1
|
Tokdemir M, Erbak E, Tunçez FT, Elmali F, Yilmaz HE. Evaluation of leptin, insulin, orexin, neuropeptide y (NPY) levels in postmortem CSF samples in suicide deaths. J Affect Disord 2025; 381:303-309. [PMID: 40187429 DOI: 10.1016/j.jad.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Suicide remains a significant global public health issue. According to the World Health Organization (WHO), suicide was the third leading cause of mortality among individuals aged 15-29 in 2021, with a total of approximately 726,000 cases reported annually. The etiology of suicide is complex, involving a combination of biological, genetic, and environmental factors, as well as family history, gender, age, personality traits, cultural background, geographic location, medical conditions, mental illnesses, addictions, and psychosocial stressors. Dysregulation of the Hypothalamic Pituitary Adrenal (HPA) axis and the effects of chronic stress play significant roles in the pathophysiology of mood disorders and suicidal behavior. OBJECTIVE This study aimed to investigate the levels of Neuropeptide Y (NPY), Orexin, Leptin, and Insulin in cerebrospinal fluid (CSF) samples of individuals who died by suicide compared to those who died from non-suicidal causes. METHOD The study examined 35 cases of suicide by hanging and 35 cases of non-suicidal deaths unrelated to head trauma. Levels of NPY, Orexin, Leptin, and Insulin in CSF samples collected during toxicological examinations were compared between suicide and control groups. RESULTS NPY levels were significantly higher in the suicide group than in the control group (p < 0.001). No statistically significant differences were found in Orexin (p = 0.194), Insulin (p = 0.892), or Leptin (p = 0.445) levels between the groups. CONCLUSIONS While no definitive biomarkers for diagnosing or predicting suicidal behavior exist, this panel of biomarkers could provide valuable insights for developing targeted treatments to manage patients at risk.
Collapse
Affiliation(s)
- Mehmet Tokdemir
- Izmir Katip Celebi University School of Medicine, Department of Forensic Medicine, Izmir, Turkey; Council of Forensic Medicine Chairmanship of Group, Izmir, Turkey.
| | - Esra Erbak
- Izmir Katip Celebi University School of Medicine, Department of Forensic Medicine, Izmir, Turkey
| | - Ferhat Turgut Tunçez
- Izmir Katip Celebi University School of Medicine, Department of Forensic Medicine, Izmir, Turkey
| | - Ferhan Elmali
- Izmir Katip Celebi University School of Medicine, Department of Biostatistics, Izmir, Turkey
| | - Huriye Erbak Yilmaz
- Izmir Katip Celebi University School of Medicine, Department of Biochemistry, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
2
|
Ng TKS, Beck T, Liu X, Desai P, Holland T, Dhana K, Krueger K, Wilson RS, Evans DA, Rajan KB. Longitudinal associations between lipid panel and cognitive decline modified by APOE 4 carrier status in biracial community-dwelling older adults: Findings from the Chicago health and aging project. Arch Gerontol Geriatr 2025; 134:105825. [PMID: 40179541 PMCID: PMC12058384 DOI: 10.1016/j.archger.2025.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND There have been contradictory findings on the associations between lipids and cognitive decline (CD), which may be attributed to the heterogeneity in the APOE4 carrier status, given APOE's lipid transportation roles. However, extant studies rarely examined the modifying effects of APOE4 carrier status on the associations between lipids and CD. METHODS We analyzed the Chicago Health and Aging Project, a 20-year cohort study comprising older adults with lipid panel assayed, i.e., total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL), and longitudinal cognitive tests. We ran adjusted linear mixed-effects models, regressing cognitive test composite on each of the four lipids independently, first with the total sample and subsequently using interaction and stratified subgroup analyses, examining the modifying effects of APOE4 carrier status on the associations. RESULTS 3,496 biracial community-dwelling older adults were recruited from the South side of Chicago (58% African American & 64% women; mean follow-up = 4.6 years). In the total sample, there was a borderline association between TG and CD, estimate (SD, p-value) = 0.0001 (0.0000,0.0565). No associations were detected with other lipids. In the interaction and subgroup analyses, only in ε4 carriers that higher TC levels were significantly associated with accelerated CD, -0.020 (0.009,0.035), whereas higher TG levels were significantly associated with decelerated CD, 0.001 (0.001,0.045). No modifying effects of ε4 carrier status were detected with other lipids. DISCUSSION Specific lipids, i.e., TC and TG, were associated with CD only in the ε4 carriers, highlighting the potential importance of measuring APOE4 status to better inform risk prediction and treatment.
Collapse
Affiliation(s)
- Ted K S Ng
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.
| | - Todd Beck
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Xiaoran Liu
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Pankaja Desai
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Thomas Holland
- Rush University Medical Center, Rush Institute for Healthy Aging & College of Health Sciences, USA
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kristin Krueger
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Robert S Wilson
- Rush Alzheimer's Disease Research Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Denis A Evans
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kumar B Rajan
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Research Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Zhou Y, You Y, Zhang Y, Zhang Y, Yuan C, Xu X. Multimorbidity and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. J Prev Alzheimers Dis 2025:100164. [PMID: 40246681 DOI: 10.1016/j.tjpad.2025.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Chronic diseases (e.g., hypertension, diabetes, and heart diseases) have been proposed as marked predictors of incident dementia. However, synthesised evidence on the effect of multimorbidity on dementia is still lacking. We aim to summarise the association between multimorbidity and risk of dementia in longitudinal cohorts. METHODS In this systematic review and meta-analysis, we conducted a systematic search in PubMed, Web of Science and Embase from inception to Dec 14, 2024, to identify longitudinal cohort studies reporting the association between multimorbidity or multimorbidity patterns and risk of dementia. Information of included studies were extracted by three reviewers (YaZ, YY and YuZ), and the quality assessment was conducted using the Newcastle-Ottawa Scale. The inverse-variance weighted random effects meta-analysis was performed to obtain the pooled hazard ratios (HRs) and 95 % confidence intervals (CIs) for dementia associated with multimorbidity and cardiometabolic multimorbidity (CMM). Cochran's Q test and the I2 statistic were used to indicate heterogeneity among the studies. Meta-regression analysis, subgroup analysis and sensitivity analysis were conducted to determine any valid sources of heterogeneity. This study was registered with PROSPERO (CRD42023403684). RESULTS We included 17 longitudinal cohort studies (2262,885 middle-aged and older participants) in the systematic review, of which seven were included in meta-analysis. All studies presented moderate to high methodological quality. Meta-analysis showed a positive association between multimorbidity and incident dementia (HR=1.53, 95 % CI=1.12 to 2.09), with substantial heterogeneity (I2=95.2 %). Studies using health records to measure dementia tend to find a stronger positive relationship between multimorbidity and risk of dementia than those using self-report (HRhealth records=1.94, 95 % CI=1.35 to 2.78, I2=94 %; HRself-report=1.17, 95 % CI=1.07 to 1.28, I2=0 %). The impacts of CMM were also observed, and the HRs for dementia ranged from 2.49 (combination of heart diseases and stroke: 95 % CI=1.64 to 3.78) to 3.77 (combination of diabetes, heart diseases and stroke: 95 % CI=2.02 to 7.02). The heterogeneity was moderate, with I2 ranging from 46.9 % (p for heterogeneity=0.152) to 84.1 % (p for heterogeneity=0.002). The impacts of number of diseases, multimorbidity clusters, and multimorbidity trajectory on risk of dementia were narratively summarised due to lacking comparable studies. Limited evidence (only one study) precluded quantitative synthesis for the association of physical and psychological multimorbidity with dementia. CONCLUSION Multimorbidity and CMM pattern were significantly associated with risk of dementia, while the effect of physical and psychological multimorbidity remain inconclusive. Individuals affected by multimorbidity should be prioritised in risk factor modification and dementia prevention. Preventing the development of multimorbidity is also crucial-particularly those who already have one chronic disease-in order to maintain cognitive health.
Collapse
Affiliation(s)
- Yaguan Zhou
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Yating You
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Yuting Zhang
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Yue Zhang
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Changzheng Yuan
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Xiaolin Xu
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, PR China; School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
4
|
Beura SK, Panigrahi AR, Yadav P, Kulkarni PP, Lakhanpal V, Singh B, Singh SK. Role of Thrombosis in Neurodegenerative Diseases: An Intricate Mechanism of Neurovascular Complications. Mol Neurobiol 2025; 62:4802-4836. [PMID: 39482419 DOI: 10.1007/s12035-024-04589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Thrombosis, the formation of blood clots in arteries or veins, poses a significant health risk by disrupting the blood flow. It can potentially lead to major cardiovascular complications such as acute myocardial infarction or ischemic stroke (arterial thrombosis) and deep vein thrombosis or pulmonary embolism (venous thrombosis). Nevertheless, over the course of several decades, researchers have observed an association between different cardiovascular events and neurodegenerative diseases, which progressively harm and impair parts of the nervous system, particularly the brain. Furthermore, thrombotic complications have been identified in numerous clinical instances of neurodegenerative diseases, particularly Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Substantial research indicates that endothelial dysfunction, vascular inflammation, coagulation abnormalities, and platelet hyperactivation are commonly observed in these conditions, collectively contributing to an increased risk of thrombosis. Thrombosis can, in turn, contribute to the onset, pathogenesis, and severity of these neurological disorders. Hence, this concise review comprehensively explores the correlation between cardiovascular diseases and neurodegenerative diseases, elucidating the cellular and molecular mechanisms of thrombosis in these neurodegenerative diseases. Additionally, a detailed discussion is provided on the commonly employed antithrombotic medications in the context of these neuronal diseases.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Paresh P Kulkarni
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Bhupinder Singh
- Department of Cardiology, All India Institute of Medical Sciences, Bathinda, Punjab, India, 151001
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
5
|
August I, Gagneux P, Semendeferi K, Marchetto MC. Evolution of Human Susceptibility to Alzheimer's Disease: A Review of Hypotheses and Comparative Evidence. Evol Anthropol 2025; 34:e22054. [PMID: 39806778 DOI: 10.1002/evan.22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Primates rely on memory to navigate both physical and social environments and in humans, loss of memory function leads to devastating consequences. Alzheimer's disease (AD) is a neurodegenerative disease which begins by impacting memory functioning and is ultimately fatal. AD is common across human populations and its prevalence is predicted to rise with increases in the aging population. Despite this, the full AD phenotype has not been observed in any other nonhuman primate species. While a significant amount of research has been devoted to understanding the immediate mechanisms involved in AD pathogenesis in humans, less research has focused on why humans are particularly vulnerable to neurodegenerative diseases like AD. Here we explore hypotheses on the evolution of distinct human susceptibility to AD and place these in the context of findings from comparative neuroanatomical and molecular studies and discuss recent evidence for evolutionary changes protective against AD in the primate lineage.
Collapse
Affiliation(s)
- Isabel August
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
| | - Pascal Gagneux
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, California, USA
| | - Katerina Semendeferi
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, California, USA
| | - Maria Carolina Marchetto
- Department of Anthropology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, California, USA
| |
Collapse
|
6
|
Cai Y, Kanyo J, Wilson R, Bathla S, Cardozo PL, Tong L, Qin S, Fuentes LA, Pinheiro-de-Sousa I, Huynh T, Sun L, Mansuri MS, Tian Z, Gan HR, Braker A, Trinh HK, Huttner A, Lam TT, Petsalaki E, Brennand KJ, Nairn AC, Grutzendler J. Subcellular proteomics and iPSC modeling uncover reversible mechanisms of axonal pathology in Alzheimer's disease. NATURE AGING 2025; 5:504-527. [PMID: 40065072 PMCID: PMC11922768 DOI: 10.1038/s43587-025-00823-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
Dystrophic neurites (also termed axonal spheroids) are found around amyloid deposits in Alzheimer's disease (AD), where they impair axonal electrical conduction, disrupt neural circuits and correlate with AD severity. Despite their importance, the mechanisms underlying spheroid formation remain incompletely understood. To address this, we developed a proximity labeling approach to uncover the proteome of spheroids in human postmortem and mouse brains. Additionally, we established a human induced pluripotent stem cell (iPSC)-derived AD model enabling mechanistic investigation and optical electrophysiology. These complementary approaches revealed the subcellular molecular architecture of spheroids and identified abnormalities in key biological processes, including protein turnover, cytoskeleton dynamics and lipid transport. Notably, the PI3K/AKT/mTOR pathway, which regulates these processes, was activated in spheroids. Furthermore, phosphorylated mTOR levels in spheroids correlated with AD severity in humans. Notably, mTOR inhibition in iPSC-derived neurons and mice ameliorated spheroid pathology. Altogether, our study provides a multidisciplinary toolkit for investigating mechanisms and therapeutic targets for axonal pathology in neurodegeneration.
Collapse
Affiliation(s)
- Yifei Cai
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Rashaun Wilson
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tram Huynh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Liyuan Sun
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zichen Tian
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hao-Ran Gan
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Amber Braker
- Yale College, Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Hoang Kim Trinh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Kristen J Brennand
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Liu L, He H, Du B, He Y. Nanoscale drug formulations for the treatment of Alzheimer's disease progression. RSC Adv 2025; 15:4031-4078. [PMID: 39926227 PMCID: PMC11803502 DOI: 10.1039/d4ra08128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective disease-modifying treatments. The blood-brain barrier hinders drug delivery to the brain, limiting therapeutic efficacy. Nanoparticle-based systems have emerged as promising tools to overcome these challenges. This review highlights recent advances in nanoparticle technologies for AD treatment, including liposomes, polymeric, inorganic, and biomimetic nanoparticles. These nanoparticles improve drug delivery across the blood-brain barrier, improve stability and bioavailability, and enable targeted delivery to affected brain regions. Functionalization strategies further enhance their therapeutic potential. Multifunctional nanoparticles combining therapeutic and diagnostic properties offer theranostic approaches. While progress has been made, challenges related to safety, targeting precision, and clinical translation remain. Future perspectives emphasize the need for collaborative efforts to optimize nanoparticle design, conduct rigorous studies, and accelerate the development of effective nanotherapeutics. With continued innovation, nanoparticle-based delivery systems hold great promise for revolutionizing AD treatment.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Haini He
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Bin Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610000 China
| | - Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| |
Collapse
|
8
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
9
|
Alghadir AH, Gabr SA, Iqbal A. Enhancing cognitive performance and mitigating dyslipidemia: the impact of moderate aerobic training on sedentary older adults. BMC Geriatr 2024; 24:678. [PMID: 39138393 PMCID: PMC11323678 DOI: 10.1186/s12877-024-05276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The present study aimed to evaluate the effects of 24 weeks of moderate aerobic exercise on lipids and lipoprotein levels; Lipo (a) markers, and their association with cognitive performance in healthy older adults. METHODS A total of 150 healthy subjects (100 males and 50 females; age range: 65-95 years) were recruited for this study. Based on the LOTCA test score, subjects were classified into two groups: the control group (n = 50) and the cognitive impairment group (n = 100). Cognitive functioning, leisure-time physical activity (LTPA), lipid profile, total cholesterol, TG, HDL-c, LDL-C, and lipo(a) were assessed at baseline and post-24-week aerobic exercise interventions using LOTCA battery, pre-validated Global Physical Activity Questionnaire (GPAQ) version II, colorimetric, and immunoassay techniques, respectively. RESULTS Significant improvements in cognitive function and modulation in lipid profile and lipoprotein (a) markers were reported in all older subjects following 24 weeks of moderate exercise. LOTCA-7-sets scores significantly correlated with physical activity status and the regulation of lipids and Lipo (a) markers. Physically active persons showed higher cognitive performance along with a reduction in the levels of T-Cholest., TG, LDL-C, Lipo (a), and an increase in the levels of HDL-C and aerobic fitness VO2max compared with sedentary participants. Cognitive performance correlated positively with increased aerobic fitness, HDL-C, and negatively with T-Cholest., TG, LDL-C, and Lipo (a). However, a significant increase in the improvement of motor praxis, vasomotor organization, thinking operations, attention, and concentration were reported among older adults. CONCLUSIONS The study findings revealed that supervised moderate aerobic training for 24 weeks significantly enhances cognitive functions via mitigating older adults' lipid profiles and lipoprotein (a). Cognitive performance is positively correlated with aerobic fitness and HDL-C level and negatively with T-Cholest., TH, LDL-C, and Lipo (a).
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
10
|
Terao R, Sohn BS, Yamamoto T, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Yamaguchi S, Yoshida M, Apte RS. Cholesterol Accumulation Promotes Photoreceptor Senescence and Retinal Degeneration. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39167399 PMCID: PMC11343002 DOI: 10.1167/iovs.65.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Dysregulated cholesterol metabolism is critical in the pathogenesis of AMD. Cellular senescence contributes to the development of numerous age-associated diseases. In this study, we investigated the link between cholesterol burden and the cellular senescence of photoreceptors. Methods Retinas from rod-specific ATP binding cassette subfamily A member 1 (Abca1) and G member 1 (Abcg1) (Abca1/g1-rod/-rod) knockout mice fed with a high-fat diet were analyzed for the signs of cellular senescence. Real-time quantitative PCR and immunofluorescence were used to characterize the senescence profile of the retina and cholesterol-treated photoreceptor cell line (661W). Inducible elimination of p16(Ink4a)-positive senescent cells (INK-ATTAC) mice or the administration of senolytic drugs (dasatinib and quercetin: D&Q) were used to examine the impact of senolytics on AMD-like phenotypes in Abca1/g1-rod/-rod retina. Results Increased accumulation of senescent cells as measured by markers of cellular senescence was found in Abca1/g1-rod/-rod retina. Exogenous cholesterol also induced cellular senescence in 661W cells. Selective elimination of senescent cells in Abca1/g1-rod/-rod;INK-ATTAC mice or by administration of D&Q improved visual function, lipid accumulation in retinal pigment epithelium, and Bruch's membrane thickening. Conclusions Cholesterol accumulation promotes cellular senescence in photoreceptors. Eliminating senescent photoreceptors improves visual function in a model of retinal neurodegeneration, and senotherapy offers a novel therapeutic avenue for further investigation.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Brian S. Sohn
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Taku Yamamoto
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jason Colasanti
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Charles W. Pfeifer
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Andrea Santeford
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shinobu Yamaguchi
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitsukuni Yoshida
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
11
|
Liu Z, Liu L, Heidel RE, Zhao X. Explainable AI and transformer models: Unraveling the nutritional influences on Alzheimer's disease mortality. SMART HEALTH (AMSTERDAM, NETHERLANDS) 2024; 32:100478. [PMID: 39087069 PMCID: PMC11290104 DOI: 10.1016/j.smhl.2024.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This pioneering study introduces the use of transformer-based machine learning models and explainable AI approaches to explore the impact of nutrition on Alzheimer's disease (AD) mortality. Using data from the Third National Health and Nutrition Examination Survey (Nhanes iii 1988 to 1994) and the NHANES III Mortality-Linked File (2019) databases, we investigate the intricate relationship between various nutritional factors and AD mortality. Our approach features a novel application of transformer models, which are then benchmarked against established methods like random forests and support vector machines. This comparison not only underscores the strengths of transformer models in handling complex medical datasets but also highlights their potential for providing deeper insights into disease progression. Key findings, such as the significant roles of Platelet distribution width in AD mortality in transformer and Serum Vitamin B12 in random forest, are enhanced by the use of Explainable Artificial Intelligence (XAI), particularly the Shapley Additive Explanations (SHAP) and the integrated gradient methods. This study serves as a vital step forward in applying advanced AI techniques to medical research, offering new perspectives in understanding and combating Alzheimer's Disease.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, 37916, USA
| | - Longjian Liu
- Department of Epidemiology and Biostatistic, Dornsife School of Public Health, Drexel University, 3215 Market St, Philadelphia, 19104, USA
| | - Robert E. Heidel
- Department of Surgery, Graduate School of Medicine, University of Tennessee, 1924 Alcoa Hwy, Knoxville, 37920, USA
| | - Xiaopeng Zhao
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, 37916, USA
- College of Emerging and Collaborative Studies, University of Tennessee, 527 Andy Holt Tower, Knoxville, 37996, USA
| |
Collapse
|
12
|
Lee YJ, Jang YN, Han YM, Kim HM, Seo HS, Kim HJ, Jung TW, Jeong JH, Abd El-Aty AM, Jung KO. Aster glehni Extract, Including Caffeoylquinic Acids as the Main Constituents, Induces PPAR β/δ-Dependent Muscle-Type Change and Myogenesis in Apolipoprotein E Knockout Mice. J Med Food 2024; 27:521-532. [PMID: 38651680 DOI: 10.1089/jmf.2024.k.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARβ/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARβ/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARβ/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.
Collapse
Affiliation(s)
- Yong-Jik Lee
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| | - Yoo-Na Jang
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| | - Yoon-Mi Han
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
| | - Hyun-Min Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
- Department of Medical Science, BK21 Plus KUMS Graduate Program, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul, the Republic of Korea
| | - Hyoung Ja Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, the Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, the Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Kyung Oh Jung
- Department of Anatomy, Chung-Ang University College of Medicine, Seoul, the Republic of Korea
| |
Collapse
|
13
|
Terao R, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Hase K, Yamaguchi S, Du D, Sohn BS, Sasaki Y, Yoshida M, Apte RS. LXR/CD38 activation drives cholesterol-induced macrophage senescence and neurodegeneration via NAD + depletion. Cell Rep 2024; 43:114102. [PMID: 38636518 PMCID: PMC11223747 DOI: 10.1016/j.celrep.2024.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Although dysregulated cholesterol metabolism predisposes aging tissues to inflammation and a plethora of diseases, the underlying molecular mechanism remains poorly defined. Here, we show that metabolic and genotoxic stresses, convergently acting through liver X nuclear receptor, upregulate CD38 to promote lysosomal cholesterol efflux, leading to nicotinamide adenine dinucleotide (NAD+) depletion in macrophages. Cholesterol-mediated NAD+ depletion induces macrophage senescence, promoting key features of age-related macular degeneration (AMD), including subretinal lipid deposition and neurodegeneration. NAD+ augmentation reverses cellular senescence and macrophage dysfunction, preventing the development of AMD phenotype. Genetic and pharmacological senolysis protect against the development of AMD and neurodegeneration. Subretinal administration of healthy macrophages promotes the clearance of senescent macrophages, reversing the AMD disease burden. Thus, NAD+ deficit induced by excess intracellular cholesterol is the converging mechanism of macrophage senescence and a causal process underlying age-related neurodegeneration.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Colasanti
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles W Pfeifer
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph B Lin
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Keitaro Hase
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinobu Yamaguchi
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Du
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Sohn
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitsukuni Yoshida
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Rajendra S Apte
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Guo X, Yang YY, Zhou R, Tian G, Shan C, Liu JM, Li R. Causal effect of blood osteocalcin on the risk of Alzheimer's disease and the mediating role of energy metabolism. Transl Psychiatry 2024; 14:205. [PMID: 38769320 PMCID: PMC11106250 DOI: 10.1038/s41398-024-02924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Rong Zhou
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ge Tian
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Chang Shan
- Department of Endocrinology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
15
|
Lee YJ, Kim J, Kwon YH. Long-Term Effects of Maternal Fat Consumption on the Brain Transcriptome of Obesogenic Diet-Fed Young Adult Mice Offspring. J Nutr 2024; 154:1532-1539. [PMID: 38484978 DOI: 10.1016/j.tjnut.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Substantial evidence has demonstrated that maternal high-fat (HF) consumption during gestation and lactation plays as a risk factor for neurodevelopmental alterations and subsequent neurological disorders. OBJECTIVE We investigated the regulatory mechanisms of maternal fat consumption on brain development and function in offspring at different ages. METHODS Mouse dams were fed either a control diet [low-fat (LF)] or an HF diet for 3 wk before mating and throughout pregnancy and lactation. Offspring were killed at postnatal day (PD) 21 (LF21 and HF21), and the rest were fed an HF diet for 12 wk until the killing at PD 105 (LF105 and HF105). The expression levels of genes and proteins in the brains of offspring were analyzed by microarray and immunoblotting, respectively. RESULTS Maternal dietary fat content, offspring age, and their interaction affected the expression levels of 1215, 10,453, and 2105 genes, respectively. The 67 differentially expressed genes (DEGs) between the HF21 and LF21 groups were enriched in several Gene Ontology terms related to nervous system development. Among 45 DEGs of the HF105/LF105 comparison, several genes associated with neurotransmitter action are detected. In addition, we observed increased activation of the AMP-dependent protein kinase-cAMP response element binding protein signaling pathway in HF105/LF105 comparison. However, maternal fat content did not change the protein levels of amyloid-β and tau hyperphosphorylation, the markers of neuropathogenesis. CONCLUSIONS Maternal HF feeding altered the expression of genes involved in the development and neurotransmitter system in the brains of PD 21 and HF diet-fed PD 105 offspring, respectively. Especially, the absence of overlap between DEGs at each comparison highlights the dynamic nature of alterations in gene expression in offspring of dams fed an HF diet. Further investigation on older adult offspring is necessary to elucidate the effects of maternal fat intake on the brain pathophysiology of offspring.
Collapse
Affiliation(s)
- Youn Ji Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
16
|
Shi YM, Ou D, Li JT, Bao L, Liu XD, Zhang W, Ding H. Genetically Predicted Apolipoprotein E Levels with the Risk of Panvascular Diseases: A Mendelian Randomization Study. Cardiovasc Toxicol 2024; 24:385-395. [PMID: 38536640 DOI: 10.1007/s12012-024-09846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
The aim of this study was to comprehensively assess the causal relationship between the overall genetic effect of circulating ApoE levels and panvascular lesions using newer genome-wide association data and two-sample bidirectional Mendelian randomization (MR) analysis. Two-way MR using single-nucleotide polymorphisms of circulating ApoE as instrumental variables was performed using the highest-priority Genome-wide association study (GWAS) data, with factor-adjusted and data-corrected statistics, to estimate causal associations between circulating ApoE levels and 10 pan-vascular diseases in > 500,000 UK Biobank participants, > 400,000 participants of Finnish ancestry, and numerous participants in a consortium of predominantly European ancestry. Meta-analysis was conducted to assess positive results. After correcting for statistical results, elevated circulating ApoE levels were shown to have a significant protective effect against Cerebral ischemia (CI) [IVW odds ratio (OR) 0.888, 95% Confidence Interval (CI): 0.823-0.958, p = 2.3 × 10-3], Coronary heart disease [IVW OR 0.950,95% CI: 0.924-0.976, p = 2.0 × 10-4] had a significant protective effect and potentially suggestive protective causality against Angina pectoris [IVW odds ratio (OR) 0.961, 95%CI: 0.931-0.991, p = 1.1 × 10-2]. There was a potential causal effect for increased risk of Heart failure (HF) [IVW ratio (OR) 1.040, 95%CI: 1.006-1.060, p = 1.8 × 10-2]. (Bonferroni threshold p < 0.0026, PFDR < 0.05) Reverse MR analysis did not reveal significant evidence of a causal effect of PVD on changes in circulating ApoE levels. Meta-analysis increases reliability of results. Elevated circulating ApoE levels were particularly associated with an increased risk of heart failure. Elevated ApoE levels reduce the risk of cerebral ischemia, coronary heart disease, and angina pectoris, reflecting a protective effect. The possible pathophysiological role of circulating ApoE levels in the development of panvascular disease is emphasized.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention andTreatmentof Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Dian Ou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention andTreatmentof Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jia-Ting Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention andTreatmentof Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Le Bao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention andTreatmentof Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Dan Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention andTreatmentof Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention andTreatmentof Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention andTreatmentof Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
17
|
Vicente M, Addo-Osafo K, Vossel K. Latest advances in mechanisms of epileptic activity in Alzheimer's disease and dementia with Lewy Bodies. Front Neurol 2024; 15:1277613. [PMID: 38390593 PMCID: PMC10882721 DOI: 10.3389/fneur.2024.1277613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) stand as the prevailing sources of neurodegenerative dementia, impacting over 55 million individuals across the globe. Patients with AD and DLB exhibit a higher prevalence of epileptic activity compared to those with other forms of dementia. Seizures can accompany AD and DLB in early stages, and the associated epileptic activity can contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant neuronal activity in AD and DLB may be caused by several mechanisms that are not yet understood. Hyperexcitability could be a biomarker for early detection of AD or DLB before the onset of dementia. In this review, we compare and contrast mechanisms of network hyperexcitability in AD and DLB. We examine the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, altered microglial and astrocytic activity, and impaired inhibitory interneuron function. By gaining a deeper understanding of the molecular mechanisms that cause neuronal hyperexcitability, we might uncover therapeutic approaches to effectively ease symptoms and slow down the advancement of AD and DLB.
Collapse
Affiliation(s)
- Mariane Vicente
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Kwaku Addo-Osafo
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Wang X, Li H, Sheng Y, He B, Liu Z, Li W, Yu S, Wang J, Zhang Y, Chen J, Qin L, Meng X. The function of sphingolipids in different pathogenesis of Alzheimer's disease: A comprehensive review. Biomed Pharmacother 2024; 171:116071. [PMID: 38183741 DOI: 10.1016/j.biopha.2023.116071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid β-peptide (Aβ) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aβ oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAβ polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aβ, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aβ, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Zeying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Wanli Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Shujie Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jiajing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, PR China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| |
Collapse
|
19
|
Ji D, Chen WZ, Zhang L, Zhang ZH, Chen LJ. Gut microbiota, circulating cytokines and dementia: a Mendelian randomization study. J Neuroinflammation 2024; 21:2. [PMID: 38178103 PMCID: PMC10765696 DOI: 10.1186/s12974-023-02999-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Some studies have shown that gut microbiota may be associated with dementia. However, the causal effects between gut microbiota and different types of dementia and whether cytokines act as a mediator remain unclear. METHODS Gut microbiota, cytokines, and five dementia types, including Alzheimer's disease (AD), frontotemporal dementia (FTD), dementia with Lewy body (DLB), vascular dementia (VD), and Parkinson's disease dementia (PDD) were identified from large-scale genome-wide association studies (GWAS) summary data. We used Mendelian randomization (MR) to investigate the causal relationships between gut microbiota, cytokines, and five types of dementia. Inverse variance weighting (IVW) was used as the main statistical method. In addition, we explored whether cytokines act as a mediating factor in the pathway from gut microbiota to dementia. RESULTS There were 20 positive and 16 negative causal effects between genetic liability in the gut microbiota and dementia. Also, there were five positive and four negative causal effects between cytokines and dementias. Cytokines did not act as mediating factors. CONCLUSIONS Gut microbiota and cytokines were causally associated with five types of dementia, and cytokines seemed not to be the mediating factors in the pathway from gut microbiota to dementia.
Collapse
Affiliation(s)
- Dong Ji
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China
| | - Wen-Zhu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China
| | - Lei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China
| | - Zhi-Hua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Li-Jian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, Anhui, China.
| |
Collapse
|
20
|
Patwekar M, Patwekar F, Khan S, Sharma R, Kumar D. Navigating the Alzheimer's Treatment Landscape: Unraveling Amyloid-beta Complexities and Pioneering Precision Medicine Approaches. Curr Top Med Chem 2024; 24:1665-1682. [PMID: 38644708 DOI: 10.2174/0115680266295495240415114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
A variety of cutting-edge methods and good knowledge of the illness's complex causes are causing a sea change in the field of Alzheimer's Disease (A.D.) research and treatment. Precision medicine is at the vanguard of this change, where individualized treatment plans based on genetic and biomarker profiles give a ray of hope for customized therapeutics. Combination therapies are becoming increasingly popular as a way to address the multifaceted pathology of Alzheimer's by simultaneously attacking Aβ plaques, tau tangles, neuroinflammation, and other factors. The article covers several therapeutic design efforts, including BACE inhibitors, gamma- secretase modulators, monoclonal antibodies (e.g., Aducanumab and Lecanemab), and anti- Aβ vaccinations. While these techniques appear promising, clinical development faces safety concerns and uneven efficacy. To address the complicated Aβ pathology in Alzheimer's disease, a multimodal approach is necessary. The statement emphasizes the continued importance of clinical trials in addressing safety and efficacy concerns. Looking ahead, it suggests that future treatments may take into account genetic and biomarker traits in order to provide more personalized care. Therapies targeting Aβ, tau tangles, neuroinflammation, and novel drug delivery modalities are planned. Nanoparticles and gene therapies are only two examples of novel drug delivery methods that have the potential to deliver treatments more effectively, with fewer side effects, and with better therapeutic results. In addition, medicines that target tau proteins in addition to Aβ are in the works. Early intervention, based on precise biomarkers, is a linchpin of Alzheimer's care, emphasizing the critical need for detecting the disease at its earliest stages. Lifestyle interventions, encompassing diet, exercise, cognitive training, and social engagement, are emerging as key components in the fight against cognitive decline. Data analytics and art are gaining prominence as strategies to mitigate the brain's inflammatory responses. To pool knowledge and resources in the fight against Alzheimer's, international cooperation between scientists, doctors, and pharmaceutical companies is still essential. In essence, a complex, individualized, and collaborative strategy will characterize Alzheimer's research and therapy in the future. Despite obstacles, these encouraging possibilities show the ongoing commitment of the scientific and medical communities to combat A.D. head-on, providing a glimmer of hope to the countless people and families touched by this savage sickness.
Collapse
Affiliation(s)
- Mohsina Patwekar
- Department of Pharmacology, Luqman College of Pharmacy, P.B. 86, old Jewargi road, Gulbarga, Karnataka, 585102, India
| | - Faheem Patwekar
- Department of Pharmacognosy, Luqman College of Pharmacy, P.B. 86, old Jewargi Road, Gulbarga, Karnataka, 585102, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa City, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
21
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
22
|
Dunk MM, Li J, Liu S, Casanova R, Chen JC, Espeland MA, Hayden KM, Manson JE, Rapp SR, Shadyab AH, Snetselaar LG, Van Horn L, Wild R, Driscoll I. Associations of dietary cholesterol and fat, blood lipids, and risk for dementia in older women vary by APOE genotype. Alzheimers Dement 2023; 19:5742-5754. [PMID: 37438877 PMCID: PMC10784407 DOI: 10.1002/alz.13358] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Whether apolipoprotein E's (APOE's) involvement in lipid metabolism contributes to Alzheimer's disease (AD) risk remains unknown. METHODS Incident probable dementia and cognitive impairment (probable dementia+mild cognitive impairment) were analyzed in relation to baseline serum lipids (total, low-density lipoprotein [LDL], high-density lipoprotein [HDL], non-HDL cholesterol, total-to-HDL, LDL-to-HDL, remnant cholesterol, and triglycerides) using Mendelian randomization in 5358 postmenopausal women from the Women's Health Initiative Memory Study. We also examined associations of baseline dietary cholesterol and fat with lipids based on APOE status. RESULTS After an average of 11.13 years, less favorable lipid levels related to greater dementia and cognitive impairment risk. Dementia (odds ratio [OR] = 3.13; 95% confidence interval [CI]: 2.31 to 4.24) and cognitive impairment (OR = 2.38; 95% CI: 1.85 to 3.06) risk were greatest in relation to higher remnant cholesterol levels. Greater cholesterol consumption related to poorer lipids in APOE4+ compared to APOE3 carriers. DISCUSSION APOE4+ carriers consuming more cholesterol had less favorable lipids, which were associated with greater dementia and cognitive impairment risk. HIGHLIGHTS Less favorable serum lipids were associated with higher dementia incidence. Mendelian randomization findings suggest causality between lipids and dementia. Lipid levels in older women may be clinical indicators of dementia risk. APOE4 carriers had poorest lipid profiles in relation to cholesterol consumption. APOE risk for dementia may be modifiable through lipid management.
Collapse
Affiliation(s)
- Michelle M. Dunk
- Department of Psychology, University of Wisconsin – Milwaukee, Milwaukee, WI, 53211, USA
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jie Li
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, 02903 USA
- Departments of Surgery and Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Global Health Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510060, China
| | - Simin Liu
- Department of Epidemiology and Center for Global Cardiometabolic Health, School of Public Health, Brown University, Providence, RI, 02903 USA
- Departments of Surgery and Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Jiu-Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
- Department of Social Sciences and Health Policy, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Kathleen M. Hayden
- Department of Social Sciences and Health Policy, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Stephen R. Rapp
- Department of Social Sciences and Health Policy, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
- Department of Psychiatry & Behavioral Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Aladdin H. Shadyab
- Hebert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Linda G. Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Robert Wild
- Departments of Obstetrics and Gynecology, Biostatistics and Epidemiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin – Milwaukee, Milwaukee, WI, 53211, USA
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, 53792, USA
| |
Collapse
|
23
|
Islam M, Behura SK. Role of caveolin-1 in metabolic programming of fetal brain. iScience 2023; 26:107710. [PMID: 37720105 PMCID: PMC10500482 DOI: 10.1016/j.isci.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused deregulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregulated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregulated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of those genes in coordination with mouse epigenetic clock. The findings of this study suggest that the aging program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Allphin AJ, Mahzarnia A, Clark DP, Qi Y, Han ZY, Bhandari P, Ghaghada KB, Badea A, Badea CT. Advanced photon counting CT imaging pipeline for cardiac phenotyping of apolipoprotein E mouse models. PLoS One 2023; 18:e0291733. [PMID: 37796905 PMCID: PMC10553338 DOI: 10.1371/journal.pone.0291733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is associated with the apolipoprotein E (APOE) gene and lipid metabolism. This study aimed to develop an imaging-based pipeline to comprehensively assess cardiac structure and function in mouse models expressing different APOE genotypes using photon-counting computed tomography (PCCT). METHODS 123 mice grouped based on APOE genotype (APOE2, APOE3, APOE4, APOE knockout (KO)), gender, human NOS2 factor, and diet (control or high fat) were used in this study. The pipeline included PCCT imaging on a custom-built system with contrast-enhanced in vivo imaging and intrinsic cardiac gating, spectral and temporal iterative reconstruction, spectral decomposition, and deep learning cardiac segmentation. Statistical analysis evaluated genotype, diet, sex, and body weight effects on cardiac measurements. RESULTS Our results showed that PCCT offered high quality imaging with reduced noise. Material decomposition enabled separation of calcified plaques from iodine enhanced blood in APOE KO mice. Deep learning-based segmentation showed good performance with Dice scores of 0.91 for CT-based segmentation and 0.89 for iodine map-based segmentation. Genotype-specific differences were observed in left ventricular volumes, heart rate, stroke volume, ejection fraction, and cardiac index. Statistically significant differences were found between control and high fat diets for APOE2 and APOE4 genotypes in heart rate and stroke volume. Sex and weight were also significant predictors of cardiac measurements. The inclusion of the human NOS2 gene modulated these effects. CONCLUSIONS This study demonstrates the potential of PCCT in assessing cardiac structure and function in mouse models of CVD which can help in understanding the interplay between genetic factors, diet, and cardiovascular health.
Collapse
Affiliation(s)
- Alex J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Darin P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Yi Qi
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Zay Y. Han
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| | - Prajwal Bhandari
- Department of Radiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Alexandra Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
- Department of Neurology, Duke University Medical Center, Durham, NC, United States of America
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
25
|
Feng Y, Chen X, Zhang XD, Huang C. Metabolic Pathway Pairwise-Based Signature as a Potential Non-Invasive Diagnostic Marker in Alzheimer's Disease Patients. Genes (Basel) 2023; 14:1285. [PMID: 37372465 PMCID: PMC10298314 DOI: 10.3390/genes14061285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder. Early screening, particularly in blood plasma, has been demonstrated as a promising approach to the diagnosis and prevention of AD. In addition, metabolic dysfunction has been demonstrated to be closely related to AD, which might be reflected in the whole blood transcriptome. Hence, we hypothesized that the establishment of a diagnostic model based on the metabolic signatures of blood is a workable strategy. To that end, we initially constructed metabolic pathway pairwise (MPP) signatures to characterize the interplay among metabolic pathways. Then, a series of bioinformatic methodologies, e.g., differential expression analysis, functional enrichment analysis, network analysis, etc., were used to investigate the molecular mechanism behind AD. Moreover, an unsupervised clustering analysis based on the MPP signature profile via the Non-Negative Matrix Factorization (NMF) algorithm was utilized to stratify AD patients. Finally, aimed at distinguishing AD patients from non-AD groups, a metabolic pathway-pairwise scoring system (MPPSS) was established using multi-machine learning methods. As a result, many metabolic pathways correlated to AD were disclosed, including oxidative phosphorylation, fatty acid biosynthesis, etc. NMF clustering analysis divided AD patients into two subgroups (S1 and S2), which exhibit distinct activities of metabolism and immunity. Typically, oxidative phosphorylation in S2 exhibits a lower activity than that in S1 and non-AD group, suggesting the patients in S2 might possess a more compromised brain metabolism. Additionally, immune infiltration analysis showed that the patients in S2 might have phenomena of immune suppression compared with S1 and the non-AD group. These findings indicated that S2 probably has a more severe progression of AD. Finally, MPPSS could achieve an AUC of 0.73 (95%CI: 0.70, 0.77) in the training dataset, 0.71 (95%CI: 0.65, 0.77) in the testing dataset, and an AUC of 0.99 (95%CI: 0.96, 1.00) in one external validation dataset. Overall, our study successfully established a novel metabolism-based scoring system for AD diagnosis using the blood transcriptome and provided new insight into the molecular mechanism of metabolic dysfunction implicated in AD.
Collapse
Affiliation(s)
- Yunwen Feng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (Y.F.); (X.C.)
| | - Xingyu Chen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (Y.F.); (X.C.)
| | - Xiaohua Douglas Zhang
- Department of Biostatitics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China; (Y.F.); (X.C.)
| |
Collapse
|
26
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
27
|
Su M, Nizamutdinov D, Liu H, Huang JH. Recent Mechanisms of Neurodegeneration and Photobiomodulation in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119272. [PMID: 37298224 DOI: 10.3390/ijms24119272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the world's primary cause of dementia, a condition characterized by significant progressive declines in memory and intellectual capacities. While dementia is the main symptom of Alzheimer's, the disease presents with many other debilitating symptoms, and currently, there is no known treatment exists to stop its irreversible progression or cure the disease. Photobiomodulation has emerged as a very promising treatment for improving brain function, using light in the range from red to the near-infrared spectrum depending on the application, tissue penetration, and density of the target area. The goal of this comprehensive review is to discuss the most recent achievements in and mechanisms of AD pathogenesis with respect to neurodegeneration. It also provides an overview of the mechanisms of photobiomodulation associated with AD pathology and the benefits of transcranial near-infrared light treatment as a potential therapeutic solution. This review also discusses the older reports and hypotheses associated with the development of AD, as well as some other approved AD drugs.
Collapse
Affiliation(s)
- Matthew Su
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| | - Jason H Huang
- Department of Neurosurgery, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX 76508, USA
| |
Collapse
|
28
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
29
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
30
|
Wen Y, Zhang L, Li N, Tong A, Zhao C. Nutritional assessment models for Alzheimer's disease: Advances and perspectives. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry Faculty of Sciences Ourense Spain
| | - Lizhu Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Aijun Tong
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
31
|
Chasovskikh NY, Chizhik EE. Bioinformatic analysis of biological pathways in coronary heart disease and Alzheimer’s disease. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-193-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim. Using bioinformatic tools, to perform a pathway enrichment analysis in Alzheimer’s disease and coronary heart disease (CHD).Materials and methods. Genes contributing to susceptibility to CHD and Alzheimer’s disease were obtained from the public database DisGeNET (Database of Gene – Disease Associations). A pathway enrichment analysis was performed in the ClueGO Cytoscape plug-in (version 3.6.0) using hypergeometric distribution and the KEGG and Reactome databases.Results. The identified genes contributing to susceptibility to Alzheimer’s disease and CHD are included in 69 common signaling pathways, grouped into the following subgroups: cell death signaling pathways (1); signaling pathways regulating immune responses (2); signaling pathways responsible for fatty acid metabolism (3); signaling pathways involved in the functioning of the nervous system (4), cardiovascular system (5), and endocrine system (6).Conclusion. Following the performed analysis, we identified possible associations between processes involving genetic factors and their products in CHD and Alzheimer’s disease. In particular, we assumed that susceptibility genes involved in the implementation of these pathways regulate apoptosis, production of inflammatory cytokines and chemokines, lipid metabolism, β-amyloid formation, and angiogenesis.
Collapse
|
32
|
Ly M, Yu GZ, Chwa WJ, Raji CA. Paving the Way for Alzheimer's Disease Prevention: A Systematic Review of Global Open-Access Neuroimaging Datasets in Healthy Individuals. J Alzheimers Dis 2023; 96:1441-1451. [PMID: 37955090 PMCID: PMC10845900 DOI: 10.3233/jad-230738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
BACKGROUND Given the advent of large-scale neuroimaging data-driven endeavors for Alzheimer's disease, there is a burgeoning need for well-characterized neuroimaging databases of healthy individuals. With the rise of initiatives around the globe for the rapid and unrestricted sharing of data resources, there is now an abundance of open-source neuroimaging datasets available to the research community. However, there is not yet a systematic review that fully details the demographic information and modalities actually available in all open access neuroimaging databases around the globe. OBJECTIVE This systematic review aims to provide compile a list of MR structural imaging databases encompassing healthy individuals across the lifespan. METHODS In this systematic review, we searched EMBASE and PubMed until May 2022 for open-access neuroimaging databases containing healthy control participants of any age, race, with normal development and cognition having at least one structural T1-weighted neuroimaging scan. RESULTS A total of 403 databases were included, for up to total of 48,268 participants with all available demographic information and imaging modalities detailed in Supplementary Table 1. There were significant trends noted when compiling normative databases for this systematic review, notably that 11.7% of databases included reported ethnicity in their participants, with underrepresentation of many socioeconomic groups globally. CONCLUSIONS As efforts to improve primary prevention of AD may require a broader perspective including increased relevance of earlier stages in life, and strategies in addressing modifiable risk factors may be individualized to specific demographics, improving data characterization to be richer and more rigorous will greatly enhance these efforts.
Collapse
Affiliation(s)
- Maria Ly
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary Z. Yu
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Won Jong Chwa
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Saint Louis University, School of Medicine, St Louis, MO, USA
| | - Cyrus A. Raji
- Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis, St Louis, MO, USA
| |
Collapse
|
33
|
Dove A, Guo J, Marseglia A, Fastbom J, Vetrano DL, Fratiglioni L, Pedersen NL, Xu W. Cardiometabolic multimorbidity and incident dementia: the Swedish twin registry. Eur Heart J 2022; 44:573-582. [PMID: 36577740 PMCID: PMC9925275 DOI: 10.1093/eurheartj/ehac744] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/30/2022] Open
Abstract
AIMS Cardiometabolic diseases (CMDs), including diabetes, heart disease, and stroke, are established risk factors for dementia, but their combined impact has been investigated only recently. This study aimed to examine the association between mid- and late-life cardiometabolic multimorbidity and dementia and explore the role of genetic background in this association. METHODS AND RESULTS Within the Swedish Twin Registry, 17 913 dementia-free individuals aged ≥60 were followed for 18 years. CMDs [including age of onset in mid (60) or late (≥60) life] and dementia were ascertained from medical records. Cardiometabolic multimorbidity was defined as having ≥2 CMDs. Cox regression was used to estimate the CMD-dementia association in (i) a classical cohort study design and (ii) a co-twin study design involving 356 monozygotic and dizygotic pairs. By comparing the strength of the association in the two designs, the contribution of genetic background was estimated. At baseline, 3,312 (18.5%) participants had 1 CMD and 839 (4.7%) had ≥2 CMDs. Over the follow-up period, 3,020 participants developed dementia. In the classic cohort design, the hazard ratio (95% confidence interval) of dementia was 1.42 (1.27-1.58) for 1 CMD and 2.10 (1.73-2.57) for ≥2 CMDs. Dementia risk was stronger with mid-life as opposed to late-life CMDs. In the co-twin design, the CMD-dementia association was attenuated among monozygotic [0.99 (0.50-1.98)] but not dizygotic [1.55 (1.15-2.09)] twins, suggesting that the association was in part due to genetic factors common to both CMDs and dementia. CONCLUSION Cardiometabolic multimorbidity, particularly in mid-life, is associated with an increased risk of dementia. Genetic background may underpin this association.
Collapse
Affiliation(s)
- Abigail Dove
- Corresponding author. Tel: +46 085 248 5837, Fax: +46 0831 1101,
| | - Jie Guo
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden
| | - Anna Marseglia
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Blickagången 16, Huddinge SE-14183, Sweden
| | - Johan Fastbom
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden
| | - Davide Liborio Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden,Stockholm Gerontology Research Center, Sveavägen 115, Stockholm SE-11346, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Tomtebodavägen 18A, Solna SE-17165, Sweden,Stockholm Gerontology Research Center, Sveavägen 115, Stockholm SE-11346, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobel väg 12A, Solna SE-17165, Sweden
| | | |
Collapse
|
34
|
McCarthy MM, Hardy MJ, Leising SE, LaFollette AM, Stewart ES, Cogan AS, Sanghal T, Matteo K, Reeck JC, Oxford JT, Rohn TT. An amino-terminal fragment of apolipoprotein E4 leads to behavioral deficits, increased PHF-1 immunoreactivity, and mortality in zebrafish. PLoS One 2022; 17:e0271707. [PMID: 36520946 PMCID: PMC9754248 DOI: 10.1371/journal.pone.0271707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Although the increased risk of developing sporadic Alzheimer's disease (AD) associated with the inheritance of the apolipoprotein E4 (APOE4) allele is well characterized, the molecular underpinnings of how ApoE4 imparts risk remains unknown. Enhanced proteolysis of the ApoE4 protein with a toxic-gain of function has been suggested and a 17 kDa amino-terminal ApoE4 fragment (nApoE41-151) has been identified in post-mortem human AD frontal cortex sections. Recently, we demonstrated in vitro, exogenous treatment of nApoE41-151 in BV2 microglial cells leads to uptake, trafficking to the nucleus and increased expression of genes associated with cell toxicity and inflammation. In the present study, we extend these findings to zebrafish (Danio rerio), an in vivo model system to assess the toxicity of nApoE41-151. Exogenous treatment of nApoE41-151 to 24-hour post-fertilization for 24 hours resulted in significant mortality. In addition, developmental abnormalities were observed following treatment with nApoE41-151 including improper folding of the hindbrain, delay in ear development, deformed yolk sac, enlarged cardiac cavity, and significantly lower heart rates. A similar nApoE31-151 fragment that differs by a single amino acid change (C>R) at position 112 had no effects on these parameters under identical treatment conditions. Decreased presence of pigmentation was noted for both nApoE31-151- and nApoE41-151-treated larvae compared with controls. Behaviorally, touch-evoked responses to stimulus were negatively impacted by treatment with nApoE41-151 but did not reach statistical significance. Additionally, triple-labeling confocal microscopy not only confirmed the nuclear localization of the nApoE41-151 fragment within neuronal populations following exogenous treatment, but also identified the presence of tau pathology, one of the hallmark features of AD. Collectively, these in vivo data demonstrating toxicity as well as sublethal effects on organ and tissue development support a novel pathophysiological function of this AD associated-risk factor.
Collapse
Affiliation(s)
- Madyson M. McCarthy
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Makenna J. Hardy
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Saylor E. Leising
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Alex M. LaFollette
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Erica S. Stewart
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Amelia S. Cogan
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Tanya Sanghal
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Katie Matteo
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Jonathon C. Reeck
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Julia T. Oxford
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Troy T. Rohn
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| |
Collapse
|
35
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
36
|
Hernandez-Cravero B, Gallino S, Florman J, Vranych C, Diaz P, Elgoyhen AB, Alkema MJ, de Mendoza D. Cannabinoids activate the insulin pathway to modulate mobilization of cholesterol in C. elegans. PLoS Genet 2022; 18:e1010346. [PMID: 36346800 PMCID: PMC9674138 DOI: 10.1371/journal.pgen.1010346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway
Collapse
Affiliation(s)
- Bruno Hernandez-Cravero
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sofia Gallino
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cecilia Vranych
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
37
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
38
|
Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int J Mol Sci 2022; 23:ijms23179892. [PMID: 36077289 PMCID: PMC9456500 DOI: 10.3390/ijms23179892] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer’s disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.
Collapse
|
39
|
Nwaru BI, Dierkes J, Ramel A, Arnesen EK, Thorisdottir B, Lamberg-Allardt C, Söderlund F, Bärebring L, Åkesson A. Quality of dietary fat and risk of Alzheimer’s disease and dementia in adults aged ≥50 years: a systematic review. Food Nutr Res 2022; 66:8629. [PMID: 35950105 PMCID: PMC9338447 DOI: 10.29219/fnr.v66.8629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Objective To identify, critically appraise, and synthesize evidence on the effect of quality of dietary fat intake and different classes of fatty acids on the risk of Alzheimer’s disease (AD) and dementia in adults aged ≥50 years. Methods We searched MEDLINE, EMBASE, Cochrane Central of Controlled Trials, and Scopus for clinical trials and prospective cohort studies published until May 2021. Two reviewers independently screened retrieved literature, extracted relevant data, and performed risk of bias assessment. Classes of fatty acids included were saturated fatty acids (SFAs), trans fatty acids (TFAs), monounsaturated fatty acids (MUFAs), poly-unsaturated fatty acids (PUFAs), and their subtypes and sources. Given between-study heterogeneity, we did not perform meta-analyses but narratively described findings from the studies. Results From 4,491 identified records, five articles (based on four prospective cohort studies) met the inclusion criteria. Three studies had an overall serious risk of bias, while one study had a moderate risk. Overall, we found no robust association between intake of any fatty acids type and the development of AD and dementia. For example, for SFA and TFA, there was contradictory associations reported on AD: one study found that each unit increase in energy-adjusted intake of SFA (risk ratio [RR] 0.83, 95%CI 0.70–0.98) and TFA (RR 0.80, 95%CI 0.65–0.97) was associated with a decreased risk of AD, but not dementia. For PUFA, one study found that higher quintile intake of marine-based n-3 PUFA was associated with a decreased risk of AD. The intake of other fatty acids was not associated with the outcomes. The certainty of the overall evidence was inconclusive. Conclusion We found no clear association between the intake of various classes of fatty acids and the risk of AD and dementia in adults. More well-designed prospective studies are required to clarify these findings.
Collapse
Affiliation(s)
- Bright I Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Alfons Ramel
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Erik Kristoffer Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Birna Thorisdottir
- Faculty of Sociology, Anthropology and Folkloristics & Health Science Institute, University of Iceland, Reykjavik, Iceland
| | | | - Fredrik Söderlund
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linnea Bärebring
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer's disease. Sci Rep 2022; 12:10994. [PMID: 35768560 PMCID: PMC9243110 DOI: 10.1038/s41598-022-15299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The risk of Alzheimer’s disease (AD) has a strong genetic component, also in the case of late-onset AD (LOAD). Attempts to sequence whole genome in large populations of subjects have identified only a few mutations common to most of the patients with AD. Targeting smaller well-characterized groups of subjects where specific genetic variations in selected genes could be related to precisely defined psychological traits typical of dementia is needed to better understand the heritability of AD. More than one thousand participants, categorized according to cognitive deficits, were assessed using 14 psychometric tests evaluating performance in five cognitive domains (attention/working memory, memory, language, executive functions, visuospatial functions). CD36 was selected as a gene previously shown to be implicated in the etiology of AD. A total of 174 polymorphisms were tested for associations with cognition-related traits and other AD-relevant data using the next generation sequencing. Several associations between single nucleotide polymorphisms (SNP’s) and the cognitive deficits have been found (rs12667404 with language performance, rs3211827 and rs41272372 with executive functions, rs137984792 with visuospatial performance). The most prominent association was found between a group of genotypes in six genetically linked and the age at which the AD patients presented with, or developed, a full-blown dementia. The identified alleles appear to be associated with a delay in the onset of LOAD. In silico studies suggested that the SNP’s alter the expression of CD36 thus potentially affecting CD36-related neuroinflammation and other molecular and cellular mechanisms known to be involved in the neuronal loss leading to AD. The main outcome of the study is an identification of a set of six new mutations apparently conferring a distinct protection against AD and delaying the onset by about 8 years. Additional mutations in CD36 associated with certain traits characteristic of the cognitive decline in AD have also been found.
Collapse
|
41
|
Mass Spectrometry-Based Analysis of Lipid Involvement in Alzheimer’s Disease Pathology—A Review. Metabolites 2022; 12:metabo12060510. [PMID: 35736443 PMCID: PMC9228715 DOI: 10.3390/metabo12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Irregularities in lipid metabolism have been linked to numerous neurodegenerative diseases. The roles of abnormal brain, plasma, and cerebrospinal fluid (CSF) lipid levels in Alzheimer’s disease (AD) onset and progression specifically have been described to a great extent in the literature. Apparent hallmarks of AD include, but are not limited to, genetic predisposition involving the APOE Ɛ4 allele, oxidative stress, and inflammation. A common culprit tied to many of these hallmarks is disruption in brain lipid homeostasis. Therefore, it is important to understand the roles of lipids, under normal and abnormal conditions, in each process. Lipid influences in processes such as inflammation and blood–brain barrier (BBB) disturbance have been primarily studied via biochemical-based methods. There is a need, however, for studies focused on uncovering the relationship between lipid irregularities and AD by molecular-based quantitative analysis in transgenic animal models and human samples alike. In this review, mass spectrometry as it has been used as an analytical tool to address the convoluted relationships mentioned above is discussed. Additionally, molecular-based mass spectrometry strategies that should be used going forward to further relate structure and function relationships of lipid irregularities and hallmark AD pathology are outlined.
Collapse
|
42
|
Grigorova YN, Juhasz O, Long JM, Zernetkina VI, Hall ML, Wei W, Morrell CH, Petrashevskaya N, Morrow A, LaNasa KH, Bagrov AY, Rapp PR, Lakatta EG, Fedorova OV. Effect of Cardiotonic Steroid Marinobufagenin on Vascular Remodeling and Cognitive Impairment in Young Dahl-S Rats. Int J Mol Sci 2022; 23:4563. [PMID: 35562955 PMCID: PMC9101263 DOI: 10.3390/ijms23094563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.
Collapse
Affiliation(s)
- Yulia N. Grigorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Ondrej Juhasz
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Valentina I. Zernetkina
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Mikayla L. Hall
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Wen Wei
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Natalia Petrashevskaya
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Audrey Morrow
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Katherine H. LaNasa
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Alexei Y. Bagrov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Olga V. Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| |
Collapse
|
43
|
Bogdanovic B, Eftimov T, Simjanoska M. In-depth insights into Alzheimer's disease by using explainable machine learning approach. Sci Rep 2022; 12:6508. [PMID: 35444165 PMCID: PMC9021280 DOI: 10.1038/s41598-022-10202-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease is still a field of research with lots of open questions. The complexity of the disease prevents the early diagnosis before visible symptoms regarding the individual's cognitive capabilities occur. This research presents an in-depth analysis of a huge data set encompassing medical, cognitive and lifestyle's measurements from more than 12,000 individuals. Several hypothesis were established whose validity has been questioned considering the obtained results. The importance of appropriate experimental design is highly stressed in the research. Thus, a sequence of methods for handling missing data, redundancy, data imbalance, and correlation analysis have been applied for appropriate preprocessing of the data set, and consequently XGBoost model has been trained and evaluated with special attention to the hyperparameters tuning. The model was explained by using the Shapley values produced by the SHAP method. XGBoost produced a f1-score of 0.84 and as such is considered to be highly competitive among those published in the literature. This achievement, however, was not the main contribution of this paper. This research's goal was to perform global and local interpretability of the intelligent model and derive valuable conclusions over the established hypothesis. Those methods led to a single scheme which presents either positive, or, negative influence of the values of each of the features whose importance has been confirmed by means of Shapley values. This scheme might be considered as additional source of knowledge for the physicians and other experts whose concern is the exact diagnosis of early stage of Alzheimer's disease. The conclusions derived from the intelligent model's data-driven interpretability confronted all the established hypotheses. This research clearly showed the importance of explainable Machine learning approach that opens the black box and clearly unveils the relationships among the features and the diagnoses.
Collapse
Affiliation(s)
- Bojan Bogdanovic
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia.
| | - Tome Eftimov
- Computer Systems Department, Jozef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Monika Simjanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- iReason, LLC, Skopje, 1000, North Macedonia
| |
Collapse
|
44
|
Gao P, Wang Z, Lei M, Che J, Zhang S, Zhang T, Hu Y, Shi L, Cui L, Liu J, Noda M, Peng Y, Long J. Daphnetin ameliorates Aβ pathogenesis via STAT3/GFAP signaling in an APP/PS1 double-transgenic mouse model of Alzheimer's disease. Pharmacol Res 2022; 180:106227. [PMID: 35452800 DOI: 10.1016/j.phrs.2022.106227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) has become a major public health problem that affects the elderly population. Therapeutic compounds with curative effects are not available due to the complex pathogenesis of AD. Daphnetin, a natural coumarin derivative and inhibitor of various kinases, has anti-inflammatory and antioxidant activities. In this study, we found that daphnetin improved spatial learning and memory in an amyloid precursor protein (APP)/presenilin 1 (PS1) double-transgenic mouse model of AD. Daphnetin markedly decreased the levels of amyloid-β peptide 1-40 (Aβ40) and 1-42 (Aβ42) in the cerebral cortex, downregulated the expressions of enzymes involved in APP processing, e.g., beta-site APP-cleaving enzyme (BACE), nicastrin and presenilin enhancer protein 2 (PEN2). We further found the reduced serum levels of inflammatory factors, including interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and chemokine (C-C motif) ligand 3 (CCL3), while daphnetin increased total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels in the serum. Interestingly, daphnetin markedly decreased the expression of glial fibrillary acidic protein (GFAP) and the upstream regulatory molecule- phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in APP/PS1 mice, and mainly inhibited the phosphorylation of STAT3 at Ser727 to decrease GFAP expression evidenced in a LPS-activated glial cell model. These results suggest that daphnetin ameliorates cognitive deficits and that Aβ deposition in APP/PS1 mice is mainly correlated with astrocyte activation and APP processing.
Collapse
Affiliation(s)
- Peipei Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mengyao Lei
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiaxing Che
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
45
|
No association between APOE genotype and lipid lowering with cognitive function in a randomized controlled trial of evolocumab. PLoS One 2022; 17:e0266615. [PMID: 35404972 PMCID: PMC9000128 DOI: 10.1371/journal.pone.0266615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/19/2022] [Indexed: 12/20/2022] Open
Abstract
APOE encodes a cholesterol transporter, and the ε4 allele is associated with higher circulating cholesterol levels, ß-amyloid burden, and risk of Alzheimer's disease. Prior studies demonstrated no significant differences in objective or subjective cognitive function for patients receiving the PCSK9 inhibitor evolocumab vs. placebo added to statin therapy. There is some evidence that cholesterol-lowering medications may confer greater cognitive benefits in APOE ε4 carriers. Thus, the purpose of this study was to determine whether APOE genotype moderates the relationships between evolocumab use and cognitive function. APOE-genotyped patients (N = 13,481; 28% ε4 carriers) from FOURIER, a randomized, placebo-controlled trial of evolocumab added to statin therapy in patients with stable atherosclerotic cardiovascular disease followed for a median of 2.2 years, completed the Everyday Cognition Scale (ECog) to self-report cognitive changes from the end of the trial compared to its beginning; a subset (N = 835) underwent objective cognitive testing using the Cambridge Neuropsychological Test Automated Battery as part of the EBBINGHAUS trial. There was a dose-dependent relationship between APOE ε4 genotype and patient-reported memory decline on the ECog in the placebo arm (p = .003 for trend across genotypes; ε4/ε4 carriers vs. non-carriers: OR = 1.46, 95% CI [1.03, 2.08]) but not in the evolocumab arm (p = .50, OR = 1.18, 95% CI [.83,1.66]). However, the genotype by treatment interaction was not significant (p = .30). In the subset of participants who underwent objective cognitive testing with the CANTAB, APOE genotype did not significantly modify the relationship between treatment arm and CANTAB performance after adjustment for demographic and medical covariates, (p's>.05). Although analyses were limited by the low population frequency of the ε4/ε4 genotype, this supports the cognitive safety of evolocumab among ε4 carriers, guiding future research on possible benefits of cholesterol-lowering medications in people at genetic risk for Alzheimer's disease.
Collapse
|
46
|
Ai Y, Huang X, Chen W, Wu L, Jiang S, Chen Y, Chen S. UPLC-MS/MS-Based Serum Metabolomics Signature as Biomarkers of Esophagogastric Variceal Bleeding in Patients With Cirrhosis. Front Cell Dev Biol 2022; 10:839781. [PMID: 35300427 PMCID: PMC8922031 DOI: 10.3389/fcell.2022.839781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/03/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Esophagogastric variceal bleeding (EVB) is a common and ominous complication of cirrhosis and represents the degree of portal hypertension progression and cirrhosis decompensation, desiderating the investigation into sensitive and specific markers for early detection and prediction. The purpose of this study is to characterize unique metabolites in serum of cirrhotic EVB patients and identify potential noninvasive biomarkers for detecting and assessing risk of variceal bleeding and cirrhosis progression through metabolomics-based approaches and explore possible pathophysiological mechanisms. Methods: We used ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) to profile serum metabolomes. In one discovery cohort (n = 26, 13 cases of EVB), univariate and multivariate statistical analyses were performed to demonstrate separation between the two groups and identify differentially expressed metabolites. Potential biomarkers were screened by Boruta and logistic regression analyses, further evaluated by receiver operating characteristic analysis, and tested in two validation cohorts (n = 34, 17 cases and n = 10, 5 cases). Results: Bioinformatics analyses demonstrated that EVB patients possessed distinct metabolic phenotypes compared with nEVB controls, characterized by seven elevated and six downregulated metabolites, indicating that EVB-related metabolic disturbance might be associated with vitamin metabolism and fatty acid metabolism. Eight potential biomarkers were selected among which citrulline and alpha-aminobutyric acid with moderate AUC values, tested in the validation cohorts, were identified as specific biomarkers of EVB. Conclusion: Our metabolomic study provides an overview of serum metabolic profiles in EVB patients, highlighting the potential utility of UPLC-MS/MS-based serum fingerprint as a feasible avenue for early detection of EVB.
Collapse
Affiliation(s)
- Yingjie Ai
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ling Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Minhang Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Gaul S, Shahzad K, Medert R, Gadi I, Mäder C, Schumacher D, Wirth A, Ambreen S, Fatima S, Boeckel JN, Khawaja H, Haas J, Brune M, Nawroth PP, Isermann B, Laufs U, Freichel M. Novel Nongenetic Murine Model of Hyperglycemia and Hyperlipidemia-Associated Aggravated Atherosclerosis. Front Cardiovasc Med 2022; 9:813215. [PMID: 35350534 PMCID: PMC8957812 DOI: 10.3389/fcvm.2022.813215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/24/2023] Open
Abstract
Objective Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1β level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.
Collapse
Affiliation(s)
- Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Khurrum Shahzad
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Ihsan Gadi
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Christina Mäder
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Saira Ambreen
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Sameen Fatima
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hamzah Khawaja
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
- Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
| | - Maik Brune
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Peter P. Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Berend Isermann
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| |
Collapse
|
48
|
Golde TE. Alzheimer’s disease – the journey of a healthy brain into organ failure. Mol Neurodegener 2022; 17:18. [PMID: 35248124 PMCID: PMC8898417 DOI: 10.1186/s13024-022-00523-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
As the most common dementia, Alzheimer’s disease (AD) exacts an immense personal, societal, and economic toll. AD was first described at the neuropathological level in the early 1900s. Today, we have mechanistic insight into select aspects of AD pathogenesis and have the ability to clinically detect and diagnose AD and underlying AD pathologies in living patients. These insights demonstrate that AD is a complex, insidious, degenerative proteinopathy triggered by Aβ aggregate formation. Over time Aβ pathology drives neurofibrillary tangle (NFT) pathology, dysfunction of virtually all cell types in the brain, and ultimately, overt neurodegeneration. Yet, large gaps in our knowledge of AD pathophysiology and huge unmet medical need remain. Though we largely conceptualize AD as a disease of aging, heritable and non-heritable factors impact brain physiology, either continuously or at specific time points during the lifespan, and thereby alter risk for devolvement of AD. Herein, I describe the lifelong journey of a healthy brain from birth to death with AD, while acknowledging the many knowledge gaps that remain regarding our understanding of AD pathogenesis. To ensure the current lexicon surrounding AD changes from inevitable, incurable, and poorly manageable to a lexicon of preventable, curable, and manageable we must address these knowledge gaps, develop therapies that have a bigger impact on clinical symptoms or progression of disease and use these interventions at the appropriate stage of disease.
Collapse
|
49
|
Chowdhury IR, Mazumder MAJ, Chowdhury S, Qasem MAA, Aziz MA. Model-based Application for Adsorption of Lead (II) from Aqueous
Solution using Low-cost Jute Stick Derived Activated Carbon. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201002093403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Removal of lead (II) ions from supply water using an inexpensive adsorbent is essential. It is
recommended that low-cost adsorbents are developed to effectively remove lead (II) ions from aqueous solutions. The aim
of the study is to develop and validate models for predicting the performance of carboxylated jute stick derived activated
carbon (JSAC-COOH) in removing lead (II) ions from aqueous solution, which can assist the water supply authorities in
supplying lead (II) free drinking water to the communities at a low-cost.
Methods:
Controlled laboratory experiments were conducted following the statistical “Design of Experiments” through
varying the factors affecting the performance of JSAC-COOH in removing lead (II) ions. The performance of JSACCOOH was investigated for different concentrations of lead (II) ions (range: 50 - 500 mg/L) at variable experimental
conditions (temperature: 15°C and 27°C; pH: 4.0 and 7.0) and time (1, 10, 30 and 60 min). Several models (Linear and
non-linear) were investigated and validated for predicting the concentrations of lead (II) ions in aqueous solution.
Results:
The prepared JSAC-COOH had a surface area of 615.3 m2
/g. In 60 min, up to 99.8% removal of lead (II) ions
was achieved. Few models showed very good to excellent predictive capabilities with coefficients of determination in the
range of 0.85–0.95. The model validation experiments showed the correlation coefficients in the range of 0.84 – 0.98.
Conclusion:
The models have the capabilities to reasonably predict the final concentrations of lead (II) ions, which can be
used in controlling the effluent lead (II) ion concentrations. The proposed adsorbent is likely to be low-cost as it was
developed using the commonly available agricultural byproduct.
Collapse
Affiliation(s)
- Imran Rahman Chowdhury
- Department of Civil & Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| | | | - Shakhawat Chowdhury
- Department of Civil & Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| | - Mohammed Ameen Ahmed Qasem
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran-31261,Saudi Arabia
| |
Collapse
|
50
|
Pathak AK, Sukhavasi K, Marnetto D, Chaubey G, Pandey AK. Human population genomics approach in food metabolism. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|