Faculty of MedicineThe John Paul II Catholic University of LublinLublinPoland
| | - Tomasz Segit
- Faculty of GeologyUniversity of WarsawWarsawPoland
| | - Katarzyna Wątor
- Faculty of Geology, Geophysics and Environmental ProtectionAGH University of KrakowKrakówPoland
| | | |
Collapse
|
18
|
Park H, Yeo S, Ryu CB, Huh CS. A streamlined culturomics case study for the human gut microbiota research. Sci Rep 2024; 14:20361. [PMID: 39223323 PMCID: PMC11368911 DOI: 10.1038/s41598-024-71370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Bacterial culturomics is a set of techniques to isolate and identify live bacteria from complex microbial ecosystems. Despite its potential to revolutionize microbiome research, bacterial culturomics has significant challenges when applied to human gut microbiome studies due to its labor-intensive nature. Therefore, we established a streamlined culturomics approach with minimal culture conditions for stool sample preincubation. We evaluated the suitability of non-selective medium candidates for maintaining microbial diversity during a 30-day incubation period based on 16S rRNA gene amplicon analysis. Subsequently, we applied four culture conditions (two preincubation media under an aerobic/anaerobic atmosphere) to isolate gut bacteria on a large scale from eight stool samples of healthy humans. We identified 8141 isolates, classified into 263 bacterial species, including 12 novel species candidates. Our analysis of cultivation efficiency revealed that seven days of aerobic and ten days of anaerobic incubation captured approximately 91% and 95% of the identified species within each condition, respectively, with a synergistic effect confirmed when selected preincubation media were combined. Moreover, our culturomics findings expanded the coverage of gut microbial diversity compared to 16S rRNA gene amplicon sequencing results. In conclusion, this study demonstrated the potential of a streamlined culturomics approach for the efficient isolation of gut bacteria from human stool samples. This approach might pave the way for the broader adoption of culturomics in human gut microbiome studies, ultimately leading to a more comprehensive understanding of this complex microbial ecosystem.
Collapse
Affiliation(s)
- Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| | - Soyoung Yeo
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Chang Beom Ryu
- Department of Internal Medicine, Digestive Disease Center and Research Institute, Soon Chun Hyang University School of Medicine, Bucheon, 14584, South Korea
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
19
|
Li Z, Zhao W, Jiang Y, Wen Y, Li M, Liu L, Zou K. New insights into biologic interpretation of bioinformatic pipelines for fish eDNA metabarcoding: A case study in Pearl River estuary. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122136. [PMID: 39128344 DOI: 10.1016/j.jenvman.2024.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Environmental DNA (eDNA) metabarcoding is an emerging tool for monitoring biological communities in aquatic ecosystems. The selection of bioinformatic pipelines significantly impacts the results of biodiversity assessments. However, there is currently no consensus on the appropriate bioinformatic pipelines for fish community analysis in eDNA metabarcoding. In this study, we compared three bioinformatic pipelines (Uparse, DADA2, and UNOISE3) using real and mock (constructed with 15/30 known fish) communities to investigate the differences in biological interpretation during the data analysis process in eDNA metabarcoding. Performance evaluation and diversity analyses revealed that the choice of bioinformatic pipeline could impact the biological results of metabarcoding experiments. Among the three pipelines, the operational taxonomic units (OTU)-based pipeline (Uparse) showed the best performance (sensitivity: 0.6250 ± 0.0166; compositional similarity: 0.4000 ± 0.0571), the highest richness (25-102) and minimal inter-group differences in alpha diversity. It suggested the OTU-based pipeline possessed superior capability in fish diversity monitoring compared to ASV/ZOTU-based pipeline. Additionally, the Bray-Curtis distance matrix achieved the highest discriminative effect in the PCoA (43.3%-53.89%) and inter-group analysis (P < 0.01), indicating it was better at distinguishing compositional differences or specific genera of fish community at different sampling sites than other distance matrices. These findings provide new insights into fish community monitoring through eDNA metabarcoding in estuarine environments.
Collapse
Affiliation(s)
- Zhuoying Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Wencheng Zhao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yun Jiang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yongjing Wen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Min Li
- Key Laboratory for Sustainable Utilization of Open-sea Fishery, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Keshu Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
20
|
Dörr AK, Welling J, Dörr A, Gosch J, Möhlen H, Schmithausen R, Kehrmann J, Meyer F, Kraiselburd I. RiboSnake - a user-friendly, robust, reproducible, multipurpose and documentation-extensive pipeline for 16S rRNA gene microbiome analysis. GIGABYTE 2024; 2024:gigabyte132. [PMID: 39364224 PMCID: PMC11448241 DOI: 10.46471/gigabyte.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024] Open
Abstract
Background Next-generation sequencing for microbial communities has become a standard technique. However, the computational analysis remains resource-intensive. With declining costs and growing adoption of sequencing-based methods in many fields, validated, fully automated, reproducible and flexible pipelines are increasingly essential in various scientific fields. Results We present RiboSnake, a validated, automated, reproducible QIIME2-based pipeline implemented in Snakemake for analysing 16S rRNA gene amplicon sequencing data. RiboSnake includes pre-packaged validated parameter sets optimized for different sample types, from environmental samples to patient data. The configuration packages can be easily adapted and shared, requiring minimal user input. Conclusion RiboSnake is a new alternative for researchers employing 16S rRNA gene amplicon sequencing and looking for a customizable and user-friendly pipeline for microbiome analyses with in vitro validated settings. By automating the analysis with validated parameters for diverse sample types, RiboSnake enhances existing methods significantly. The workflow repository can be found on GitHub (https://github.com/IKIM-Essen/RiboSnake).
Collapse
Affiliation(s)
- Ann-Kathrin Dörr
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Josefa Welling
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Adrian Dörr
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Jule Gosch
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Hannah Möhlen
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Ricarda Schmithausen
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127, Bonn, Germany
| | - Jan Kehrmann
- Institute for Medical Microbiology, University Hospital Essen, 45147, Essen, Germany
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, 45131, Essen, Germany
| |
Collapse
|
21
|
Eberly JO, Hurd A, Oli D, Dyer AT, Seipel TF, Carr PM. Compositional profiling of the rhizosphere microbiome of Canada thistle reveals consistent patterns across the United States northern Great Plains. Sci Rep 2024; 14:18016. [PMID: 39097653 PMCID: PMC11298000 DOI: 10.1038/s41598-024-69082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Canada thistle is a pervasive perennial weed, causing challenges to agricultural and natural ecosystems globally. Although research has focused on the phenology, genetics, and control of Canada thistle, little is known about the rhizosphere microbiome and the role plant-microbe interactions play in invasion success. This study investigated the rhizosphere microbiome of Canada thistle across diverse climates, soils, and crops in the U.S. northern Great Plains. Soil and rhizosphere samples were collected and bacterial 16S and fungal ITS2 sequencing were performed to characterize the core microbiome and identify potential factors contributing to invasion success. Amplicon sequencing revealed a stable core microbiome that was detected in the Canada thistle rhizosphere across all locations. The core microbiome was dominated by the bacterial phyla Actinobacteriota and Proteobacteria and fungal phyla Ascomycota and Basidiomycota. Differential abundance analysis showed rhizosphere fungal communities were enriched in pathogen-containing genera with a 1.7-fold greater abundance of Fusaria and a 2.6-fold greater abundance of Gibberella compared to bulk soil. Predictive functional profiling showed rhizosphere communities were enriched (p < 0.05, FDR corrected) in plant pathogen fungal guilds which represented 19% of the fungal community. The rhizosphere microbiome was similar in composition across environments, highlighting the stable association between Canada thistle and specific microbial taxa. This study characterized the core microbiome of Canada thistle, and the findings highlight plant-microbe interactions shaping invasive behavior. These findings are important for understanding the ecological impacts of plant invasion and soil-microbe ecological processes.
Collapse
Affiliation(s)
- Jed O Eberly
- Central Agricultural Research Center, Montana State University, Moccasin, MT, USA.
| | - Asa Hurd
- Central Agricultural Research Center, Montana State University, Moccasin, MT, USA
| | - Dipiza Oli
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Alan T Dyer
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Tim F Seipel
- Department of Land Resources and Environmental Science, Montana State University, Bozeman, MT, USA
| | - Patrick M Carr
- Central Agricultural Research Center, Montana State University, Moccasin, MT, USA
| |
Collapse
|
22
|
Pieczyńska-Zając JM, Malinowska AM, Pruszyńska-Oszmałek E, Kołodziejski PA, Drzymała-Czyż S, Bajerska J. Effect of a high-fat high-fructose diet on the composition of the intestinal microbiota and its association with metabolic and anthropometric parameters in a letrozole-induced mouse model of polycystic ovary syndrome. Nutrition 2024; 124:112450. [PMID: 38669829 DOI: 10.1016/j.nut.2024.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE It has been suggested that dysbiosis of the gut microbiota is associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS), and that improper diet can aggravate these changes. This study thus aimed to investigate the effects of a high-fat/high-fructose (HF/HFr) diet on the gut microbial community and their metabolites in prepubertal female mice with letrozole (LET)-induced PCOS. We also tested the correlations between the relative abundance of microbial taxa and selected PCOS parameters. RESEARCH METHODS & PROCEDURES Thirty-two C57BL/6 mice were randomly divided into four groups (n = 8) and implanted with LET or a placebo, with simultaneous administration of a HF/HFr diet or standard diet (StD) for 5 wk. The blood and intestinal contents were collected after the sacrifice. RESULTS Placebo + HF/HFr and LET + HF/HFr had significantly higher microbial alpha diversity than either group fed StD. The LET-implanted mice fed StD had a significantly higher abundance of Prevotellaceae_UCG-001 than the placebo mice fed StD. Both groups fed the HF/HFr diet had significantly lower fecal levels of short-chain fatty acids than the placebo mice fed StD, while the LET + HF/HFr animals had significantly higher concentrations of lipopolysaccharides in blood serum than either the placebo or LET mice fed StD. Opposite correlations were observed between Turicibacter and Lactobacillus and the lipid profile, CONCLUSION: HF/HFr diet had a much stronger effect on the composition of the intestinal microbiota of prepubertal mice than LET itself.
Collapse
Affiliation(s)
| | - Anna Maria Malinowska
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | - Paweł Antoni Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Poznań, Poland
| | | | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
23
|
Guan Y, Bak F, Hennessy RC, Horn Herms C, Elberg CL, Dresbøll DB, Winding A, Sapkota R, Nicolaisen MH. The potential of Pseudomonas fluorescens SBW25 to produce viscosin enhances wheat root colonization and shapes root-associated microbial communities in a plant genotype-dependent manner in soil systems. mSphere 2024; 9:e0029424. [PMID: 38904362 PMCID: PMC11288004 DOI: 10.1128/msphere.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Microorganisms interact with plant roots through colonization of the root surface, i.e., the rhizoplane or the surrounding soil, i.e., the rhizosphere. Beneficial rhizosphere bacteria such as Pseudomonas spp. can promote plant growth and protect against pathogens by producing a range of bioactive compounds, including specialized metabolites like cyclic lipopeptides (CLPs) known for their biosurfactant and antimicrobial activities. However, the role of CLPs in natural soil systems during bacteria-plant interactions is underexplored. Here, Pseudomonas fluorescens SBW25, producing the CLP viscosin, was used to study the impact of viscosin on bacterial root colonization and microbiome assembly in two cultivars of winter wheat (Heerup and Sheriff). We inoculated germinated wheat seeds with SBW25 wild type or a viscosin-deficient mutant and grew the plants in agricultural soil. After 2 weeks, enhanced root colonization of SBW25 wild type compared to the viscosin-deficient mutant was observed, while no differences were observed between wheat cultivars. In contrast, the impact on root-associated microbial community structure was plant-genotype-specific, and SBW25 wild type specifically reduced the relative abundance of an unclassified oomycete and Phytophthora in Sheriff and Heerup, respectively. This study provides new insights into the natural role of viscosin and specifically highlights the importance of viscosin in wheat root colonization under natural soil conditions and in shaping the root microbial communities associated with different wheat cultivars. Furthermore, it pinpoints the significance of microbial microdiversity, plant genotype, and microbe-microbe interactions when studying colonization of plant roots. IMPORTANCE Understanding parameters governing microbiome assembly on plant roots is critical for successfully exploiting beneficial plant-microbe interactions for improved plant growth under low-input conditions. While it is well-known from in vitro studies that specialized metabolites are important for plant-microbe interactions, e.g., root colonization, studies on the ecological role under natural soil conditions are limited. This might explain the often-low translational power from laboratory testing to field performance of microbial inoculants. Here, we showed that viscosin synthesis potential results in a differential impact on the microbiome assembly dependent on wheat cultivar, unlinked to colonization potential. Overall, our study provides novel insights into factors governing microbial assembly on plant roots, and how this has a derived but differential effect on the bacterial and protist communities.
Collapse
Affiliation(s)
- Ying Guan
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
- Bioresources Unit, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Courtney Horn Herms
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Dorte Bodin Dresbøll
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
24
|
Spatola G, Giusti A, Armani A. The "Dry-Lab" Side of Food Authentication: Benchmark of Bioinformatic Pipelines for the Analysis of Metabarcoding Data. Foods 2024; 13:2102. [PMID: 38998608 PMCID: PMC11241536 DOI: 10.3390/foods13132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Next Generation Sequencing Technologies (NGS), particularly metabarcoding, are valuable tools for authenticating foodstuffs and detecting eventual fraudulent practices such as species substitution. This technique, mostly used for the analysis of prokaryotes in several environments (including food), is in fact increasingly applied to identify eukaryotes (e.g., fish, mammals, avian, etc.) in multispecies food products. Besides the "wet-lab" procedures (e.g., DNA extraction, PCR, amplicon purification, etc.), the metabarcoding workflow includes a final "dry-lab" phase in which sequencing data are analyzed using a bioinformatic pipeline (BP). BPs play a crucial role in the accuracy, reliability, and interpretability of the metabarcoding results. Choosing the most suitable BP for the analysis of metabarcoding data could be challenging because it might require greater informatics skills than those needed in standard molecular analysis. To date, studies comparing BPs for metabarcoding data analysis in foodstuff authentication are scarce. In this study, we compared the data obtained from two previous studies in which fish burgers and insect-based products were authenticated using a customizable, ASV-based, and command-line interface BP (BP1) by analyzing the same data with a customizable but OTU-based and graphical user interface BP (BP2). The final sample compositions were compared statistically. No significant difference in sample compositions was highlighted by applying BP1 and BP2. However, BP1 was considered as more user-friendly than BP2 with respect to data analysis streamlining, cost of analysis, and computational time consumption. This study can provide useful information for researchers approaching the bioinformatic analysis of metabarcoding data for the first time. In the field of food authentication, an effective and efficient use of BPs could be especially useful in the context of official controls performed by the Competent Authorities and companies' self-control in order to detect species substitution and counterfeit frauds.
Collapse
Affiliation(s)
- Gabriele Spatola
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Alice Giusti
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Andrea Armani
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
25
|
Dierikx TH, Malinowska AM, Łukasik J, Besseling-van der Vaart I, Belzer C, Szajewska H, de Meij TGJ. Probiotics and Antibiotic-Induced Microbial Aberrations in Children: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2418129. [PMID: 38967929 PMCID: PMC11227081 DOI: 10.1001/jamanetworkopen.2024.18129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024] Open
Abstract
Importance Probiotics are often considered in children to prevent antibiotic-associated diarrhea. However, the underlying mechanistic effects and impact of probiotics on antibiotic-induced microbiota changes are not well understood. Objective To investigate the effects of a multispecies probiotic on the gut microbiota composition in children receiving antibiotics. Design, Setting, and Participants This is a secondary analysis of a randomized, quadruple-blind, placebo-controlled clinical trial from February 1, 2018, to May 31, 2021, including 350 children receiving broad-spectrum antibiotics in the inpatient and outpatient settings. Patients were followed up until 1 month after the intervention period. Fecal samples and data were analyzed between September 1, 2022, and February 28, 2023. Eligibility criteria included 3 months to 18 years of age and recruitment within 24 hours following initiation of broad-spectrum systemic antibiotics. In total, 646 eligible patients were approached and 350 participated in the trial. Intervention Participants were randomly assigned to receive daily placebo or a multispecies probiotic formulation consisting of 8 strains from 5 different genera during antibiotic treatment and for 7 days afterward. Main Outcomes and Measures Fecal stool samples were collected at 4 predefined times: (1) inclusion, (2) last day of antibiotic use, (3) last day of the study intervention, and (4) 1 month after intervention. Microbiota analysis was performed by 16S ribosomal RNA gene sequencing. Results A total of 350 children were randomized and collected stool samples from 88 were eligible for the microbiota analysis (54 boys and 34 girls; mean [SD] age, 47.09 [55.64] months). Alpha diversity did not significantly differ between groups at the first 3 times. Shannon diversity (mean [SD], 3.56 [0.75] vs 3.09 [1.00]; P = .02) and inverse Simpson diversity (mean [SD], 3.75 [95% CI, 1.66-5.82] vs -1.31 [95% CI, -3.17 to 0.53]; P = 1 × 10-4) indices were higher in the placebo group compared with the probiotic group 1 month after intervention. Beta diversity was not significantly different at any of the times. Three of 5 supplemented genera had higher relative abundance during probiotic supplementation, but this difference had disappeared after 1 month. Conclusions and Relevance The studied probiotic mixture had minor and transient effects on the microbiota composition during and after antibiotic treatment. Further research is needed to understand their working mechanisms in manipulating the microbiome and preventing antibiotic-associated dysbiosis and adverse effects such as antibiotic-associated diarrhea. Trial Registration ClinicalTrials.gov Identifier: NCT03334604.
Collapse
Affiliation(s)
- Thomas H. Dierikx
- Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Paediatric Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Anna M. Malinowska
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jan Łukasik
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Hania Szajewska
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Tim G. J. de Meij
- Department of Paediatric Gastroenterology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Gastroenterology, Emma Children’s Hospital, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Kolp MR, de Anda Acosta Y, Brewer W, Nichols HL, Goldstein EB, Tallapragada K, Parker BJ. Pathogen-microbiome interactions and the virulence of an entomopathogenic fungus. Appl Environ Microbiol 2024; 90:e0229323. [PMID: 38786361 PMCID: PMC11218631 DOI: 10.1128/aem.02293-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called Pandora neoaphidis in the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance against Pandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show that Pandora can acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCE Entomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales-an important but understudied group of fungi.
Collapse
Affiliation(s)
- Matthew R. Kolp
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Richard A. Gillespie College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | | | - William Brewer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Holly L. Nichols
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - Keertana Tallapragada
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Benjamin J. Parker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
27
|
Neuhaus GF, Aron AT, Isemonger EW, Petras D, Waterworth SC, Madonsela LS, Gentry EC, Siwe Noundou X, Kalinski JCJ, Polyzois A, Habiyaremye JC, Redick MA, Kwan JC, Dorrington RA, Dorrestein PC, McPhail KL. Environmental metabolomics characterization of modern stromatolites and annotation of ibhayipeptolides. PLoS One 2024; 19:e0303273. [PMID: 38781236 PMCID: PMC11115249 DOI: 10.1371/journal.pone.0303273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lithified layers of complex microbial mats known as microbialites are ubiquitous in the fossil record, and modern forms are increasingly identified globally. A key challenge to developing an understanding of microbialite formation and environmental role is how to investigate complex and diverse communities in situ. We selected living, layered microbialites (stromatolites) in a peritidal environment near Schoenmakerskop, Eastern Cape, South Africa to conduct a spatial survey mapping the composition and small molecule production of the microbial communities from environmental samples. Substrate core samples were collected from nine sampling stations ranging from the upper point of the freshwater inflow to the lower marine interface where tidal overtopping takes place. Substrate cores provided material for parallel analyses of microbial community diversity by 16S rRNA gene amplicon sequencing and metabolomics using LC-MS2. Species and metabolite diversities were correlated, and prominent specialized metabolites were targeted for preliminary characterization. A new series of cyclic hexadepsipeptides, named ibhayipeptolides, was most abundant in substrate cores of submerged microbialites. These results demonstrate the detection and identification of metabolites from mass-limited environmental samples and contribute knowledge about microbialite chemistry and biology, which facilitates future targeted studies of specialized metabolite function and biosynthesis.
Collapse
Affiliation(s)
- George F. Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Allegra T. Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Eric W. Isemonger
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Luthando S. Madonsela
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Emily C. Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | | | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Julius C. Habiyaremye
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Margaret A. Redick
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI, United States of America
| | | | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
28
|
Messaritakis I, Koulouris A, Boukla E, Vogiatzoglou K, Lagkouvardos I, Intze E, Sfakianaki M, Chondrozoumaki M, Karagianni M, Athanasakis E, Xynos E, Tsiaoussis J, Christodoulakis M, Flamourakis ME, Tsagkataki ES, Giannikaki L, Chliara E, Mavroudis D, Tzardi M, Souglakos J. Exploring Gut Microbiome Composition and Circulating Microbial DNA Fragments in Patients with Stage II/III Colorectal Cancer: A Comprehensive Analysis. Cancers (Basel) 2024; 16:1923. [PMID: 38792001 PMCID: PMC11119035 DOI: 10.3390/cancers16101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) significantly contributes to cancer-related mortality, necessitating the exploration of prognostic factors beyond TNM staging. This study investigates the composition of the gut microbiome and microbial DNA fragments in stage II/III CRC. METHODS A cohort of 142 patients with stage II/III CRC and 91 healthy controls underwent comprehensive microbiome analysis. Fecal samples were collected for 16S rRNA sequencing, and blood samples were tested for the presence of microbial DNA fragments. De novo clustering analysis categorized individuals based on their microbial profiles. Alpha and beta diversity metrics were calculated, and taxonomic profiling was conducted. RESULTS Patients with CRC exhibited distinct microbial composition compared to controls. Beta diversity analysis confirmed CRC-specific microbial profiles. Taxonomic profiling revealed unique taxonomies in the patient cohort. De novo clustering separated individuals into distinct groups, with specific microbial DNA fragment detection associated with certain patient clusters. CONCLUSIONS The gut microbiota can differentiate patients with CRC from healthy individuals. Detecting microbial DNA fragments in the bloodstream may be linked to CRC prognosis. These findings suggest that the gut microbiome could serve as a prognostic factor in stage II/III CRC. Identifying specific microbial markers associated with CRC prognosis has potential clinical implications, including personalized treatment strategies and reduced healthcare costs. Further research is needed to validate these findings and uncover underlying mechanisms.
Collapse
Affiliation(s)
- Ippokratis Messaritakis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Andreas Koulouris
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Eleni Boukla
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Konstantinos Vogiatzoglou
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Ilias Lagkouvardos
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Evangelia Intze
- Department of Clinical Microbiology, School of Medicine, University of Crete, 70013 Heraklion, Greece; (I.L.); (E.I.)
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Maria Chondrozoumaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Michaela Karagianni
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
| | - Elias Athanasakis
- Department of General Surgery, Heraklion University Hospital, 71100 Heraklion, Greece;
| | - Evangelos Xynos
- Department of Surgery, Creta Interclinic Hospital of Heraklion, 71305 Heraklion, Greece
| | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece;
| | | | | | - Eleni S. Tsagkataki
- Department of General Surgery, Venizeleio General Hospital, 71409 Heraklion, Greece (M.E.F.)
| | - Linda Giannikaki
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Evdoxia Chliara
- Histopathology, Venizeleio General Hospital, 71409 Heraklion, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Maria Tzardi
- Laboratory of Pathology, University General Hospital of Heraklion, 70013 Heraklion, Greece;
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.C.); (D.M.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
29
|
Heppner N, Reitmeier S, Heddes M, Merino MV, Schwartz L, Dietrich A, List M, Gigl M, Meng C, van der Veen DR, Schirmer M, Kleigrewe K, Omer H, Kiessling S, Haller D. Diurnal rhythmicity of infant fecal microbiota and metabolites: A randomized controlled interventional trial with infant formula. Cell Host Microbe 2024; 32:573-587.e5. [PMID: 38569545 DOI: 10.1016/j.chom.2024.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/13/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Microbiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet.
Collapse
Affiliation(s)
- Nina Heppner
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Sandra Reitmeier
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Marjolein Heddes
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Michael Vig Merino
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Leon Schwartz
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alexander Dietrich
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Markus List
- Data Science in Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Gigl
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Daan R van der Veen
- Faculty of Health and Biomedical Science, University of Surrey, 388 Stag Hill Campus, Guildford 17 GU27XH, UK
| | - Melanie Schirmer
- ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Hélène Omer
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Silke Kiessling
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany; Faculty of Health and Biomedical Science, University of Surrey, 388 Stag Hill Campus, Guildford 17 GU27XH, UK
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
30
|
Schüler MA, Schneider D, Poehlein A, Daniel R. Culture-independent detection of low-abundant Clostridioides difficile in environmental DNA via PCR. Appl Environ Microbiol 2024; 90:e0127823. [PMID: 38334406 PMCID: PMC10952401 DOI: 10.1128/aem.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024] Open
Abstract
Clostridioides difficile represents a major burden to public health. As a well-known nosocomial pathogen whose occurrence is highly associated with antibiotic treatment, most examined C. difficile strains originated from clinical specimen and were isolated under selective conditions employing antibiotics. This suggests a significant bias among analyzed C. difficile strains, which impedes a holistic view on this pathogen. In order to support extensive isolation of C. difficile strains from environmental samples, we designed a detection PCR that targets the hpdBCA-operon and thereby identifies low abundances of C. difficile in environmental samples. This operon encodes the 4-hydroxyphenylacetate decarboxylase, which catalyzes the production of the antimicrobial compound para-cresol. Amplicon-based analyses of diverse environmental samples demonstrated that the designed PCR is highly specific for C. difficile and successfully detected C. difficile despite its absence in general 16S rRNA gene-based detection strategies. Further analyses revealed the potential of the hpdBCA detection PCR sequence for initial phylogenetic classification, which allows assessment of C. difficile diversity in environmental samples via amplicon sequencing. Our findings furthermore showed that C. difficile strains isolated under antibiotic treatment from environmental samples were originally dominated by other strains according to PCR amplicon results. This provided evidence for selective cultivation of under-represented but antibiotic-resistant isolates. Thereby, we revealed a substantial bias in C. difficile isolation and research.IMPORTANCEClostridioides difficile is a main cause of diarrheic infections after antibiotic treatment with serious morbidity and mortality worldwide. Research on this pathogen and its virulence has focused on bacterial isolation from clinical specimens under antibiotic treatment, which implies a substantial bias in isolated strains. Comprehensive studies, however, require an unbiased strain collection, which is accomplished by isolation of C. difficile from diverse environmental samples and avoidance of antibiotic-based enrichment strategies. Thus, isolation can significantly benefit from our C. difficile-specific detection PCR, which rapidly verifies C. difficile presence in environmental samples and further allows estimation of the C. difficile diversity by using next-generation sequencing.
Collapse
Affiliation(s)
- Miriam A. Schüler
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Czech M, Schneider S, Peltokangas N, El Khawanky N, Ghimire S, Andrieux G, Hülsdünker J, Krausz M, Proietti M, Braun LM, Rückert T, Langenbach M, Schmidt D, Martin I, Wenger V, de Vega E, Haring E, Pourjam M, Pfeifer D, Schmitt-Graeff A, Grimbacher B, Aumann K, Kircher B, Tilg H, Raffatellu M, Thiele Orberg E, Häcker G, Duyster J, Köhler N, Holler E, Nachbaur D, Boerries M, Gerner RR, Grün D, Zeiser R. Lipocalin-2 expression identifies an intestinal regulatory neutrophil population during acute graft-versus-host disease. Sci Transl Med 2024; 16:eadi1501. [PMID: 38381845 DOI: 10.1126/scitranslmed.adi1501] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.
Collapse
Affiliation(s)
- Marie Czech
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sophia Schneider
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nina Peltokangas
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Nadia El Khawanky
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Department of Medicine III, University Hospital rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, 81675 Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, Haematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Jan Hülsdünker
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Máté Krausz
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany
- RESIST-Cluster of Excellence 2155, Hannover Medical School, 30625 Hannover, Germany
| | - Lukas M Braun
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tamina Rückert
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marlene Langenbach
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Dominik Schmidt
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ina Martin
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Valentin Wenger
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Enrique de Vega
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eileen Haring
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Mohsen Pourjam
- Core Facility Microbiome, ZIEL Institute of Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | | | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, 79106 Freiburg, Germany
- RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Konrad Aumann
- Department of Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Brigitte Kircher
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology and Endocrinology and Metabolism, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Manuela Raffatellu
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, CA 92123-0735, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA 92093, USA
| | - Erik Thiele Orberg
- Department of Internal Medicine III, Haematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- German Cancer Consortium (DKTK), partner-site Munich, a partnership between DKFZ and Klinikum rechts der Isar, 81675 Munich, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Haematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - David Nachbaur
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Romana R Gerner
- Department of Medicine III, University Hospital rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, 85354 Freising-Weihenstephan, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg Germany
| |
Collapse
|
32
|
Quattrone A, Lopez-Guerrero M, Yadav P, Meier MA, Russo SE, Weber KA. Interactions between root hairs and the soil microbial community affect the growth of maize seedlings. PLANT, CELL & ENVIRONMENT 2024; 47:611-628. [PMID: 37974552 DOI: 10.1111/pce.14755] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Root hairs are considered important for rhizosphere formation, which affects root system functioning. Through interactions with soil microorganisms mediated by root exudation, root hairs may affect the phenotypes and growth of young plants. We tested this hypothesis by integrating results from two experiments: (1) a factorial greenhouse seedling experiment with Zea mays B73-wt and its root-hairless mutant, B73-rth3, grown in live and autoclaved soil, quantifying 15 phenotypic traits, seven growth rates, and soil microbiomes and (2) a semi-hydroponic system quantifying root exudation of maize genotypes. Possibly as compensation for lacking root hairs, B73-rth3 seedlings allocated more biomass to roots and grew slower than B73-wt seedlings in live soil, whereas B73-wt seedlings grew slowest in autoclaved soil, suggesting root hairs can be costly and their benefits were realized with more complete soil microbial assemblages. There were substantial differences in root exudation between genotypes and in rhizosphere versus non-rhizosphere microbiomes. The microbial taxa enriched in the presence of root hairs generally enhanced growth compared to taxa enriched in their absence. Our findings suggest the root hairs' adaptive value extends to plant-microbe interactions mediated by root exudates, affecting plant phenotypes, and ultimately, growth.
Collapse
Affiliation(s)
- Amanda Quattrone
- Complex Biosystems Ph.D. program, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Meier
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Rancho Biosciences, San Diego, California, USA
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Karrie A Weber
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Daugherty Water for Food Institute, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
33
|
Rønning SB, Carlsen H, Rocha SDC, Rud I, Solberg N, Høst V, Veiseth-Kent E, Arnesen H, Bergum S, Kirkhus B, Böcker U, Abedali N, Rundblad A, Bålsrud P, Måge I, Holven KB, Ulven SM, Pedersen ME. Dietary intake of micronized avian eggshell membrane in aged mice reduces circulating inflammatory markers, increases microbiota diversity, and attenuates skeletal muscle aging. Front Nutr 2024; 10:1336477. [PMID: 38288061 PMCID: PMC10822908 DOI: 10.3389/fnut.2023.1336477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Avian eggshell membrane (ESM) is a complex extracellular matrix comprising collagens, glycoproteins, proteoglycans, and hyaluronic acid. We have previously demonstrated that ESM possesses anti-inflammatory properties in vitro and regulates wound healing processes in vivo. The present study aimed to investigate if oral intake of micronized ESM could attenuate skeletal muscle aging associated with beneficial alterations in gut microbiota profile and reduced inflammation. Methods Elderly male C57BL/6 mice were fed an AIN93G diet supplemented with 0, 0.1, 1, or 8% ESM. Young mice were used as reference. The digestibility of ESM was investigated using the static in vitro digestion model INFOGEST for older people and adults, and the gut microbiota profile was analyzed in mice. In addition, we performed a small-scale pre-clinical human study with healthy home-dwelling elderly (>70 years) who received capsules with a placebo or 500 mg ESM every day for 4 weeks and studied the effect on circulating inflammatory markers. Results and discussion Intake of ESM in elderly mice impacted and attenuated several well-known hallmarks of aging, such as a reduction in the number of skeletal muscle fibers, the appearance of centronucleated fibers, a decrease in type IIa/IIx fiber type proportion, reduced gene expression of satellite cell markers Sdc3 and Pax7 and increased gene expression of the muscle atrophy marker Fbxo32. Similarly, a transition toward the phenotypic characteristics of young mice was observed for several proteins involved in cellular processes and metabolism. The digestibility of ESM was poor, especially for the elderly condition. Furthermore, our experiments showed that mice fed with 8% ESM had increased gut microbiota diversity and altered microbiota composition compared with the other groups. ESM in the diet also lowered the expression of the inflammation marker TNFA in mice and in vitro in THP-1 macrophages. In the human study, intake of ESM capsules significantly reduced the inflammatory marker CRP. Altogether, our results suggest that ESM, a natural extracellular biomaterial, may be attractive as a nutraceutical candidate with a possible effect on skeletal muscle aging possibly through its immunomodulating effect or gut microbiota.
Collapse
Affiliation(s)
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Ida Rud
- Nofima AS, Food Division, Ås, Norway
| | | | | | | | - Henriette Arnesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | | | - Nada Abedali
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Pia Bålsrud
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Kirsten Bjørklund Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
34
|
Zünd JN, Plüss S, Mujezinovic D, Menzi C, von Bieberstein PR, de Wouters T, Lacroix C, Leventhal GE, Pugin B. A flexible high-throughput cultivation protocol to assess the response of individuals' gut microbiota to diet-, drug-, and host-related factors. ISME COMMUNICATIONS 2024; 4:ycae035. [PMID: 38562261 PMCID: PMC10982853 DOI: 10.1093/ismeco/ycae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber. We characterized the influence of the gas phase on the medium chemistry and microbial physiology and introduced a modular medium preparation process to enable the testing of several conditions simultaneously. Furthermore, we identified a medium formulation that maximized the compositional similarity of ex vivo cultures and donor microbiota while limiting the bloom of Enterobacteriaceae. Lastly, we validated the protocol by demonstrating that cultivated fecal microbiota responded similarly to dietary fibers (resistant dextrin, soluble starch) and drugs (ciprofloxacin, 5-fluorouracil) as reported in vivo. This high-throughput cultivation protocol has the potential to facilitate culture-dependent studies, accelerate the discovery of gut microbiota-diet-drug-host interactions, and pave the way to personalized microbiota-centered interventions.
Collapse
Affiliation(s)
- Janina N Zünd
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Serafina Plüss
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Denisa Mujezinovic
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Carmen Menzi
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | - Philipp R von Bieberstein
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
- PharmaBiome AG, 8952 Schlieren, Switzerland
| | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit Pugin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
35
|
Ghosh D, Shi Y, Zimmermann IM, Stürzebecher T, Holzhauser K, von Bergen M, Kaster AK, Spielvogel S, Dippold MA, Müller JA, Jehmlich N. Cover crop monocultures and mixtures enhance bacterial abundance and functionality in the maize root zone. ISME COMMUNICATIONS 2024; 4:ycae132. [PMID: 39526131 PMCID: PMC11546721 DOI: 10.1093/ismeco/ycae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Cover cropping is an effective method to protect agricultural soils from erosion, promote nutrient and moisture retention, encourage beneficial microbial activity, and maintain soil structure. Re-utilization of winter cover crop root channels by maize roots during summer allows the cash crop to extract resources from distal regions in the soil horizon. In this study, we investigated how cover cropping during winter followed by maize (Zea mays L.) during summer affects the spatiotemporal composition and function of the bacterial communities in the maize rhizosphere and surrounding soil samples using quantitative polymerase chain reaction (PCR), 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing, and metaproteomics. We found that the bacterial community differed significantly among cover crop species, soil depths, and maize growth stages. Bacterial abundance increased in reused root channels, and it continued to increase as cover crop diversity changed from monocultures to mixtures. Mixing Fabaceae with Brassicaceae or Poaceae enhanced the overall contributions of several steps of the bacterial carbon and nitrogen cycles, especially glycolysis and the pentose phosphate pathway. The deeper root channels of Fabaceae and Brassicaceae as compared to Poaceae corresponded to higher bacterial 16S rRNA gene copy numbers and improved community presence in the subsoil regimes, likely due to the increased availability of root exudates secreted by maize roots. In conclusion, root channel reuse improved the expression of metabolic pathways of the carbon and nitrogen cycles and the bacterial communities, which is beneficial to the soil and to the growing crops.
Collapse
Affiliation(s)
- Debjyoti Ghosh
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
| | - Yijie Shi
- Institute of Plant Nutrition and Soil Science, Department of Soil Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 2, 24118 Kiel, Schleswig-Holstein, Germany
| | - Iris M Zimmermann
- Institute of Plant Nutrition and Soil Science, Department of Soil Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 2, 24118 Kiel, Schleswig-Holstein, Germany
| | - Tobias Stürzebecher
- Biogeochemistry of Agroecosystems, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Lower Saxony, Germany
| | - Katja Holzhauser
- Institute of Crop Science and Plant Breeding, Agronomy and Crop Science, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Schleswig-Holstein, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
- Institute for Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Saxony, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Saxony, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Department of Soil Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 2, 24118 Kiel, Schleswig-Holstein, Germany
| | - Michaela A Dippold
- Geo-Biosphere Interactions, Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Baden-Württemberg, Germany
| | - Jochen A Müller
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Saxony, Germany
| |
Collapse
|
36
|
Hülpüsch C, Rauer L, Nussbaumer T, Schwierzeck V, Bhattacharyya M, Erhart V, Traidl-Hoffmann C, Reiger M, Neumann AU. Benchmarking MicrobIEM - a user-friendly tool for decontamination of microbiome sequencing data. BMC Biol 2023; 21:269. [PMID: 37996810 PMCID: PMC10666409 DOI: 10.1186/s12915-023-01737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Microbiome analysis is becoming a standard component in many scientific studies, but also requires extensive quality control of the 16S rRNA gene sequencing data prior to analysis. In particular, when investigating low-biomass microbial environments such as human skin, contaminants distort the true microbiome sample composition and need to be removed bioinformatically. We introduce MicrobIEM, a novel tool to bioinformatically remove contaminants using negative controls. RESULTS We benchmarked MicrobIEM against five established decontamination approaches in four 16S rRNA amplicon sequencing datasets: three serially diluted mock communities (108-103 cells, 0.4-80% contamination) with even or staggered taxon compositions and a skin microbiome dataset. Results depended strongly on user-selected algorithm parameters. Overall, sample-based algorithms separated mock and contaminant sequences best in the even mock, whereas control-based algorithms performed better in the two staggered mocks, particularly in low-biomass samples (≤ 106 cells). We show that a correct decontamination benchmarking requires realistic staggered mock communities and unbiased evaluation measures such as Youden's index. In the skin dataset, the Decontam prevalence filter and MicrobIEM's ratio filter effectively reduced common contaminants while keeping skin-associated genera. CONCLUSIONS MicrobIEM's ratio filter for decontamination performs better or as good as established bioinformatic decontamination tools. In contrast to established tools, MicrobIEM additionally provides interactive plots and supports selecting appropriate filtering parameters via a user-friendly graphical user interface. Therefore, MicrobIEM is the first quality control tool for microbiome experts without coding experience.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Luise Rauer
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
| | - Thomas Nussbaumer
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
| | - Vera Schwierzeck
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
- Institute of Hygiene, University Hospital Muenster, Muenster, Germany
| | - Madhumita Bhattacharyya
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
| | - Veronika Erhart
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Chair of Environmental Medicine, Technical University of Munich, Munich, Germany
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany
| | - Avidan U Neumann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
- Institute of Environmental Medicine, Helmholtz Munich, Augsburg, Germany.
| |
Collapse
|
37
|
Joachim L, Göttert S, Sax A, Steiger K, Neuhaus K, Heinrich P, Fan K, Orberg ET, Kleigrewe K, Ruland J, Bassermann F, Herr W, Posch C, Heidegger S, Poeck H. The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors. EBioMedicine 2023; 97:104834. [PMID: 37865045 PMCID: PMC10597767 DOI: 10.1016/j.ebiom.2023.104834] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging. METHODS We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy. Broad spectrum antibiotics were used to mimic gut microbial dysbiosis and associated ICI resistance. We utilized genetic mouse models to address the role of host IFN-I in DAT-modulated antitumour immunity. Changes in gut microbiota were assessed using 16S-rRNA sequencing analyses. FINDINGS We found that oral supplementation of mice with the microbial metabolite DAT delays tumour growth and promotes ICI immunotherapy with anti-CTLA-4 or anti-PD-1. DAT-enhanced antitumour immunity was associated with more activated T cells and natural killer cells in the tumour microenvironment and was dependent on host IFN-I signalling. Consistent with this, DAT potently enhanced expansion of antigen-specific T cells following vaccination with an IFN-I-inducing adjuvant. DAT supplementation in mice compensated for the negative effects of broad-spectrum antibiotic-induced dysbiosis on anti-CTLA-4-mediated antitumour immunity. Oral administration of DAT altered the gut microbial composition in mice with increased abundance of bacterial taxa that are associated with beneficial response to ICI immunotherapy. INTERPRETATION We introduce the therapeutic use of an IFN-I-modulating bacterial-derived metabolite to overcome resistance to ICI. This approach is a promising strategy particularly for patients with a history of broad-spectrum antibiotic use and associated loss of gut microbial diversity. FUNDING Melanoma Research Alliance, Deutsche Forschungsgemeinschaft, German Cancer Aid, Wilhelm Sander Foundation, Novartis Foundation.
Collapse
Affiliation(s)
- Laura Joachim
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Sascha Göttert
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Anna Sax
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Paul Heinrich
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Kaiji Fan
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Erik Thiele Orberg
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Karin Kleigrewe
- Bavarian Centre for Biomolecular Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jürgen Ruland
- Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian Posch
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany; Faculty of Medicine, Sigmund Freud University Vienna, Vienna, Austria
| | - Simon Heidegger
- Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany; Centre for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany; Centre for Immunomedicine in Transplantation and Oncology (CITO), Regensburg, Germany; Bavarian Cancer Research Centre (BZKF), Regensburg, Germany.
| |
Collapse
|
38
|
Salvador AC, Huda MN, Arends D, Elsaadi AM, Gacasan CA, Brockmann GA, Valdar W, Bennett BJ, Threadgill DW. Analysis of strain, sex, and diet-dependent modulation of gut microbiota reveals candidate keystone organisms driving microbial diversity in response to American and ketogenic diets. MICROBIOME 2023; 11:220. [PMID: 37784178 PMCID: PMC10546677 DOI: 10.1186/s40168-023-01588-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/01/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The gut microbiota is modulated by a combination of diet, host genetics, and sex effects. The magnitude of these effects and interactions among them is important to understanding inter-individual variability in gut microbiota. In a previous study, mouse strain-specific responses to American and ketogenic diets were observed along with several QTLs for metabolic traits. In the current study, we searched for genetic variants underlying differences in the gut microbiota in response to American and ketogenic diets, which are high in fat and vary in carbohydrate composition, between C57BL/6 J (B6) and FVB/NJ (FVB) mouse strains. RESULTS Genetic mapping of microbial features revealed 18 loci under the QTL model (i.e., marginal effects that are not specific to diet or sex), 12 loci under the QTL by diet model, and 1 locus under the QTL by sex model. Multiple metabolic and microbial features map to the distal part of Chr 1 and Chr 16 along with eigenvectors extracted from principal coordinate analysis of measures of β-diversity. Bilophila, Ruminiclostridium 9, and Rikenella (Chr 1) were identified as sex- and diet-independent QTL candidate keystone organisms, and Parabacteroides (Chr 16) was identified as a diet-specific, candidate keystone organism in confirmatory factor analyses of traits mapping to these regions. For many microbial features, irrespective of which QTL model was used, diet or the interaction between diet and a genotype were the strongest predictors of the abundance of each microbial trait. Sex, while important to the analyses, was not as strong of a predictor for microbial abundances. CONCLUSIONS These results demonstrate that sex, diet, and genetic background have different magnitudes of effects on inter-individual differences in gut microbiota. Therefore, Precision Nutrition through the integration of genetic variation, microbiota, and sex affecting microbiota variation will be important to predict response to diets varying in carbohydrate composition. Video Abstract.
Collapse
Affiliation(s)
- Anna C Salvador
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Nazmul Huda
- Department of Nutrition, University of California Davis, Sacramento, CA, 95616, USA
- Obesity and Metabolism Unit, Western Human Nutrition Research Center, USDA-ARS, Davis, CA, 95616, USA
| | - Danny Arends
- Albrecht Daniel Thaer-Institut, 10115, Berlin, Germany
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Ahmed M Elsaadi
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - C Anthony Gacasan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | | | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian J Bennett
- Department of Nutrition, University of California Davis, Sacramento, CA, 95616, USA
- Obesity and Metabolism Unit, Western Human Nutrition Research Center, USDA-ARS, Davis, CA, 95616, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
Robicheau BM, Tolman J, Desai D, LaRoche J. Microevolutionary patterns in ecotypes of the symbiotic cyanobacterium UCYN-A revealed from a Northwest Atlantic coastal time series. SCIENCE ADVANCES 2023; 9:eadh9768. [PMID: 37774025 PMCID: PMC10541017 DOI: 10.1126/sciadv.adh9768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
UCYN-A is a globally important nitrogen-fixing symbiotic microbe often found in colder regions and coastal areas where nitrogen fixation has been overlooked. We present a 3-year coastal Northwest Atlantic time series of UCYN-A by integrating oceanographic data with weekly nifH and16S rRNA gene sequencing and quantitative PCR assays for UCYN-A ecotypes. High UCYN-A relative abundances dominated by A1 to A4 ecotypes reoccurred annually in the coastal Northwest Atlantic. Although UCYN-A was detected every summer/fall, the ability to observe separate ecotypes may be highly dependent on sampling time given intense interannual and weekly variability of ecotype-specific occurrences. Additionally, much of UCYN-A's rarer diversity was populated by short-lived neutral mutational variants, therefore providing insight into UCYN-A's microevolutionary patterns. For instance, rare ASVs exhibited community composition restructuring annually, while also sharing a common connection to a dominant ASV within each ecotype. Our study provides additional perspectives for interpreting UCYN-A intraspecific diversity and underscores the need for high-resolution datasets when deciphering spatiotemporal ecologies within UCYN-A.
Collapse
Affiliation(s)
- Brent M. Robicheau
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Integrated Microbiome Resource, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
40
|
Rigas D, Grivas N, Nelli A, Gouva E, Skoufos I, Kormas K, Tzora A, Lagkouvardos I. Persistent Dysbiosis, Parasite Rise and Growth Impairment in Aquacultured European Seabass after Oxytetracycline Treatment. Microorganisms 2023; 11:2302. [PMID: 37764146 PMCID: PMC10534334 DOI: 10.3390/microorganisms11092302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The use of antibiotics in open-water aquaculture is often unavoidable when faced with pathogens with high mortality rates. In addition, seasonal pathogen surges have become more common and more intense over the years. Apart from the apparent cost of antibiotic treatment, it has been observed that, in aquaculture practice, the surviving fish often display measurable growth impairment. To understand the role of gut microbiota on the observed growth impairment, in this study, we follow the incidence of Photobacterium damselae subsp. piscicida in a seabass commercial open-water aquaculture setting in Galaxidi (Greece). Fish around 10 months of age were fed with feed containing oxytetracycline (120 mg/kg/day) for twelve days, followed by a twelve-day withdrawal period, and another eighteen days of treatment. The fish were sampled 19 days before the start of the first treatment and one month after the end of the second treatment cycle. Sequencing of the 16S rRNA gene was used to measure changes in the gut microbiome. Overall, the gut microbiota community, even a month after treatment, was highly dysbiotic and characterized by very low alpha diversity. High abundances of alkalophilic bacteria in the post-antibiotic-treated fish indicated a rise in pH that was coupled with a significant increase in gut parasites. This study's results indicate that oxytetracycline (OTC) treatment causes persistent dysbiosis even one month after withdrawal and provides a more suitable environment for an increase in parasites. These findings highlight the need for interventions to restore a healthy and protective gut microbiome.
Collapse
Affiliation(s)
- Dimitris Rigas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Nikos Grivas
- Galaxidi Marine Farm S.A., 33200 Galaxidi, Greece; (D.R.); (N.G.)
| | - Aikaterini Nelli
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Evangelia Gouva
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece;
- Agricultural Development Institute, University Research and Innovation Centre “IASON”, Argonafton & Filellinon, 38221 Volos, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (A.N.); (E.G.); (I.S.); (A.T.)
- Department of Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
41
|
Schols R, Vanoverberghe I, Huyse T, Decaestecker E. Host-bacteriome transplants of the schistosome snail host Biomphalaria glabrata reflect species-specific associations. FEMS Microbiol Ecol 2023; 99:fiad101. [PMID: 37632232 PMCID: PMC10481996 DOI: 10.1093/femsec/fiad101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial symbionts can affect host phenotypes and, thereby, ecosystem functioning. The microbiome is increasingly being recognized as an important player in the tripartite interaction between parasitic flatworms, snail intermediate hosts, and the snail microbiome. In order to better understand these interactions, transplant experiments are needed, which rely on the development of a reliable and reproducible protocol to obtain microbiome-disturbed snails. Here, we report on the first successful snail bacteriome transplants, which indicate that Biomphalaria glabrata can accrue novel bacterial assemblies depending on the available environmental bacteria obtained from donor snails. Moreover, the phylogenetic relatedness of the donor host significantly affected recipients' survival probability, corroborating the phylosymbiosis pattern in freshwater snails. The transplant technique described here, complemented by field-based studies, could facilitate future research endeavors to investigate the role of specific bacteria or bacterial communities in parasitic flatworm resistance of B. glabrata and might ultimately pave the way for microbiome-mediated control of snail-borne diseases.
Collapse
Affiliation(s)
- Ruben Schols
- Department of Biology, Royal Museum for Central Africa, 3080 Tervuren, Belgium
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| | - Isabel Vanoverberghe
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, 3080 Tervuren, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, KU Leuven, Campus Kortrijk, 8500 Kortrijk, Belgium
| |
Collapse
|
42
|
Karpiński P, Żebrowska-Różańska P, Kujawa D, Łaczmański Ł, Samochowiec J, Jabłoński M, Plichta P, Piotrowski P, Bielawski T, Misiak B. Gut microbiota alterations in schizophrenia might be related to stress exposure: Findings from the machine learning analysis. Psychoneuroendocrinology 2023; 155:106335. [PMID: 37467542 DOI: 10.1016/j.psyneuen.2023.106335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/04/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Specific mechanisms underlying gut microbiota alterations in schizophrenia remain unknown. We aimed to compare gut microbiota between patients with schizophrenia and controls, taking into consideration exposure stress across lifespan, dietary habits, metabolic parameters and clinical manifestation. A total of 142 participants, including 89 patients with schizophrenia and 52 controls, were recruited. Gut microbiota were analyzed using the 16 S rRNA sequencing. Additionally, biochemical parameters related to glucose homeostasis, lipid profile and inflammation were assessed. Increased abundance of Lactobacillus and Limosilactobacillus as well as decreased abundance of Faecalibacterium and Paraprevotella were found in patients with schizophrenia. The machine learning analysis demonstrated that between-group differences in gut microbiota were associated with psychosocial stress (a history of childhood trauma, greater cumulative exposure to stress across lifespan and higher level of perceived stress), poor nutrition (lower consumption of vegetables and fish products), lipid profile alterations (lower levels of high-density lipoproteins) and cognitive impairment (worse performance of attention). Our findings indicate that gut microbiota alterations in patients with schizophrenia, including increased abundance of lactic acid bacteria (Lactobacillus and Limosilactobacillus) and decreased abundance of bacteria producing short-chain fatty acids (Faecalibacterium and Paraprevotella) might be associated with exposure to stress, poor dietary habits, lipid profile alterations and cognitive impairment.
Collapse
Affiliation(s)
- Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland; Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paulina Żebrowska-Różańska
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Samochowiec
- Department and Clinic of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Marcin Jabłoński
- Department and Clinic of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Plichta
- Department and Clinic of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Bielawski
- Department and Clinic of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
43
|
Banzragch M, Sanli K, Stensvold CR, Kurt O, Ari S. Metabarcoding of colonic cleansing fluid reveals unique bacterial members of mucosal microbiota associated with Inflammatory Bowel Disease. Scand J Gastroenterol 2023; 58:1253-1263. [PMID: 37337895 DOI: 10.1080/00365521.2023.2223708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) is a group of chronic idiopathic inflammatory diseases of the gastrointestinal (GI) tract associated with the dysbiosis of gut microbiota. Metabarcoding-based profiling of the gut microbiota of IBD patients is generally based on the stool samples collected from individual patients which rarely represent the mucosa-associated microbiota. The ideal sampling strategy for routine monitoring of the mucosal component of IBD has yet to be determined. METHODS We hereby compare the microbiota composition of the colonic cleansing fluid (CCF) collected during colonoscopy with stool samples from IBD patients. The relationship between IBD and gut microbiota was revealed through the application of the 16S rRNA amplicon sequencing-based metabarcoding approach. CCF and stool samples were collected from IBD patients with Crohn's disease and ulcerative colitis. RESULTS The present study shows significant differences in the microbial composition of CCF samples, presumably indicating changes in the mucosal microbiota of IBD patients as compared to the control group. Short-chain fatty acid-producing bacteria under the family Lachnospiraceae, the actinobacterial genus Bifidobacterium, the proteobacterial Sutterella and Raoultella are found to contribute to the microbial dysbiosis of the mucosal flora in IBD patients. CONCLUSIONS CCF microbiota has the capacity to distinguish IBD patients from healthy controls and, thus, may constitute an alternative analysis strategy for the early diagnosis and disease progression in IBD biomarker research.
Collapse
Affiliation(s)
| | - Kemal Sanli
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Life Sciences, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institute, Copenhagen, Denmark
| | - Ozgur Kurt
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sule Ari
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
44
|
Skoufos I, Nelli A, Venardou B, Lagkouvardos I, Giannenas I, Magklaras G, Zacharis C, Jin L, Wang J, Gouva E, Skoufos S, Bonos E, Tzora A. Use of an Innovative Silage of Agro-Industrial Waste By-Products in Pig Nutrition: A Pilot Study of Its Effects on the Pig Gastrointestinal Microbiota. Microorganisms 2023; 11:1723. [PMID: 37512895 PMCID: PMC10384456 DOI: 10.3390/microorganisms11071723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to evaluate whether dietary supplementation with an innovative silage (IS) created using 60% olive mill waste, 20% grape pomace, and 20% deproteinised feta cheese waste solids can modulate the composition of the intestinal microbiota in weaned (Exp. 1) and finishing (Exp. 2) pigs. In Exp. 1 (40 day supplementation), forty-five crossbred weaned pigs were randomly assigned to the 0% (Control), 5%, or 10% IS groups (15 replicates/experimental diet). In Exp. 2 (60 day supplementation), eighteen finishing pigs from Exp. 1 were fed the control diet for 8 weeks before being re-assigned to their original experimental groups and fed with the 0% (Control), 5%, or 10% IS diets (six replicates/experimental diet). Performance parameters were recorded. Ileal and caecal digesta and mucosa were collected at the end of each experiment for microbiota analysis using 16S rRNA gene sequencing (five pigs/experimental diet for Exp. 1 and six pigs/experimental diet for Exp. 2). No significant effects on pig growth parameters were observed in both experiments. In Exp. 1, 5% IS supplementation increased the relative abundance of the Prevotellaceae family, Coprococcus genus, and Alloprevotella rava (OTU_48) and reduced the relative abundance of Lactobacillus genus in the caecum compared to the control and/or 10% IS diets (p < 0.05). In Exp. 2, 5% IS supplementation led to compositionally more diverse and different ileal and caecal microbiota compared to the control group (p < 0.05; p = 0.066 for β-diversity in ileum). Supplementation with the 5% IS increased the relative abundance of Clostridium celatum/disporicum/saudiense (OTU_3) in the ileum and caecum and Bifidobacterium pseudolongum (OTU_17) in the caecum and reduced the relative abundance of Streptococcus gallolyticus/alactolyticus (OTU_2) in the caecum compared to the control diet (p < 0.05). Similar effects on C. celatum/disporicum/saudiense and S. gallolyticus/alactolyticus were observed with the 10% IS diet in the caecum (p < 0.05). IS has the potential to beneficially alter the composition of the gastrointestinal microbiota in pigs.
Collapse
Affiliation(s)
- Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Aikaterini Nelli
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Brigkita Venardou
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Magklaras
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Christos Zacharis
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Lizhi Jin
- Meritech (Asia Pacific) Biotech Pte Ltd., Singapore 079903, Singapore
| | - Jin Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Evangelia Gouva
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Stylianos Skoufos
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Health, Hygiene and Food Quality, Department of Agriculture, School of Agriculture, University of Ioannina, Kostakioi Artas, 47100 Arta, Greece
| |
Collapse
|
45
|
Średnicka P, Roszko MŁ, Popowski D, Kowalczyk M, Wójcicki M, Emanowicz P, Szczepańska M, Kotyrba D, Juszczuk-Kubiak E. Effect of in vitro cultivation on human gut microbiota composition using 16S rDNA amplicon sequencing and metabolomics approach. Sci Rep 2023; 13:3026. [PMID: 36810418 PMCID: PMC9945476 DOI: 10.1038/s41598-023-29637-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Gut microbiota (GM) plays many key functions and helps maintain the host's health. Consequently, the development of GM cultivation under in vitro stimulating physiological conditions has gained extreme interest in different fields. In this study, we evaluated the impact of four culture media: Gut Microbiota Medium (GMM), Schaedler Broth (SM), Fermentation Medium (FM), and Carbohydrate Free Basal Medium (CFBM) on preserving the biodiversity and metabolic activity of human GM in batch in vitro cultures using PMA treatment coupled with 16S rDNA sequencing (PMA-seq) and LC-HR-MS/MS untargeted metabolomics supplemented with GC-MS SCFA profiling. Before the experiments, we determined the possibility of using the pooled faecal samples (MIX) from healthy donors (n = 15) as inoculum to reduce the number of variables and ensure the reproducibility of in vitro cultivation tests. Results showed the suitability of pooling faecal samples for in vitro cultivation study. Non-cultured MIX inoculum was characterized by higher α-diversity (Shannon effective count, and Effective microbial richness) compared to inocula from individual donors. After 24 h of cultivation, a significant effect of culture media composition on GM taxonomic and metabolomic profiles was observed. The SM and GMM had the highest α-diversity (Shannon effective count). The highest number of core ASVs (125) shared with non-cultured MIX inoculum and total SCFAs production was observed in the SM. These results might contribute to the development of standardized protocols for human GM in vitro cultivation by preventing methodological bias in the data.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Banacha 1 Street, 02-097, Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Magdalena Szczepańska
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Danuta Kotyrba
- Department of Research, Scientific Information and Marketing Coordination, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, 02-532, Warsaw, Poland.
| |
Collapse
|
46
|
Early life gut microbiota profiles linked to synbiotic formula effects: a randomized clinical trial in European infants. Am J Clin Nutr 2023; 117:326-339. [PMID: 36811568 DOI: 10.1016/j.ajcnut.2022.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbial colonization of the gastrointestinal tract after birth is an essential event that influences infant health with life-long consequences. Therefore, it is important to investigate strategies to positively modulate colonization in early life. OBJECTIVES This randomized, controlled intervention study included 540 infants to investigate the effects of a synbiotic intervention formula (IF) containing Limosilactobacillus fermentum CECT5716 and galacto-oligosaccharides on the fecal microbiome. METHODS The fecal microbiota from infants was analyzed by 16S rRNA amplicon sequencing at 4, 12, and 24 months of age. Metabolites (e.g., short-chain fatty acids) and other milieu parameters (e.g., pH, humidity, and IgA) were also measured in stool samples. RESULTS Microbiota profiles changed with age, with major differences in diversity and composition. Significant effects of the synbiotic IF compared with control formula (CF) were visible at month 4, including higher occurrence of Bifidobacterium spp. and Lactobacillaceae and lower occurrence of Blautia spp., as well as Ruminoccocus gnavus and relatives. This was accompanied by lower fecal pH and concentrations of butyrate. After de novo clustering at 4 months of age, overall phylogenetic profiles of the infants receiving IF were closer to reference profiles of those fed with human milk than infants fed CF. The changes owing to IF were associated with fecal microbiota states characterized by lower occurrence of Bacteroides compared with higher levels of Firmicutes (valid name Bacillota), Proteobacteria (valid name Pseudomonadota), and Bifidobacterium at 4 months of age. These microbiota states were linked to higher prevalence of infants born by Cesarean section. CONCLUSIONS The synbiotic intervention influenced fecal microbiota and milieu parameters at an early age depending on the overall microbiota profiles of the infants, sharing a few similarities with breastfed infants. This trial was registered at clinicaltrials.gov as NCT02221687.
Collapse
|
47
|
Adade EE, Stevick RJ, Pérez-Pascual D, Ghigo JM, Valm AM. Gnotobiotic zebrafish microbiota display inter-individual variability affecting host physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526612. [PMID: 36778358 PMCID: PMC9915576 DOI: 10.1101/2023.02.01.526612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gnotobiotic animal models reconventionalized under controlled laboratory conditions with multi-species bacterial communities are commonly used to study host-microbiota interactions under presumably more reproducible conditions than conventional animals. The usefulness of these models is however limited by inter-animal variability in bacterial colonization and our general lack of understanding of the inter-individual fluctuation and spatio-temporal dynamics of microbiota assemblies at the micron to millimeter scale. Here, we show underreported variability in gnotobiotic models by analyzing differences in gut colonization efficiency, bacterial composition, and host intestinal mucus production between conventional and gnotobiotic zebrafish larvae re-conventionalized with a mix of 9 bacteria isolated from conventional microbiota. Despite similar bacterial community composition, we observed high variability in the spatial distribution of bacteria along the intestinal tract in the reconventionalized model. We also observed that, whereas bacteria abundance and intestinal mucus per fish were not correlated, reconventionalized fish had lower intestinal mucus compared to conventional animals, indicating that the stimulation of mucus production depends on the microbiota composition. Our findings, therefore, suggest that variable colonization phenotypes affect host physiology and impact the reproducibility of experimental outcomes in studies that use gnotobiotic animals. This work provides insights into the heterogeneity of gnotobiotic models and the need to accurately assess re-conventionalization for reproducibility in host-microbiota studies.
Collapse
Affiliation(s)
- Emmanuel E. Adade
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
- The RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
| | - Rebecca J. Stevick
- Institut Pasteur, Université de Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris F-75015, France
| | - David Pérez-Pascual
- Institut Pasteur, Université de Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris F-75015, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris F-75015, France
| | - Alex M. Valm
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
- The RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
| |
Collapse
|
48
|
Meyer AR, Valentin M, Liulevicius L, McDonald TR, Nelsen MP, Pengra J, Smith RJ, Stanton D. Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen. AMERICAN JOURNAL OF BOTANY 2023; 110:e16114. [PMID: 36462151 DOI: 10.1002/ajb2.16114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
PREMISE The long-term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered "extremophiles," lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole-ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed. METHODS We examined the causes of this warming-induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants. RESULTS Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts ("bleaching") and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water-holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within-thallus photobiont communities shifted in composition toward greater diversity. CONCLUSIONS The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.
Collapse
Affiliation(s)
- Abigail R Meyer
- Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Maria Valentin
- Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Laima Liulevicius
- Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Tami R McDonald
- Biology Department, Saint Catherine University, Saint Paul, Minnesota, 55105, USA
| | - Matthew P Nelsen
- The Field Museum, Negaunee Integrative Research Center and Grainger Bioinformatics Center, Chicago, Illinois, 60605, USA
| | - Jean Pengra
- Macalester College, Saint Paul, Minnesota, 55105, USA
| | - Robert J Smith
- Air Resource Management Program, USDA Forest Service Headquarters, Biological and Physical Resources, Washington, DC, 20250, USA
| | - Daniel Stanton
- Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| |
Collapse
|
49
|
Nelli A, Venardou B, Skoufos I, Voidarou C(C, Lagkouvardos I, Tzora A. An Insight into Goat Cheese: The Tales of Artisanal and Industrial Gidotyri Microbiota. Microorganisms 2023; 11:123. [PMID: 36677415 PMCID: PMC9863150 DOI: 10.3390/microorganisms11010123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes’ authenticity and cheese quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
50
|
Murillo T, Schneider D, Heistermann M, Daniel R, Fichtel C. Assessing the drivers of gut microbiome composition in wild redfronted lemurs via longitudinal metacommunity analysis. Sci Rep 2022; 12:21462. [PMID: 36509795 PMCID: PMC9744850 DOI: 10.1038/s41598-022-25733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome influences host's immunity, development, and metabolism and participates in the gut-brain axis, thus impacting the health of the host. It is a dynamic community varying between individuals and within individuals at different time points. Hence, determining the factors causing this variability may elucidate their impact on host's health. However, understanding the drivers of variation has proven difficult particularly as multiple interactions occur simultaneously in the gut microbiome. We investigated the factors shaping the gut microbiome by applying the metacommunity concept where the gut microbiome is considered as a microbial community shaped by the interactions within the community, with the host and microbial communities outside the host, this through a longitudinal study in a wild primate. Focal behavioral data were collected for 1 year in four groups of redfronted lemurs to determine individual social and feeding behaviors. In addition, regular fecal samples were collected to assess bacteria, protozoa, and helminths through marker gene analysis and to measure fecal glucocorticoid metabolite (fGCM) concentrations to investigate the impact of physiological stress on the gut microbiome. Higher consumption of leaves and elevated fGCM concentrations correlated with higher alpha diversity, which also differed among groups. The major drivers of variation in beta diversity were group membership, precipitation and fGCM concentrations. We found positive and negative associations between bacterial genera and almost all studied factors. Correlations between bacterial indicator networks and social networks indicate transmission of bacteria between interacting individuals. We detected that processes occurring inside the gut environment are shaping the gut microbiome. Host associated factors such as, HPA axis, dietary changes, and fluctuations in water availability had a greater impact than interactions within the microbial community. The interplay with microbial communities outside the host also shape the gut microbiome through the exchange of bacteria through social relationships between individuals and the acquisition of microorganisms from environmental water sources.
Collapse
Affiliation(s)
- Tatiana Murillo
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany.
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | | | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany
| |
Collapse
|