1
|
Hayashi S, Suzuki H, Takada S, Takemoto T. Wnt3a is an early regulator of the Wolffian duct directionality via the regulation of apicobasal cell polarity. Dev Biol 2025; 522:136-142. [PMID: 40154784 DOI: 10.1016/j.ydbio.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The Wolffian duct is a pair of epithelial ductal structures along the body axis that induces nephron development by interaction with the metanephric mesenchyme. The interaction between the mesenchyme and the ureteric bud derived from the Wolffian duct is mediated by Wnt ligands, the loss of which results in kidney agenesis. Nonetheless, the early contribution of Wnt signaling to Wolffian duct formation remains unclear. We therefore examined these dynamics in knockout and transgenic mouse embryos. The Wnt signal reporter was active in the extending Wolffian duct, and Wnt3a-knockout embryos exhibited a fragmented and misdirectional Wolffian duct. Apicobasal polarity was disrupted under Wnt3a-deficiency. These findings suggest that Wnt3a plays an important role in Wolffian duct development by regulating apicobasal polarity.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan; Faculty of Medicine, Department of Anatomy, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Hitomi Suzuki
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Shinji Takada
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Tatsuya Takemoto
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
2
|
Li M, Yuan J, Hou Q, Zhao Y, Zhong L, Dai X, Chen H, Fu X. Characterization of the Skin Bacteriome and Histology Changes in Diabetic Pigs. INT J LOW EXTR WOUND 2025; 24:426-443. [PMID: 35548944 DOI: 10.1177/15347346221100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic wound is one of the most common complications that are associated with diabetes. The cutaneous microbiome is known to play essential roles in the regulation of barrier function and protecting against potential assault. Thus, it is necessary to gain a better understanding of the relationship between microbial community and skin structures in unwounded diabetic skin to explore possible preventive strategies. To achieve the same, a pig diabetic model was built in the present study. Further,16S rDNA sequencing was used to characterize the skin bacteriome. It was observed that the pigs showed skin bacteriome similar to humans in the non-diabetes group, while it varied in the case of diabetes. Further, the β-diversity analysis showed that the bacterial community was significantly different under the diabetes group. More species differences were identified between the two groups at genus level. The predictive function analysis also showed the involvement of significantly different pathways of microbial gene function in diabetes. In agreement with this, skin histology analysis also showed signs of reduced epidermal thickness and rete ridges in diabetic skin. Less proliferation of keratinocytes and impaired TJ barrier was also detected. This evidence suggested that pigs might serve as the best surrogate for cutaneous microbiome studies. Altogether, the present study reported that the skin bacteriome and histology changed significantly in unwounded diabetic skin, which provided a theoretical basis for the regulation of disordered skin bacteriome. The findings of the study would assist in the improvement of the skin environment and prevention of skin infection and chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
- Laboratory Animal Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, P. R. China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, P. R. China
| | - Hua Chen
- Laboratory Animal Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| |
Collapse
|
3
|
Yuan X, Li C, Gao J, Yang L, Wang B, Li Z. Glycosylation in T2 high and Th17 Asthma: A Narrative Review. J Asthma Allergy 2025; 18:545-558. [PMID: 40248104 PMCID: PMC12003201 DOI: 10.2147/jaa.s509940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Abstract
Glycosylation, a fundamental biochemical process, entails the covalent attachment of sugar molecules to proteins, DNA, or RNA. Beginning with an overview of the pathophysiological features of asthma, this review proceeds to elucidate various facets of glycosylation in asthma pathology, specifically in T2 high asthma and Th17-mediated responses. We examined glycosylation's involvement in regulating airway inflammation, encompassing the modulation of pro-inflammatory cytokine release such as IL-4, IL-5, and IL-13, key components of T2 inflammation, as well as its significance in modulating immune cell functionality, notably T cells and dendritic cells. Moreover, we explored glycosylation's impact on airway remodeling processes, including its regulation of airway smooth muscle cell proliferation and migration. Addressing molecular mechanisms, this review delved into several glycosylation modifications of proteins and genes implicated in asthma pathogenesis, including IgE, IL-4 receptor, TGF-β, and the regulation of select glycosylation enzymes. Additionally, the review highlights the role of Th17 cells in T2 high asthma and their modulation through glycosylation. We underscored future research imperatives, including biomarker discovery, therapeutic realization, and the potential utility of glycosylation modifications in asthma prevention and management. In short, this review provides an in-depth analysis of the critical role of glycosylation in the pathogenesis of T2 high asthma and Th17 responses.
Collapse
Affiliation(s)
- Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, People’s Republic of China
| | - Chaofan Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Jiawei Gao
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Bingyu Wang
- Department of Medicine, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, People’s Republic of China
| | - Zhuying Li
- Department of Respiratory, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Buchanan LB, Shao Z, Galiwango RM, Constable S, Zuanazzi D, Biribawa VM, Ssemunywa HR, Namuniina A, Okech B, Edfeldt G, Tjernlund A, Tobian AAR, Park DE, Pham T, Aziz M, Salazar JE, Nelson S, Liu CM, Kaul R, Prodger JL. HIV-associated penile anaerobes disrupt epithelial barrier integrity. PLoS Pathog 2025; 21:e1013094. [PMID: 40245064 PMCID: PMC12040277 DOI: 10.1371/journal.ppat.1013094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/29/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Specific anaerobic taxa within the penile microbiome-the Bacteria Associated with Seroconversion, Inflammation and Immune Cells (BASIC) species-enhance HIV-1 susceptibility, in part by recruiting susceptible cells to the inner foreskin. However, their effect on epithelial barrier integrity has not been described. Using foreskin tissues and penile swabs from 116 males undergoing voluntary medical male circumcision, we assessed the relationship between BASIC species and foreskin epithelial thickness, junction protein expression, and cellular proliferation. The absolute abundance of BASIC species was associated with reduced tissue expression of the epithelial junction proteins claudin-1 and E-cadherin, and with elevated soluble E-cadherin in penile secretions, suggesting proteolytic cleavage. These effects were not seen in participants with a high abundance of control taxa without high levels of BASIC species. The BASIC species Prevotella bivia, but not Peptostreptococcus anaerobius or Dialister micraerophilus, was shown to directly degrade recombinant human E-cadherin and to increase the release of soluble E-cadherin from foreskin epithelial cells in vitro. In vivo BASIC species absolute abundance was also linked to a thicker nucleated epithelium and increased keratinocyte proliferation, with no change in stratum corneum thickness. Therefore, BASIC species may enhance penile HIV susceptibility by directly disrupting epithelial integrity, in addition to previously described target cell recruitment.
Collapse
Affiliation(s)
- Lane B. Buchanan
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Zhongtian Shao
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ronald M. Galiwango
- Rakai Health Sciences Program, Rakai, Uganda
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Shirley Constable
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David Zuanazzi
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | | | - Annemarie Namuniina
- Uganda Virus Research Institute, International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Brenda Okech
- Uganda Virus Research Institute, International AIDS Vaccine Initiative, Entebbe, Uganda
| | - Gabriella Edfeldt
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Daniel E. Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Tony Pham
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Maliha Aziz
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Juan E. Salazar
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Sydney Nelson
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Cindy M. Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington District of Columbia, United States of America
| | - Rupert Kaul
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Sutthiboonyapan P, Sriratanasak N, Innets B, Angkanaporn N, Suntornchot P, Panyain W, Porntaveetus T, Wiriyakijja P, Chanvorachote P. A Randomized Double-Blind Controlled Evaluation of the Therapeutic Benefits of an Herbal Lip Hydrant. J Cosmet Dermatol 2025; 24:e70041. [PMID: 40013415 PMCID: PMC11866276 DOI: 10.1111/jocd.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Dry and chapped lips adversely affect both lip structure and function, yet there is no established gold standard for their treatment. Herbal extracts present a promising alternative due to their natural properties, though their therapeutic potential for lip care remains underexplored. This study aims to develop and clinically evaluate a novel lip hydrant formulated with polyherbal extracts, with the objective of offering an effective solution for managing dry and chapped lips. METHODS Six herbal extracts and eight mixtures, consisting of at least three herbal extracts, were evaluated for cytotoxicity using the MTT assay in HaCaT cells. The essential molecular markers were examined by western blot analysis and immunofluorescence assay. The selected mixture was formulated into lip hydrant and tested in a randomized, double-blind, controlled clinical trial. The 66 Thai participants with dry lip concerns were randomly assigned into two groups. Each participant applied either the lip hydrant (test group) or petroleum gel (control group) once daily for 28 days. Clinical assessments were performed at baseline and on day 28 post-application. The lip conditions, lip texture wrinkles, and hemoglobin levels were measured. Participant assessments included ratings of lip dryness, appearance, and product satisfaction. RESULTS The herbal extracts demonstrated potential in strengthening cell adherence, providing antioxidant effect, and inducing self-renewal. The Mix2 shows the most promising activity, increasing adherent protein and stemness properties, and was selected as the active ingredient for the clinical trial. In the trial, both the test and control groups experienced a significant reduction in lip roughness by day 28 compared to baseline (p < 0.05). However, the test group exhibited a significantly greater reduction in chapped lips than the control group (p < 0.05). No significant differences were found between the groups in terms of lip texture, wrinkle levels, or hemoglobin levels. Notably, both groups showed significant improvements in perceived lip dryness by day 28 (p < 0.001). CONCLUSION The study findings support the therapeutic potential of the novel polyherbal lip hydrant in improving lip hydration, reducing roughness, and alleviating chapped lips (ClinicalTrials.gov ID: NCT06475482).
Collapse
Affiliation(s)
- Pimchanok Sutthiboonyapan
- Department of Periodontology, Faculty of DentistryChulalongkorn UniversityBangkokThailand
- Center of Excellence in Periodontal Disease and Dental ImplantChulalongkorn UniversityBangkokThailand
- Center of Excellence in Genomics and Precision DentistryChulalongkorn UniversityBangkokThailand
| | - Nicharat Sriratanasak
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
| | - Bhurichaya Innets
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
| | | | | | | | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision DentistryChulalongkorn UniversityBangkokThailand
- Department of Physiology, Faculty of DentistryChulalongkorn UniversityBangkokThailand
| | - Paswach Wiriyakijja
- Center of Excellence in Genomics and Precision DentistryChulalongkorn UniversityBangkokThailand
- Department of Oral Medicine, Faculty of DentistryChulalongkorn UniversityBangkokThailand
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research UnitChulalongkorn UniversityBangkokThailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
| |
Collapse
|
6
|
Rajput M, Malik IA, Methi A, Cortés Silva JA, Fey D, Wirths O, Fischer A, Wilting J, von Arnim CAF. Cognitive decline and neuroinflammation in a mouse model of obesity: An accelerating role of ageing. Brain Behav Immun 2025; 125:226-239. [PMID: 39730092 DOI: 10.1016/j.bbi.2024.12.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
Obesity, a pandemic, worldwide afflicts almost one billion people. Obesity and ageing share several pathological pathways leading to neurological disorders. However, due to a lack of suitable animal models, the long-term effects of obesity on age-related disorders- cognitive impairment and dementia have not yet been thoroughly investigated. Therefore, the current investigation focuses on developing a suitable model to explore the effects of obese-ageing. It also aims to determine whether obesity affects cognitive abilities in an age-dependent manner, and to identify a potential biomarker(s) for cognitive decline. Cognitive tests were carried out on 6-months and 1-year-old melanocortin-4 receptor (Mc4r)-deficient-obese and lean (wildtype) mice. Additionally, brains and sera were harvested for molecular, histological and serological analyses from 6, 12, and 24-months-old mice. Finally, RT-PCR was carried out after hippocampal mRNA sequencing. The cognitive tests revealed that 1-year-old obese mice have cognitive impairment along with underlying neurodegenerative changes, such as enlarged lateral ventricles. Serum neurofilament light chain (sNfL) levels were also elevated. Lipid accumulation and neuroinflammation were apparent besides, a compromised blood-brain barrier (BBB) indicated by altered junction protein gene expression. Differentially-expressed genes associated with cognitive decline were identified by mRNA sequencing of hippocampi. One such gene, Secreted Phosphoprotein 1 (Spp1) had markedly increased expression in cognitively-impaired obese mice. Our findings present an obese-aged mouse model of cognitive decline with neuroinflammation, reduced BBB-integrity and predisposing neurodegenerative changes. Obese-ageing accelerates the progression of cognitive impairment. Furthermore, Spp1 appears to be a potential biomarker for early diagnosis of neuropathological disorders.
Collapse
Affiliation(s)
- Mansi Rajput
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Ihtzaz Ahmed Malik
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany.
| | - Aditi Methi
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Jonathan Alexis Cortés Silva
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany.
| | - Dorothea Fey
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Oliver Wirths
- Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany.
| | - André Fischer
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Von-Siebold-Str. 3a, 37075 Goettingen, Germany; Department of Psychiatry, University Medical Center Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical Center Goettingen, Kreuzbergring 36, D-37075 Goettingen, Germany.
| | - Christine A F von Arnim
- Department of Geriatrics, University Medical Center Goettingen, Robert-Koch-Str. 42, 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
7
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
8
|
Ding T, Liu C, Li Z. The mycobiome in human cancer: analytical challenges, molecular mechanisms, and therapeutic implications. Mol Cancer 2025; 24:18. [PMID: 39815314 PMCID: PMC11734361 DOI: 10.1186/s12943-025-02227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis. Fungal microbes (the mycobiome), although representing only ∼ 0.1-1% of the microbiome, are a critical immunologically active component of the tumor microbiome. Accumulating evidence suggests a possible involvement of commensal and pathogenic fungi in cancer initiation, progression, and treatment responsiveness. The tumor-associated mycobiome mainly consists of the gut mycobiome, the oral mycobiome, and the intratumoral mycobiome. However, the role of fungi in cancer remains poorly understood, and the diversity and complexity of analytical methods make it challenging to access this field. This review aims to elucidate the causal and complicit roles of mycobiome in cancer development and progression while highlighting the issues that need to be addressed in executing such research. We systematically summarize the advantages and limitations of current fungal detection and analysis methods. We enumerate and integrate these recent findings into our current understanding of the tumor mycobiome, accompanied by the prospect of novel and exhilarating clinical implications.
Collapse
Affiliation(s)
- Ting Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Chen L, Wang X, Li J, Zhang L, Wu W, Wei S, Zou W, Zhao Y. Elucidation of the mechanism of berberine against gastric mucosa injury in a rat model with chronic atrophic gastritis based on a combined strategy of multi-omics and molecular biology. Front Pharmacol 2025; 15:1499753. [PMID: 39834822 PMCID: PMC11743660 DOI: 10.3389/fphar.2024.1499753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Background Berberine (BBR) is widely used to treat gastrointestinal diseases. However, the pharmacological mechanism of action of BBR in anti-chronic atrophic gastritis (CAG) remains unclear. This study aimed to investigate the mechanism of action of BBR in CAG by integration of molecular biology and multi-omics studies strategy. Methods The CAG model was established by alternating drinking water of 0.1% ammonia and 20 mmol/L sodium deoxycholate, accompanied by an irregular diet. Serum biochemical indices including PGI, PGII, GAS-17, IL-6, IL-1β, and TNF-α were analyzed. HE and AB-PAS staining were employed to assess pathological damage in gastric tissue. The underlying molecular mechanism of BBR in CAG treatment was explored via the integration of network pharmacology, transcriptomics, widely targeted metabolomics and intestinal flora analysis. Finally, relevant key targets and pathway were verified. Results The results showed that BBR exerted therapeutic effects in improving CAG via alleviating inflammation response, maintaining the gastric mucosal barrier's integrity and repairing gastric mucosal tissues. Network pharmacology showed that the treatment of CAG by BBR mainly involved in inflammatory response, apoptosis, angiogenesis and metabolic processes. Furthermore, 234 different expression genes were identified in the gastric tissue transcriptome, which were mainly involved in biological processes such as cell adhesion, angiogenesis, apoptosis, cell migration and lipids metabolism by regulating the MAPK signaling pathway. Metabolomics results showed that 125 differential metabolites were also identified, while the pathways were mainly involved in D-glutamine and D-glutamate metabolism, and tyrosine metabolism, etc. Integrating transcriptomics and metabolomics analyses indicated that BBR directly regulated Carnitine C3:0, LPC (0:0/20:3), L-Glutamic Acid and FFA (15:0) by acting on SLC25A20, PNLIPRP1, PLA2G4C, GSR, GFPT2, GCLM, CTPS1, ACSL1, ACOT4 and ACOT2. 16S rRNA sequencing revealed that BBR could restore the balance of gut microbiota dysbiosis by significantly regulating the relative abundance of unclassified_Muribaculaceae and Lactobacillus_johnsonii. Conclusion This study demonstrated that BBR alleviates CAG through the regulation of the MAPK signaling pathway, metabolic disorders and gut microbiota dysbiosis, thereby revealing the complex mechanism of BBR in relation to alleviating CAG from multiple levels and perspectives.
Collapse
Affiliation(s)
- Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianyu Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Zhang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenbin Wu
- Healthcare Office of the Service Bureau of Agency for Offices Administration of the Central Military Commission, Beijing, China
| | - Shizhang Wei
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Brasier AR. Interactions between epithelial mesenchymal plasticity, barrier dysfunction and innate immune pathways shape the genesis of allergic airway disease. Expert Rev Respir Med 2025; 19:29-41. [PMID: 39745473 PMCID: PMC11757041 DOI: 10.1080/17476348.2024.2449079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization. AREAS COVERED 1. Characteristics of sentinel epithelial cells of the bronchoalveolar junction, 2. The effect of aeroallergens on epithelial PRRs, 3. Role of tight junctions (TJs) in barrier function and how aeroallergens disrupt their function, 4. Induction of mucosal TGF autocrine loops activating type-2 innate lymphoid cells (ICL2s) leading to Th2 polarization, 5. How respiratory syncytial virus (RSV) directs goblet cell hyperplasia, and 6. Coupling of endoplasmic reticulum (ER) stress to metabolic adaptations and effects on basal lamina remodeling. EXPERT OPINION When aeroallergens or viral infections activate innate immunity in sentinel cells of the bronchoalveolar junction, normal barrier function is disrupted, promoting chronic inflammation and Th2 responses. An improved mechanistic understanding of how activated PRRs induce EMP couples with TJ disruption, metabolic reprogramming and ECM deposition provides new biologically validated targets to restore barrier function, reduce sensitization, and remodeling in AA.
Collapse
Affiliation(s)
- Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States
- The Institute for Clinical and Translational Research, Madison, Wisconsin, United States
| |
Collapse
|
11
|
Eckhardt CM, Wu H, Jackson G, Sobel MH, Bloomquist T, Divjan A, da Silva H, Best LG, Cole S, Umans J, Zhang Y, de Hoff P, Laurent LC, Perzanowski MS, Cheng K, Baccarelli AA, Sanchez TR. Extracellular Vesicle-Encapsulated microRNAs and Respiratory Health Among American Indian Participants in the Strong Heart Study. Chest 2025; 167:87-97. [PMID: 39154798 PMCID: PMC11752130 DOI: 10.1016/j.chest.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND American Indian populations have experienced marked disparities in respiratory disease burden. Extracellular vesicle-encapsulated microRNAs (EV-miRNAs) are a novel class of biomarkers that may improve recognition of lung damage in indigenous populations in the United States. RESEARCH QUESTION Are plasma EV-miRNAs viable biomarkers of respiratory health in American Indian populations? STUDY DESIGN AND METHODS The Strong Heart Study is a prospective cohort study that enrolled American Indian patients aged 45 to 74 years. EV-miRNA expression was measured in plasma (1993-1995). Respiratory health outcomes, including prebronchodilator FEV1, FVC, and respiratory symptom burden, were ascertained in the same study visit. Club cell secretory protein (CC-16), an antiinflammatory pneumoprotein implicated in COPD pathogenesis, was measured in serum. Linear and logistic regression were used for statistical analyses. Biological pathway analyses were used to elucidate gene targets of significant EV-miRNAs. RESULTS Among 853 American Indian adults, three EV-miRNAs were associated with FEV1, four EV-miRNAs were associated with FVC, and one EV-miRNA was associated with FEV1/FVC (P < .05). Increased miR-1294 expression was associated with higher odds of airflow limitation (OR, 1.29; 95% CI, 1.07-1.55), whereas increased expression of miR-1294 (OR, 1.32; 95% CI, 1.07-1.63) and miR-532-5p (OR, 1.57; 95% CI, 1.02-2.40) was associated with higher odds of restriction. Increased miR-451a expression was associated with lower odds of exertional dyspnea (OR, 0.71; 95% CI, 0.59-0.85). Twenty-two EV-miRNAs were associated with serum CC-16 levels (q < 0.05), suggesting that EV-miRNAs may play a role in the pathway linking CC-16 to COPD pathogenesis. A pathway analysis showed key EV-miRNAs targeted biological pathways that modulate inflammation, immunity, and structural integrity in the lungs. INTERPRETATION Circulating EV-miRNAs are novel mechanistic biomarkers of respiratory health and may facilitate the early detection and treatment of lung damage in American Indian populations that have been disproportionately affected by chronic lung diseases.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY.
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Gabriela Jackson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Marisa H Sobel
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Tessa Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Adnan Divjan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Hadler da Silva
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD
| | - Shelley Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX
| | - Jason Umans
- Center for Clinical and Translational Sciences, Georgetown/Howard Universities, Washington, DC; MedStar Health Research Institute, Washington, DC
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Peter de Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Ke Cheng
- Columbia University, Department of Biomedical Engineering, New York, NY
| | | | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY
| |
Collapse
|
12
|
Martin J, Rittersberger R, Treitler S, Kopp P, Ibraimi A, Koslowski G, Sickinger M, Dabbars A, Schindowski K. Characterization of a primary cellular airway model for inhalative drug delivery in comparison with the established permanent cell lines CaLu3 and RPMI 2650. IN VITRO MODELS 2024; 3:183-203. [PMID: 39872698 PMCID: PMC11756470 DOI: 10.1007/s44164-024-00079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
Purpose For optimization of respiratory drug delivery, the selection of suitable in vitro cell models plays an important role in predicting the efficacy and safety of (bio)pharmaceutics and pharmaceutical formulations. Therefore, an in-depth comparison of different primary and permanent in vitro cellular airway models was performed with a focus on selecting a suitable model for inhalative antibodies. Methods Primary cells isolated from the porcine trachea were compared with the established human cell lines CaLu3 and RPMI 2650. The in vitro models were characterized for different epithelial markers by real-time quantitative polymerase chain reaction, which provides insight into the cellular composition of each model. For a few selected markers, the results from RT-qPCR were confirmed via immunofluorescence. Barrier integrity was assessed by transepithelial electrical resistance measurements and FITC-dextran permeability. Results Primary cell models retain key features of the respiratory epithelium, e.g., the formation of a tight epithelial barrier, mucin production, and the presence of club/basal cells. Furthermore, the expression of Fc receptors in the primary cell models closely resembles that in respiratory mucosal tissue, an essential parameter to consider when developing therapeutic antibodies for inhalation. Conclusion The study underlines the importance of selecting wisely appropriate in vitro models. Despite the greater effort and variability in cultivating primary airway cells, they are far superior to permanent cells and a suitable model for drug development. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00079-y.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Anit Ibraimi
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
- Justus-Von-Liebig-Schule, Von-Kilian-Straße 5, 79762 Waldshut-Tiengen, Germany
| | - Gabriel Koslowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Max Sickinger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Strasse 35, 88400 Biberach, Germany
| |
Collapse
|
13
|
Van Campenhout R, Vinken M. Hepatic cell junctions: Pulling a double-duty. Liver Int 2024; 44:2873-2889. [PMID: 39115254 DOI: 10.1111/liv.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
14
|
Yang L, Lin Z, Mu R, Wu W, Zhi H, Liu X, Yang H, Liu L. Neurons enhance blood-brain barrier function via upregulating claudin-5 and VE-cadherin expression due to glial cell line-derived neurotrophic factor secretion. eLife 2024; 13:RP96161. [PMID: 39475379 PMCID: PMC11524583 DOI: 10.7554/elife.96161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Blood-brain barrier (BBB) prevents neurotoxins from entering central nervous system. We aimed to establish and characterize an in vitro triple co-culture BBB model consisting of brain endothelial cells hCMEC/D3, astrocytoma U251 cells, and neuroblastoma SH-SY5Y cells. Co-culture of SH-SY5Y and U251 cells markedly enhanced claudin-5 and VE-cadherin expression in hCMEC/D3 cells, accompanied by increased transendothelial electrical resistance and decreased permeability. Conditioned medium (CM) from SH-SY5Y cells (S-CM), U251 cells (U-CM), and co-culture of SH-SY5Y and U251 cells (US-CM) also promoted claudin-5 and VE-cadherin expression. Glial cell line-derived neurotrophic factor (GDNF) levels in S-CM and US-CM were significantly higher than CMs from hCMEC/D3 and U-CM. Both GDNF and US-CM upregulated claudin-5 and VE-cadherin expression, which were attenuated by anti-GDNF antibody and GDNF signaling inhibitors. GDNF increased claudin-5 expression via the PI3K/AKT/FOXO1 and MAPK/ERK pathways. Meanwhile, GDNF promoted VE-cadherin expression by activating PI3K/AKT/ETS1 and MAPK/ERK/ETS1 signaling. The roles of GDNF in BBB integrity were validated using brain-specific Gdnf silencing mice. The developed triple co-culture BBB model was successfully applied to predict BBB permeability. In conclusion, neurons enhance BBB integrity by upregulating claudin-5 and VE-cadherin expression through GDNF secretion and established triple co-culture BBB model may be used to predict drugs' BBB permeability.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Zijin Lin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Ruijing Mu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Wenhan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hao Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Xiaodong Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hanyu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Li Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| |
Collapse
|
15
|
Schaller L, Gudermann T, Dietrich A. TRPV4 Mediates Alveolar Epithelial Barrier Integrity and Induces ADAM10-Driven E-Cadherin Shedding. Cells 2024; 13:1717. [PMID: 39451235 PMCID: PMC11506556 DOI: 10.3390/cells13201717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels have been associated with numerous pulmonary pathologies, including hypertension, asthma, and acute lung injury. However, their role in the alveolar epithelium remains unclear. We performed impedance-based resistance measurements in primary differentiated alveolar epithelial type I (AT1) cells from wild-type (WT) and TRPV4-deficient (TRPV4-/-) C57/BL6J mice to detect changes in AT1 barrier integrity upon TRPV4 activation. Both pharmacological (GSK1016790A) and a low pH-driven activation of TRPV4 were quantified, and the downstream effects on adherens junctions were assessed through the Western blotting of epithelial cadherin (E-cadherin) protein levels. Importantly, a drop in pH caused a rapid decrease in AT1 barrier resistance and increased the formation of a ~35 kDa E-cadherin C-terminal fragment, with both effects significantly reduced in TRPV4-/- AT1 cells. Similarly, the pharmacological activation of TRPV4 in AT1 cells triggered an immediate transient loss of barrier resistance and the formation of the same E-cadherin fragment, which was again diminished by TRPV4 deficiency. Moreover, TRPV4-mediated E-cadherin cleavage was significantly reduced by GI254023X, an antagonist of a disintegrin and metalloprotease 10 (ADAM10). Our results confirm the role of TRPV4 in regulating alveolar epithelial barrier permeability and provide insight into a novel signaling pathway by which TRPV4-induced Ca2+ influx stimulates metalloprotease-driven ectodomain shedding.
Collapse
Affiliation(s)
| | | | - Alexander Dietrich
- Walther Straub Institute for Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Nussbaumstrasse 26, 80336 Munich, Germany; (L.S.); (T.G.)
| |
Collapse
|
16
|
HUANG YONGJIAN, WANG JINZHOU, XU JIUHUA, RUAN NING. Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer. Oncol Res 2024; 32:1765-1776. [PMID: 39449815 PMCID: PMC11497182 DOI: 10.32604/or.2024.045564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background Despite significant advancements in the development of anticancer therapies over the past few decades, the clinical management of colorectal cancer remains a challenging task. This study aims to investigate the inhibitory effects of cancer-targeting liposomes against colorectal cancer. Materials and Methods Liposomes consisting of 3β-[N-(N', N'-dimethylamino ethane)carbamoyl]-cholesterol (DC-CHOL), cholesterol (CHOL), and dioleoylphosphatidylethanolamine (DOPE) at a molar ratio of 1:1:0.5 were created and used as carriers to deliver an apoptosis-inducing plasmid encoding the tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL) gene, along with the toll-like receptor (TLR7) agonist Rsiquimod (R848). The rationale behind this design is that pTRAIL can trigger cancer cell apoptosis by activating the DR4/5 receptor, while R848 can stimulate the immune microenvironment. Results Experimental results demonstrated the synergistic effects of R848 and pTRAIL encapsulated by liposomes (RTL) in suppressing the proliferation of colorectal cancer cells. Moreover, further in vivo investigations revealed the strong anti-tumor efficacy of RTL in xenograft and orthotropic in situ models of colorectal cancer. Conclusions These findings collectively highlight the therapeutic potential of R848/pTRAIL-loaded liposomes in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- YONGJIAN HUANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JINZHOU WANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JIUHUA XU
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - NING RUAN
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
17
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
18
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. E-Cadherin Induces Serine Synthesis to Support Progression and Metastasis of Breast Cancer. Cancer Res 2024; 84:2820-2835. [PMID: 38959339 PMCID: PMC11374473 DOI: 10.1158/0008-5472.can-23-3082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The loss of E-cadherin, an epithelial cell adhesion molecule, has been implicated in metastasis by mediating the epithelial-mesenchymal transition, which promotes invasion and migration of cancer cells. However, recent studies have demonstrated that E-cadherin supports the survival and proliferation of metastatic cancer cells. Here, we identified a metabolic role for E-cadherin in breast cancer by upregulating the de novo serine synthesis pathway (SSP). The upregulated SSP provided metabolic precursors for biosynthesis and resistance to oxidative stress, enabling E-cadherin+ breast cancer cells to achieve faster tumor growth and enhanced metastases. Inhibition of phosphoglycerate dehydrogenase, a rate-limiting enzyme in the SSP, significantly and specifically hampered proliferation of E-cadherin+ breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. These findings reveal that E-cadherin reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers. Significance: E-Cadherin promotes the progression and metastasis of breast cancer by upregulating the de novo serine synthesis pathway, offering promising targets for inhibiting tumor growth and metastasis in E-cadherin-expressing tumors.
Collapse
Affiliation(s)
- Geonhui Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Claudia Wong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Cho
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Junior J. West
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ashleigh J. Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Bishwa Ranjan Si
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jungwoo Kim
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren Hoffner
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert D. Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew J. Ewald
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sangmoo Jeong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Research Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Qian G, Zang H, Tang J, Zhang H, Yu J, Jia H, Zhang X, Zhou J. Lactobacillus gasseri ATCC33323 affects the intestinal mucosal barrier to ameliorate DSS-induced colitis through the NR1I3-mediated regulation of E-cadherin. PLoS Pathog 2024; 20:e1012541. [PMID: 39250508 PMCID: PMC11412683 DOI: 10.1371/journal.ppat.1012541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/19/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an immune system disorder primarily characterized by colitis, the exact etiology of which remains unclear. Traditional treatment approaches currently yield limited efficacy and are associated with significant side effects. Extensive research has indicated the potent therapeutic effects of probiotics, particularly Lactobacillus strains, in managing colitis. However, the mechanisms through which Lactobacillus strains ameliorate colitis require further exploration. In our study, we selected Lactobacillus gasseri ATCC33323 from the intestinal microbiota to elucidate the specific mechanisms involved in modulation of colitis. Experimental findings in a DSS-induced colitis mouse model revealed that L. gasseri ATCC33323 significantly improved physiological damage in colitic mice, reduced the severity of colonic inflammation, decreased the production of inflammatory factors, and preserved the integrity of the intestinal epithelial structure and function. It also maintained the expression and localization of adhesive proteins while improving intestinal barrier permeability and restoring dysbiosis in the gut microbiota. E-cadherin, a critical adhesive protein, plays a pivotal role in this protective mechanism. Knocking down E-cadherin expression within the mouse intestinal tract significantly attenuated the ability of L. gasseri ATCC33323 to regulate colitis, thus confirming its protective role through E-cadherin. Finally, transcriptional analysis and in vitro experiments revealed that L. gasseri ATCC33323 regulates CDH1 transcription by affecting NR1I3, thereby promoting E-cadherin expression. These findings contribute to a better understanding of the specific mechanisms by which Lactobacillus strains alleviate colitis, offering new insights for the potential use of L. gasseri as an alternative therapy for IBD, particularly in dietary supplementation.
Collapse
Affiliation(s)
- Guanru Qian
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Hui Zang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jingtong Tang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jiankang Yu
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Huibiao Jia
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Xinzhuang Zhang
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery & Hernia and Abdominal Wall Surgery, the First Hospital, China Medical University, Shenyang, China
- Department of Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| |
Collapse
|
20
|
Zheng C, Allen KO, Liu T, Solodin NM, Meyer MB, Salem K, Tsourkas PK, McIlwain SJ, Vera JM, Cromwell ER, Ozers MS, Fowler AM, Alarid ET. Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:2906. [PMID: 39199676 PMCID: PMC11353109 DOI: 10.3390/cancers16162906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is characterized by late recurrences following initial treatment. The epithelial cell fate transcription factor Grainyhead-like protein 2 (GRHL2) is overexpressed in ER-positive breast cancers and is linked to poorer prognosis as compared to ER-negative breast cancers. To understand how GRHL2 contributes to progression, GRHL2 was overexpressed in ER-positive cells. We demonstrated that elevated GRHL2 imparts plasticity with stem cell- and dormancy-associated traits. RNA sequencing and immunocytochemistry revealed that high GRHL2 not only strengthens the epithelial identity but supports a hybrid epithelial to mesenchymal transition (EMT). Proliferation and tumor studies exhibited a decrease in growth and an upregulation of dormancy markers, such as NR2F1 and CDKN1B. Mammosphere assays and flow cytometry revealed enrichment of stem cell markers CD44 and ALDH1, and increased self-renewal capacity. Cistrome analyses revealed a change in transcription factor motifs near GRHL2 sites from developmental factors to those associated with disease progression. Together, these data support the idea that the plasticity and properties induced by elevated GRHL2 may provide a selective advantage to explain the association between GRHL2 and breast cancer progression.
Collapse
Affiliation(s)
- Christy Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kaelyn O. Allen
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianrui Liu
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalia M. Solodin
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Phillipos K. Tsourkas
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica M. Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika R. Cromwell
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Szatkowski Ozers
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Proteovista LLC, Madison, WI 53719, USA
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T. Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
21
|
Shirsath N, Chaudhari R, More A, Sonawane V, Ghosalkar J, Joshi K. Optimization of an in vitro method for assessing pulmonary permeability of inhaled drugs using alveolar epithelial cells. J Pharmacol Toxicol Methods 2024; 128:107526. [PMID: 38852686 DOI: 10.1016/j.vascn.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Inhalation of drugs for the treatment of pulmonary diseases has been used since a long time. Due to lungs' larger absorptive surface area, delivery of drugs to the lungs is the method of choice for different disorders. Here we present the establishment of a comprehensive permeability model using Type II alveolar epithelial cells and Beclomethasone Dipropionate (BDP) as a model drug delivered by pressurized metered dose inhaler (pMDI). METHODS Using Type II alveolar epithelial cells, the method was standardized for parameters viz., cell density, viability, incubation period and membrane integrity. The delivery and deposition of drug were using the pMDI device with a Twin Stage Impinger (TSI) modified to accommodate cell culture insert having monolayer of cells. The analytical method for simultaneous estimation of BDP and Beclomathasone-17-Monopropionate (17-BMP) was validated as per the bioanalytical guidelines. The extent and rate of absorption of BDP was determined by quantifying the amount of drug permeated and the data represented by calculating its apparent permeability. RESULTS Type II alveolar epithelial cells cultured at 0.55 × 105 cells/cm2 for 8-12 days under air-liquid interface were optimized for conducting permeability studies. The data obtained for absorptive transport showed a linear increase in the drug permeated against time for both BDP and 17-BMP along with proportional permeability profile. DISCUSSION We have developed a robust in vitro model to study absorptive rate of drug transport across alveolar layer. Such models would create potential value during formulation development for comparative studies and selection of clinical candidates.
Collapse
Affiliation(s)
- Nitesh Shirsath
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Rohit Chaudhari
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Avinash More
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Vinay Sonawane
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India
| | - Jeevan Ghosalkar
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India.
| | - Kalpana Joshi
- Discovery Biology Division, Cipla Ltd., Vikhroli, Mumbai 400083, India.
| |
Collapse
|
22
|
Paolillo I, Roscigno G, Innangi M, Zorrilla JG, Petraglia G, Russo MT, Carraturo F, Guida M, Pollice A, Cimmino A, Masi M, Calabrò V. Health-Promoting Properties of Natural Flavonol Glycosides Isolated from Staphylea pinnata L. Int J Mol Sci 2024; 25:5582. [PMID: 38891769 PMCID: PMC11171919 DOI: 10.3390/ijms25115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food. Here, we report the isolation of six flavonol glycosides from the hydroalcoholic extract of aerial parts of Staphylea pinnata L., collected in Italy, using a solid-phase extraction technique. They were identified using spectroscopic, spectrometric, and optical methods as three quercetin and three isorhamnetin glycosides. Among the flavonol glycosides isolated, isoquercetin and quercetin malonyl glucoside showed powerful antioxidant, antimicrobial, and wound healing promoting activity and thus are valuable as antiaging ingredients for cosmeceutical applications and for therapeutic applications in skin wound repair.
Collapse
Affiliation(s)
- Ida Paolillo
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Giuseppina Roscigno
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Michele Innangi
- EnviXLab, Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy;
| | - Jesús G. Zorrilla
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (INBIO), University of Cadiz, C/Avenida República Saharaui, s/n, 11510 Puerto Real, Spain
| | - Gianmarco Petraglia
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Maria Teresa Russo
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Federica Carraturo
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Marco Guida
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Alessandra Pollice
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| | - Alessio Cimmino
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Marco Masi
- Department of Chemical Sciences, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; (J.G.Z.); (G.P.); (M.T.R.); (A.C.)
| | - Viola Calabrò
- Department of Biology, Complesso Universitario Monte Sant’Angelo, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy; (I.P.); (G.R.); (F.C.); (M.G.); (A.P.); (V.C.)
| |
Collapse
|
23
|
Lee G, Wong C, Cho A, West JJ, Crawford AJ, Russo GC, Si BR, Kim J, Hoffner L, Jang C, Jung M, Leone RD, Konstantopoulos K, Ewald AJ, Wirtz D, Jeong S. Serine synthesis pathway upregulated by E-cadherin is essential for the proliferation and metastasis of breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.24.541452. [PMID: 37292712 PMCID: PMC10245808 DOI: 10.1101/2023.05.24.541452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The loss of E-cadherin (E-cad), an epithelial cell adhesion molecule, has been implicated in the epithelial-mesenchymal transition (EMT), promoting invasion and migration of cancer cells and, consequently, metastasis. However, recent studies have demonstrated that E-cad supports the survival and proliferation of metastatic cancer cells, suggesting that our understanding of E-cad in metastasis is far from comprehensive. Here, we report that E-cad upregulates the de novo serine synthesis pathway (SSP) in breast cancer cells. The SSP provides metabolic precursors for biosynthesis and resistance to oxidative stress, critically beneficial for E-cad-positive breast cancer cells to achieve faster tumor growth and more metastases. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, significantly and specifically hampered the proliferation of E-cad-positive breast cancer cells and rendered them vulnerable to oxidative stress, inhibiting their metastatic potential. Our findings reveal that E-cad adhesion molecule significantly reprograms cellular metabolism, promoting tumor growth and metastasis of breast cancers.
Collapse
|
24
|
Abubaker M, Greaney A, Newport D, Mulvihill JJE. Characterization of primary human leptomeningeal cells in 2D culture. Heliyon 2024; 10:e26744. [PMID: 38434413 PMCID: PMC10906397 DOI: 10.1016/j.heliyon.2024.e26744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Maintaining the integrity of brain barriers is critical for a healthy central nervous system. While extensive research has focused on the blood-brain barrier (BBB) of the brain vasculature and blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus, the barriers formed by the meninges have not received as much attention. These membranes create a barrier between the brain and cerebrospinal fluid (CSF), as well as between CSF and blood. Recent studies have revealed that this barrier has been implicated in the development of neurological and immunological disorders. In order to gain a deeper comprehension of the functioning and significance of the meningeal barriers, sophisticated models of these barriers, need to be created. The aim of this paper is to investigate the characteristics of commercially available primary leptomeningeal cells (LMCs) that form the meningeal barriers, in a cultured environment, including their morphology, proteomics, and barrier properties, and to determine whether passaging of these cells affects their behaviour in comparison to their in vivo state. The results indicate that higher passage numbers significantly alter the morphology and protein localisation and expression of the LMCs. Furthermore, the primary cell culture co-stained for S100A6 and E-cadherin suggesting it is a co-culture of both pial and arachnoid cells. Additionally, cultured LMCs showed an increase in vimentin and cytokeratin expression and a lack of junctional proteins localisation on the cell membrane, which could suggest loss of epithelial properties due to culture, preventing barrier formation. This study shows that the LMCs may be a co-culture of pial and arachnoid cells, that the optimal LMC passage range is between passages two and five for experimentation and that the primary human LMCs form a weak barrier when in culture.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - Aisling Greaney
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - David Newport
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Castletroy, Limerick, Ireland
- School of Engineering, University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
25
|
Giri S, Takada A, Paudel D, Uehara O, Kurashige Y, Kuramitsu Y, Furukawa M, Matsushita K, Arakawa T, Nagasawa T, Abiko Y, Furuichi Y. Oral infection with Porphyromonas gingivalis augmented gingival epithelial barrier molecules alteration with aging. J Oral Biosci 2024; 66:126-133. [PMID: 38336260 DOI: 10.1016/j.job.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Disruption of the gingival epithelial barrier is often mediated by aging or the pathogen Porphyromonas gingivalis. This study examined the combined effects of aging and P. gingivalis exposure on gingival epithelial barrier molecules. METHODS In vitro experiments involved treating young- and senescence-induced primary human gingival epithelial progenitor cells (HGEPp) with P. gingivalis lipopolysaccharide (LPS). Transepithelial electrical resistance (TER) and paracellular permeability were measured. In vivo, male C57BL/6J mice aged 10 (young) and 80 (old) weeks were divided into four groups: young, old, young with P. gingivalis (Pg-Young) inoculation, and old with P. gingivalis (Pg-Old) inoculation. P. gingivalis was inoculated orally thrice a week for 5 weeks. The mice were sacrificed 30 days after the last inoculation, and samples were collected for further procedures. The junctional molecules (Claudin-1, Claudin-2, E-cadherin, and Connexin) were analyzed for mRNA expression using qRT-PCR and protein production using western blotting and immunohistochemistry. The alveolar bone loss and inflammatory cytokine levels in gingival tissues were also assessed. RESULTS LPS-treated senescent cells exhibited a pronounced reduction in TER, increased permeability to albumin protein, significant upregulation of Claudin-1 and Claudin-2, and significant downregulation of E-cadherin and Connexin. Furthermore, the Pg-Old group showed identical results with aging in addition to an increase in alveolar bone loss, significantly higher than that in the other groups. CONCLUSION In conclusion, the host susceptibility to periodontal pathogens increases with age through changes in the gingival epithelial barrier molecules.
Collapse
Affiliation(s)
- Sarita Giri
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Ayuko Takada
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Durga Paudel
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihito Kurashige
- Division of Pediatric Dentistry, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Masae Furukawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Toshiya Arakawa
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Toshiyuki Nagasawa
- Division of Advanced Clinical Education, Department of Integrated Dental Education, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Japan
| | - Yasushi Furuichi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
26
|
Ip K, Song G, Banov D, Bassani AS, Liu Y, Song H, Valdez BC. Evaluation of the in vitro human skin percutaneous absorption of ketoprofen in topical anhydrous and aqueous gels. Skin Res Technol 2024; 30:e13589. [PMID: 38396354 PMCID: PMC10891364 DOI: 10.1111/srt.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Ketoprofen is a nonsteroidal anti-inflammatory drug used for the treatment of acute and chronic pain associated with inflammatory conditions. This study aims to evaluate the in vitro percutaneous absorption of ketoprofen 10% formulated in proprietary anhydrous and aqueous gels using the Franz skin finite dose model. MATERIALS AND METHODS The anhydrous gel was initially characterized for cytotoxicity using EpiDerm skin tissue model by cell proliferation assay and Western blot analysis. The Ultra Performance Liquid Chromatography method for measuring ketoprofen was validated and the stability of ketoprofen 10% in the anhydrous gel formulation was evaluated at 5°C and 25°C for 181 days. The percutaneous absorption of ketoprofen was determined using donated human skin. The tissue sections were mounted within Franz diffusion cells. A variable finite dose of each ketoprofen formulation in either anhydrous or aqueous gel was applied to the skin sections and receptor solutions were collected at various time points. RESULTS Cell proliferation assay showed minimal cell death when EpiDerm skin tissue was exposed to the anhydrous gel for 24 h; the levels of protein markers of cell proliferation were not affected after 17-h exposure. Ketoprofen was stable in the anhydrous gel when stored at 5°C and 25°C. When compounded in the anhydrous and aqueous gels, ketoprofen had mean flux rate of 2.22 and 2.50 μg/cm2 /h, respectively, after 48 h. The drug was distributed to the epidermis and dermis sections of the skin. Both the anhydrous and aqueous gels facilitated the percutaneous absorption of ketoprofen without statistically significant differences. CONCLUSION The anhydrous gel can be used as a base to facilitate the transdermal delivery of ketoprofen. Although the anhydrous and aqueous gels can deliver a similar amount of ketoprofen, the anhydrous gel (water activity below 0.6) allows for extended default beyond-use-date of compounding preparations.
Collapse
Affiliation(s)
- Kendice Ip
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Guiyun Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Daniel Banov
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | | | - Yi Liu
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Hui Song
- Professional Compounding Centers of America (PCCA)HoustonTexasUSA
| | - Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular TherapyThe University of Texas MD, Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
27
|
Chen Z, Tang H, Gan S, Yang C, Li S, Li J, Yao L. Ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced acute lung injury. Pulm Pharmacol Ther 2024; 84:102284. [PMID: 38154519 DOI: 10.1016/j.pupt.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Loss of E-cadherin in the airway epithelial cells is a critical contributor to the development of ALI/ARDS. Yet the underlying mechanisms are largely unknown. Increasing evidences have revealed the significance of ferroptosis in the pathophysiological process of ALI/ARDS. The aim of this study was to investigate the role of ferroptosis in dysregulation of airway epithelial E-cadherin in ALI/ARDS. METHODS BALB/c mice were subjected to intratracheal instillation of lipopolysaccharide (LPS) to establish an ALI model. Two inhibitors of ferroptosis, liproxstatin-1 (Lip-1, at the dose of 10 mg/kg and 30 mg/kg) and ferrostatin-1 (Fer-1, at the dose of 1 mg/kg and 5 mg/kg), were respectively given to the mice through intraperitoneal injection after LPS challenge. The expression of ferroptotic markers, full-length E-cadherin and soluble E-cadherin (sE-cadherin) were both detected. RESULTS LPS exposure dramatically down-regulated pulmonary expression of E-cadherin in mice, with profound loss of membrane E-cadherin in the airway epithelial cells and increased secretion of sE-cadherin in the airway lumen. At the same time, we found that the mitochondrial of airway epithelial cells in LPS-exposed mice exhibited significant morphological alterations that are hallmark features of ferroptosis, with smaller volume and increased membrane density. Other makers of ferroptosis were also detected, including increased cytoplasmic levels of iron and lipid peroxidates (MDA), as well as decreased GPX4 expression. 30 mg/kg of Lip-1 not only showed potent protective effects against the LPS-induced injury, inflammation, edema of the lung in those mice, but also rescued airway epithelial E-cadherin expression and decreased the release of sE-cadherin through inhibiting ferroptosis. While no noticeable changes induced by LPS were observed in mice treated with Lip-1 at 10 mg/kg nor Fer-1 at 1 mg/kg or 5 mg/kg. CONCLUSIONS Taken together, these data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced ALI.
Collapse
Affiliation(s)
- Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixiong Tang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changyun Yang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Jia L, Liu X, Liu X, Guan Q, Tian Y, Li J, Zhao P. Bufei Yishen formula protects the airway epithelial barrier and ameliorates COPD by enhancing autophagy through the Sirt1/AMPK/Foxo3 signaling pathway. Chin Med 2024; 19:32. [PMID: 38413976 PMCID: PMC10900682 DOI: 10.1186/s13020-024-00905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECT Bufei Yishen formula (BYF), a traditional Chinese medicine alleviates COPD symptoms and suppresses airway epithelial inflammation. In this study, we determined whether BYF protects the airway epithelial barrier from destruction in COPD rats. METHODS The protective effects of BYF on the airway epithelial barrier were examined in a rat COPD model. BEAS-2B epithelial cells were exposed to cigarette smoke extract (CSE) to determine the effect of BYF on epithelial barrier function. Transcriptomic and network analyses were conducted to identify the protective mechanisms. RESULTS Oral BYF reduced the severity of COPD in rats by suppressing the decline in lung function, pathological changes, inflammation, and protected airway epithelial barrier function by upregulating apical junction proteins, including occludin (OCLN), zonula occludens (ZO)-1, and E-cadherin (E-cad). BYF treatment reduced epithelial permeability, and increased TEER as well as the apical junction proteins, OCLN, ZO-1, and E-cad in BEAS-2B cells exposed to CSE. Furthermore, 58 compounds identified in BYF were used to predict 421 potential targets. In addition, the expression of 572 differentially expressed genes (DEGs) was identified in CSE-exposed BEAS-2B cells. A network analysis of the 421 targets and 572 DEGs revealed that BYF regulates multiple pathways, of which the Sirt1, AMPK, Foxo3, and autophagy pathways may be the most important with respect to protective mechanisms. Moreover, in vitro experiments confirmed that nobiletin, one of the active compounds in BYF, increased apical junction protein levels, including OCLN, ZO-1, and E-cad. It also increased LC3B and phosphorylated AMPK levels and decreased the phosphorylation of FoxO3a. CONCLUSIONS BYF protects the airway epithelial barrier in COPD by enhancing autophagy through regulation of the SIRT1/AMPK/FOXO3 signaling pathway.
Collapse
Affiliation(s)
- Lidan Jia
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan Province, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xinguang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Qingzhou Guan
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan Province, China.
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P. R. China, Zhengzhou, 450046, Henan Province, China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| |
Collapse
|
29
|
Hafa L, Breideband L, Ramirez Posada L, Torras N, Martinez E, Stelzer EHK, Pampaloni F. Light Sheet-Based Laser Patterning Bioprinting Produces Long-Term Viable Full-Thickness Skin Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306258. [PMID: 37822216 DOI: 10.1002/adma.202306258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. 3D bioprinting stands out for its design flexibility and reproducibility. Here, an integrated fluorescent light sheet bioprinting and imaging system is presented that combines high printing speed (0.66 mm3 /s) and resolution (9 µm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering.
Collapse
Affiliation(s)
- Levin Hafa
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Louise Breideband
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Lucas Ramirez Posada
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Núria Torras
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Elena Martinez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Ernst H K Stelzer
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Institute of Cell Biology and Neurosciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Liu Y, Wu J, Tan L, Li Z, Gao P, He S, Wang Q, Tang D, Wang C, Wang F, Li P, Liu J. (-)-Syringaresinol attenuates ulcerative colitis by improving intestinal epithelial barrier function and inhibiting inflammatory responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155292. [PMID: 38190784 DOI: 10.1016/j.phymed.2023.155292] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/02/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND (-)-Syringaresinol (SYR), a natural lignan with significant antioxidant and anti-inflammatory activities, possesses various pharmacological benefits including cardio-protective, antibacterial, anticancer, and anti-aging effects. It was shown that the effectiveness of (+)-syringaresinol diglucoside on the ulcerative colitis (UC) was attributed to the active metabolite (+)-syringaresinol (the enantiomor of SYR). However, the efficacy of SYR against UC remains unclear, and the associated molecular mechanism has not been revealed yet PURPOSE: This study aimed to assess the protective effect of SYR in UC and its underlying mechanism STUDY DESIGN AND METHODS: We examined SYR's protective impact on the intestinal epithelial barrier and its ability to inhibit inflammatory responses in both a lipopolysaccharide (LPS)-induced Caco-2 cell model and a dextran sodium sulfate (DSS)-induced UC mouse model. We also explored the potential signaling pathways regulated by SYR using transcriptome analysis and western blot assay RESULTS: In Caco-2 cells, SYR significantly increased trans-epithelial electrical resistance, reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), and cyclooxygenase-2 (COX-2) levels, and enhanced cellular tight junction protein expression and distribution. In mice with UC, oral treatment with SYR (10, 20, 40 mg·kg-1) dose-dependently increased body weight, colon length, and expression of tight junction proteins, decreased disease activity index score, spleen coefficient, cytokine serum levels, bacterial translocation, and intestinal damage, and also preserved the ultrastructure of colonic mucosal cells. Transcriptomics indicated that the anti-UC effect of SYR is mediated via the PI3K-Akt/MAPK/Wnt signaling pathway. CONCLUSION In summary, SYR effectively mitigated the development of UC by enhancing the intestinal epithelial barrier function and attenuating the inflammatory response. The plant-derived product SYR might be a potentially effective therapeutical agent against UC.
Collapse
Affiliation(s)
- Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Junzhe Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Peng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China.
| |
Collapse
|
31
|
Xu Y, Park SH, Gye MC. Head dysgenesis and disruption of cranial neural crest stem cells behaviour by 4-octylphenol in fire-bellied toad Bombina orientalis embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122697. [PMID: 37804908 DOI: 10.1016/j.envpol.2023.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Alkylphenolic endocrine disruptors (Eds) have been known to affect development of the descendants of multipotent neural crest cells (NCCs) in amphibian embryos. To unravel the mechanism of head dysgenesis induced by alkylphenols in amphibians, the effect of 4-octylphenol (OP) on the differentiation of cranial NCCs in developing embryos and tadpoles, ex vivo NC explant, and isolated NCCs was examined in fire-bellied toad Bombina orientalis with 0, 1, 2, 5, 10, 25 and 50 μM concentrations. Following OP treatment, head cartilages were frequently absent together with the decreased col2a1 mRNA level in tadpoles. While the lipid hydroperoxide (LPO), endoplasmic reticulum stress (ERS), apoptosis, and DNA fragmentation were significantly increased in stage 22 neulurae and heads of stage 45 tadpoles. In stage 22 neulurae, OP decreased sox9 mRNA, the master transcription factor for chondrogenic differentiation and increased undifferentiated NCC markers. The ectopic NCCs were found in endoderm while mesodermal SOX10(+) cells were decreased. In cranial NCCs isolated from stage 22 embryos, OP treatment decreased cellular survival and increased apoptosis, epithelial-mesenchymal transition (EMT) and cell migration. In chondrogenic induced cranial NC explants, OP treatment decreased SOX9(+) chondrocytes and cartilage development. Together, OP potentiated oxidative damage, apoptosis, EMT, and ectopic migration of NCCs. Considering that tissue differentiation requires stem cells to activate the molecular mechanism of differentiation at the correct location during embryonic development, these changes caused by OP may inhibit sox9-dependent chondrogenic differentiation of cranial NCCs, leading to head dysgenesis in B. orientalis embryos. Therefore, developing multipotent NCCs could be an important target of OP, provides new direction for the estimation of the risk of EDs exposure in human and wildlife animals.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
32
|
Xiong L, Lin T, Yue X, Zhang S, Liu X, Chen F, Zhang S, Guan W. Maternal Selenium-Enriched Yeast Supplementation in Sows Enhances Offspring Growth and Antioxidant Status through the Nrf2/Keap1 Pathway. Antioxidants (Basel) 2023; 12:2064. [PMID: 38136184 PMCID: PMC10740904 DOI: 10.3390/antiox12122064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This study evaluated the effects of maternal selenium-enriched yeast (SeY) supplementation during late gestation and lactation on sow performance, transfer of selenium (Se) and redox status, and gut microbiota community, as well as on the gut health of offspring. Seventy pregnant sows on day 85 of gestation were randomly allocated to the following two treatments: (1) sows who were fed a basal diet (basal diet contained 0.3 mg/kg Se as Na2SeO3, n = 35); (2) and sows who were fed a SeY-supplemented diet (basal diet with 0.2 mg/kg Se as SeY, n = 35). The offspring piglets were only cross-fostered within the group on day 3 of lactation (L3) according to the pig farm epidemic prevention policy. The plasma, milk, and feces samples from 10 sows, as well as plasma and intestinal samples per treatment, were collected on L1 and L21, respectively. Our results showed that maternal SeY supplementation increased the first week average weight and ADG of piglets (p < 0.05). Compared with the CON group, the SeY supplementation increased the Se content in the plasma and milk of sows and the plasma of piglets on L1 and L21 (p < 0.05). In addition, in sows, the levels of fat in the milk on L21, the level of IgA, T-AOC, and GSH-Px in the plasma on L21, and the level of T-AOC and GSH-Px in the colostrum were increased, while the MDA content was decreased in the plasma on L1 and in the colostrum and milk on L14 (p < 0.05). In the piglet plasma, the levels of IgA on L1 and L21, GSH-Px on L1, and GSH on L21 were increased, while the MDA content was decreased on L1 (p < 0.05). Maternal SeY supplementation up-regulated the small intestinal protein abundances of MUC1, E-cadherin, ZO-1, occludin, and claudin and activated the Nrf2/Keap1 signaling pathway in weaned offspring piglets. The 16S rRNA sequencing results showed that fecal microbiota had distinct separations during lactation, and the relative abundances of unclassified_f_Lachnospiraceae, Prevotaceae_UCG-001, and Lachnospiraceae_NK4A136_group were increased on L1. Collectively, the current findings suggest that maternal SeY supplementation during late gestation and lactation could improve the piglet's growth performance, Se status, antioxidant capacity and immunoglobulins transfer at the first week of lactation, as well as alter the fecal microbiota composition by increasing antioxidative-related and SCFA-producing microbiota in sows. These changes contributed to enhancing the small intestinal barrier function and activating the Nrf2/Keap1 pathway in offspring.
Collapse
Affiliation(s)
- Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.X.); (T.L.); (X.Y.); (S.Z.); (X.L.); (F.C.)
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
33
|
Prasad K, Sasi S, Weerasinghe J, Levchenko I, Bazaka K. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 2023; 28:7481. [PMID: 38005203 PMCID: PMC10673009 DOI: 10.3390/molecules28227481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of antibiotic resistant microorganisms possesses a great threat to human health and the environment. Considering the exponential increase in the spread of antibiotic resistant microorganisms, it would be prudent to consider the use of alternative antimicrobial agents or therapies. Only a sustainable, sustained, determined, and coordinated international effort will provide the solutions needed for the future. Plant secondary metabolites show bactericidal and bacteriostatic activity similar to that of conventional antibiotics. However, to effectively eliminate infection, secondary metabolites may need to be activated by heat treatment or combined with other therapies. Cold atmospheric plasma therapy is yet another novel approach that has proven antimicrobial effects. In this review, we explore the physiochemical mechanisms that may give rise to the improved antimicrobial activity of secondary metabolites when combined with cold atmospheric plasma therapy.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Syamlal Sasi
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Janith Weerasinghe
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| | - Igor Levchenko
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, Singapore 637616, Singapore
| | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia; (S.S.); (J.W.); (I.L.)
| |
Collapse
|
34
|
Naser AN, Lu Q, Chen YH. Trans-Compartmental Regulation of Tight Junction Barrier Function. Tissue Barriers 2023; 11:2133880. [PMID: 36220768 PMCID: PMC10606786 DOI: 10.1080/21688370.2022.2133880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/17/2022] Open
Abstract
Tight junctions (TJs) are the most apical components of junctional complexes in epithelial and endothelial cells. Barrier function is one of the major functions of TJ, which restricts the ions and small water-soluble molecules from passing through the paracellular pathway. Adherens junctions (AJs) play an important role in cell-cell adhesion and cell signaling. Gap junctions (GJs) are intercellular channels regulating electrical and metabolic signals between cells. It is well known that TJ integral membrane proteins, such as claudins and occludins, are the molecular building blocks responsible for TJ barrier function. However, recent studies demonstrate that proteins of other junctional complexes can influence and regulate TJ barrier function. Therefore, the crosstalk between different cell junctions represents a common means to modulate cellular activities. In this review, we will discuss the interactions among TJ, AJ, and GJ by focusing on how AJ and GJ proteins regulate TJ barrier function in different biological systems.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| |
Collapse
|
35
|
Díez MC, Przyborski S, Del Cerro A, Alonso-Guervós M, Iglesias-Cabo T, Carrocera S, García MA, Fernández M, Alonso L, Muñoz M. Generation of a novel three-dimensional scaffold-based model of the bovine endometrium. Vet Res Commun 2023; 47:1721-1733. [PMID: 37154859 PMCID: PMC10484811 DOI: 10.1007/s11259-023-10130-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losses in livestock species. The present study aimed to generate an innovative, reproducible, and functional 3D scaffold-based model of the bovine endometrium structurally robust for long term-culture. We developed a multicellular model containing both endometrial epithelial and stromal cells. Epithelial cells organized to form a luminal-like epithelial layer on the surface of the scaffold. Stromal cells produced their own extracellular matrix forming a stable subepithelial compartment that physiologically resembles the normal endometrium. Both cell types released prostaglandin E2 and prostaglandin F2α following a treatment with oxytocin and arachidonic acid. Additionally signal pathways mediating oxytocin and arachidonic acid stimulation of prostaglandin synthesis were analyzed by real time PCR (RT-PCR). Oxytocin receptor (OXTR), prostaglandin E2 receptor 2 (EP2), prostaglandin E2 receptor 4 (EP4), prostaglandin F receptor (PTGFR), prostaglandin E synthase (PTGES), PGF-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (COX-2) expression was detected in both control and treatment groups, however, only significant changes in abundance of OXTR mRNA transcripts were found. The results obtained by this study are a step forward in bovine in vitro culture technology. This 3D scaffold-based model provides a platform to study regulatory mechanisms involved in endometrial physiology and can set the basis for a broader tool for designing and testing novel therapeutic strategies for recurrent uterine pathologies.
Collapse
Affiliation(s)
- M C Díez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Área de Genética y Reproducción Animal. Camino de Rioseco, Deva Gijón, 1225 - 33394, Asturias, Spain
| | - S Przyborski
- Department of Bioscience, Durham University, Durham, DH1 3LE, UK
| | - A Del Cerro
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Área de Genética y Reproducción Animal. Camino de Rioseco, Deva Gijón, 1225 - 33394, Asturias, Spain
| | - M Alonso-Guervós
- Optical Microscopy and Image Processing Unit, Scientific-Technical Services, University of Oviedo, Asturias, Spain
| | - T Iglesias-Cabo
- Scientific-Technical Services, Statistical Consulting Unit, University of Oviedo, Asturias, Spain
| | - S Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Área de Genética y Reproducción Animal. Camino de Rioseco, Deva Gijón, 1225 - 33394, Asturias, Spain
| | - M A García
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Área de Genética y Reproducción Animal. Camino de Rioseco, Deva Gijón, 1225 - 33394, Asturias, Spain
| | - M Fernández
- Asociación. Española de Criadores de Ganado Vacuno Selecto Raza Asturiana de los Valles, Asturias, Spain
| | - L Alonso
- Matadero Central de Asturias, Asturias, Spain
| | - M Muñoz
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Área de Genética y Reproducción Animal. Camino de Rioseco, Deva Gijón, 1225 - 33394, Asturias, Spain.
| |
Collapse
|
36
|
Chatziparasidis G, Bush A, Chatziparasidi MR, Kantar A. Airway epithelial development and function: A key player in asthma pathogenesis? Paediatr Respir Rev 2023; 47:51-61. [PMID: 37330410 DOI: 10.1016/j.prrv.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
Though asthma is a common and relatively easy to diagnose disease, attempts at primary or secondary prevention, and cure, have been disappointing. The widespread use of inhaled steroids has dramatically improved asthma control but has offered nothing in terms of altering long-term outcomes or reversing airway remodeling and impairment in lung function. The inability to cure asthma is unsurprising given our limited understanding of the factors that contribute to disease initiation and persistence. New data have focused on the airway epithelium as a potentially key factor orchestrating the different stages of asthma. In this review we summarize for the clinician the current evidence on the central role of the airway epithelium in asthma pathogenesis and the factors that may alter epithelial integrity and functionality.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece; Faculty of Nursing, Thessaly University, Greece.
| | - Andrew Bush
- National Heart and Lung Institute, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, University and Research Hospitals, Bergamo, Italy
| |
Collapse
|
37
|
Zhang W, Chen Y, Li M, Cao S, Wang N, Zhang Y, Wang Y. A PDA-Functionalized 3D Lung Scaffold Bioplatform to Construct Complicated Breast Tumor Microenvironment for Anticancer Drug Screening and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302855. [PMID: 37424037 PMCID: PMC10502821 DOI: 10.1002/advs.202302855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/11/2023]
Abstract
2D cell culture occupies an important place in cancer progression and drug discovery research. However, it limitedly models the "true biology" of tumors in vivo. 3D tumor culture systems can better mimic tumor characteristics for anticancer drug discovery but still maintain great challenges. Herein, polydopamine (PDA)-modified decellularized lung scaffolds are designed and can serve as a functional biosystem to study tumor progression and anticancer drug screening, as well as mimic the tumor microenvironment. PDA-modified scaffolds with strong hydrophilicity and excellent cell compatibility can promote cell growth and proliferation. After 96 h treatment with 5-FU, cisplatin, and DOX, higher survival rates in PDA-modified scaffolds are observed compared to nonmodified scaffolds and 2D systems. The E-cadhesion formation, HIF-1α-mediated senescence decrease, and tumor stemness enhancement can drive drug resistance and antitumor drug screening of breast cancer cells. Moreover, there is a higher survival rate of CD45+ /CD3+ /CD4+ /CD8+ T cells in PDA-modified scaffolds for potential cancer immunotherapy drug screening. This PDA-modified tumor bioplatform will supply some promising information for studying tumor progression, overcoming tumor resistance, and screening tumor immunotherapy drugs.
Collapse
Affiliation(s)
- Wanheng Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yan Chen
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Mengyuan Li
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Shucheng Cao
- Department of Quantitative Life SciencesMcGill UniversityMontréalQuébecH3A 0G4Canada
| | - Nana Wang
- Department of PediatricsShanghai General HospitalShanghai Jiao Tong UniversityShanghai200080China
| | - Yingjian Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
38
|
Kefi M, Balabanidou V, Sarafoglou C, Charamis J, Lycett G, Ranson H, Gouridis G, Vontas J. ABCH2 transporter mediates deltamethrin uptake and toxicity in the malaria vector Anopheles coluzzii. PLoS Pathog 2023; 19:e1011226. [PMID: 37585450 PMCID: PMC10461823 DOI: 10.1371/journal.ppat.1011226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Contact insecticides are primarily used for the control of Anopheles malaria vectors. These chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality compared to control mosquitoes, coincident with a corresponding increase in 14C-deltamethrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly localized in the legs and head appendages, and more specifically, the apical part of the epidermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect role, based on the orthology with other insect ABCH transporters involved with lipid transport and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slowing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs. Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiological homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Jason Charamis
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
39
|
Sztandera-Tymoczek M, Szuster-Ciesielska A. Fungal Aeroallergens-The Impact of Climate Change. J Fungi (Basel) 2023; 9:jof9050544. [PMID: 37233255 DOI: 10.3390/jof9050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The incidence of allergic diseases worldwide is rapidly increasing, making allergies a modern pandemic. This article intends to review published reports addressing the role of fungi as causative agents in the development of various overreactivity-related diseases, mainly affecting the respiratory tract. After presenting the basic information on the mechanisms of allergic reactions, we describe the impact of fungal allergens on the development of the allergic diseases. Human activity and climate change have an impact on the spread of fungi and their plant hosts. Particular attention should be paid to microfungi, i.e., plant parasites that may be an underestimated source of new allergens.
Collapse
Affiliation(s)
- Monika Sztandera-Tymoczek
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
40
|
Li K, Mei X, Xu K, Jia L, Zhao P, Tian Y, Li J. Comparative study of cigarette smoke, Klebsiella pneumoniae, and their combination on airway epithelial barrier function in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:1133-1142. [PMID: 36757011 DOI: 10.1002/tox.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The airway epithelium acts as a physical barrier to protect pulmonary airways against pathogenic microorganisms and toxic substances, such as cigarette smoke (CS), bacteria, and viruses. The disruption of the structural integrity and dysfunction of the airway epithelium is related to the occurrence and progression of chronic obstructive pulmonary disease. PURPOSE The aim of this study is to compare the effects of CS, Klebsiella pneumoniae (KP), and their combination on airway epithelial barrier function. METHODS The mice were exposed to CS, KP, and their combination from 1 to 8 weeks. After the cessation of CS and KP at Week 8, we observed the recovery of epithelial barrier function in mice for an additional 16 weeks. To compare the epithelial barrier function among different groups over time, the mice were sacrificed at Weeks 4, 8, 16, and 24 and then the lungs were harvested to detect the pulmonary pathology, inflammatory cytokines, and tight junction proteins. To determine the underlying mechanisms, the BEAS-2B cells were treated with an epidermal growth factor receptor (EGFR) inhibitor (AG1478). RESULTS The results of this study suggested that the decreased lung function, increased bronchial wall thickness (BWT), elevated inflammatory factors, and reduced tight junction protein levels were observed at Week 8 in CS-induced mice and these changes persisted until Week 16. In the KP group, increased BWT and elevated inflammatory factors were observed only at Week 8, whereas in the CS + KP group, decreased lung function, lung tissue injury, inflammatory cell infiltration, and epithelial barrier impairment were observed at Week 4 and persisted until Week 24. To further determine the mechanisms of CS, bacteria, and their combination on epithelial barrier injury, we investigated the changes of EGFR and its downstream protein in the lung tissues of mice and BEAS-2B cells. Our research indicated that CS, KP, or their combination could activate EGFR, which can phosphorylate and activate ERK1/2, and this effect was more pronounced in the CS + KP group. Furthermore, the EGFR inhibitor AG1478 suppressed the phosphorylation of ERK1/2 and subsequently upregulated the expression of ZO-1 and occludin. In general, these results indicated that the combination of CS and KP caused more severe and enduring damage to epithelial barrier function than CS or KP alone, which might be associated with EGFR/ERK1/2 signaling. CONCLUSION Epithelial barrier injury occurred earlier, was more severe, and had a longer duration when induced by the combination of CS and KP compared with the exposure to CS or KP alone, which might be associated with EGFR/ERK signaling.
Collapse
Affiliation(s)
- Kangchen Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Mei
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kexin Xu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lidan Jia
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
41
|
Jia Y, Hu J, An K, Zhao Q, Dang Y, Liu H, Wei Z, Geng S, Xu F. Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat Commun 2023; 14:2478. [PMID: 37120459 PMCID: PMC10148840 DOI: 10.1038/s41467-023-38209-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic skin disease caused by skin immune dyshomeostasis and accompanied by severe pruritus. Although oxidative stress and mechanical scratching can aggravate AD inflammation, treatment targeting scratching is often overlooked, and the efficiency of mechano-chemically synergistic therapy remains unclear. Here, we find that enhanced phosphorylation of focal adhesion kinase (FAK) is associated with scratch-exacerbated AD. We then develop a multifunctional hydrogel dressing that integrates oxidative stress modulation with FAK inhibition to synergistically treat AD. We show that the adhesive, self-healing and antimicrobial hydrogel is suitable for the unique scratching and bacterial environment of AD skin. We demonstrate that it can scavenge intracellular reactive oxygen species and reduce mechanically induced intercellular junction deficiency and inflammation. Furthermore, in mouse AD models with controlled scratching, we find that the hydrogel alleviates AD symptoms, rebuilds the skin barrier, and inhibits inflammation. These results suggest that the hydrogel integrating reactive oxygen species scavenging and FAK inhibition could serve as a promising skin dressing for synergistic AD treatment.
Collapse
Affiliation(s)
- Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Jiahui Hu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China
| | - Keli An
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Qiang Zhao
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China
| | - Yang Dang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, 710004, Xi'an, Shaanxi, P. R. China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, 710049, Xi'an, China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, 710049, Xi'an, China.
| |
Collapse
|
42
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
43
|
McArthur S. Regulation of Physiological Barrier Function by the Commensal Microbiota. Life (Basel) 2023; 13:life13020396. [PMID: 36836753 PMCID: PMC9964120 DOI: 10.3390/life13020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A fundamental characteristic of living organisms is their ability to separate the internal and external environments, a function achieved in large part through the different physiological barrier systems and their component junctional molecules. Barrier integrity is subject to multiple influences, but one that has received comparatively little attention to date is the role of the commensal microbiota. These microbes, which represent approximately 50% of the cells in the human body, are increasingly recognized as powerful physiological modulators in other systems, but their role in regulating barrier function is only beginning to be addressed. Through comparison of the impact commensal microbes have on cell-cell junctions in three exemplar physiological barriers-the gut epithelium, the epidermis and the blood-brain barrier-this review will emphasize the important contribution microbes and microbe-derived mediators play in governing barrier function. By extension, this will highlight the critical homeostatic role of commensal microbes, as well as identifying the puzzles and opportunities arising from our steadily increasing knowledge of this aspect of physiology.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
44
|
Abstract
The epidermis is a stratified squamous epithelium that forms the outermost layer of the skin. Its primary function is to act as a barrier, keeping pathogens and toxins out and moisture in. This physiological role has necessitated major differences in the organization and polarity of the tissue as compared to simple epithelia. We discuss four aspects of polarity in the epidermis - the distinctive polarities of basal progenitor cells as well as differentiated granular cells, the polarity of adhesions and the cytoskeleton across the tissue as keratinocytes differentiate, and the planar cell polarity of the tissue. These distinctive polarities are essential for the morphogenesis and the function of the epidermis and have also been implicated in regulating tumor formation.
Collapse
|
45
|
Manero A, Crawford KE, Prock‐Gibbs H, Shah N, Gandhi D, Coathup MJ. Improving disease prevention, diagnosis, and treatment using novel bionic technologies. Bioeng Transl Med 2023; 8:e10359. [PMID: 36684104 PMCID: PMC9842045 DOI: 10.1002/btm2.10359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023] Open
Abstract
Increased human life expectancy, due in part to improvements in infant and childhood survival, more active lifestyles, in combination with higher patient expectations for better health outcomes, is leading to an extensive change in the number, type and manner in which health conditions are treated. Over the next decades as the global population rapidly progresses toward a super-aging society, meeting the long-term quality of care needs is forecast to present a major healthcare challenge. The goal is to ensure longer periods of good health, a sustained sense of well-being, with extended periods of activity, social engagement, and productivity. To accomplish these goals, multifunctionalized interfaces are an indispensable component of next generation medical technologies. The development of more sophisticated materials and devices as well as an improved understanding of human disease is forecast to revolutionize the diagnosis and treatment of conditions ranging from osteoarthritis to Alzheimer's disease and will impact disease prevention. This review examines emerging cutting-edge bionic materials, devices and technologies developed to advance disease prevention, and medical care and treatment in our elderly population including developments in smart bandages, cochlear implants, and the increasing role of artificial intelligence and nanorobotics in medicine.
Collapse
Affiliation(s)
- Albert Manero
- Limbitless SolutionsUniversity of Central FloridaOrlandoFloridaUSA
- Biionix ClusterUniversity of Central FloridaOrlandoFloridaUSA
| | - Kaitlyn E. Crawford
- Biionix ClusterUniversity of Central FloridaOrlandoFloridaUSA
- Department of Materials Science and EngineeringUniversity of Central FloridaOrlandoFloridaUSA
| | | | - Neel Shah
- College of MedicineUniversity of Central FloridaOrlandoFloridaUSA
| | - Deep Gandhi
- College of MedicineUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
46
|
Chamseddine D, Mahmud SA, Westfall AK, Castoe TA, Berg RE, Pellegrino MW. The mitochondrial UPR regulator ATF5 promotes intestinal barrier function via control of the satiety response. Cell Rep 2022; 41:111789. [PMID: 36516750 PMCID: PMC9805788 DOI: 10.1016/j.celrep.2022.111789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Organisms use several strategies to mitigate mitochondrial stress, including the activation of the mitochondrial unfolded protein response (UPRmt). The UPRmt in Caenorhabditis elegans, regulated by the transcription factor ATFS-1, expands on this recovery program by inducing an antimicrobial response against pathogens that target mitochondrial function. Here, we show that the mammalian ortholog of ATFS-1, ATF5, protects the host during infection with enteric pathogens but, unexpectedly, by maintaining the integrity of the intestinal barrier. Intriguingly, ATF5 supports intestinal barrier function by promoting a satiety response that prevents obesity and associated hyperglycemia. This consequently averts dysregulated glucose metabolism that is detrimental to barrier function. Mechanistically, we show that intestinal ATF5 stimulates the satiety response by transcriptionally regulating the gastrointestinal peptide hormone cholecystokinin, which promotes the secretion of the hormone leptin. We propose that ATF5 protects the host from enteric pathogens by promoting intestinal barrier function through a satiety-response-mediated metabolic control mechanism.
Collapse
Affiliation(s)
- Douja Chamseddine
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Siraje A Mahmud
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Rance E Berg
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mark W Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
47
|
Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol 2022; 87:17-31. [PMID: 36354098 DOI: 10.1016/j.semcancer.2022.10.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Metastatic cancer is almost always terminal, and more than 90% of cancer deaths result from metastatic disease. Combating cancer metastasis and post-therapeutic recurrence successfully requires understanding each step of metastatic progression. This review describes the current state of knowledge of the etiology and mechanism of cancer progression from primary tumor growth to the formation of new tumors in other parts of the body. Open questions, avenues for future research, and therapeutic approaches with the potential to prevent or inhibit metastasis through personalization to each patient's mutation and/or immune profile are also highlighted.
Collapse
Affiliation(s)
- Maria Castaneda
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Petra den Hollander
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Nick A Kuburich
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA
| | - Jeffrey M Rosen
- Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sendurai A Mani
- Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA; Legoretta Cancer Center, Brown University, Providence, RI 021912, USA.
| |
Collapse
|
48
|
McEvoy E, Sneh T, Moeendarbary E, Javanmardi Y, Efimova N, Yang C, Marino-Bravante GE, Chen X, Escribano J, Spill F, Garcia-Aznar JM, Weeraratna AT, Svitkina TM, Kamm RD, Shenoy VB. Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity. Nat Commun 2022; 13:7089. [PMID: 36402771 PMCID: PMC9675837 DOI: 10.1038/s41467-022-34701-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the regulation of endothelial junctions as dependent on the feedback between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Simulations reveal that active cell tension can stabilize cadherin bonds, but excessive RhoA signaling can drive bond dissociation and junction failure. While actin polymerization aids gap closure, high levels of Rac1 can induce junction weakening. Combining the modeling framework with experiments, our model predicts the influence of pharmacological treatments on the junction state and identifies that a critical balance between RhoA and Rac1 expression is required to maintain junction stability. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.
Collapse
Affiliation(s)
- Eoin McEvoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biomedical Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Tal Sneh
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Nadia Efimova
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xingyu Chen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jorge Escribano
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
50
|
Beier LS, Waldow A, Khomeijani Farahani S, Mannweiler R, Vidal-Y-Sy S, Brandner JM, Piontek J, Günzel D. Claudin targeting as an effective tool for directed barrier modulation of the viable epidermis. Ann N Y Acad Sci 2022; 1517:251-265. [PMID: 35994210 DOI: 10.1111/nyas.14879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Saeed Khomeijani Farahani
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roman Mannweiler
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|