1
|
Lin L, Hu K. Macrophage Function Modulated by tPA Signaling in Mouse Experimental Kidney Disease Models. Int J Mol Sci 2023; 24:11067. [PMID: 37446244 DOI: 10.3390/ijms241311067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Macrophage infiltration and accumulation is a hallmark of chronic kidney disease. Tissue plasminogen activator (tPA) is a serine protease regulating the homeostasis of blood coagulation, fibrinolysis, and matrix degradation, and has been shown to act as a cytokine to trigger various receptor-mediated intracellular signal pathways, modulating macrophage function in response to kidney injury. In this review, we discuss the current understanding of tPA-modulated macrophage function and underlying signaling mechanisms during kidney fibrosis and inflammation.
Collapse
Affiliation(s)
- Ling Lin
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Kebin Hu
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, PA 17033, USA
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Fischer AW, Albers K, Krott LM, Hoffzimmer B, Heine M, Schmale H, Scheja L, Gordts PLSM, Heeren J. The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins. Mol Metab 2018; 16:88-99. [PMID: 30100244 PMCID: PMC6158030 DOI: 10.1016/j.molmet.2018.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023] Open
Abstract
Objective Insulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins. Methods Localization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr−/−) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL. Results PID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr−/− background reduced lipoprotein uptake into liver and caused plasma TRL accumulation. Conclusions By acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver. PID1 is a retention adaptor protein that regulates activity of the endocytic receptor LDL receptor-related protein 1 (LRP1). PID1 regulates the insulin-dependent LRP1-mediated endocytosis of lipoproteins in vivo. PID1 deficiency in liver reduces LRP1 levels via cell surface shedding, and paradoxically increases LDL receptor activity. PID1 antagonism has therapeutic potential to reduce pro-atherogenic lipoproteins in hyperlipidemic and diabetic patients.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kirstin Albers
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lucia M Krott
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Britta Hoffzimmer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartwig Schmale
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Philip L S M Gordts
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Appert-Collin A, Bennasroune A, Jeannesson P, Terryn C, Fuhrmann G, Morjani H, Dedieu S. Role of LRP-1 in cancer cell migration in 3-dimensional collagen matrix. Cell Adh Migr 2016; 11:316-326. [PMID: 27463962 DOI: 10.1080/19336918.2016.1215788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.
Collapse
Affiliation(s)
- Aline Appert-Collin
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| | - Amar Bennasroune
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France.,b UMR CNRS 7360, LIEC, Université de Lorraine , Metz , France
| | - Pierre Jeannesson
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Christine Terryn
- d Plateforme d'Imagerie Cellulaire et Tissulaire, URCA , Reims , France
| | - Guy Fuhrmann
- e UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie , Illkirch , France
| | - Hamid Morjani
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Stéphane Dedieu
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| |
Collapse
|
4
|
Ikoma-Seki K, Nakamura K, Morishita S, Ono T, Sugiyama K, Nishino H, Hirano H, Murakoshi M. Role of LRP1 and ERK and cAMP Signaling Pathways in Lactoferrin-Induced Lipolysis in Mature Rat Adipocytes. PLoS One 2015; 10:e0141378. [PMID: 26506094 PMCID: PMC4623961 DOI: 10.1371/journal.pone.0141378] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/06/2015] [Indexed: 01/14/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional glycoprotein present in milk. A clinical study showed that enteric-coated bovine LF tablets decrease visceral fat accumulation. Furthermore, animal studies revealed that ingested LF is partially delivered to mesenteric fat, and in vitro studies showed that LF promotes lipolysis in mature adipocytes. The aim of the present study was to determine the mechanism underlying the induction of lipolysis in mature adipocytes that is induced by LF. To address this question, we used proteomics techniques to analyze protein expression profiles. Mature adipocytes from primary cultures of rat mesenteric fat were collected at various times after exposure to LF. Proteomic analysis revealed that the expression levels of hormone-sensitive lipase (HSL), which catalyzes the rate-limiting step of lipolysis, were upregulated and that HSL was activated by protein kinase A within 15 min after the cells were treated with LF. We previously reported that LF increases the intracellular concentration of cyclic adenosine monophosphate (cAMP), suggesting that LF activates the cAMP signaling pathway. In this study, we show that the expression level and the activity of the components of the extracellular signal-regulated kinase (ERK) signaling pathway were upregulated. Moreover, LF increased the activity of the transcription factor cAMP response element binding protein (CREB), which acts downstream in the cAMP and ERK signaling pathways and regulates the expression levels of adenylyl cyclase and HSL. Moreover, silencing of the putative LF receptor low-density lipoprotein receptor-related protein 1 (LRP1) attenuated lipolysis in LF-treated adipocytes. These results suggest that LF promoted lipolysis in mature adipocytes by regulating the expression levels of proteins involved in lipolysis through controlling the activity of cAMP/ERK signaling pathways via LRP1.
Collapse
Affiliation(s)
- Keiko Ikoma-Seki
- Research and Development Headquarters, Lion Corporation, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
- * E-mail:
| | - Kanae Nakamura
- Research and Development Headquarters, Lion Corporation, Kanagawa, Japan
| | - Satoru Morishita
- Research and Development Headquarters, Lion Corporation, Kanagawa, Japan
| | - Tomoji Ono
- Research and Development Headquarters, Lion Corporation, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Keikichi Sugiyama
- Research and Development Headquarters, Lion Corporation, Kanagawa, Japan
- Ritsumeikan University, Shiga, Japan
| | - Hoyoku Nishino
- Kyoto Prefectural University of Medicine, Kyoto, Japan
- Ritsumeikan University, Shiga, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
| | - Michiaki Murakoshi
- Research and Development Headquarters, Lion Corporation, Kanagawa, Japan
- Advanced Medical Research Center, Yokohama City University, Kanagawa, Japan
- Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1. Front Aging Neurosci 2015; 7:136. [PMID: 26236233 PMCID: PMC4502358 DOI: 10.3389/fnagi.2015.00136] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
Amyloid beta (Aβ) homeostasis in the brain is governed by its production and clearance mechanisms. An imbalance in this homeostasis results in pathological accumulations of cerebral Aβ, a characteristic of Alzheimer’s disease (AD). While Aβ may be cleared by several physiological mechanisms, a major route of Aβ clearance is the vascular-mediated removal of Aβ from the brain across the blood-brain barrier (BBB). Here, we discuss the role of the predominant Aβ clearance protein—low-density lipoprotein receptor-related protein 1 (LRP1)—in the efflux of Aβ from the brain. We also outline the multiple factors that influence the function of LRP1-mediated Aβ clearance, such as its expression, shedding, structural modification and transcriptional regulation by other genes. Finally, we summarize approaches aimed at restoring LRP1-mediated Aβ clearance from the brain.
Collapse
Affiliation(s)
- Anita Ramanathan
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Amy R Nelson
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
6
|
Lin L, Hu K. LRP-1: functions, signaling and implications in kidney and other diseases. Int J Mol Sci 2014; 15:22887-901. [PMID: 25514242 PMCID: PMC4284744 DOI: 10.3390/ijms151222887] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/06/2014] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein (LDL)-related protein-1 (LRP-1) is a member of LDL receptor family that is implicated in lipoprotein metabolism and in the homeostasis of proteases and protease inhibitors. Expression of LRP-1 is ubiquitous. Up-regulation of LRP-1 has been reported in numerous human diseases. In addition to its function as a scavenger receptor for various ligands, LRP-1 has been shown to transduce multiple intracellular signal pathways including mitogen-activated protein kinase (MAPK), Akt, Rho, and the integrin signaling. LRP-1 signaling plays an important role in the regulation of diverse cellular process, such as cell proliferation, survival, motility, differentiation, and transdifferentiation, and thus participates in the pathogenesis of organ dysfunction and injury. In this review, we focus on the current understanding of LRP-1 signaling and its roles in the development and progression of kidney disease. The role and signaling of LRP-1 in the nervous and cardiovascular systems, as well as in carcinogenesis, are also briefly discussed.
Collapse
Affiliation(s)
- Ling Lin
- Division of Nephrology, Department of Medicine, College of Medicine, Penn State University, 500 University Drive, Hershey, PA 17033, USA.
| | - Kebin Hu
- Division of Nephrology, Department of Medicine, College of Medicine, Penn State University, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
7
|
Imatinib mesylate stimulates low-density lipoprotein receptor-related protein 1-mediated ERK phosphorylation in insulin-producing cells. Clin Sci (Lond) 2014; 128:17-28. [DOI: 10.1042/cs20130560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The PDGF receptor and c-Abl inhibitor imatinib has previously been reported to counteract β-cell death and diabetes. Our findings show that imatinib might promote β-cell survival by enhancing basal LRP1 activity.
Collapse
|
8
|
Potent Lipolytic Activity of Lactoferrin in Mature Adipocytes. Biosci Biotechnol Biochem 2014; 77:566-71. [DOI: 10.1271/bbb.120817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Emonard H, Théret L, Bennasroune AH, Dedieu S. Regulation of LRP-1 expression: make the point. ACTA ACUST UNITED AC 2014; 62:84-90. [PMID: 24661974 DOI: 10.1016/j.patbio.2014.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/14/2014] [Indexed: 12/14/2022]
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a membrane receptor displaying both scavenging and signaling functions. The wide variety of extracellular ligands and of cytoplasmic scaffolding and signaling proteins interacting with LRP-1 gives it a major role not only in physiological processes, such as embryogenesis and development, but also in critical pathological situations, including cancer and neurological disorders. In this review, we describe the molecular mechanisms involved at distinct levels in the regulation of LRP-1, from its expression to the proper location and stability at the cell surface.
Collapse
Affiliation(s)
- H Emonard
- UMR CNRS 7369, unité MEDyC (matrice extracellulaire et dynamique cellulaire), université de Reims-Champagne-Ardenne (URCA), UFR sciences exactes et naturelles, campus Moulin-de-la-Housse, BP 1039, 51687 Reims cedex 2, France
| | - L Théret
- UMR CNRS 7369, unité MEDyC (matrice extracellulaire et dynamique cellulaire), université de Reims-Champagne-Ardenne (URCA), UFR sciences exactes et naturelles, campus Moulin-de-la-Housse, BP 1039, 51687 Reims cedex 2, France
| | - A H Bennasroune
- UMR CNRS 7369, unité MEDyC (matrice extracellulaire et dynamique cellulaire), université de Reims-Champagne-Ardenne (URCA), UFR sciences exactes et naturelles, campus Moulin-de-la-Housse, BP 1039, 51687 Reims cedex 2, France
| | - S Dedieu
- UMR CNRS 7369, unité MEDyC (matrice extracellulaire et dynamique cellulaire), université de Reims-Champagne-Ardenne (URCA), UFR sciences exactes et naturelles, campus Moulin-de-la-Housse, BP 1039, 51687 Reims cedex 2, France.
| |
Collapse
|
10
|
Ferrer DG, Jaldín-Fincati JR, Amigone JL, Capra RH, Collino CJ, Albertini RA, Chiabrando GA. Standardized flow cytometry assay for identification of human monocytic heterogeneity and LRP1 expression in monocyte subpopulations: decreased expression of this receptor in nonclassical monocytes. Cytometry A 2014; 85:601-10. [PMID: 24639232 DOI: 10.1002/cyto.a.22455] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/27/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
Abstract
In this article, we present a flow cytometry assay by which human blood monocyte subpopulations-classical (CD14(++) CD16(-)), intermediate (CD14(++) CD16(+)), and nonclassical (CD14(+) CD16(++)) monocytes-can be determined. Monocytic cells were selected from CD45(+) leukocyte subsets by differential staining of the low-density lipoprotein receptor-related protein 1 (LRP1), which allows reducing the spill-over of natural killer cells and granulocytes into the CD16(+) monocyte gate. Percentages of monocyte subpopulations established by this procedure were significantly comparable with those obtained by a well-standardized flow cytometry assay based on the HLA-DR monocyte-gating strategy. We also demonstrated that LRP1 is differentially expressed at cell surface of monocyte subpopulations, being significantly lower in nonclassical monocytes than in classical and intermediate monocytes. Cell surface expression of LRP1 accounts for only 20% of the total cellular content in each monocyte subpopulation. Finally, we established the within-individual biological variation (bCV%) of circulating monocyte subpopulations in healthy donors, obtaining values of 21%, 20%, and 17% for nonclassical, intermediate, and classical monocytes, respectively. Similar values of bCV% for LRP1 measured in each monocyte subpopulation were also obtained, suggesting that its variability is mainly influenced by the intrinsic biological variation of circulating monocytes. Thus, we conclude that LRP1 can be used as a third pan-monocytic marker together with CD14 and CD16 to properly identify monocyte subpopulations. The combined determination of monocyte subpopulations and LRP1 monocytic expression may be relevant for clinical studies of inflammatory processes, with special interest in atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Darío G Ferrer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
11
|
Craig J, Mikhailenko I, Noyes N, Migliorini M, Strickland DK. The LDL receptor-related protein 1 (LRP1) regulates the PDGF signaling pathway by binding the protein phosphatase SHP-2 and modulating SHP-2- mediated PDGF signaling events. PLoS One 2013; 8:e70432. [PMID: 23922991 PMCID: PMC3724782 DOI: 10.1371/journal.pone.0070432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/18/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule. METHODOLOGY/PRINCIPAL FINDINGS To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis. CONCLUSIONS/SIGNIFICANCE Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events.
Collapse
Affiliation(s)
- Julie Craig
- Center for Vascular and Inflammatory Diseases and
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Cathepsin D is partly endocytosed by the LRP1 receptor and inhibits LRP1-regulated intramembrane proteolysis. Oncogene 2011; 31:3202-12. [PMID: 22081071 DOI: 10.1038/onc.2011.501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aspartic protease cathepsin-D (cath-D) is a marker of poor prognosis in breast cancer that is overexpressed and hypersecreted by human breast cancer cells. Secreted pro-cath-D binds to the extracellular domain of the β-chain of the LDL receptor-related protein-1 (LRP1) in fibroblasts. The LRP1 receptor has an 85-kDa transmembrane β-chain and a noncovalently attached 515-kDa extracellular α-chain. LRP1 acts by (1) internalizing many ligands via its α-chain, (2) activating signaling pathways by phosphorylating the LRP1β-chain tyrosine and (3) modulating gene transcription by regulated intramembrane proteolysis (RIP) of its β-chain. LRP1 RIP involves two cleavages: the first liberates the LRP1 ectodomain to give a membrane-associated form, LRP1β-CTF, and the second generates the LRP1β-intracellular domain, LRP1β-ICD, that modulates gene transcription. Here, we investigated the endocytosis of pro-cath-D by LRP1 and the effect of pro-cath-D/LRP1β interaction on LRP1β tyrosine phosphorylation and/or LRP1β RIP. Our results indicate that pro-cath-D was partially endocytosed by LRP1 in fibroblasts. However, pro-cath-D and ectopic cath-D did not stimulate phosphorylation of the LRP1β-chain tyrosine. Interestingly, ectopic cath-D and its catalytically inactive (D231N)cath-D, and pro-(D231N)cath-D all significantly inhibited LRP1 RIP by preventing LRP1β-CTF production. Thus, cath-D inhibits LRP1 RIP independently of its catalytic activity by blocking the first cleavage. As cath-D triggers fibroblast outgrowth by LRP1, we propose that cath-D modulates the growth of fibroblasts by inhibiting LRP1 RIP in the breast tumor microenvironment.
Collapse
|
14
|
Mulvihill MM, Guttman M, Komives EA. Protein interactions among Fe65, the low-density lipoprotein receptor-related protein, and the amyloid precursor protein. Biochemistry 2011; 50:6208-16. [PMID: 21650223 DOI: 10.1021/bi200508f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The adapter protein Fe65 has been proposed to be the link between the intracellular domains of the amyloid precursor protein, APP (AICD), and the low-density lipoprotein receptor-related protein (LRP-CT). Functional linkage between these two proteins has been established, and mutations within LRP-CT affect the amount of Aβ produced from APP. Previous work showed that AICD binds to protein interaction domain 2 (PID2) of Fe65. Although the structure of PID1 was determined recently, all attempts to demonstrate LRP-CT binding to this domain failed. We used biophysical experiments and binding studies to investigate the binding among these three proteins. Full-length Fe65 bound more weakly to AICD than did N-terminally truncated forms; however, the intramolecular domain-domain interactions that had been proposed to inhibit binding could not be observed using amide H-D exchange. Surprisingly, when LRP-CT is phosphorylated at Tyr4507, it bound to Fe65 PID1 despite the fact that this domain belongs to the Dab-like subclass of PIDs that are not supposed to be phosphorylation-dependent. Mutation of a critical arginine abolished binding, providing further proof of the phosphorylation dependence. Fe65 PID1 thus provides a link between the Dab-like class and the IRS-like class of PIDs and is the first Dab-like family member to show phosphorylation-dependent binding.
Collapse
Affiliation(s)
- Melinda M Mulvihill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0378, United States
| | | | | |
Collapse
|
15
|
Selvais C, D'Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, Dedieu S, Noël A, Nagase H, Henriet P, Courtoy PJ, Marbaix E, Emonard H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J 2011; 25:2770-81. [PMID: 21518850 DOI: 10.1096/fj.10-169508] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼ 2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.
Collapse
Affiliation(s)
- Charlotte Selvais
- Cell Biology Laboratory, de Duve Institute, UCL-75.41, 75 avenue Hippocrate, B-1200 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Woldt E, Matz RL, Terrand J, Mlih M, Gracia C, Foppolo S, Martin S, Bruban V, Ji J, Velot E, Herz J, Boucher P. Differential signaling by adaptor molecules LRP1 and ShcA regulates adipogenesis by the insulin-like growth factor-1 receptor. J Biol Chem 2011; 286:16775-82. [PMID: 21454706 DOI: 10.1074/jbc.m110.212878] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein (LRP1) is a transmembrane receptor that integrates multiple signaling pathways. Its cytoplasmic domain serves as docking sites for several adaptor proteins such as the Src homology 2/α-collagen (ShcA), which also binds to several tyrosine kinase receptors such as the insulin-like growth factor 1 (IGF-1) receptor. However, the physiological significance of the physical interaction between LRP1 and ShcA, and whether this interaction modifies tyrosine kinase receptor signaling, are still unknown. Here we report that LRP1 forms a complex with the IGF-1 receptor, and that LRP1 is required for ShcA to become sensitive to IGF-1 stimulation. Upon IGF-1 treatment, ShcA is tyrosine phosphorylated and translocates to the plasma membrane only in the presence of LRP1. This leads to the recruitment of the growth factor receptor-bound protein 2 (Grb2) to ShcA, and activation of the Ras/MAP kinase pathway. Conversely, in the absence of ShcA, IGF-1 signaling bifurcates toward the Akt/mammalian target of rapamycin pathway and accelerates adipocyte differentiation when cells are stimulated for adipogenesis. These results establish the LRP1-ShcA complex as an essential component in the IGF-1-regulated pathway for MAP kinase and Akt/mammalian target of rapamycin activation, and may help to understand the IGF-1 signaling shift from clonal expansion to growth-arrested cells and differentiation during adipogenesis.
Collapse
Affiliation(s)
- Estelle Woldt
- CNRS, UMR7213, University of Strasbourg, Illkirch, F-67401 France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dieckmann M, Dietrich MF, Herz J. Lipoprotein receptors--an evolutionarily ancient multifunctional receptor family. Biol Chem 2011; 391:1341-63. [PMID: 20868222 DOI: 10.1515/bc.2010.129] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The evolutionarily ancient low-density lipoprotein (LDL) receptor gene family represents a class of widely expressed cell surface receptors. Since the dawn of the first primitive multicellular organisms, several structurally and functionally distinct families of lipoprotein receptors have evolved. In accordance with the now obsolete 'one-gene-one-function' hypothesis, these cell surface receptors were originally perceived as mere transporters of lipoproteins, lipids, and nutrients or as scavenger receptors, which remove other kinds of macromolecules, such as proteases and protease inhibitors from the extracellular environment and the cell surface. This picture has since undergone a fundamental change. Experimental evidence has replaced the perception that these receptors serve merely as cargo transporters. Instead it is now clear that the transport of macromolecules is inseparably intertwined with the molecular machinery by which cells communicate with each other. Lipoprotein receptors are essentially sensors of the extracellular environment that participate in a wide range of physiological processes by physically interacting and coevolving with primary signal transducers as co-regulators. Furthermore, lipoprotein receptors modulate cellular trafficking and localization of the amyloid precursor protein (APP) and the β-amyloid peptide (Aβ), suggesting a role in the pathogenesis of Alzheimer's disease. Moreover, compelling evidence shows that LDL receptor family members are involved in tumor development and progression.
Collapse
Affiliation(s)
- Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9046, USA
| | | | | |
Collapse
|
18
|
Cáceres LC, Bonacci GR, Sánchez MC, Chiabrando GA. Activated α(2) macroglobulin induces matrix metalloproteinase 9 expression by low-density lipoprotein receptor-related protein 1 through MAPK-ERK1/2 and NF-κB activation in macrophage-derived cell lines. J Cell Biochem 2011; 111:607-17. [PMID: 20568116 DOI: 10.1002/jcb.22737] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Macrophages under certain stimuli induce matrix metalloproteinase 9 (MMP-9) expression and protein secretion through the activation of MAPK-ERK and NF-κB signaling pathways. Previously, we demonstrated that activated α(2)-macroglulin (α(2)M*) through the interaction with its receptor low-density lipoprotein receptor-related protein 1 (LRP1) induces macrophage proliferation mediated by the activation of MAPK-ERK1/2. In the present work, we examined whether α(2)M*/LRP1interaction could induce the MMP-9 production in J774 and Raw264.7 macrophage-derived cell lines. It was shown that α(2)M* promoted MMP-9 expression and protein secretion by LRP1 in both macrophage-derived cell lines, which was mediated by the activation of MAPK-ERK1/2 and NF-κB. Both intracellular signaling pathways activated by α(2)M* were effectively blocked by calphostin-C, suggesting involvement of PKC. In addition, we demonstrate that α(2)M* produced extracellular calcium influx via LRP1. However, when the intracellular calcium mobilization was inhibited by BAPTA-AM, the α(2)M*-induced MAPK-ER1/2 activation was fully blocked in both macrophage cell lines. Finally, using specific pharmacological inhibitors for PKC, Mek1, and NF-κB, it was shown that the α(2)M*-induced MMP-9 protein secretion was inhibited, indicating that the MMP production promoted by the α(2)M*/LRP1 interaction required the activation of both signaling pathways. These findings may prove useful in the understanding of the macrophage LRP1 role in the vascular wall during atherogenic plaque progression.
Collapse
Affiliation(s)
- Leandro C Cáceres
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Ciudad Universitaria 5000, Córdoba, Argentina
| | | | | | | |
Collapse
|
19
|
Beaujouin M, Prébois C, Derocq D, Laurent-Matha V, Masson O, Pattingre S, Coopman P, Bettache N, Grossfield J, Hollingsworth RE, Zhang H, Yao Z, Hyman BT, van der Geer P, Smith GK, Liaudet-Coopman E. Pro-cathepsin D interacts with the extracellular domain of the beta chain of LRP1 and promotes LRP1-dependent fibroblast outgrowth. J Cell Sci 2010; 123:3336-46. [PMID: 20826454 DOI: 10.1242/jcs.070938] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between cancer cells and fibroblasts are crucial in cancer progression. We have previously shown that the aspartic protease cathepsin D (cath-D), a marker of poor prognosis in breast cancer that is overexpressed and highly secreted by breast cancer cells, triggers mouse embryonic fibroblast outgrowth via a paracrine loop. Here, we show the requirement of secreted cath-D for human mammary fibroblast outgrowth using a three-dimensional co-culture assay with breast cancer cells that do or do not secrete pro-cath-D. Interestingly, proteolytically-inactive pro-cath-D remains mitogenic, indicating a mechanism involving protein-protein interaction. We identify the low-density lipoprotein (LDL) receptor-related protein-1, LRP1, as a novel binding partner for pro-cath-D in fibroblasts. Pro-cath-D binds to residues 349-394 of the β chain of LRP1, and is the first ligand of the extracellular domain of LRP1β to be identified. We show that pro-cath-D interacts with LRP1β in cellulo. Interaction occurs at the cell surface, and overexpressed LRP1β directs pro-cath-D to the lipid rafts. Our results reveal that the ability of secreted pro-cath-D to promote human mammary fibroblast outgrowth depends on LRP1 expression, suggesting that pro-cath-D-LRP1β interaction plays a functional role in the outgrowth of fibroblasts. Overall, our findings strongly suggest that pro-cath-D secreted by epithelial cancer cells promotes fibroblast outgrowth in a paracrine LRP1-dependent manner in the breast tumor microenvironment.
Collapse
Affiliation(s)
- Mélanie Beaujouin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin L, Bu G, Mars WM, Reeves WB, Tanaka S, Hu K. tPA activates LDL receptor-related protein 1-mediated mitogenic signaling involving the p90RSK and GSK3beta pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1687-96. [PMID: 20724593 DOI: 10.2353/ajpath.2010.100213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In renal fibrosis, interstitial fibroblasts have an increased proliferative phenotype, and the numbers of interstitial fibroblasts closely correlate with the extent of kidney damage. The mechanisms underlying proliferation and resulting expansion of the interstitium remain largely unknown. Here we define the intracellular signaling events by which tissue plasminogen activator (tPA) promotes renal interstitial fibroblast proliferation. tPA promoted the proliferation of renal interstitial fibroblasts independent of its protease activity. The mitogenic effect of tPA required Tyr(4507) phosphorylation of the cytoplasmic tail of its receptor LDL receptor-related protein 1. tPA triggered sequential proliferative signaling events involving Erk1/2, p90RSK, GSK3β phosphorylation, and cyclin D1 induction. Blockade of Erk1/2 activation or knockdown of p90RSK suppressed tPA-induced GSK3β phosphorylation, cyclin D1 expression, and fibroblast proliferation. In contrast, expression of constitutively active Mek1 mimicked tPA in inducing GSK3β phosphorylation and cyclin D1 expression. Ectopic overexpression of an uninhibitable GSK3β mutant eliminated tPA-induced cyclin D1 expression. In the murine obstruction model, tPA deficiency reduced renal GSK3β phosphorylation and induction of PCNA and FSP-1. These findings show that tPA induces Tyr(4507) phosphorylation of LDL receptor-related protein 1, which in turn leads to the downstream phosphorylation of Erk1/2, p90RSK, and GSK3β, followed by the induction of cyclin D1 in murine interstitial fibroblasts. This study implicates tPA as a mitogen that promotes interstitial fibroblast proliferation, leading to expansion of these cells.
Collapse
Affiliation(s)
- Ling Lin
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
21
|
Barcelona PF, Luna JD, Chiabrando GA, Juarez CP, Bhutto IA, Baba T, McLeod DS, Sánchez MC, Lutty GA. Immunohistochemical localization of low density lipoprotein receptor-related protein 1 and alpha(2)-Macroglobulin in retinal and choroidal tissue of proliferative retinopathies. Exp Eye Res 2010; 91:264-72. [PMID: 20561980 DOI: 10.1016/j.exer.2010.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 04/29/2010] [Accepted: 05/24/2010] [Indexed: 01/22/2023]
Abstract
The immunolocalization of the low density lipoprotein receptor-related protein 1 (LRP1) and its ligand alpha 2-Macroglobulin (alpha(2)M) was examined in tissues from human donor eyes of normal, diabetic and sickle cell disease subjects. Streptavidin alkaline phosphatase immunohistochemistry was performed with a mouse anti-human LRP1 and rabbit anti-human alpha(2)M antibodies. Retinal and choroidal blood vessels were labeled with mouse anti-human CD34 antibody in adjacent tissue sections. Mean scores for immunostaining from the pathological and control eyes were statistically compared. LRP1 immunoreactivity was very weak to negative in the neural retina of normal subjects except in scattered astrocytes. LRP1 expression in diabetic eyes was detected in the internal limiting membrane (ILM), astrocytes, inner photoreceptor matrix, choriocapillaris and choroidal stroma. The ligand alpha(2)M, however, was limited mainly to blood vessel walls, some areas of the inner nuclear layer (INL), photoreceptors, RPE-Bruch's membrane-choriocapillaris complex, intercapillary septa, and choroidal stroma. In sickle cell eyes, avascular and vascular retina as well as choroidal neovascularization (CNV) were analyzed. In avascular areas, LRP1 immunoreactivity was in innermost retina (presumably ILM, astrocytes, and Muller cells) and INL as well as RPE-Bruch's membrane-choriocapillaris complex and choroidal stroma. alpha(2)M was very weak in avascular peripheral retina compared to vascularized areas and limited to stroma in choroid. In contrast, in areas with CNV, LRP1 immunoreactivity was significantly decreased in overlying retina and in RPE-Bruch's membrane and choroidal stroma compared to the controls, while alpha(2)M was elevated in RPE-Bruch's membrane near CNV compared to normal areas in sickle cell choroid. The mean scores revealed that LRP1 and alpha(2)M in neural retina were significantly elevated in astrocytes and ILM in diabetic eyes (p < or = 0.05), whereas in sickle cell eyes scores were elevated in ILM and INL (p < or = 0.05). In addition, alpha(2)M immunoreactivity was in photoreceptors in both ischemic retinopathies. In choroid, the patterns of LRP1 and alpha(2)M expression were different and not coincident. This is the first demonstration of the presence of LRP1 and alpha(2)M in human proliferative retinopathies. Elevated LRP1 expression in sickle cell neural retina and diabetic inner retina and choroid suggests that LRP1 plays an important role in ischemic neovascular diseases.
Collapse
Affiliation(s)
- P F Barcelona
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria (5000) Córdoba, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bilodeau N, Fiset A, Boulanger MC, Bhardwaj S, Winstall E, Lavoie JN, Faure RL. Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes. J Proteome Res 2010; 9:708-17. [PMID: 19947650 DOI: 10.1021/pr900481b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A role for Src Family Kinases (SFKs) in the dynamics of endocytic and secretory pathways has previously been reported. Identification of low-abundance compartmentalized complexes still remains challenging, highlighting the need for novel tools. Here we describe analysis of SFK-signaling complexes of hepatic Golgi/endosomes (G/E) fractions by sequential affinity enrichment of proteins. Mouse G/E permeabilized membranes were first validated in terms of electron microscopy, 1-D electrophoresis (1-DE), insulin-mediated endocytosis and protein content. With the use of quantitative N-terminal labeling of tryptic peptides (iTRAQ), 1-DE and IEF tryptic peptides separation methods, a total of 666 proteins were identified, including the SFK Lyn. Following insulin injection, a series of proteins were recognized by an anti-phosphotyrosine antibody (alpha P42-2) raised against the residue most frequently phosphorylated by SFK on the adenoviral protein E4orf4 and that cross-reacts with endosomal SFK targets. By using affinity chromatography coupled with mass spectrometry, we identified 16 proteins classified as (1) recycling receptors, (2) vesicular trafficking proteins, (3) actin network proteins, (4) metabolism proteins, or (5) signaling proteins. One of these proteins, low density lipoprotein-related protein 1 (LRP1), which is a known SFK substrate, was found to associate with the internalized insulin receptor (IR), suggesting the presence of a co-internalization process. The identification of these proteomes should, thus, contribute to a better understanding of the molecular mechanisms that regulate trafficking events and insulin clearance.
Collapse
|
23
|
Kajiwara Y, Franciosi S, Takahashi N, Krug L, Schmeidler J, Taddei K, Haroutunian V, Fried U, Ehrlich M, Martins RN, Gandy S, Buxbaum JD. Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer's disease. Mol Neurodegener 2010; 5:1. [PMID: 20205790 PMCID: PMC2823744 DOI: 10.1186/1750-1326-5-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/14/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The low-density lipoprotein receptor related protein 1 (LRP1) has been implicated in Alzheimer's disease (AD) but its signalling has not been fully evaluated. There is good evidence that the cytoplasmic domain of LRP1 is involved in protein-protein interactions, important in the cell biology of LRP1. RESULTS We carried out three yeast two-hybrid screens to identify proteins that interact with the cytoplasmic domain of LRP1. The screens included both conventional screens as well as a novel, split-ubiquitin-based screen in which an LRP1 construct was expressed and screened as a transmembrane protein. The split-ubiquitin screen was validated in a screen using full-length amyloid protein precursor (APP), which successfully identified FE65 and FE65L2, as well as novel interactors (Rab3a, Napg, and ubiquitin b). Using both a conventional screen as well as the split-ubiquitin screen, we identified NYGGF4 as a novel LRP1 interactor. The interaction between LRP1 and NYGGF4 was validated using two-hybrid assays, coprecipitation and colocalization in mammalian cells. Mutation analysis demonstrated a specific interaction of NYGGF4 with an NPXY motif that required an intact tyrosine residue. Interestingly, while we confirmed that other LRP1 interactors we identified, including JIP1B and EB-1, were also able to bind to APP, NYGGF4 was unique in that it showed specific binding with LRP1. Expression of NYGGF4 decreased significantly in patients with AD as compared to age-matched controls, and showed decreasing expression with AD disease progression. Examination of Nyggf4 expression in mice with different alleles of the human APOE4 gene showed significant differences in Nyggf4 expression. CONCLUSIONS These results implicate NYGGF4 as a novel and specific interactor of LRP1. Decreased expression of LRP1 and NYGGF4 over disease, evident with the presence of even moderate numbers of neuritic plaques, suggests that LRP1-NYGGF4 is a system altered early in disease. Genetic and functional studies have implicated both LRP1 and NYGGF4 in obesity and cardiovascular disease and the physical association of these proteins may reflect a common mechanism. This is particularly interesting in light of the dual role of ApoE in both cardiovascular risk and AD. The results support further studies on the functional relationship between NYGGF4 and LRP1.
Collapse
Affiliation(s)
- Yuji Kajiwara
- Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reekmans SM, Pflanzner T, Gordts PLSM, Isbert S, Zimmermann P, Annaert W, Weggen S, Roebroek AJM, Pietrzik CU. Inactivation of the proximal NPXY motif impairs early steps in LRP1 biosynthesis. Cell Mol Life Sci 2010; 67:135-45. [PMID: 19856143 PMCID: PMC11115674 DOI: 10.1007/s00018-009-0171-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/24/2009] [Accepted: 10/05/2009] [Indexed: 11/25/2022]
Abstract
The proximal NPXY and distal NPXYXXL motifs in the intracellular domain of LRP1 play an important role in regulation of the function of the receptor. The impact of single and double inactivating knock-in mutations of these motifs on receptor maturation, cell surface expression, and ligand internalization was analyzed in mutant and control wild-type mice and MEFs. Single inactivation of the proximal NPXY or in combination with inactivation of the distal NPXYXXL motif are both shown to be associated with an impaired maturation and premature proteasomal degradation of full-length LRP1. Therefore, only a small mature LRP1 pool is able to reach the cell surface resulting indirectly in severe impairment of ligand internalization. Single inactivation of the NPXYXXL motif revealed normal maturation, but direct impairment of ligand internalization. In conclusion, the proximal NPXY motif proves to be essential for early steps in the LRP1 biosynthesis, whereas NPXYXXL appears rather relevant for internalization.
Collapse
Affiliation(s)
- Sara M. Reekmans
- Laboratory for Experimental Mouse Genetics, Center for Human Genetics, KU Leuven, Herestraat 49, bus 602, 3000 Leuven, Belgium
- Laboratory for Experimental Mouse Genetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | - Thorsten Pflanzner
- Molecular Neurodegeneration, Department of Physiological Chemistry and Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Philip L. S. M. Gordts
- Laboratory for Experimental Mouse Genetics, Center for Human Genetics, KU Leuven, Herestraat 49, bus 602, 3000 Leuven, Belgium
- Laboratory for Experimental Mouse Genetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | - Simone Isbert
- Molecular Neurodegeneration, Department of Physiological Chemistry and Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Pascale Zimmermann
- Laboratory for Signal Integration in Cell Fate Decision, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory of Membrane Trafficking, Center for Human Genetics, KU Leuven, Leuven, Belgium
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anton J. M. Roebroek
- Laboratory for Experimental Mouse Genetics, Center for Human Genetics, KU Leuven, Herestraat 49, bus 602, 3000 Leuven, Belgium
- Laboratory for Experimental Mouse Genetics, Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | - Claus U. Pietrzik
- Molecular Neurodegeneration, Department of Physiological Chemistry and Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| |
Collapse
|
25
|
Guttman M, Betts GN, Barnes H, Ghassemian M, van der Geer P, Komives EA. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics 2009; 9:5016-28. [PMID: 19771558 PMCID: PMC2862490 DOI: 10.1002/pmic.200900457] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) mediates internalization of a large number of proteins and protein-lipid complexes and is widely implicated in Alzheimer's disease. The cytoplasmic domain of LRP1 (LRP1-CT) can be phosphorylated by activated protein-tyrosine kinases at two NPXY motifs in LRP1-CT; Tyr 4507 is readily phosphorylated and must be phosphorylated before phosphorylation of Tyr 4473 occurs. Pull-down experiments from brain lysate revealed numerous proteins binding to LRP1-CT, but the results were highly variable. To separate which proteins bind to each NPXY motif and their phosphorylation dependence, each NPXY motif microdomain was prepared in both phosphorylated and non-phosphorylated forms and used to probe rodent brain extracts for binding proteins. Proteins that bound specifically to the microdomains were identified by LC-MS/MS, and confirmed by Western blot. Recombinant proteins were then tested for binding to each NPXY motif. The NPXY(4507) (membrane distal) was found to interact with a large number of proteins, many of which only bound the tyrosine-phosphorylated form. This microdomain also bound a significant number of other proteins in the unphosphorylated state. Many of the interactions were later confirmed to be direct with recombinant proteins. The NPXY(4473) (membrane proximal) bound many fewer proteins and only to the phosphorylated form.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0378
| | - Gina N. Betts
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0378
| | - Helen Barnes
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr. San Diego CA 92182-1030
| | | | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr. San Diego CA 92182-1030
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0378
| |
Collapse
|
26
|
Ceschin DG, Sánchez MC, Chiabrando GA. Insulin induces the low density lipoprotein receptor-related protein 1 (LRP1) degradation by the proteasomal system in J774 macrophage-derived cells. J Cell Biochem 2009; 106:372-80. [PMID: 19115269 DOI: 10.1002/jcb.22014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor, which binds and internalizes diverse ligands such as activated alpha(2)-macroglobulin (alpha(2)M*). LRP1 promotes intracellular signaling, which downstream mediates cellular proliferation and migration of different types of cells, including macrophages. Unlike the LDL receptor, LRP1 expression is not sensitive to cellular cholesterol levels but appears to be responsive to insulin. It has been previously demonstrated that insulin increases the cell surface presentation of LRP1 in adipocytes and hepatocytes, which is mediated by the intracellular PI(3)K/Akt signaling activation. The LRP1 protein distribution is similar to other insulin-regulated cell surface proteins, including transferring receptor (Tfr). However, in macrophages, the insulin effect on the LRP1 distribution and expression is not well characterized. Considering that macrophages play a central role in the pathogenesis of atherosclerosis, herein we evaluate the effect of insulin on the cellular expression of LRP1 in J774 macrophages-derived cells using Western blot and immunofluorescence microscopy. Our data demonstrate that insulin induces a significant decrease in the LRP1 protein content, without changing the specific mRNA level of this receptor. Moreover, insulin specifically affected the protein expression of LRP1 but not Tfr. The insulin-induced protein degradation of LRP1 in J774 cells was mediated by the activation of the PI(3)K/Akt pathway and proteasomal system by an enhanced ubiquitin-receptor conjugation. The decreased content of LRP1 induced by insulin affected the cellular internalization of alpha(2)M*. Thus, we propose that the protein degradation of LRP-1 induced by insulin in macrophages could have important effects on the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Danilo G Ceschin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
27
|
Gaultier A, Wu X, Le Moan N, Takimoto S, Mukandala G, Akassoglou K, Campana WM, Gonias SL. Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J Cell Sci 2009; 122:1155-62. [PMID: 19299462 DOI: 10.1242/jcs.040717] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease in which myelin is progressively degraded. Because degraded myelin may both initiate and accelerate disease progression, clearing degraded myelin from extracellular spaces may be critical. In this study, we prepared myelin vesicles (MV) from rat brains as a model of degraded myelin. Murine embryonic fibroblasts (MEFs) rapidly internalized MVs, which accumulated in lysosomes only when these cells expressed low-density lipoprotein receptor-related protein (LRP1). Receptor-associated protein (RAP), which binds LRP1 and inhibits interaction with other ligands, blocked MV uptake by LRP1-expressing MEFs. As a complementary approach, we prepared primary cultures of rat astrocytes, microglia and oligodendrocytes. All three cell types expressed LRP1 and mediated MV uptake, which was inhibited by RAP. LRP1 gene-silencing in oligodendrocytes also blocked MV uptake. Myelin basic protein (MBP), which was expressed as a recombinant protein, bound directly to LRP1. MBP-specific antibody inhibited MV uptake by oligodendrocytes. In experimental autoimmune encephalomyelitis in mice, LRP1 protein expression was substantially increased in the cerebellum and spinal cord. LRP1 colocalized with multiple CNS cell types. These studies establish LRP1 as a major receptor for phagocytosis of degraded myelin, which may function alone or in concert with co-receptors previously implicated in myelin phagocytosis.
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Langlois B, Emonard H, Martiny L, Dedieu S. [Multiple involvements of LRP-1 receptor in tumor progression]. ACTA ACUST UNITED AC 2009; 57:548-54. [PMID: 19233571 DOI: 10.1016/j.patbio.2008.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/03/2008] [Indexed: 11/25/2022]
Abstract
Extensive proteolytic remodeling processes constitute a critical step during tumor progression. The endocytic receptor low-density lipoprotein receptor-related protein-1 (LRP-1), by its function in the clearance of multiple extracellular proteases involved in metastatic spreading, has long been considered as a putative tumor suppressor. Moreover, the receptor is likely to control the peritumoral microenvironment by internalization of growth factors and matricial proteins and could therefore participate to the control of signaling events involved in survival and proliferation of cancer cells. Nevertheless, recent data lead to reconsider the initially attributed antitumor properties of LRP-1. A more complex model seems to emerge in which LRP-1 could constitute a sensor of pericellular environment and regulate the membrane proteome dynamics. By its control of focal adhesions composition and turn-over, regulation of the cytoskeleton organization and integrin endocytic recycling, LRP-1 appears as a crucial actor of the epithelial-mesenchymal transition, thereby reinforcing the aggressive phenotype of malignant cells. LRP-1 partitioning into rafts and association with tissue-type and tumor grade specific intracellular scaffold proteins appear crucial to determine its function in tumor progression. Those emerging aspects present numerous promising perspectives in oncology and allow envisaging the development of innovative strategies of control of tumor progression through the targeting of LRP-1.
Collapse
Affiliation(s)
- B Langlois
- Laboratoire Signalisation des récepteurs matriciels, CNRS UMR MEDyC 6237, université de Reims-Champagne-Ardenne, campus Moulin-de-la-Housse, BP 1039, 51687, Reims cedex 2, France
| | | | | | | |
Collapse
|
29
|
Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88:887-918. [PMID: 18626063 DOI: 10.1152/physrev.00033.2007] [Citation(s) in RCA: 538] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The LDL receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes, and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, macrophages, and adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: 1) its ability to recognize more than 30 distinct ligands, 2) its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner, and 3) its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases.
Collapse
Affiliation(s)
- Anna P Lillis
- Center for Vascular and Inflammatory Diseases and Department of Surgery and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
30
|
Gaultier A, Arandjelovic S, Niessen S, Overton CD, Linton MF, Fazio S, Campana WM, Cravatt BF, Gonias SL. Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. Blood 2008; 111:5316-25. [PMID: 18369152 PMCID: PMC2396725 DOI: 10.1182/blood-2007-12-127613] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 03/18/2008] [Indexed: 12/18/2022] Open
Abstract
Low-density lipoprotein receptor-related protein (LRP-1) functions in endocytosis and in cell signaling directly (by binding signaling adaptor proteins) or indirectly (by regulating levels of other cell-surface receptors). Because recent studies in rodents suggest that LRP-1 inhibits inflammation, we conducted activity-based protein profiling experiments to discover novel proteases, involved in inflammation, that are regulated by LRP-1. We found that activated complement proteases accumulate at increased levels when LRP-1 is absent. Although LRP-1 functions as an endocytic receptor for C1r and C1s, complement protease mRNA expression was increased in LRP-1-deficient cells, as was expression of inducible nitric oxide synthase (iNOS) and interleukin-6. Regulation of expression of inflammatory mediators was explained by the ability of LRP-1 to suppress basal cell signaling through the I kappaB kinase-nuclear factor-kappaB (NF-kappaB) pathway. LRP-1-deficient macrophages, isolated from mice, demonstrated increased expression of iNOS, C1r, and monocyte chemoattractant protein-1 (MCP-1); MCP-1 expression was inhibited by NF-kappaB antagonism. The mechanism by which LRP-1 inhibits NF-kappaB activity involves down-regulating cell-surface tumor necrosis factor receptor-1 (TNFR1) and thus, inhibition of autocrine TNFR1-initiated cell signaling. TNF-alpha-neutralizing antibody inhibited NF-kappaB activity selectively in LRP-1-deficient cells. We propose that LRP-1 suppresses expression of inflammatory mediators indirectly, by regulating TNFR1-dependent cell signaling through the I kappaB kinase-NF-kappaB pathway.
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA 92093-0612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Betts GN, van der Geer P, Komives EA. Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain. J Biol Chem 2008; 283:15656-64. [PMID: 18381291 DOI: 10.1074/jbc.m709514200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic domain of LRP1 contains two NPXY motifs that have been shown to interact with signaling proteins. In previous work, we showed that Tyr(4507) in the distal NPXY motif is phosphorylated by v-Src, whereas denaturation of the protein was required for phosphorylation of Tyr(4473) in the membraneproximal NPXY motif. Amide H/D exchange studies reveal that the distal NPXY motif is fully solvent-exposed, whereas the proximal one is not. Phosphopeptide mapping combined with in vitro and in vivo kinase experiments show that Tyr(4473) can be phosphorylated, but only if Tyr(4507) is phosphorylated or substituted with glutamic acid. Amide H/D exchange experiments indicate that solvent accessibility increases across the entire LRP1 cytoplasmic region upon phosphorylation at Tyr(4507); in particular the NPXY(4473) motif becomes much more exposed. This differential phosphorylation is functionally relevant: binding of Snx17, which is known to bind at the proximal NPXY motif, is inhibited by phosphorylation at Tyr(4473). Conversely, Shp2 binds most strongly when both of the NPXY motifs in LRP1 are phosphorylated.
Collapse
Affiliation(s)
- Gina N Betts
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0378, USA
| | | | | |
Collapse
|
32
|
Lakshmana MK, Chen E, Yoon IS, Kang DE. C-terminal 37 residues of LRP promote the amyloidogenic processing of APP independent of FE65. J Cell Mol Med 2008; 12:2665-74. [PMID: 18373737 PMCID: PMC2864086 DOI: 10.1111/j.1582-4934.2008.00320.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The major defining pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid beta protein (Abeta), a small peptide derived from beta- and gamma-secretase cleavages of the amyloid precursor protein (APP). Recent studies have shown that the Low-density lipoprotein receptor-related protein (LRP) plays a pivotal role in the trafficking of APP and generation of Abeta. In particular, we recently showed that the soluble cytoplasmic tail of LRP (LRP-ST) without a membrane tether was sufficient to promote Abeta generation. In this study, we demonstrate that the last 37 residues of LRP cytoplasmic tail (LRP-C37) lacking the NPxY motifs and FE65 binding mediate the core pro-amyloidogenic activity of LRP-ST. Moreover, we show that the conserved dileucine motif within the LRP-C37 region is a key determinant of its Abeta promoting activity. Finally, results from a yeast two-hybrid screen using LRP-C37 region as bait reveal four new LRP-binding proteins implicated in intracellular signalling and membrane protein trafficking. Our findings indicate that the LRP-C37 sequence represents a new protein-binding domain that may be useful as a therapeutic target and tool to lower Abeta generation in AD.
Collapse
Affiliation(s)
- Madepalli K Lakshmana
- Department of Neurosciences, University of California, San Diego, Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
33
|
Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, Roebroek A, Luhmann HJ, Laatsch A, Weggen S, Lessmann V, Pietrzik CU. The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors. J Biol Chem 2008; 283:12004-13. [PMID: 18321860 DOI: 10.1074/jbc.m707607200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) emerges to play fundamental roles in cellular signaling pathways in the brain. One of its prominent ligands is the serine proteinase tissue-type plasminogen activator (tPA), which has been shown to act as a key activator of neuronal mitogen-activated protein kinase pathways via the N-methyl-D-aspartate (NMDA) receptor. However, here we set out to examine whether LRP1 and the NMDA receptor might eventually act in a combined fashion to mediate tPA downstream signaling. By blocking tPA from binding to LRP1 using the receptor-associated protein, we were able to completely inhibit NMDA receptor activation. Additionally, inhibition of NMDA receptor calcium influx with MK-801 resulted in dramatic reduction of tPA-mediated downstream signaling. This indicates a functional interaction between the two receptors, since both experimental approaches resulted in strongly reduced calcium influx and Erk1/2 phosphorylation. Additionally, we were able to inhibit Erk1/2 activation by competing for the LRP1 C-terminal binding motif with a truncated PSD95 construct resembling its PDZ III domain. Furthermore, we identified the distal NPXY amino acid motif in the C terminus of LRP1 as the crucial element for LRP1-NMDA receptor interaction via the adaptor protein PSD95. These results provide new insights into the mechanism of a tPA-induced, LRP1-mediated gating mechanism for NMDA receptors.
Collapse
Affiliation(s)
- Anne M Martin
- Institute of Physiological Chemistry and Pathobiochemistry, Molecular Neurodegeneration and Institute of Physiology, Johannes-Gutenberg-University Mainz, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang H, Lee JM, Wang Y, Dong L, Ko KWS, Pelletier L, Yao Z. Mutational analysis of the FXNPXY motif within LDL receptor-related protein 1 (LRP1) reveals the functional importance of the tyrosine residues in cell growth regulation and signal transduction. Biochem J 2008; 409:53-64. [PMID: 17908054 DOI: 10.1042/bj20071127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LRP1 [LDL (low-density lipoprotein) receptor-related protein 1]-null CHO cells (Chinese-hamster ovary cells) (13-5-1 cells) exhibited accelerated cell growth and severe tumour progression after they were xenografted into nude mice. Reconstitution of LRP1 expression in these cells, either with the full-length protein or with a minireceptor, reduced growth rate as well as suppressed tumour development. We tested the role of the tyrosine residue in the FXNPXY63 motif within the LRP1 cytoplasmic domain in signal transduction and cell growth inhibition by site-specific mutagenesis. The LRP1 minireceptors harbouring Tyr63 to alanine or Tyr63 to phenylalanine substitution had diametrically opposite effects on cell growth, cell morphology and tumour development in mice. The Y63F-expressing cells showed suppressed cell growth and tumour development, which were associated with decreased beta-catenin and cadherin concentrations in the cells. On the other hand, the Y63A-expressing cells lacked inhibition on cell growth and tumour development, which were associated with hyperactivation of ERKs (extracellular-signal-regulated kinases), FAK (focal adhesion kinase) and cyclin D1 in the cells. The mutant Y63A minireceptor also exhibited reduced capacity in binding to the Dab2 (disabled 2) adaptor protein. In addition, the Y63A mutant showed increased caveolar localization, and cells expressing Y63A had altered caveolae architecture. However, tyrosine to alanine substitution at the other NPXY29 motif had no effect on cell growth or tumorigenesis. These results suggest that the FXNPXY63 motif of LRP1 not only governs cellular localization of the receptor but also exerts multiple functional effects on signalling pathways involved in cell growth regulation.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
35
|
Minopoli G, Passaro F, Aloia L, Carlomagno F, Melillo RM, Santoro M, Forzati F, Zambrano N, Russo T. Receptor- and non-receptor tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein. NEURODEGENER DIS 2007; 4:94-100. [PMID: 17596703 DOI: 10.1159/000101833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Alzheimer's beta-amyloid peptides derive from the proteolytic processing of the beta-amyloid precursor protein, APP, by beta- and gamma-secretases. The regulation of this processing is not fully understood. Experimental evidence suggests that the activation of pathways involving protein tyrosine kinases, such as PDGFR and Src, could induce the cleavage of APP and in turn the generation of amyloid peptides. In this paper we addressed the effect of receptor and nonreceptor protein tyrosine kinases on the cleavage of APP and the mechanisms of their action. To this aim, we developed an in vitro system based on the APP-Gal4 fusion protein stably transfected in SHSY5Y neuroblastoma cell line. The cleavage of this molecule, induced by various stimuli, results in the activation of the transcription of the luciferase gene under the control of Gal4 cis-elements. By using this experimental system we demonstrated that, similarly to Src, three tyrosine kinases, TrkA, Ret and EGFR, induced the cleavage of APP-Gal4. We excluded that this effect was mediated by the activation of Ras-MAPK, PI3K-Akt and PLC-gamma pathways. Furthermore, the direct phosphorylation of the APP cytosolic domain does not affect Abeta peptide generation. On the contrary, experiments in cells lacking the LDL-receptor related protein LRP support the hypothesis that the interaction of APP with LRP is required for the induction of APP cleavage by tyrosine kinases.
Collapse
Affiliation(s)
- Giuseppina Minopoli
- CEINGE Biotecnologie Avanzate, Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yoon IS, Chen E, Busse T, Repetto E, Lakshmana MK, Koo EH, Kang DE. Low‐density lipoprotein receptor‐related protein promotes amyloid precursor protein trafficking to lipid rafts in the endocytic pathway. FASEB J 2007; 21:2742-52. [PMID: 17463224 DOI: 10.1096/fj.07-8114com] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The major defining pathological hallmark of Alzheimer's disease (AD) is the accumulation of amyloid beta protein (Abeta), a small peptide derived from beta- and gamma-secretase cleavages of the amyloid precursor protein (APP). Recent studies have shown that beta- and gamma-secretase activities of BACE1 and presenilin, respectively, are concentrated in intracellular lipid raft microdomains. However, the manner in which APP normally traffics to lipid rafts is unknown. In this study, using transient transfection and immuno-precipitation assays, we show that the cytoplasmic domain of low-density lipoprotein receptor-related protein (LRP) interacts with APP and increases Abeta secretion and APP beta-CTF (C-terminal fragment) generation by promoting BACE1-APP interaction. We also employed discontinuous sucrose density gradient ultracentrifugation to show that the LRP cytoplasmic domain-mediated effect was accompanied by greatly increased localization of APP and BACE1 to lipid raft membranes, where beta- and gamma-secretase activities are highly enriched. Moreover, we provide evidence that endogenous LRP is required for the normal delivery of APP to lipid rafts and Abeta generation primarily in the endocytic but not secretory pathway. These results may provide novel insights to block Abeta generation by targeting LRP-mediated delivery of APP to raft microdomains.
Collapse
Affiliation(s)
- Il-Sang Yoon
- Department of Neurosciences, UC San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Bonacci GR, Cáceres LC, Sánchez MC, Chiabrando GA. Activated α2-macroglobulin induces cell proliferation and mitogen-activated protein kinase activation by LRP-1 in the J774 macrophage-derived cell line. Arch Biochem Biophys 2007; 460:100-6. [PMID: 17288987 DOI: 10.1016/j.abb.2007.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/02/2007] [Accepted: 01/02/2007] [Indexed: 11/16/2022]
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor of activated forms of the proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M*). It has been proposed that alpha(2)M* and LRP-1 modulate diverse cellular processes, including cell adhesion, proliferation, and migration, which are involved in inflammation and tumor progression. However, relatively little is known about the role of alpha(2)M*/LRP-1 interaction on these processes. In this work, we demonstrate that alpha(2)M* binding to LRP-1 induces cell proliferation and MAPK activation in the J774 macrophage-derived cell line, which were blocked by RAP, an antagonist of LRP-1-binding ligands, and by PD980059, a specific inhibitor for the Mek1-ERK1/2 pathway. In addition, we demonstrate that LPS, a bacterial product that it is known to down-regulate the LRP-1 expression on macrophage, abrogated the signaling activity triggered by alpha(2)M* on LPS-treated J774 cells. These results suggest that alpha(2)M*/LRP-1 interaction constitutes a key role in the macrophage functioning during inflammation and cancer.
Collapse
Affiliation(s)
- Gustavo R Bonacci
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria (5000) Córdoba, Argentina
| | | | | | | |
Collapse
|
38
|
Congote LF. Serpin A1 and CD91 as host instruments against HIV-1 infection: are extracellular antiviral peptides acting as intracellular messengers? Virus Res 2007; 125:119-34. [PMID: 17258834 DOI: 10.1016/j.virusres.2006.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/15/2006] [Accepted: 12/22/2006] [Indexed: 01/11/2023]
Abstract
Serpin A1 (alpha1-antitrypsin, alpha1-proteinase inhibitor) has been shown to be a non-cytolytic antiviral factor present in blood and effective against HIV infection. The best known physiological role of serpin A1 is to inhibit neutrophil elastase, a proteinase which is secreted by neutrophils at sites of infection and inflammation. Decreased HIV-infectivity is associated with decreased density of membrane-associated elastase. The enzyme may facilitate binding of the HIV membrane protein gp120 to host cells, and it specifically cleaves SDF-1, the physiological ligand of the HIV-1 co-receptor CXCR4. It has been suggested that one of the actions of serpin A1 as antiviral agent is to reduce HIV infectivity, and this property could be due to elastase inhibition. However, the most dramatic effect of serpin A1 is inhibition of HIV production. In vitro experiments indicate that the C-terminal peptide of serpin A1, produced during the formation of the complex of serpin with serine proteinases, may be responsible for the inhibition of HIV-1 expression in infected cells. This peptide, an integral part of the serpin-enzyme complex, is internalized by several scavenger receptors. Peptides corresponding to the C-terminal section of serpin A1 inhibit HIV-1 long-terminal-repeat-driven transcription and interact with nuclear proteins, such as alpha1-fetoprotein transcription factor. LDL-receptor-related protein 1 (LRP1/CD91), the best known receptor for serpin-enzyme complexes, is up-regulated in monocytes of HIV-1-infected true non-progressors. CD91 could be one of the major players in host resistance against HIV-1. It has the capacity of internalizing antiviral peptides such as serpin C-terminal fragments and alpha-defensins, and is at the same time the receptor for heat-shock proteins in antigen-presenting cells, in which chaperoned viral peptides could lead to the induction of cytotoxic T-cell responses.
Collapse
Affiliation(s)
- Luis Fernando Congote
- Endocrine Laboratory, McGill University Health Centre, 687 Avenue des pins, Ouest, Montreal, H3A 1A1, Canada.
| |
Collapse
|
39
|
Peltan ID, Thomas AV, Mikhailenko I, Strickland DK, Hyman BT, von Arnim CAF. Fluorescence lifetime imaging microscopy (FLIM) detects stimulus-dependent phosphorylation of the low density lipoprotein receptor-related protein (LRP) in primary neurons. Biochem Biophys Res Commun 2006; 349:24-30. [PMID: 16930548 DOI: 10.1016/j.bbrc.2006.07.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP) is a large, endocytic receptor involved in intracellular signalling. LRP acts as a co-receptor with the PDGF-receptor (PDGF-r) for platelet-derived growth factor (PDGF). PDGF-r and Src-kinases induce tyrosine-phosphorylation of LRP. We used fluorescence lifetime imaging microscopy (FLIM) to specifically detect LRP phosphorylation, measure its extent and localization in intact cells, and assess its effects upon LRP-APP interaction. Robust phosphorylation of LRP throughout the cell was observed after overexpression of Src-kinase. This depended on LRP's distal NPXY domain. By contrast, activation of the PDGF-r resulted in phosphorylation of the subpopulation of LRP at or near the cell surface. PDGF activation triggered phosphorylation of endogenous LRP in primary neurons. LRP is also a trafficking receptor for the Alzheimer-related molecule amyloid-precursor-protein (APP). PDGF stimulation did not affect LRP-APP interactions. This approach allows exquisite subcellular resolution of specific LRP post-translational changes and protein-protein interactions of endogenous proteins in intact cells.
Collapse
Affiliation(s)
- Ithan D Peltan
- Alzheimer's Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
40
|
Balsara RD, Castellino FJ, Ploplis VA. A Novel Function of Plasminogen Activator Inhibitor-1 in Modulation of the AKT Pathway in Wild-type and Plasminogen Activator Inhibitor-1-deficient Endothelial Cells. J Biol Chem 2006; 281:22527-36. [PMID: 16785241 DOI: 10.1074/jbc.m512819200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell proliferation, an event associated with angiogenesis, involves coordinated activities of a number of proteins. The role of plasminogen activator inhibitor-1 (PAI-1) in angiogenesis remains controversial. Utilizing proliferating PAI-1-/- endothelial cells (EC), the impact of a host PAI-1 deficiency on Akt activation was evaluated. Hyperactivation of Akt(Ser(P)473) was observed in PAI-1-/- EC, and this was probably due to enhanced inactivation of tumor suppressor PTEN, thus rendering the cells resistant to apoptotic signals. Higher levels of inactivated caspase-9 in PAI-1-/- EC led to lower levels of procaspase-3 and cleaved caspase-3, thereby promoting survival. These effects were reversed when recombinant PAI-1 was added to PAI-1-/- EC. Additional studies demonstrated that regulation of proliferation is dependent on its interaction with low density lipoprotein receptor-related protein. Thus, PAI-1 is a negative regulator of cell growth, exerting its effect on the phosphatidylinositol 3-kinase/Akt pathway and allowing controlled cell proliferation.
Collapse
Affiliation(s)
- Rashna D Balsara
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
41
|
Fagoonee S, Di Cunto F, Vozzi D, Volinia S, Pellegrino M, Gasparini P, Silengo L, Altruda F, Tolosano E. Microarray and large-scale in silico--based identification of genes functionally related to Haptoglobin and/or Hemopexin. DNA Cell Biol 2006; 25:323-330. [PMID: 16792502 DOI: 10.1089/dna.2006.25.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Haptoglobin and Hemopexin are plasma acute phase proteins that bind with high-affinity hemoglobin and heme, respectively. They play a key role in the protection against oxidative stress and inflammation. To dissect in more detail the mechanism of action of Haptoglobin and Hemopexin, it is important to identify their downstream effectors as well as genes functionally related to them. To this end, we performed a cDNA microarray analysis to compare gene expression profiles of the liver of Haptoglobin and Hemopexin single and double null mice to that of wild-type controls. Then, to extract the best candidates considered to be functionally related to Haptoglobin and/or Hemopexin from microarray-derived gene lists, we used a bioinformatic approach consisting in the screening of published microarray data for genes showing coexpression with Haptoglobin or Hemopexin. This strategy allowed us to identify a group of genes coexpressed with Haptoglobin or Hemopexin and transcriptionally modulated by their lack. These genes present a high probability to be functionally related to Haptoglobin and Hemopexin. Based on literature data, we picked up from this group of genes the ras suppressor Rsu1, the member of the G-protein signal transduction family Gnai2, and the cytokine Mdk as the best candidates mediating the anti-inflammatory action of Haptoglobin and Hemopexin.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Department of Genetics, Biology, and Biochemistry, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Takayama Y, Takezawa T. Lactoferrin promotes collagen gel contractile activity of fibroblasts mediated by lipoprotein receptorsThis paper is one of a selection of papers published in this Special Issue, entitled 7th International Conference on Lactoferrin: Structure, Function, and Applications, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:268-74. [PMID: 16936796 DOI: 10.1139/o06-041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein that belongs to the transferrin family. Recent studies in vitro and in vivo suggest that lactoferrin is a potential therapeutic agent for wound healing. We have shown that both bovine and human lactoferrin enhance the collagen gel contractile activity of WI-38 human fibroblasts. The collagen gel contraction is considered as an in vitro model for reorganization of the collagen matrix during the wound healing process. The elevation of collagen gel contractile activity induced by lactoferrin was accompanied by activation of extracellular-regulated kinase (ERK) 1/2 and myosin light chain kinase (MLCK), and subsequent elevation of myosin light chain (MLC) phosphorylation. The effects of lactoferrin on collagen gel contraction and the activation of the signaling pathway were dependent on the expression of low-density lipoprotein receptor - related protein (LRP) - 1 in the fibroblasts. LRP-1 is known as an endocytosis receptor and is involved in the cellular uptake of diverse ligands, including lactoferrin. In addition, LRP-1 acts as a signaling lactoferrin receptor in mammalian cells by converting the lactoferrin-binding signal into the activation of the intracellular signaling pathway. This property was found to be independent of the endocytic function of LRP-1, as seen in osteoblast-like cells.
Collapse
Affiliation(s)
- Yoshiharu Takayama
- Functional Bio-molecules Laboratory, National Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, 305-0901, Japan.
| | | |
Collapse
|
43
|
Roebroek AJM, Reekmans S, Lauwers A, Feyaerts N, Smeijers L, Hartmann D. Mutant Lrp1 knock-in mice generated by recombinase-mediated cassette exchange reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol Cell Biol 2006; 26:605-16. [PMID: 16382151 PMCID: PMC1346909 DOI: 10.1128/mcb.26.2.605-616.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lrp1 knock-in mice carrying either a wild-type allele or three different mutated alleles encoding the multifunctional endocytic receptor LRP1 were generated by recombinase-mediated cassette exchange (RMCE). Reinsertion by RMCE of a wild-type allele led to a normal pattern and level of gene expression and a completely normal phenotype, indicating that the RMCE procedure itself is neutral with respect to the function of the gene locus. In contrast, reinsertion of mutated LRP1 alleles carrying either inactivating mutations in the proximal NPXY motif (NPTY-->AATA) of the cytoplasmic domain or in the furin cleavage site (RHRR-->AHAA) caused distinctive liver phenotypes: respectively, either a late fetal destruction of the organ causing perinatal death or a selective enlargement of von-Kupffer cell lysosomes reminiscent of a mild lysosomal storage without an apparent negative effect on animal survival. Notably, mutation of the distal NPXY motif overlapping with an YXXL motif (NPVYATL-->AAVAATL) did not cause any obvious pathological effect. The mutations showed no effect on the LRP1 expression level; however, as expected, the proteolytic maturation of LRP1 into its two subunits was significantly impaired, although not completely abolished, in the furin cleavage mutant. These data demonstrate that RMCE is a reliable and efficient approach to generate multiple mutant knock-in alleles for in vivo functional analysis of individual domains or motifs of large multidomain proteins. Its application in Lrp1 reveals dramatically variant phenotypes, of which further characterization will definitively contribute to our understanding of the biology of this multifunctional receptor.
Collapse
Affiliation(s)
- Anton J M Roebroek
- Experimental Mouse Genetics, Center for Human Genetics, KU Leuven and Flanders Interuniversity Institute for Biotechnology, Herestraat 49, bus 602, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
44
|
Hu K, Yang J, Tanaka S, Gonias SL, Mars WM, Liu Y. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem 2006; 281:2120-2127. [PMID: 16303771 DOI: 10.1074/jbc.m504988200] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue-type plasminogen activator (tPA), a serine protease well known for generating plasmin, has been demonstrated to induce matrix metalloproteinase-9 (MMP-9) gene expression and protein secretion in renal interstitial fibroblasts. However, exactly how tPA transduces its signal into the nucleus to control gene expression is unknown. This study investigated the mechanism by which tPA induces MMP-9 gene expression. Both wild-type and non-enzymatic mutant tPA were found to induce MMP-9 expression in rat kidney interstitial fibroblasts (NRK-49F), indicating that the actions of tPA are independent of its proteolytic activity. tPA bound to the low density lipoprotein receptor-related protein-1 (LRP-1) in NRK-49F cells, and this binding was competitively abrogated by the LRP-1 antagonist, the receptor-associated protein. In mouse embryonic fibroblasts (PEA-13) lacking LRP-1, tPA failed to induce MMP-9 expression. Furthermore, tPA induced rapid tyrosine phosphorylation on the beta subunit of LRP-1, which was followed by the activation of Mek1 and its downstream Erk-1 and -2. Blockade of Erk-1/2 activation by the Mek1 inhibitor abolished MMP-9 induction by tPA in NRK-49F cells. Conversely, overexpression of constitutively activated Mek1 induced Erk-1/2 phosphorylation and MMP-9 expression. In mouse obstructed kidney, tPA, LRP-1, and MMP-9 were concomitantly induced in the renal interstitium. Collectively, these results suggest that besides its classical proteolytic activity, tPA acts as a cytokine that binds to the cell membrane receptor LRP-1, induces its tyrosine phosphorylation, and triggers intracellular signal transduction, thereby inducing specific gene expression in renal interstitial fibroblasts.
Collapse
Affiliation(s)
- Kebin Hu
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
45
|
Gaultier A, Salicioni AM, Arandjelovic S, Gonias SL. Regulation of the composition of the extracellular matrix by low density lipoprotein receptor-related protein-1: activities based on regulation of mRNA expression. J Biol Chem 2006; 281:7332-40. [PMID: 16407289 DOI: 10.1074/jbc.m511857200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Low density lipoprotein receptor-related protein-1 (LRP-1) is a catabolic receptor for extracellular matrix (ECM) structural proteins and for proteins that bind to ECM. LRP-1 also is implicated in integrin maturation. In this study, we applied a proteomics strategy to identify novel proteins involved in ECM modeling that are regulated by LRP-1. We show that LRP-1 deficiency in murine embryonic fibroblasts (MEFs) is associated with increased levels of type III collagen and pigment epithelium-derived factor, which accumulate in the substratum surrounding cells. The collagen receptor, uPAR-AP/Endo-180, is also increased in LRP-1-deficient MEFs. Human LRP-1 reversed the changes in protein expression associated with LRP-1 deficiency; however, the endocytic activity of LRP-1 was not involved. Instead, regulation occurred at the mRNA level. Inhibition of c-Jun amino-terminal kinase (JNK) blocked type III collagen expression in LRP-1-deficient MEFs, suggesting regulation of JNK activity as a mechanism by which LRP-1 controls mRNA expression. The ability of LRP-1 to regulate expression of the factors identified here suggests a role for LRP-1 in determining blood vessel structure and in angiogenesis.
Collapse
MESH Headings
- Animals
- Biotin/chemistry
- Cell Line
- Cell Membrane/metabolism
- Cloning, Molecular
- Collagen/chemistry
- Culture Media, Conditioned/metabolism
- Culture Media, Conditioned/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Endocytosis
- Extracellular Matrix/metabolism
- Fibrinogen/chemistry
- Gene Expression Regulation
- Humans
- LDL-Receptor Related Proteins/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/physiology
- Mass Spectrometry
- Mice
- Microscopy, Fluorescence
- Neovascularization, Pathologic
- Phosphorylation
- Proteomics
- RNA, Messenger/metabolism
- Receptors, LDL/metabolism
- Receptors, LDL/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Surface Properties
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
46
|
Newton CS, Loukinova E, Mikhailenko I, Ranganathan S, Gao Y, Haudenschild C, Strickland DK. Platelet-derived growth factor receptor-beta (PDGFR-beta) activation promotes its association with the low density lipoprotein receptor-related protein (LRP). Evidence for co-receptor function. J Biol Chem 2005; 280:27872-8. [PMID: 15944146 DOI: 10.1074/jbc.m505410200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the platelet-derived growth factor receptor-beta (PDGFR-beta) leads to tyrosine phosphorylation of the cytoplasmic domain of LRP and alters its association with adaptor and signaling proteins, such as Shc. The mechanism of the PDGF-induced LRP tyrosine phosphorylation is not well understood, especially since PDGF not only activates PDGF receptor but also binds directly to LRP. To gain insight into this mechanism, we used a chimeric receptor in which the ligand binding domain of the PDGFR-beta was replaced with that from the macrophage colony-stimulating factor (M-CSF) receptor, a highly related receptor tyrosine kinase of the same subfamily, but with different ligand specificity. Activation of the chimeric receptor upon the addition of M-CSF readily mediated the tyrosine phosphorylation of LRP. Since M-CSF is not recognized by LRP, these results indicated that growth factor binding to LRP is not necessary for this phosphorylation event. Using a panel of cytoplasmic domain mutants of the chimeric M-CSF/PDGFR-beta, we confirmed that the kinase domain of PDGFR-beta is absolutely required for LRP tyrosine phosphorylation but that PDGFR-beta-mediated activation of phosphatidylinositol 3-kinase, RasGAP, SHP-2, phospholipase C-gamma, and Src are not necessary for LRP tyrosine phosphorylation. To identify the cellular compartment where LRP and the PDGFR-beta may interact, we employed immunofluorescence and immunogold electron microscopy. In WI-38 fibroblasts, these two receptors co-localized in coated pits and endosomal compartments following PDGF stimulation. Further, phosphorylated forms of the PDGFR-beta co-immunoprecipitated with LRP following PDGF treatment. Together, these studies revealed close association between activated PDGFR-beta and LRP, suggesting that LRP functions as a co-receptor capable of modulating the signal transduction pathways initiated by the PDGF receptor from endosomes.
Collapse
Affiliation(s)
- Christopher S Newton
- Department of Surgery and Physiology, University of Maryland School of Medicine, 15601 Crabbs Branch Way, Rockville, Maryland 20855, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Takayama Y, May P, Anderson RGW, Herz J. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Controls Endocytosis and c-CBL-mediated Ubiquitination of the Platelet-derived Growth Factor Receptor β (PDGFRβ). J Biol Chem 2005; 280:18504-10. [PMID: 15753096 DOI: 10.1074/jbc.m410265200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The low density lipoprotein receptor-related protein 1 (LRP1) has been implicated in intracellular signaling functions as well as in lipid metabolism. Recent in vivo and in vitro studies suggest that LRP1 is a physiological modulator of the platelet-derived growth factor (PDGF) signaling pathway. Here we show that in mouse fibroblasts LRP1 modulates PDGF-BB signaling by controlling endocytosis and ligand-induced down-regulation of the PDGF receptor beta (PDGFRbeta). In LRP1-deficient fibroblasts, basal PDGFRbeta tyrosine kinase activity was derepressed, and PDGF-BB-induced endocytosis and degradation of PDGFRbeta were accelerated as compared with control cells. This was accompanied by rapid uptake of receptor-bound PDGF-BB into the cells and by attenuated ERK activation in response to PDGF-BB stimulation. Pulse-chase analysis indicated that the steady-state turnover rate of PDGFRbeta was also accelerated in LRP-deficient fibroblasts. The rapid degradation of PDGFRbeta in the LRP1-deficient fibroblasts was prevented by MG132 and chloroquine. Furthermore, the association of PDGFRbeta with c-Cbl, a ubiquitin E3-ligase, as well as the ligand-induced ubiquitination of PDGFRbeta were increased in LRP1-deficient fibroblasts. We show that LRP1 can directly interact with c-Cbl, suggesting a Sprouty-like role for LRP1 in regulating the access of the PDGFRbeta to the ubiquitination machinery. Thus, LRP1 modulates PDGF signaling by controlling ubiquitination and endocytosis of the PDGFRbeta.
Collapse
Affiliation(s)
- Yoshiharu Takayama
- Departments of Molecular Genetics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | | | | | | |
Collapse
|
48
|
Yoon IS, Pietrzik CU, Kang DE, Koo EH. Sequences from the low density lipoprotein receptor-related protein (LRP) cytoplasmic domain enhance amyloid beta protein production via the beta-secretase pathway without altering amyloid precursor protein/LRP nuclear signaling. J Biol Chem 2005; 280:20140-7. [PMID: 15772078 DOI: 10.1074/jbc.m413729200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that the low density lipoprotein receptor-related protein (LRP) affects the processing of amyloid precursor protein (APP) and amyloid beta (Abeta) protein production as well as mediates the clearance of Abeta from the brain. Recent studies indicate that the cytoplasmic domain of LRP is critical for this modulation of APP processing requiring perhaps a complex between APP, the adaptor protein FE65, and LRP. In this study, we expressed a small LRP domain consisting of the C-terminal 97 amino acids of the cytoplasmic domain, or LRP-soluble tail (LRP-ST), in CHO cells to test the hypothesis that the APP.LRP complex can be disrupted. We anticipated that LRP-ST would inhibit the normal interaction between LRP and APP and therefore perturb APP processing to resemble a LRP-deficient state. Surprisingly, CHO cells expressing LRP-ST demonstrated an increase in both sAPP secretion and Abeta production compared with control CHO cells in a manner reminiscent of the cellular effects of the APP "Swedish mutation." The increase in sAPP secretion consisted mainly of sAPPbeta, consistent with the increase in Abeta release. Further, this effect is LRP-independent, as the same alterations remained when LRP-ST was expressed in LRP-deficient cells but not when the construct was membrane-anchored. Finally, deletion experiments suggested that the last 50 amino acid residues of LRP-ST contain the important domain for altering APP processing and Abeta production. These observations indicate that there are cellular pathways that may suppress Abeta generation but that can be altered to facilitate Abeta production.
Collapse
Affiliation(s)
- Il-Sang Yoon
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | |
Collapse
|
49
|
Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL. Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol 2005; 345:1-20. [PMID: 15567406 DOI: 10.1016/j.jmb.2004.10.038] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/13/2004] [Accepted: 10/13/2004] [Indexed: 11/21/2022]
Abstract
Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.
Collapse
Affiliation(s)
- Mark T Uhlik
- Department of Pharmacology and University of North Carolina School of Medicine, 1108 Mary Ellen Jones Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | |
Collapse
|
50
|
Frame MC. Newest findings on the oldest oncogene; how activated src does it. J Cell Sci 2004; 117:989-98. [PMID: 14996930 DOI: 10.1242/jcs.01111] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncogenic forms of the non-receptor tyrosine kinase Src alter cell structure, in particular the actin cytoskeleton and the adhesion networks that control cell migration, and also transmit signals that regulate proliferation and cell survival. Recent work indicates that they do so by influencing the RhoA-ROCK pathway that controls contractile actin filament assembly, the STAT family of transcription factors needed for transformation, and the Cbl ubiquitin ligase that controls Src protein levels. These studies also shed light on the role of focal adhesion kinase (FAK) downstream of v-Src and other signalling pathways in controlling migration, invasion and survival of transformed cells. Src directly phosphorylates integrins and can also modulate R-Ras activity. Moreover, it stimulates the E-cadherin regulator Hakai, interacts with and phosphorylates the novel podosome-linked adaptor protein Fish, and progressively phosphorylates the gap junction component connexion 43. A recurring theme is the identification of novel and important Src substrates that mediate key biological events associated with transformation.
Collapse
Affiliation(s)
- Margaret C Frame
- Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|