1
|
Ozuygur Ermis SS, Ercan S, Malmhäll C, Adesoba H, Salisu M, Bossios A, Rådinger M, Kankaanranta H, Nwaru BI. Sex steroid hormones and asthma in males: a state-of-the-art review. Expert Rev Respir Med 2025:1-22. [PMID: 40322957 DOI: 10.1080/17476348.2025.2501276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION The incidence, prevalence, and disease prognosis of asthma differ between males and females throughout the life course. However, the underlying mechanisms are not known. Sex hormones might have a potential role in asthma pathogenesis. But most studies on the role of sex hormones in asthma have focused on females, with a paucity of evidence in males. AREAS COVERED This paper provides a comprehensive review of the state-of-the-art on sex steroids in asthma, focusing on males, covering mechanistic, clinical, and epidemiological studies. Literature search was conducted in PubMed in September 2024. EXPERT OPINION Androgen signaling has a protective role in asthma by reducing airway smooth muscle (ASM) contractility and decreasing airway inflammation. In contrast, estrogens appear to promote type 2 (T2) airway inflammation, while the effect on ASM remains controversial. To date, suggested mechanisms have not fully clarify the underlying pathways through which sex steroids modulate ASM and T2 inflammation in asthma. The balance between androgen and estrogen signaling might also play a role. While epidemiological studies support a protective role for androgens, the evidence on onset of puberty and asthma is inconclusive. Larger longitudinal population samples and stratification based on age and obesity are needed to resolve these questions.
Collapse
Affiliation(s)
- Saliha Selin Ozuygur Ermis
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Selin Ercan
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helen Adesoba
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Salisu
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Apostolos Bossios
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe Asthma Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hannu Kankaanranta
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Tampere University Respiratory Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Gomez RA, Hou J, Gersuk VH, Chow IT, Farrington ML, Robinson D, Kwok WW. Ara h 2 105-124-Specific TH2A Cells Drive Peanut Allergy in DRB1*15:01 Individuals: A Detailed Epitope Analysis. Clin Exp Allergy 2025. [PMID: 40308027 DOI: 10.1111/cea.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND The IgE-mediated CD4 T-cell response to peanut (Arachis hypogaea) is heterogeneous, yet TH2 cells remain central drivers of pathology. This study aimed to dissect this complexity at the epitope level by focusing on the HLA-DRB1*15:01-DRB5*01:01 haplotype. Specifically, we examined how distinct epitope-specific T-cell subsets shape the immunological landscape of peanut allergy in peanut-allergic (PA) versus non-peanut-allergic (NPA) individuals. METHODS Using in vitro and ex vivo MHC-II tetramer approaches, the phenotype, frequency, function, and transcriptome of CD4 T-cell responses to novel Ara h epitopes were assessed. Bulk RNA sequencing further characterised these T cells, allowing identification of subsets associated with TH2 polarisation in PA individuals. RESULTS Eleven HLA-DRB1*15:01 and DRB5*01:01-restricted epitopes were identified in Ara h 1, 2, 3, 6, 7, and 8 using tetramer-guided epitope mapping on cell lines, followed by ex vivo validation in peripheral blood. T-cell phenotype was epitope-dependent, with a distinct TH2A population specific to the epitope Ara h 2105-124 (Ara h 2 p14) detected only in PA donors. These TH2A cells were phenotypically and transcriptionally distinct, marked by high CRTH2/CD161, low CD27, IL-5 production, and gene enrichment in cytokine signalling and lipid metabolism. Other epitope-specific T-cell subsets displayed more heterogeneous gene profiles related to immune activation, differentiation, and antigen presentation, underscoring the complexity of peanut-specific responses even within a single HLA haplotype. CONCLUSION These findings reveal that the strong TH2 bias in DRB1*15:01-DRB5*01:01 PA individuals arises from a distinct subset of Ara h 2 p14-specific TH2A cells characterised by a specialised metabolic and cytokine signalling program. At the same time, the functional diversity observed in non-Ara h 2 p14 subsets highlights the potential for leveraging these populations in tolerance-promoting therapies. Understanding the epitope-level heterogeneity of peanut-specific T-cells provides insight into the epitope-specific mechanisms driving peanut allergy and has potential implications for therapeutic interventions.
Collapse
Affiliation(s)
- Rebecca A Gomez
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Jue Hou
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - I-Ting Chow
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
- Immune Medicine Division, Adaptive Biotechnologies, Seattle, Washington, USA
| | - Mary L Farrington
- Allergy and Immunology, Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - David Robinson
- Allergy and Immunology, Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Sun T, Bi X, Yang N, Zhang X, Chu J, Li L, Liu H, Tang R, Lin R. Glucocorticoid receptor inhibits Th2 immune responses by down-regulating Pparg and Gata3 in schistosomiasis. Front Immunol 2025; 16:1518586. [PMID: 40196108 PMCID: PMC11973390 DOI: 10.3389/fimmu.2025.1518586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction The Th2 immune response plays a pivotal role in the pathogenesis of schistosomiasis, contributing to the formation of hepatic granulomas and fibrosis. While the glucocorticoid receptor (GR) is a ubiquitously expressed nuclear receptor that mediates anti-inflammatory effects, its impact on Th2 responses in schistosomiasis remains underexplored. Thus, this study aimed to investigate the potential impact of GR activation on the hepatic Th2 immune response in schistosomiasis using the synthetic glucocorticoid dexamethasone. Method In vivo, Schistosoma japonicum-infected mice were treated with dexamethasone, while in vitro studies were conducted on Th2 cells. Additionally, RNA sequencing and single-cell sequencing were integrated to identify key transcription factors influenced by GR activation during Th2 cell differentiation, with gene expression levels validated both in vivo and in vitro. Results In vivo, GR activation markedly reduced the size of Schistosoma egg granulomas and substantially repressed the transcription of key Th2-related cytokines, such as IL-4, IL-5, and IL-13. In vitro, GR activation inhibited the transcription of IL-4, IL-5, and IL-13, as well as the secretion of IL-4 in Th2 cells. An integrated analysis of RNA sequencing and single-cell sequencing revealed that GR activation downregulated the expression of two major transcription factors, Gata3 and Pparg, which were elevated in infected mouse livers and Th2 cells but decreased following dexamethasone treatment. Conclusion GR activation may suppress the Th2 immune response triggered by egg antigens by downregulating the expression of the key transcription factors Gata3 and Pparg. While these findings provide insights into a potential complementary therapeutic strategy, further research is necessary to assess the feasibility and safety of targeting GR activation for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xue Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Rui Tang
- Department of Tropical Infectious Diseases, Naval Medical University, Shanghai, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Lu L, Feng J, Zhang S, He H, Hu Z, Yang L, Liu Y, Zhao B, Wang T. Vitiligo associated with type 2 immune inhibitors: FAERS analysis and literature review. J Dermatol 2025. [PMID: 40087891 DOI: 10.1111/1346-8138.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
With the widespread use of type 2 immune response inhibitors (IRIs), there is growing concern about their association with the occurrence of vitiligo. This study aimed to comprehensively search for cases of vitiligo associated with type 2 IRIs in the US Food and Drug Administration Adverse Event Reporting System (FAERS). We retrieved the clinical characteristics of cases from January 2004 to September 2024 from the FAERS database. Disproportionality and Bayesian analyses were conducted to detect signals for vitiligo associated with type 2 IRIs. A total of 86 cases of vitiligo were identified in association with these inhibitors. The mean onset time was 326 days. Vitiligo associated with dupilumab was the most common (81.4%), with the highest reporting odds ratio (2.67, 95% confidence interval 2.11-3.4), proportional reporting ratio (2.67, χ2 = 70.59), information component (1.38, [IC025 = 1.09), and empirical Bayes geometric mean (2.61, EBGM05 = 2.14). The link between vitiligo and type 2 IRIs underscores the need for continued pharmacovigilance to better understand these drugs and the incidence of related conditions.
Collapse
Affiliation(s)
- Lu Lu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Jindi Feng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Huimin He
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Zhonghui Hu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Bin Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- Department of Pharmacy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
5
|
Meng Z, Zhang C, Liu S, Li W, Wang Y, Zhang Q, Peng B, Ye W, Jiang Y, Song Y, Guo M, Chang X, Shao L. Exploring genetic loci linked to COVID-19 severity and immune response through multi-trait GWAS analyses. Front Genet 2025; 16:1502839. [PMID: 40034745 PMCID: PMC11873281 DOI: 10.3389/fgene.2025.1502839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction COVID-19 severity has been linked to immune factors, with excessive immune responses like cytokine storms contributing to mortality. However, the genetic basis of these immune responses is not well understood. This study aimed to explore the genetic connection between COVID-19 severity and blood cell traits, given their close relationship with immunity. Materials and methods GWAS summary statistics for COVID-19 and blood cell counts were analyzed using Linkage Disequilibrium Score Regression (LDSC) to estimate genetic correlations and heritabilities. For traits with significant correlations, a Multi-Trait GWAS Analysis (MTAG) was performed to identify pleiotropic loci shared between COVID-19 and blood cell counts. Results Our MTAG analysis identified four pleiotropic loci associated with COVID-19 severity, five loci linked to hospitalized cases, and one locus related to general patients. Among these, two novel loci were identified in the high-risk population, with rs55779981 located near RAVER1 and rs73009538 near CARM1. In hospitalized patients, two previously unrecognized loci were detected, namely, rs115545251 near GFI1 and rs3181049 near RAVER1, while in general patients, rs11065822 near CUX2 emerged as a newly identified locus. We also identified potential target genes, including those involved in inflammation signaling (CARM1), endothelial dysfunction (INTS12), and antiviral immune response (RAVER1), which may require further investigation. Conclusion Our study offers insights into the genetic overlap between COVID-19 and immune factors, suggesting potential directions for future research and clinical exploration.
Collapse
Affiliation(s)
- Ziang Meng
- Department of Infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chumeng Zhang
- The Second School of Clinical Medicine of Shandong First Medical University, Tai’an, Shandong, China
| | - Shuai Liu
- Agricultural Products Quality and Safety Center of Jinan, Jinan, Shandong, China
| | - Wen Li
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Yue Wang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Qingyi Zhang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Bichen Peng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Weiyi Ye
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Yue Jiang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Song
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Miao Guo
- School of Life Sciences, Shandong First Medical University, Shandong, China
| | - Xiao Chang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University, Jinan, Shandong, China
| | - Lei Shao
- Department of Infectious Disease, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Zhang Q, Wang Q, Zheng J, Zhang J, Zhang G, Ying F, Liu D, Wen J, Li Q, Zhao G. Single-cell RNA sequencing of the spleen reveals differences in Salmonella typhimurium infection mechanisms between different chicken breeds. Poult Sci 2025; 104:104669. [PMID: 39793244 PMCID: PMC11954797 DOI: 10.1016/j.psj.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
Bacterial infections remain an important cause of morbidity in poultry production. The molecular characteristics and dynamic changes in immune cell populations after bacterial infection have yet to be fully understood. Beijing-You chicken and Cobb broiler, two broiler breeds with different disease resistance, were infected with Salmonella typhimurium, and inflammation models were constructed. Compared to Beijing-You, Cobb showed higher survival rates, lower liver load, and milder spleen damage after Salmonella infection. We characterized chicken spleen CD45+ immune cells by single-cell RNA sequencing and identified 9 distinct cell types among 54,487 cells. In Beijing-You, mono-macrophages expressed higher levels of pro-inflammatory factors, including IL1B, IL6, and M-CSF, after bacterial infection. In Cobb, Tregs exhibited intense inflammatory inhibition and highly expressed CTLA4, LAG3 and other immunosuppressive regulators. In addition, we found complex macrophage phenotypes during bacterial infection, with a tendency in macrophages from pro-inflammatory phenotypes (Mac-IL1B) to anti-inflammatory phenotypes (Mac-C1QC/Mac-MARCO). This study represents the first single-cell transcriptomic analysis of chicken spleen and compares the immune responses of Beijing-You and Cobb after bacterial infection. These findings provide insight into the mechanism of inflammation regulation in different broiler breeds.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qiao Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jumei Zheng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jin Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Fan Ying
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Hayashi M, Ohmori S, Kawai Y, Moriguchi T. Endothelial GATA3 is involved in coagulofibrinolytic homeostasis during endotoxin sepsis. Exp Anim 2025; 74:104-113. [PMID: 39231733 PMCID: PMC11742476 DOI: 10.1538/expanim.24-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Sepsis-induced acute lung injury represents a significant threat to human health and is frequently associated with pulmonary thrombosis due to dysregulation of the coagulofibrinolytic system. Plasmin, the major protease that degrades fibrin aggregates, is activated predominantly by tissue-plasminogen activator (tPA), whereas tPA is negatively regulated by plasminogen activator inhibitor (PAI-1). Under septic conditions, the imbalance between coagulation and fibrinolysis results in excessive microthrombosis. Pulmonary capillary endothelial cells serve as a primary source of tPA and PAI-1. The molecular pathways regulating their expression levels depend on the differential activity of transcription factors. In this study, we elucidated the role of the zinc-finger transcription factor GATA3 in response to sepsis-induced pulmonary embolism. Endothelial cell-specific GATA3-deficient mice (G3-ECKO) presented increased susceptibility to bacterial endotoxin-induced pulmonary embolism, which was associated with increased PAI-1 expression levels and decreased tPA expression levels in the lungs. Septic lung extracts from G3-ECKO mice consistently presented decreased plasmin activity, which likely underlies the increased coagulation. These results demonstrate that GATA3 plays a protective role against bacterial endotoxin-induced pulmonary vascular embolism. Our findings will contribute to understanding the molecular mechanisms involving GATA3 in preventing pulmonary embolism.
Collapse
Affiliation(s)
- Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Shin'ya Ohmori
- Laboratory of Allergy and Immunology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan
| | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| |
Collapse
|
8
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
9
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
10
|
Srivastava S, Rasool M. Genetics, epigenetics and autoimmunity constitute a Bermuda triangle for the pathogenesis of rheumatoid arthritis. Life Sci 2024; 357:123075. [PMID: 39341491 DOI: 10.1016/j.lfs.2024.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Rheumatoid arthritis (RA), a multigene disorder with a heritability rate of 60 %, is characterized by persistent pain, synovial hyperplasia, and cartilage and bone destruction, ultimately causing irreversible joint deformity. The etiology and pathogenesis of rheumatoid arthritis (RA) are primarily influenced by specific genetic variants, particularly HLA alleles such as HLA-DRB1*01 and DRB1*04. However, other HLA alleles such as HLA-DRB1*10 and DPB*1 have also been found to contribute to increased susceptibility to RA. However, non-HLA genes also confer a comparatively high risk of RA disease manifestation. The most relevant single nucleotide polymorphisms (SNPs) associated with non-HLA genes are PTPN22, TRAF1, CXCL-12, TBX-5, STAT4, FCGR, PADI4, and MTHFR. In conjunction with genetic susceptibility, epigenetic alterations orchestrate paramount involvement in regulating RA pathogenesis. Increasing evidence implicates DNA methylation and histone protein modifications, including acetylation and methylation, as the primary epigenetic mechanisms that drive the pathogenesis and clinical progression of the disease. In addition to genetic and epigenetic changes, autoimmune inflammation also determines the pathological progression of the synovial membrane in joints with RA. Glycosylation changes, such as sialylation and fucosylation, in immune cells have been shown to be relevant to disease progression. Genetic heterogeneity, epigenetic factors, and changes in glycosylation do not fully explain the features of RA. Therefore, investigating the interplay between genetics, epigenetics, and autoimmunity is crucial. This review highlights the significance and interaction of these elements in RA pathophysiology, suggesting their diagnostic potential and opening new avenues for novel therapeutic approaches.
Collapse
Affiliation(s)
- Susmita Srivastava
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
11
|
Yee YC, Nakamura A, Okada Y, Mori T, Katayama Y. Establishment of an in vitro evaluation method for immunomodulatory functions of yeast strains. ANAL SCI 2024; 40:2043-2051. [PMID: 39097563 DOI: 10.1007/s44211-024-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Saccharomyces cerevisiae, a widely studied yeast known for its industrial applications, is increasingly recognized for its potential in immunomodulation. This study aimed to systematically analyze and compare the immune-modulating properties of various S. cerevisiae strains under controlled experimental conditions. Three essential signals crucial for immune response activation were evaluated to elucidate the immunological responses elicited by these strains, i.e., dendritic cells (DC) cytokine secretion profiles, maturation status, and T cell polarization. Analysis of DC cytokine secretion profiles and maturation status revealed that all tested yeast strains induced DC activation, characterized by significant IL-6 secretion and modest IL-10 induction, as well as upregulation of MHC II molecules. Additionally, strain-specific effects were observed, particularly, strain AJM109 and Y1383 uniquely enhanced CD86 and PD-L1 expression, respectively, suggesting differential impacts on DC co-stimulatory signaling. Furthermore, strain Y1383 showed a unique capacity to support Treg-mediated immune suppression, demonstrating its potential in immune tolerance induction. These findings underscore the complexity of S. cerevisiae-based immune modulation and emphasize the importance of standardized evaluation methods to distinguish their specific immunological effects.
Collapse
Affiliation(s)
- Ying Chuin Yee
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akihiro Nakamura
- Research and Development Laboratory, Sanwa Shurui Co., Ltd., 2231-1 Yamamoto, Usa, Oita, 879-0495, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Centre for Advanced Medicine Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, Taoyüan, 32023, Taiwan, ROC.
| |
Collapse
|
12
|
Yirui L, Tao L, Ruowu L, Jiao Z, Jing Z, Xiaodong X, Yan Y, Bachert C, Jintao D, Luo B. Malvidin From Malva sylvestris L. Ameliorates Allergic Responses in Ovalbumin-Induced Allergic Rhinitis Mouse Model via the STAT6/GATA3 Pathway. Am J Rhinol Allergy 2024; 38:403-412. [PMID: 39135425 DOI: 10.1177/19458924241272944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Malva sylvestris L. (commonly known as mallow) has been widely used in traditional Tibetan formulations to treat allergic rhinitis (AR), and malvidin is a key anti-inflammation constituent of this plant. OBJECTIVE The present study aimed to evaluate the potential therapeutic effect and mechanism of malvidin in an AR mouse model. METHODS Malvidin's efficacy was evaluated in an AR mouse model induced by ovalbumin (OVA) sensitization and challenge. The factors, such as nasal symptoms, serum OVA-specific immunoglobulin E (IgE) levels, histological changes in the nasal mucosa, and expressions of Th1, Th2, Th17, and Tregs and their cytokines, were assessed. Western blotting was used to analyze the effect of malvidin on signal transducer and activator of transcription 6 (STAT6) and GATA3 expression levels. RESULTS Malvidin reduced the allergic symptoms and serum levels of OVA-specific IgE in the AR model. Histological analysis indicated that malvidin alleviates nasal mucosal edema, eosinophil infiltration, and goblet cell proliferation. In addition, it altered the expression of Th1/Th2/Th17-related cytokines, enhanced the Treg population, and reduced Th2-mediated immunity by suppressing the phosphorylation of STAT6 and expression of the GATA3 protein. CONCLUSIONS Malvidin significantly improved allergic symptoms in an OVA-induced AR mouse model by modulating Th1/Th2 immune responses and suppressing the STAT6/GATA3 pathway, indicating its potential as a naturally sourced agent for AR management.
Collapse
Affiliation(s)
- Luo Yirui
- The Department of Otolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
- The Department of Medicine, Tibet University, Lhasa, Tibet, China
| | - Li Tao
- The Department of Otolaryngology, Peking University Third Hospital, Peking University, Beijing, China
| | - Liu Ruowu
- The Department of Otolaryngology - Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Jiao
- Department of Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Jing
- The Department of Otolaryngology - Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Xiaodong
- The Department of Otolaryngology, People's Hospital of Shannan City in Tibet Autonomous Region, Shannan, Tibet, China
| | - Yan Yan
- The Department of Otolaryngology, Peking University Third Hospital, Peking University, Beijing, China
| | - Claus Bachert
- The Upper Airways Research Laboratory, Department of Otolaryngology, Ghent University, Ghent, Belgium
| | - Du Jintao
- The Department of Otolaryngology - Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ba Luo
- The Department of Otolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
- The Department of Medicine, Tibet University, Lhasa, Tibet, China
| |
Collapse
|
13
|
Chou SP, Chuang YJ, Chen BS. Systems Biology Methods via Genome-Wide RNA Sequences to Investigate Pathogenic Mechanisms for Identifying Biomarkers and Constructing a DNN-Based Drug-Target Interaction Model to Predict Potential Molecular Drugs for Treating Atopic Dermatitis. Int J Mol Sci 2024; 25:10691. [PMID: 39409019 PMCID: PMC11477013 DOI: 10.3390/ijms251910691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to construct genome-wide genetic and epigenetic networks (GWGENs) of atopic dermatitis (AD) and healthy controls through systems biology methods based on genome-wide microarray data. Subsequently, the core GWGENs of AD and healthy controls were extracted from their real GWGENs by the principal network projection (PNP) method for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Then, we identified the abnormal signaling pathways by comparing the core signaling pathways of AD and healthy controls to investigate the pathogenesis of AD. Then, IL-1β, GATA3, Akt, and NF-κB were selected as biomarkers for their important roles in the abnormal regulation of downstream genes, leading to cellular dysfunctions in AD patients. Next, a deep neural network (DNN)-based drug-target interaction (DTI) model was pre-trained on DTI databases to predict molecular drugs that interact with these biomarkers. Finally, we screened the candidate molecular drugs based on drug toxicity, sensitivity, and regulatory ability as drug design specifications to select potential molecular drugs for these biomarkers to treat AD, including metformin, allantoin, and U-0126, which have shown potential for therapeutic treatment by regulating abnormal immune responses and restoring the pathogenic signaling pathways of AD.
Collapse
Affiliation(s)
- Sheng-Ping Chou
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| |
Collapse
|
14
|
Biswas B, Chattopadhyay S, Hazra S, Goswami R. Calcitriol Impairs the Secretion of IL-4 and IL-13 in Th2 Cells via Modulating the VDR-Gata3-Gfi1 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:831-842. [PMID: 39082935 DOI: 10.4049/jimmunol.2400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024]
Abstract
Calcitriol, the bioactive form of vitamin D, exerts its biological functions by binding to its cognate receptor, the vitamin D receptor (VDR). The indicators of the severity of allergies and asthma have been linked to low vitamin D levels. However, the role of calcitriol in regulating IL-4 and IL-13, two cytokines pivotal to allergic inflammation, remained unclear. Our study observed diminished IL-4 and IL-13 secretion in murine and human Th2 cells treated with calcitriol. In murine Th2 cells, Gata3 expression was attenuated by calcitriol. However, the expression of the transcriptional repressor Gfi1, too, was attenuated in the presence of calcitriol. Ectopic expression of either Gfi1 or VDR impaired the secretion of IL-13 in Th2 cells. In murine Th2 cells, VDR interacted with Gata3 but not Gfi1. Gfi1 significantly impaired Il13 promoter activation, which calcitriol failed to restore. Conversely, calcitriol augmented Gfi1 recruitment to the Il13 promoter. Ecr, a conserved region between these two genes, which enhanced the transactivation of Il4 and Il13 promoters, is essential for calcitriol-mediated suppression of both the genes. Calcitriol augmented the recruitment of VDR to the Il13 promoter and Ecr regions. Gata3 recruitment was significantly impaired at the Il13 and Ecr loci in the presence of calcitriol but increased at the Il4 promoter. Furthermore, the recruitment of the histone deacetylase HDAC1 was universally increased at the promoters of Il4, Il13, and Ecr when calcitriol was present. Together, our data clearly elucidate that calcitriol modulates VDR, Gata3, and Gfi1 to suppress IL-4 and IL-13 production in Th2 cells.
Collapse
Affiliation(s)
- Biswajit Biswas
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Shagnik Chattopadhyay
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Sayantee Hazra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ritobrata Goswami
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
15
|
Miranda S, Vermeesen R, Janssen A, Rehnberg E, Etlioglu E, Baatout S, Tabury K, Baselet B. Effects of simulated space conditions on CD4+ T cells: a multi modal analysis. Front Immunol 2024; 15:1443936. [PMID: 39286254 PMCID: PMC11402665 DOI: 10.3389/fimmu.2024.1443936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction The immune system is an intricate network of cellular components that safeguards against pathogens and aberrant cells, with CD4+ T cells playing a central role in this process. Human space travel presents unique health challenges, such as heavy ion ionizing radiation, microgravity, and psychological stress, which can collectively impede immune function. The aim of this research was to examine the consequences of simulated space stressors on CD4+ T cell activation, cytokine production, and gene expression. Methods CD4+ T cells were obtained from healthy individuals and subjected to Fe ion particle radiation, Photon irradiation, simulated microgravity, and hydrocortisone, either individually or in different combinations. Cytokine levels for Th1 and Th2 cells were determined using multiplex Luminex assays, and RNA sequencing was used to investigate gene expression patterns and identify essential genes and pathways impacted by these stressors. Results Simulated microgravity exposure resulted in an apparent Th1 to Th2 shift, evidenced on the level of cytokine secretion as well as altered gene expression. RNA sequencing analysis showed that several gene pathways were altered, particularly in response to Fe ions irradiation and simulated microgravity exposures. Individually, each space stressor caused differential gene expression, while the combination of stressors revealed complex interactions. Discussion The research findings underscore the substantial influence of the space exposome on immune function, particularly in the regulation of T cell responses. Future work should focus expanding the limited knowledge in this field. Comprehending these modifications will be essential for devising effective strategies to safeguard the health of astronauts during extended space missions. Conclusion The effects of simulated space stressors on CD4+ T cell function are substantial, implying that space travel poses a potential threat to immune health. Additional research is necessary to investigate the intricate relationship between space stressors and to develop effective countermeasures to mitigate these consequences.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Nuclear Medical Applications, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium
| |
Collapse
|
16
|
Yan S, Zhao Y, Yan J, Guan Y, Lyu M, Xu G, Yang X, Bai Y, Yao S. Low Expression of Lipoic Acid Synthase Aggravates Silica-Induced Pulmonary Fibrosis by Inhibiting the Differentiation of Tregs in Mice. Antioxid Redox Signal 2024; 41:216-232. [PMID: 38062726 DOI: 10.1089/ars.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aims: In addition to reducing the respiratory function, crystalline silica (SiO2) disturbs the immune response by affecting immune cells during the progression of silicosis. Regulatory T cell (Treg) differentiation may play a key role in the abnormal polarization of T helper cell (Th)1 and Th2 cells in the development of silicosis-induced fibrosis. Alpha-lipoic acid (ALA) has immunomodulatory effects by promoting Tregs differentiation. Thus, ALA may have a therapeutic potential for treating autoimmune disorders in patients with silicosis. However, little is known regarding whether ALA regulates the immune system during silicosis development. Results: We found that the expression levels of collagen increased, and the antioxidant capacity was lower in the Lias-/-+SiO2 group than in the Lias+/++SiO2 group. The proportion of Tregs decreased in the peripheral blood and spleen tissue in mice exposed to SiO2. The proportion of Tregs in the Lias-/-+SiO2 group was significantly lower than that in the Lias+/++SiO2 group. Supplementary exogenous ALA attenuates the accumulation of inflammatory cells and extracellular matrix in lung tissues. ALA promotes the immunological balance between Th17 and Treg responses during the development of silicosis-induced fibrosis. Innovation and Conclusion: Our findings confirmed that low expression of lipoic acid synthase aggravates SiO2-induced silicosis, and that supplementary exogenous ALA has therapeutic potential by improving Tregs in silicosis fibrosis.
Collapse
Affiliation(s)
- Sensen Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Jingyi Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yabo Guan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Mengdi Lyu
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xuesi Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yichun Bai
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
17
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Guo LP, Yan M, Niu RB, Liu L, Yang JR, Chen RL, Duan BS, Li CC, Li JX. Role of Th2, Th17 and Treg Cells and relevant cytokines in pathogenesis of allergic rhinitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:40. [PMID: 39033277 PMCID: PMC11264892 DOI: 10.1186/s13223-024-00905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To explore the role of different cells and molecules in the pathogenesis of allergic rhinitis (AR) with positive Artemisia allergen by detecting their expression levels. METHODS From January 2021 to December 2022,200 AR patients diagnosed in the Otolaryngology Clinic of Ordos Central Hospital were selected as the AR group, and 50 healthy people who underwent physical examination in the hospital during the same period were randomly selected as the healthy control (HC) group. The levels of GATA-3mRNA, RORγtmRNA and FoxP3mRNA in peripheral blood mononuclear cells were detected by real-time fluorescence quantitative PCR (qRT-PCR). The proportions of Th2, Th17 and Treg cells were detected by flow cytometry. The concentrations of IL-4, IL-5, IL-17 and IL-10 in serum were detected by enzyme-linked immunosorbent assay. The differences of transcription gene level, immune cell ratio and cytokine concentration between the two groups were analyzed. RESULTS There was no difference in age and gender between the two groups. The levels of GATA-3mRNA and RORγtmRNA transcription genes in peripheral blood mononuclear cells, the percentage of Th2, Th17 and Treg immune cells, the levels of eosinophils and basophils in peripheral blood, the concentrations of IL-4, IL-5, IL-17, IL-10 cytokines and IgE in serum of AR patients were significantly higher than those in HC group (P < 0.05). IL-4 and IL-17 were positively correlated with total IgE level. CONCLUSION The secretion of immune cells and cytokines in peripheral blood of AR patients is abnormal. Th2, Th17, Treg specific transcription factors and related cells and cytokines are involved in the occurrence and development of allergic rhinitis.
Collapse
Affiliation(s)
- Li-Ping Guo
- Department of Dermatology, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Min Yan
- Department of Clinical Laboratory, Ordos Central Hospital, No. 23, Ejinholo West Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China
- Ordos Clinical Medical College of Inner Mongolia Medical University, Ordos, 017000, Inner Mongolia, China
| | - Rui-Bing Niu
- Department of Clinical Laboratory, Ordos Central Hospital, No. 23, Ejinholo West Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China.
- Ordos Clinical Medical College of Inner Mongolia Medical University, Ordos, 017000, Inner Mongolia, China.
| | - Lei Liu
- Department of Otolaryngology, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Jing-Ru Yang
- Department of Otolaryngology, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Rui-Lian Chen
- Department of Otolaryngology, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Bao-Sheng Duan
- Department of Clinical Laboratory, Ordos Central Hospital, No. 23, Ejinholo West Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China
- Ordos Clinical Medical College of Inner Mongolia Medical University, Ordos, 017000, Inner Mongolia, China
| | - Cui-Cui Li
- Department of Clinical Laboratory, Ordos Central Hospital, No. 23, Ejinholo West Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China
| | - Jian-Xiong Li
- Department of Clinical Laboratory, Ordos Central Hospital, No. 23, Ejinholo West Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China
| |
Collapse
|
19
|
Amanya SB, Oyewole-Said D, Ernste KJ, Bisht N, Murthy A, Vazquez-Perez J, Konduri V, Decker WK. The mARS complex: a critical mediator of immune regulation and homeostasis. Front Immunol 2024; 15:1423510. [PMID: 38975338 PMCID: PMC11224427 DOI: 10.3389/fimmu.2024.1423510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.
Collapse
Affiliation(s)
- Sharon Bright Amanya
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Arnav Murthy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Natural Sciences, Rice University, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
20
|
Jacenik D. Tumor microenvironment and immune response: A gateway to novel therapies in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167203. [PMID: 38688415 DOI: 10.1016/j.bbadis.2024.167203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Damian Jacenik
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, Lodz, Poland.
| |
Collapse
|
21
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
22
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
23
|
Calmon MS, Lemos FFB, Silva Luz M, Rocha Pinheiro SL, de Oliveira Silva LG, Correa Santos GL, Rocha GR, Freire de Melo F. Immune pathway through endometriosis to ovarian cancer. World J Clin Oncol 2024; 15:496-522. [PMID: 38689629 PMCID: PMC11056862 DOI: 10.5306/wjco.v15.i4.496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease, defined by the presence of functional endometrial tissue outside of the uterine cavity. This disease is one of the main gynecological diseases, affecting around 10%-15% women and girls of reproductive age, being a common gynecologic disorder. Although endometriosis is a benign disease, it shares several characteristics with invasive cancer. Studies support that it has been linked with an increased chance of developing endometrial ovarian cancer, representing an earlier stage of neoplastic processes. This is particularly true for women with clear cell carcinoma, low-grade serous carcinoma and endometrioid. However, the carcinogenic pathways between both pathologies remain poorly understood. Current studies suggest a connection between endometriosis and endometriosis-associated ovarian cancers (EAOCs) via pathways associated with oxidative stress, inflammation, and hyperestrogenism. This article aims to review current data on the molecular events linked to the development of EAOCs from endometriosis, specifically focusing on the complex relationship between the immune response to endometriosis and cancer, including the molecular mechanisms and their ramifications. Examining recent developments in immunotherapy and their potential to boost the effectiveness of future treatments.
Collapse
Affiliation(s)
- Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
24
|
Sriraman N, Sarkar A, Naskar S, Mahajan N, Mukherjee O, Pradeep R, George M, Sarkar K. Immunomodulatory effects of Diospyros peregrina fruit preparation (DFP) in non-small cell lung cancer (NSCLC) by utilizing dendritic cell-mediated antigen presentation and T helper (TH) cell differentiation. Med Oncol 2024; 41:107. [PMID: 38580762 DOI: 10.1007/s12032-024-02331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 04/07/2024]
Abstract
Diospyros peregrina is a dioecious plant which is native to India. It belongs to the family of Ebenaceae and is extensively used to treat various ailments, such as leucorrhoea and other uterine-related problems. Though few studies have been on D. peregrina for their anti-tumour response, little is known. Therefore, this intrigued us to understand its immunomodulator capabilities on various types of cancer extensively. Our primary focus is on NSCLC (Non-Small Cell Lung Cancer), which is ranked as the second largest form of cancer in the world, and the treatments demand non-invasive agents to target NSCLC effectively. In an objective to generate an efficient Lung Cancer Associated Antigen (LCA) specific anti-tumour immune response, LCA was presented using dendritic cells (DCs) in the presence of D. peregrina fruit preparation (DFP). Moreover, we also investigated DFP's role in the differentiation of T-helper (TH) cells. Therefore, this study aimed at better LCA presentation mediated by DFP by activating the LCA pulsed DCs and T helper cell differentiation for better immune response. DCs were pulsed with LCA for tumour antigen presentation in vitro, with and without DFP. Differentially pulsed DCs were irradiated to co-culture with autologous and allogeneic lymphocytes. Extracellular supernatants were collected for the estimation of cytokine levels by ELISA. LDH release assay was performed to test Cytotoxic T lymphocytes (CTLs) mediated lung tumour cell cytotoxicity. Thus, DFP may be a potential vaccine to generate anti-LCA immune responses to restrict NSCLC.
Collapse
Affiliation(s)
- Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Oishi Mukherjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - R Pradeep
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
25
|
Abushahba MFN, Dadelahi AS, Ponzilacqua-Silva B, Moley CR, Skyberg JA. Contrasting roles for IgM and B-cell MHCII expression in Brucella abortus S19 vaccine-mediated efficacy against B. melitensis infection. mSphere 2024; 9:e0075023. [PMID: 38349167 PMCID: PMC10964430 DOI: 10.1128/msphere.00750-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Brucellosis, caused by the bacterium Brucella, poses a significant global threat to both animal and human health. Although commercial live Brucella vaccines including S19, RB51, and Rev1 are available for animals, their unsuitability for human use and incomplete efficacy in animals necessitate the further study of vaccine-mediated immunity to Brucella. In this study, we employed in vivo B-cell depletion, as well as immunodeficient and transgenic mouse models, to comprehensively investigate the roles of B cells, antigen uptake and presentation, antibody production, and class switching in the context of S19-mediated immunity against brucellosis. We found that antibody production, and in particular secretory IgM plays a protective role in S19-mediated immunity against virulent Brucella melitensis early after the challenge in a manner associated with complement activation. While T follicular helper cell deficiency dampened IgG production and vaccine efficacy at later stages of the challenge, this effect appeared to be independent of antibody production and rather was associated with altered T-cell function. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy at later timepoints after the challenge. In addition, B-cell depletion after vaccination, but before the challenge, enhanced S19-mediated protection against brucellosis, suggesting a deleterious role of B cells during the challenge phase. Collectively, our findings indicate antibody production is protective, while B-cell MHCII expression is deleterious, to live vaccine-mediated immunity against brucellosis. IMPORTANCE Brucella is a neglected zoonotic pathogen with a worldwide distribution. Our study delves into B-cell effector functions in live vaccine-mediated immunity against brucellosis. Notably, we found antibody production, particularly secretory IgM, confers protection against virulent Brucella melitensis in vaccinated mice, which was associated with complement activation. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy. In addition, B-cell depletion after vaccination, but before the B. melitensis challenge, enhanced protection against infection, suggesting a detrimental B-cell role during the challenge phase. Interestingly, deficiency of T follicular helper cells, which are crucial for aiding germinal center B cells, dampened vaccine efficacy at later stages of challenge independent of antibody production. This study underscores contrasting and phase-dependent roles of B-cell effector functions in vaccine-mediated immunity against Brucella.
Collapse
Affiliation(s)
- Mostafa F. N. Abushahba
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Alexis S. Dadelahi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Bárbara Ponzilacqua-Silva
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Charles R. Moley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| | - Jerod A. Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
26
|
Shook MS, Lu X, Chen X, Parameswaran S, Edsall L, Trimarchi MP, Ernst K, Granitto M, Forney C, Donmez OA, Diouf AA, VonHandorf A, Rothenberg ME, Weirauch MT, Kottyan LC. Systematic identification of genotype-dependent enhancer variants in eosinophilic esophagitis. Am J Hum Genet 2024; 111:280-294. [PMID: 38183988 PMCID: PMC10870143 DOI: 10.1016/j.ajhg.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024] Open
Abstract
Eosinophilic esophagitis (EoE) is a rare atopic disorder associated with esophageal dysfunction, including difficulty swallowing, food impaction, and inflammation, that develops in a small subset of people with food allergies. Genome-wide association studies (GWASs) have identified 9 independent EoE risk loci reaching genome-wide significance (p < 5 × 10-8) and 27 additional loci of suggestive significance (5 × 10-8 < p < 1 × 10-5). In the current study, we perform linkage disequilibrium (LD) expansion of these loci to nominate a set of 531 variants that are potentially causal. To systematically interrogate the gene regulatory activity of these variants, we designed a massively parallel reporter assay (MPRA) containing the alleles of each variant within their genomic sequence context cloned into a GFP reporter library. Analysis of reporter gene expression in TE-7, HaCaT, and Jurkat cells revealed cell-type-specific gene regulation. We identify 32 allelic enhancer variants, representing 6 genome-wide significant EoE loci and 7 suggestive EoE loci, that regulate reporter gene expression in a genotype-dependent manner in at least one cellular context. By annotating these variants with expression quantitative trait loci (eQTL) and chromatin looping data in related tissues and cell types, we identify putative target genes affected by genetic variation in individuals with EoE. Transcription factor enrichment analyses reveal possible roles for cell-type-specific regulators, including GATA3. Our approach reduces the large set of EoE-associated variants to a set of 32 with allelic regulatory activity, providing functional insights into the effects of genetic variation in this disease.
Collapse
Affiliation(s)
- Molly S Shook
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lee Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael P Trimarchi
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kevin Ernst
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marissa Granitto
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Arame A Diouf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc E Rothenberg
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
27
|
Barmada A, Handfield LF, Godoy-Tena G, de la Calle-Fabregat C, Ciudad L, Arutyunyan A, Andrés-León E, Hoo R, Porter T, Oszlanczi A, Richardson L, Calero-Nieto FJ, Wilson NK, Marchese D, Sancho-Serra C, Carrillo J, Presas-Rodríguez S, Ramo-Tello C, Ruiz-Sanmartin A, Ferrer R, Ruiz-Rodriguez JC, Martínez-Gallo M, Munera-Campos M, Carrascosa JM, Göttgens B, Heyn H, Prigmore E, Casafont-Solé I, Solanich X, Sánchez-Cerrillo I, González-Álvaro I, Raimondo MG, Ramming A, Martin J, Martínez-Cáceres E, Ballestar E, Vento-Tormo R, Rodríguez-Ubreva J. Single-cell multi-omics analysis of COVID-19 patients with pre-existing autoimmune diseases shows aberrant immune responses to infection. Eur J Immunol 2024; 54:e2350633. [PMID: 37799110 DOI: 10.1002/eji.202350633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
In COVID-19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre-existing autoimmune conditions can therefore be at increased risk of severe COVID-19 and/or associated sequelae, yet SARS-CoV-2 infection in this group has been little studied. Here, we performed single-cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS-CoV-2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell-cell communication that substantially shape the immune response under SARS-CoV-2 infection. While enrichment of HLA-DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type-I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS-CoV-2 in patients with pre-existing autoimmunity, highlighting important considerations for disease treatment and follow-up.
Collapse
Affiliation(s)
- Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | | | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Anna Arutyunyan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Eduardo Andrés-León
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Regina Hoo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Tarryn Porter
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Agnes Oszlanczi
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Fernando J Calero-Nieto
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K Wilson
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Domenica Marchese
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carmen Sancho-Serra
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Silvia Presas-Rodríguez
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Cristina Ramo-Tello
- MS Unit, Department of Neurology, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartin
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Department of Intensive Care, Hospital Universitari Vall d'Hebron, Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Martínez-Gallo
- Division of Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mónica Munera-Campos
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Jose Manuel Carrascosa
- Dermatology Service, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Berthold Göttgens
- Department of Haematology and Wellcome & MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Ivette Casafont-Solé
- Department of Rheumatology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Infectious Diseases, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Xavier Solanich
- Department of Internal Medicine, Hospital Universitari de Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Maria Gabriella Raimondo
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Eva Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
28
|
Shang Q, Yu X, Sun Q, Li H, Sun C, Liu L. Polysaccharides regulate Th1/Th2 balance: A new strategy for tumor immunotherapy. Biomed Pharmacother 2024; 170:115976. [PMID: 38043444 DOI: 10.1016/j.biopha.2023.115976] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
T helper (Th) cells have received extensive attention owing to their indispensable roles in anti-tumor immune responses. Th1 and Th2 cells are two key subsets of Th cells that exist in relative equilibrium through the secretion of cytokines that suppress their respective immune response. When the type of cytokine in the tumor microenvironment is altered, this equilibrium may be disrupted, leading to a shift from Th1 to Th2 immune response. Th1/Th2 imbalance is one of the decisive factors in the development of malignant tumors. Therefore, focusing on the balance of Th1/Th2 anti-tumor immune responses may enable future breakthroughs in cancer immunotherapy. Polysaccharides can regulate the imbalance between Th1 and Th2 cells and their characteristic cytokine profiles, thereby improving the tumor immune microenvironment. To our knowledge, this study is the most comprehensive assessment of the regulation of the tumor Th1/Th2 balance by polysaccharides. Herein, we systematically summarized the intrinsic molecular mechanisms of polysaccharides in the regulation of Th1 and Th2 cells to provide a new perspective and potential target drugs for improved anti-tumor immunity and delayed tumor progression.
Collapse
Affiliation(s)
- Qihang Shang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
29
|
Narsale A, Almanza F, Tran T, Lam B, Seo D, Vu A, Long SA, Cooney L, Serti E, Davies JD. Th2 cell clonal expansion at diagnosis in human type 1 diabetes. Clin Immunol 2023; 257:109829. [PMID: 37907122 DOI: 10.1016/j.clim.2023.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Soon after diagnosis with type 1 diabetes (T1D), many patients experience a period of partial remission. A longer partial remission is associated with a better response to treatment, but the mechanism is not known. The frequency of CD4+CD25+CD127hi (127-hi) cells, a cell subset with an anti-inflammatory Th2 bias, correlates positively with length of partial remission. The purpose of this study was to further characterize the nature of the Th2 bias in 127-hi cells. Single cell RNA sequencing paired with TCR sequencing of sorted 127-hi memory cells identifies clonally expanded Th2 clusters in 127-hi cells from T1D, but not from healthy donors. The Th2 clusters express GATA3, GATA3-AS1, PTGDR2, IL17RB, IL4R and IL9R. The existence of 127-hi Th2 cell clonal expansion in T1D suggests that disease factors may induce clonal expansion of 127-hi Th2 cells that prolong partial remission and delay disease progression.
Collapse
Affiliation(s)
- Aditi Narsale
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Francisco Almanza
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - Theo Tran
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Breanna Lam
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - David Seo
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA
| | - Alisa Vu
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | - S Alice Long
- Benaroya Research Institute, 1201 9(th) Ave, Seattle, WA 98101, USA.
| | | | | | - Joanna D Davies
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, San Diego, CA 92121, USA.
| |
Collapse
|
30
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
31
|
Gao J, Li Y, Guan X, Mohammed Z, Gomez G, Hui Y, Zhao D, Oskeritzian CA, Huang H. IL-33 priming and antigenic stimulation synergistically promote the transcription of proinflammatory cytokine and chemokine genes in human skin mast cells. BMC Genomics 2023; 24:592. [PMID: 37798647 PMCID: PMC10557204 DOI: 10.1186/s12864-023-09702-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Antigenic stimulation through cross-linking the IgE receptor and epithelial cell-derived cytokine IL-33 are potent stimuli of mast cell (MC) activation. Moreover, IL-33 primes a variety of cell types, including MCs to respond more vigorously to external stimuli. However, target genes induced by the combined IL-33 priming and antigenic stimulation have not been investigated in human skin mast cells (HSMCs) in a genome-wide manner. Furthermore, epigenetic changes induced by the combined IL-33 priming and antigenic stimulation have not been evaluated. RESULTS We found that IL-33 priming of HSMCs enhanced their capacity to promote transcriptional synergy of the IL1B and CXCL8 genes by 16- and 3-fold, respectively, in response to combined IL-33 and antigen stimulation compared to without IL-33 priming. We identified the target genes in IL-33-primed HSMCs in response to the combined IL-33 and antigenic stimulation using RNA sequencing (RNA-seq). We found that the majority of genes synergistically upregulated in the IL-33-primed HSMCs in response to the combined IL-33 and antigenic stimulation were predominantly proinflammatory cytokine and chemokine genes. Moreover, the combined IL-33 priming and antigenic stimulation increase chromatin accessibility in the synergy target genes but not synergistically. Transcription factor binding motif analysis revealed more binding sites for NF-κB, AP-1, GABPA, and RAP1 in the induced or increased chromatin accessible regions of the synergy target genes. CONCLUSIONS Our study demonstrates that IL-33 priming greatly potentiates MCs' ability to transcribe proinflammatory cytokine and chemokine genes in response to antigenic stimulation, shining light on how epithelial cell-derived cytokine IL-33 can cause exacerbation of skin MC-mediated allergic inflammation.
Collapse
Affiliation(s)
- Junfeng Gao
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Xiaoyu Guan
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Zahraa Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
- College of Medicine, AI-Mustansiriyah University, Baghdad, Iraq
| | - Gregorio Gomez
- Department of Biomedical Sciences, University of Houston College of Medicine, Houston, TX, USA
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Dianzheng Zhao
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
32
|
Suhrkamp I, Scheffold A, Heine G. T-cell subsets in allergy and tolerance induction. Eur J Immunol 2023; 53:e2249983. [PMID: 37489248 DOI: 10.1002/eji.202249983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Antigen-specific T lymphocytes are the central regulators of tolerance versus immune pathology against otherwise innocuous antigens and key targets of antigen-specific immune therapy. Recent advances in the understanding of T cells in tolerance and allergy resulted from improved technologies to directly characterize allergen-specific T cells by multiparameter flow cytometry or single-cell sequencing. This unravelled phenotypically and functionally distinct populations, such as Type 2a T helper cells (Th2a), follicular Th cells (Tfh), regulatory T cells (Treg), Type 1 regulatory T cells (Tr1), and follicular T regulatory cells. Here we will discuss the role of the different Th-cell subsets in the healthy state, during sensitization and development of allergy, and in tolerance induction by allergen immunotherapy (AIT). To date, the mechanisms of AIT as the only causal treatment of allergy are not completely understood. The analyses of allergen-specific T cells directly ex vivo during AIT support the concept of specific-Th2(a) cell deletion rather than an expansion of allergen-specific Tr1 or Treg cells as underlying mechanism.
Collapse
Affiliation(s)
- Ina Suhrkamp
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guido Heine
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
33
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
34
|
Zhao B, Sun L, Yuan Q, Hao Z, An F, Zhang W, Zhu X, Wang B. BAP31 Knockout in Macrophages Affects CD4 +T Cell Activation through Upregulation of MHC Class II Molecule. Int J Mol Sci 2023; 24:13476. [PMID: 37686286 PMCID: PMC10487781 DOI: 10.3390/ijms241713476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The differentiation of CD4+T cells is a crucial component of the immune response. The spleen and thymus, as immune organs, are closely associated with the differentiation and development of T cells. Previous studies have suggested that BAP31 may play a role in modulating T cell activation, but the specific impact of BAP31 on T cells through macrophages remains uncertain. In this study, we present evidence that BAP31 macrophage conditional knockout (BAP31-MCKO) mice display an enlarged spleen and thymus, accompanied by activated clustering and disrupted differentiation of CD4+T cells. In vitro co-culture studies were conducted to investigate the impact of BAP31-MCKO on the activation and differentiation of CD4+T cells. The examination of costimulatory molecule expression in BMDMs and RAW 264.7 cells, based on the endoplasmic reticulum function of BAP31, revealed an increase in the expression of antigen presenting molecules, particularly MHC-II molecule, in the absence of BAP31 in BMDMs or RAW264.7 cells. These findings suggest that BAP31 plays a role in the activation and differentiation of CD4+T cells by regulating the MHC class II molecule on macrophages. These results provide further support for the importance of BAP31 in developing interaction between macrophages and CD4+T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (B.Z.); (L.S.); (Q.Y.); (Z.H.); (F.A.); (W.Z.); (X.Z.)
| |
Collapse
|
35
|
Ferreira ACF, Szeto ACH, Clark PA, Crisp A, Kozik P, Jolin HE, McKenzie ANJ. Neuroprotective protein ADNP-dependent histone remodeling complex promotes T helper 2 immune cell differentiation. Immunity 2023; 56:1468-1484.e7. [PMID: 37285842 PMCID: PMC10501989 DOI: 10.1016/j.immuni.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
Type 2 immune responses are critical in tissue homeostasis, anti-helminth immunity, and allergy. T helper 2 (Th2) cells produce interleukin-4 (IL-4), IL-5, and IL-13 from the type 2 gene cluster under regulation by transcription factors (TFs) including GATA3. To better understand transcriptional regulation of Th2 cell differentiation, we performed CRISPR-Cas9 screens targeting 1,131 TFs. We discovered that activity-dependent neuroprotector homeobox protein (ADNP) was indispensable for immune reactions to allergen. Mechanistically, ADNP performed a previously unappreciated role in gene activation, forming a critical bridge in the transition from pioneer TFs to chromatin remodeling by recruiting the helicase CHD4 and ATPase BRG1. Although GATA3 and AP-1 bound the type 2 cytokine locus in the absence of ADNP, they were unable to initiate histone acetylation or DNA accessibility, resulting in highly impaired type 2 cytokine expression. Our results demonstrate an important role for ADNP in promoting immune cell specialization.
Collapse
Affiliation(s)
| | | | - Paula A Clark
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
36
|
Sasson J, Moreau GB, Petri WA. The role of interleukin 13 and the type 2 immune pathway in COVID-19: A review. Ann Allergy Asthma Immunol 2023; 130:727-732. [PMID: 36924937 PMCID: PMC10014128 DOI: 10.1016/j.anai.2023.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Although much has been learned about severe acute respiratory syndrome coronavirus 2 since December 2019, uneven global vaccine distribution, rapid viral spread, and variant evasion of preventative measures have led to its persistence in the population for the foreseeable future. Additional therapies are needed to support patients through their acute, immune-mediated disease process that continues to lead to considerable morbidity and mortality. Data revealing the involvement of type 2 immune pathway in acute coronavirus disease 2019 and post-recovery conditions represent a potential additional area for intervention. Herein, we review the current understanding of interleukin 13 in acute severe acute respiratory syndrome coronavirus 2 infection, the clinical outcomes associated with type 2 immune processes, and the impact of type 2 blockade on acute and long-term coronavirus disease 2019 conditions.
Collapse
Affiliation(s)
- Jennifer Sasson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - G Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Pathology, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
37
|
Sullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, Dong MX, Bianchi M, Andrews G, Sakthikumar S, Nordin J, Roy A, Christmas MJ, Marinescu VD, Wang C, Wallerman O, Xue J, Yao S, Sun Q, Szatkiewicz J, Wen J, Huckins LM, Lawler A, Keough KC, Zheng Z, Zeng J, Wray NR, Li Y, Johnson J, Chen J, Paten B, Reilly SK, Hughes GM, Weng Z, Pollard KS, Pfenning AR, Forsberg-Nilsson K, Karlsson EK, Lindblad-Toh K, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, et alSullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, Dong MX, Bianchi M, Andrews G, Sakthikumar S, Nordin J, Roy A, Christmas MJ, Marinescu VD, Wang C, Wallerman O, Xue J, Yao S, Sun Q, Szatkiewicz J, Wen J, Huckins LM, Lawler A, Keough KC, Zheng Z, Zeng J, Wray NR, Li Y, Johnson J, Chen J, Paten B, Reilly SK, Hughes GM, Weng Z, Pollard KS, Pfenning AR, Forsberg-Nilsson K, Karlsson EK, Lindblad-Toh K, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science 2023; 380:eabn2937. [PMID: 37104612 PMCID: PMC10259825 DOI: 10.1126/science.abn2937] [Show More Authors] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2023] [Indexed: 04/29/2023]
Abstract
Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Jennifer R S Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - BaDoi N Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Xue Li
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Diane P Genereux
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael X Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Jessika Nordin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Voichita D Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Chao Wang
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
| | - James Xue
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Center for System Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Quan Sun
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Laura M Huckins
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyssa Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kathleen C Keough
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yun Li
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Jessica Johnson
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elinor K Karlsson
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75132 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhao L, Wang Y, Jaganathan A, Sun Y, Ma N, Li N, Han X, Sun X, Yi H, Fu S, Han F, Li X, Xiao K, Walsh MJ, Zeng L, Zhou M, Cheung KL. BRD4-PRC2 represses transcription of T-helper 2-specific negative regulators during T-cell differentiation. EMBO J 2023; 42:e111473. [PMID: 36719036 PMCID: PMC10015369 DOI: 10.15252/embj.2022111473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
BRD4 is a well-recognized transcriptional activator, but how it regulates gene transcriptional repression in a cell type-specific manner has remained elusive. In this study, we report that BRD4 works with Polycomb repressive complex 2 (PRC2) to repress transcriptional expression of the T-helper 2 (Th2)-negative regulators Foxp3 and E3-ubiqutin ligase Fbxw7 during lineage-specific differentiation of Th2 cells from mouse primary naïve CD4+ T cells. Brd4 binds to the lysine-acetylated-EED subunit of the PRC2 complex via its second bromodomain (BD2) to facilitate histone H3 lysine 27 trimethylation (H3K27me3) at target gene loci and thereby transcriptional repression. We found that Foxp3 represses transcription of Th2-specific transcription factor Gata3, while Fbxw7 promotes its ubiquitination-directed protein degradation. BRD4-mediated repression of Foxp3 and Fbxw7 in turn promotes BRD4- and Gata3-mediated transcriptional activation of Th2 cytokines including Il4, Il5, and Il13. Chemical inhibition of the BRD4 BD2 induces transcriptional de-repression of Foxp3 and Fbxw7, and thus transcriptional downregulation of Il4, Il5, and Il13, resulting in inhibition of Th2 cell lineage differentiation. Our study presents a previously unappreciated mechanism of BRD4's role in orchestrating a Th2-specific transcriptional program that coordinates gene repression and activation, and safeguards cell lineage differentiation.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Yiqi Wang
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Anbalagan Jaganathan
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Yifei Sun
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ning Ma
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Ning Li
- The Institute of Genetics and Cytology, Northeast Normal UniversityChangchunChina
| | - Xinye Han
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Xueying Sun
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Huanfa Yi
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Shibo Fu
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Fangbin Han
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Xue Li
- Department of ChemistryMichigan State UniversityEast LansingMIUSA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence and Center for Clinical Mass SpectrometryAllegheny Health Network Cancer InstitutePittsburghPAUSA
- Department of Pharmacology and Chemical Biology, School of MedicineUniversity of PittsburghPittsburghPAUSA
| | - Martin J Walsh
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Lei Zeng
- Institute of Epigenetic Medicine, First Hospital of Jilin UniversityChangchunChina
| | - Ming‐Ming Zhou
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ka Lung Cheung
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
39
|
Sullivan PF, Meadows JRS, Gazal S, Phan BN, Li X, Genereux DP, Dong MX, Bianchi M, Andrews G, Sakthikumar S, Nordin J, Roy A, Christmas MJ, Marinescu VD, Wallerman O, Xue JR, Li Y, Yao S, Sun Q, Szatkiewicz J, Wen J, Huckins LM, Lawler AJ, Keough KC, Zheng Z, Zeng J, Wray NR, Johnson J, Chen J, Paten B, Reilly SK, Hughes GM, Weng Z, Pollard KS, Pfenning AR, Forsberg-Nilsson K, Karlsson EK, Lindblad-Toh K. Leveraging Base Pair Mammalian Constraint to Understand Genetic Variation and Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.531987. [PMID: 36945512 PMCID: PMC10028973 DOI: 10.1101/2023.03.10.531987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.
Collapse
Affiliation(s)
- Patrick F. Sullivan
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet; Stockholm, Sweden
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Steven Gazal
- Keck School of Medicine, University of Southern California; Los Angeles, CA 90033, USA
| | - BaDoi N. Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine; Pittsburgh, PA 15261, USA
- Neuroscience Institute, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Xue Li
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School; Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
| | | | - Michael X. Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
| | - Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
| | - Jessika Nordin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University; Uppsala, 751 85, Sweden
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University; Uppsala, 751 85, Sweden
| | - Matthew J. Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Voichita D. Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | - James R. Xue
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
| | - Yun Li
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet; Stockholm, Sweden
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina Medical School; Chapel Hill, NC 27599, USA
| | - Laura M. Huckins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Kathleen C. Keough
- Department of Epidemiology & Biostatistics, University of California San Francisco; San Francisco, CA 94158, USA
- Fauna Bio Incorporated; Emeryville, CA 94608, USA
- Gladstone Institutes; San Francisco, CA 94158, USA
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland; Brisbane, Queensland, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland; Brisbane, Queensland, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland; Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland; Brisbane, Queensland, Australia
| | - Jessica Johnson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | | | - Benedict Paten
- Genomics Institute, University of California Santa Cruz; Santa Cruz, CA 95064, USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine; New Haven, CT 06510, USA
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin; Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
| | - Katherine S. Pollard
- Department of Epidemiology & Biostatistics, University of California San Francisco; San Francisco, CA 94158, USA
- Gladstone Institutes; San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University; Uppsala, 751 85, Sweden
- Biodiscovery Institute, University of Nottingham; Nottingham, UK
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School; Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School; Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
- Broad Institute of MIT and Harvard; Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Kuczynski EA, Carnevalli L, Sinclair C. Longitudinal tracking of T cell lymphomas in mice using flow cytometry. STAR Protoc 2023; 4:102144. [PMID: 36905629 PMCID: PMC10024047 DOI: 10.1016/j.xpro.2023.102144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 03/12/2023] Open
Abstract
T cell hematological cancer has a complex interplay with host immune cells, but the ability to experimentally discriminate transferred cancer cells from host cells by flow cytometry is technically challenging. Here, we present a flow cytometry protocol to evaluate cancer cell and host immune phenotypes following transplant of a T cell lymphoma bearing a congenic marker (CD45.2) into a syngeneic host (CD45.1). We describe steps for isolation of primary immune cells from mice, staining preparation with flow cytometry antibody cocktails, and analysis by flow cytometry. For complete details on the use and execution of this protocol, please refer to Kuczynski et al.1.
Collapse
Affiliation(s)
| | | | - Charles Sinclair
- Flagship Pioneering, Suite 500E, 55 Cambridge Parkway, Cambridge, MA 02142, USA.
| |
Collapse
|
41
|
Uddin MN, Mondal T, Yao Y, Manley K, Lawrence DA. Oxidative stress and neuroimmune proteins in a mouse model of autism. Cell Stress Chaperones 2023; 28:201-217. [PMID: 36795226 PMCID: PMC10050529 DOI: 10.1007/s12192-023-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Oxidative stress including decreased antioxidant enzyme activities, elevated lipid peroxidation, and accumulation of advanced glycation end products in the blood from children with autism spectrum disorders (ASD) has been reported. The mechanisms affecting the development of ASD remain unclear; however, toxic environmental exposures leading to oxidative stress have been proposed to play a significant role. The BTBRT+Itpr3tf/J (BTBR) strain provides a model to investigate the markers of oxidation in a mouse strain exhibiting ASD-like behavioral phenotypes. In the present study, we investigated the level of oxidative stress and its effects on immune cell populations, specifically oxidative stress affecting surface thiols (R-SH), intracellular glutathione (iGSH), and expression of brain biomarkers that may contribute to the development of the ASD-like phenotypes that have been observed and reported in BTBR mice. Lower levels of cell surface R-SH were detected on multiple immune cell subpopulations from blood, spleens, and lymph nodes and for sera R-SH levels of BTBR mice compared to C57BL/6 J (B6) mice. The iGSH levels of immune cell populations were also lower in the BTBR mice. Elevated protein expression of GATA3, TGM2, AhR, EPHX2, TSLP, PTEN, IRE1α, GDF15, and metallothionein in BTBR mice is supportive of an increased level of oxidative stress in BTBR mice and may underpin the pro-inflammatory immune state that has been reported in the BTBR strain. Results of a decreased antioxidant system suggest an important oxidative stress role in the development of the BTBR ASD-like phenotype.
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Tapan Mondal
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Yunyi Yao
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA.
- University at Albany School of Public Health, Rensselaer, NY, USA.
| |
Collapse
|
42
|
Somi Sankaran P. High-fat-diet induced obesity and diabetes mellitus in Th1 and Th2 biased mice strains: A brief overview and hypothesis. Chronic Dis Transl Med 2023; 9:14-19. [PMID: 36926255 PMCID: PMC10011668 DOI: 10.1002/cdt3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Obesity and diabetes mellitus are common metabolic diseases prevalent worldwide. Mice are commonly used to study the pathogenesis of these two conditions. Obesity and diabetes mellitus are induced by administering a high-fat diet in many studies although other diet-induced models are also used. Several factors may influence the outcome of the studies done to study diet-induced obesity in mice. The immune system plays a crucial role in the susceptibility of mice to develop obesity and metabolic disease. In this article, the reasons for differences in susceptibility to develop obesity and diabetes mellitus in mice in response to high-fat-diet feeding and the influence of immunological bias of the mice strain used in studies are evaluated. Mice strains that induce proinflammatory and Th1-type immune responses are found to be susceptible to high-fat-diet-induced obesity. A few studies which directly compared the effect of a high-fat diet on obesity and diabetic phenotype in Th1- and Th2-biased mice strains were briefly analyzed. Based on the observations, it is proposed that the liver and adipose tissue may respond differently to high-fat-diet feeding regimens in Th1- and Th2-biased mice strains. For instance, in Th1-biased mice, adipose tissue fat content was high both in the baseline as well as in response to a high-fat diet whereas in the liver, it was found to be less. It can be inferred that the immune responses to diet-induced models may provide insights into the pathogenesis of obesity and diabetes mellitus.
Collapse
|
43
|
Weiss J, Reneau J, Wilcox RA. PTCL, NOS: An update on classification, risk-stratification, and treatment. Front Oncol 2023; 13:1101441. [PMID: 36845711 PMCID: PMC9947853 DOI: 10.3389/fonc.2023.1101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The peripheral T-cell lymphomas (PTCL) are relatively rare, heterogeneous, and therapeutically challenging. While significant therapeutic gains and improved understanding of disease pathogenesis have been realized for selected PTCL subtypes, the most common PTCL in North America remains "not otherwise specified (NOS)" and is an unmet need. However, improved understanding of the genetic landscape and ontogeny for the PTCL subtypes currently classified as PTCL, NOS have been realized, and have significant therapeutic implications, which will be reviewed here.
Collapse
Affiliation(s)
- Jonathan Weiss
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
45
|
Kandil R, Baldassi D, Böhlen S, Müller JT, Jürgens DC, Bargmann T, Dehmel S, Xie Y, Mehta A, Sewald K, Merkel OM. Targeted GATA3 knockdown in activated T cells via pulmonary siRNA delivery as novel therapy for allergic asthma. J Control Release 2023; 354:305-315. [PMID: 36634709 PMCID: PMC7614985 DOI: 10.1016/j.jconrel.2023.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
GATA3 gene silencing in activated T cells displays a promising option to early-on undermine pathological pathways in the disease formation of allergic asthma. The central transcription factor of T helper 2 (Th2) cell cytokines IL-4, IL-5, and IL-13 plays a major role in immune and inflammatory cascades underlying asthmatic processes in the airways. Pulmonary delivery of small interfering RNAs (siRNA) to induce GATA3 knockdown within disease related T cells of asthmatic lungs via RNA interference (RNAi) presents an auspicious base to realize this strategy, however, still faces some major hurdles. Main obstacles for successful siRNA delivery in general comprise stability and targeting issues, while in addition the transfection of T cells presents a particularly challenging task itself. In previous studies, we have developed and advanced an eligible siRNA delivery system composed of polyethylenimine (PEI) as polycationic carrier, transferrin (Tf) as targeting ligand and melittin (Mel) as endosomolytic agent. Resulting Tf-Mel-PEI polyplexes exhibited ideal characteristics for targeted siRNA delivery to activated T cells and achieved efficient and sequence-specific gene knockdown in vitro. In this work, the therapeutic potential of this carrier system was evaluated in an optimized cellular model displaying the activated status of asthmatic T cells. Moreover, a suitable siRNA sequence combination was found for effective gene silencing of GATA3. To confirm the translatability of our findings, Tf-Mel-PEI polyplexes were additionally tested ex vivo in activated human precision-cut lung slices (PCLS). Here, the formulation showed a safe profile as well as successful delivery to the lung epithelium with 88% GATA3 silencing in lung explants. These findings support the feasibility of Tf-Mel-PEI as siRNA delivery system for targeted gene knockdown in activated T cells as a potential novel therapy for allergic asthma.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Sebastian Böhlen
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Joschka T Müller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - David C Jürgens
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Tonia Bargmann
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Yuran Xie
- Department of Oncology, Wayne State University School of Medicine, 4100 John R St, Detroit, MI 48201, United States
| | - Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Katherina Sewald
- Fraunhofer Institute of Toxicology and Experimental Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany; Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
46
|
Barra G, Gallo C, Carbone D, Ziaco M, Dell'Isola M, Affuso M, Manzo E, Nuzzo G, Fioretto L, D'Ippolito G, De Palma R, Fontana A. The immunoregulatory effect of the TREM2-agonist Sulfavant A in human allogeneic mixed lymphocyte reaction. Front Immunol 2023; 14:1050113. [PMID: 36865548 PMCID: PMC9972971 DOI: 10.3389/fimmu.2023.1050113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Sulfavant A (SULF A) is a synthetic derivative of naturally occurring sulfolipids. The molecule triggers TREM2-related maturation of dendritic cells (DCs) and has shown promising adjuvant activity in a cancer vaccine model. Methods the immunomodulatory activity of SULF A is tested in an allogeneic mixed lymphocyte reaction (MLR) assay based on monocyte-derived dendritic cells and naïve T lymphocytes from human donors. Flow cytometry multiparametric analyses and ELISA assays were performed to characterize the immune populations, T cell proliferation, and to quantify key cytokines. Results Supplementation of 10 µg/mL SULF A to the co-cultures induced DCs to expose the costimulatory molecules ICOSL and OX40L and to reduce release of the pro-inflammatory cytokine IL-12. After 7 days of SULF A treatment, T lymphocytes proliferated more and showed increased IL-4 synthesis along with downregulation of Th1 signals such as IFNγ, T-bet and CXCR3. Consistent with these findings, naïve T cells polarized toward a regulatory phenotype with up-regulation of FOXP3 expression and IL-10 synthesis. Flow cytometry analysis also supported the priming of a CD127-/CD4+/CD25+ subpopulation positive for ICOS, the inhibitory molecule CTLA-4, and the activation marker CD69. Discussion These results prove that SULF A can modulate DC-T cell synapse and stimulate lymphocyte proliferation and activation. In the hyperresponsive and uncontrolled context of the allogeneic MLR, the effect is associated to differentiation of regulatory T cell subsets and dampening of inflammatory signals.
Collapse
Affiliation(s)
- Giusi Barra
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Dalila Carbone
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Marcello Ziaco
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Mario Dell'Isola
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Mario Affuso
- Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Laura Fioretto
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Giuliana D'Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Raffaele De Palma
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Laboratory of Bio-Organic Chemistry and Chemical Biology, Department of Biology, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
47
|
Chen Y, Sun J, Luo Y, Liu J, Wang X, Feng R, Huang J, Du H, Li Q, Tan J, Ren G, Wang X, Li H. Pharmaceutical targeting Th2-mediated immunity enhances immunotherapy response in breast cancer. J Transl Med 2022; 20:615. [PMID: 36564797 PMCID: PMC9783715 DOI: 10.1186/s12967-022-03807-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is a complex disease with a highly immunosuppressive tumor microenvironment, and has limited clinical response to immune checkpoint blockade (ICB) therapy. T-helper 2 (Th2) cells, an important component of the tumor microenvironment (TME), play an essential role in regulation of tumor immunity. However, the deep relationship between Th2-mediated immunity and immune evasion in breast cancer remains enigmatic. METHODS Here, we first used bioinformatics analysis to explore the correlation between Th2 infiltration and immune landscape in breast cancer. Suplatast tosilate (IPD-1151 T, IPD), an inhibitor of Th2 function, was then employed to investigate the biological effects of Th2 blockade on tumor growth and immune microenvironment in immunocompetent murine breast cancer models. The tumor microenvironment was analyzed by flow cytometry, mass cytometry, and immunofluorescence staining. Furthermore, we examined the efficacy of IPD combination with ICB treatment by evaluating TME, tumor growth and mice survival. RESULTS Our bioinformatics analysis suggested that higher infiltration of Th2 cells indicates a tumor immunosuppressive microenvironment in breast cancer. In three murine breast cancer models (EO771, 4T1 and EMT6), IPD significantly inhibited the IL-4 secretion by Th2 cells, promoted Th2 to Th1 switching, remodeled the immune landscape and inhibited tumor growth. Remarkably, CD8+ T cell infiltration and the cytotoxic activity of cytotoxic T lymphocyte (CTL) in tumor tissues were evidently enhanced after IPD treatment. Furthermore, increased effector CD4+ T cells and decreased myeloid-derived suppressor cells and M2-like macrophages were also demonstrated in IPD-treated tumors. Importantly, we found IPD reinforced the therapeutic response of ICB without increasing potential adverse effects. CONCLUSIONS Our findings demonstrate that pharmaceutical inhibition of Th2 cell function improves ICB response via remodeling immune landscape of TME, which illustrates a promising combinatorial immunotherapy.
Collapse
Affiliation(s)
- Yuru Chen
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiazheng Sun
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yachan Luo
- grid.452206.70000 0004 1758 417XDepartment of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiazhou Liu
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaoyu Wang
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Rui Feng
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jing Huang
- grid.452206.70000 0004 1758 417XDepartment of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Huimin Du
- grid.452206.70000 0004 1758 417XDepartment of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Qin Li
- grid.411610.30000 0004 1764 2878Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China
| | - Jinxiang Tan
- grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Guosheng Ren
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaoyi Wang
- grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Hongzhong Li
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
48
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
49
|
Geng X, Wang C, Gao X, Chowdhury P, Weiss J, Villegas JA, Saed B, Perera T, Hu Y, Reneau J, Sverdlov M, Wolfe A, Brown N, Harms P, Bailey NG, Inamdar K, Hristov AC, Tejasvi T, Montes J, Barrionuevo C, Taxa L, Casavilca S, de Pádua Covas Lage JLA, Culler HF, Pereira J, Runge JS, Qin T, Tsoi LC, Hong HS, Zhang L, Lyssiotis CA, Ohe R, Toubai T, Zevallos-Morales A, Murga-Zamalloa C, Wilcox RA. GATA-3 is a proto-oncogene in T-cell lymphoproliferative neoplasms. Blood Cancer J 2022; 12:149. [PMID: 36329027 PMCID: PMC9633835 DOI: 10.1038/s41408-022-00745-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Neoplasms originating from thymic T-cell progenitors and post-thymic mature T-cell subsets account for a minority of lymphoproliferative neoplasms. These T-cell derived neoplasms, while molecularly and genetically heterogeneous, exploit transcription factors and signaling pathways that are critically important in normal T-cell biology, including those implicated in antigen-, costimulatory-, and cytokine-receptor signaling. The transcription factor GATA-3 regulates the growth and proliferation of both immature and mature T cells and has recently been implicated in T-cell neoplasms, including the most common mature T-cell lymphoma observed in much of the Western world. Here we show that GATA-3 is a proto-oncogene across the spectrum of T-cell neoplasms, including those derived from T-cell progenitors and their mature progeny, and further define the transcriptional programs that are GATA-3 dependent, which include therapeutically targetable gene products. The discovery that p300-dependent acetylation regulates GATA-3 mediated transcription by attenuating DNA binding has novel therapeutic implications. As most patients afflicted with GATA-3 driven T-cell neoplasms will succumb to their disease within a few years of diagnosis, these findings suggest opportunities to improve outcomes for these patients.
Collapse
Affiliation(s)
- Xiangrong Geng
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Pinki Chowdhury
- Department of Pediatrics, Dayton Children's Hospital, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Jonathan Weiss
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - José A Villegas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ying Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Paul Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nathanael G Bailey
- Division of Hematopathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Alexandra C Hristov
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Jaime Montes
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - J Luís Alberto de Pádua Covas Lage
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Laboratory of Medical Investigation 31 in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology, Sao Paulo, Brazil
| | - Hebert Fabrício Culler
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Laboratory of Medical Investigation 31 in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology, Sao Paulo, Brazil
| | - Juliana Pereira
- Department of Hematology, Hemotherapy and Cell Therapy, Faculty of Medicine, Sao Paulo University, Non-Hodgkin's Lymphomas and Histiocytic Disorders, Sao Paulo, Brazil
| | - John S Runge
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Rintaro Ohe
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tomomi Toubai
- Department of Internal Medicine III, Division of Hematology and Cell Therapy, Yamagata University of Medicine, Yamagata, Japan
| | | | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Wang YH, Noyer L, Kahlfuss S, Raphael D, Tao AY, Kaufmann U, Zhu J, Mitchell-Flack M, Sidhu I, Zhou F, Vaeth M, Thomas PG, Saunders SP, Stauderman K, Curotto de Lafaille MA, Feske S. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza A virus infection. SCIENCE ADVANCES 2022; 8:eabn6552. [PMID: 36206339 PMCID: PMC9544339 DOI: 10.1126/sciadv.abn6552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony Y. Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jingjie Zhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marisa Mitchell-Flack
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ikjot Sidhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul G. Thomas
- St. Jude’s Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sean P. Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | | | - Maria A. Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|