1
|
Huynh TN, Toperzer J, Scherer A, Gumina A, Brunetti T, Mansour MK, Markovitz DM, Russo BC. Vimentin regulates mitochondrial ROS production and inflammatory responses of neutrophils. Front Immunol 2024; 15:1416275. [PMID: 39139560 PMCID: PMC11319119 DOI: 10.3389/fimmu.2024.1416275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The intermediate filament vimentin is present in immune cells and is implicated in proinflammatory immune responses. Whether and how it supports antimicrobial activities of neutrophils are not well established. Here, we developed an immortalized neutrophil model to examine the requirement of vimentin. We demonstrate that vimentin restricts the production of proinflammatory cytokines and reactive oxygen species (ROS), but enhances phagocytosis and swarming. We observe that vimentin is dispensable for neutrophil extracellular trap (NET) formation, degranulation, and inflammasome activation. Moreover, gene expression analysis demonstrated that the presence of vimentin was associated with changes in expression of multiple genes required for mitochondrial function and ROS overproduction. Treatment of wild-type cells with rotenone, an inhibitor for complex I of the electron transport chain, increases the ROS levels. Likewise, treatment with mitoTEMPO, a SOD mimetic, rescues the ROS production in cells lacking vimentin. Together, these data show vimentin regulates neutrophil antimicrobial functions and alters ROS levels through regulation of mitochondrial activity.
Collapse
Affiliation(s)
- Thao Ngoc Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jody Toperzer
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Scherer
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Anne Gumina
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Tonya Brunetti
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael K. Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
2
|
Ashiqueali SA, Chaudhari D, Zhu X, Noureddine S, Siddiqi S, Garcia DN, Gostynska A, Stawny M, Rubis B, Zanini BM, Mansoor MAM, Schneider A, Naser SA, Yadav H, Masternak MM. Fisetin modulates the gut microbiota alongside biomarkers of senescence and inflammation in a DSS-induced murine model of colitis. GeroScience 2024; 46:3085-3103. [PMID: 38191834 PMCID: PMC11009197 DOI: 10.1007/s11357-024-01060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
Colitis, a subtype of inflammatory bowel disease (IBD), is a multifactorial disorder characterized by chronic inflammation of the colon. Among various experimental models used in the study of IBD, the chemical colitogenic dextran sulfate sodium (DSS) is most commonly employed to induce colitis in vivo. In the search for new therapeutic strategies, Fisetin, a flavonoid found in many fruits and vegetables, has recently garnered attention for its senolytic properties. Female mice were administered 2.5% DSS in sterile drinking water and were subsequently treated with Fisetin or vehicle by oral gavage. DSS significantly upregulated beta-galactosidase activity in colonic proteins, while Fisetin remarkably inhibited its activity to baseline levels. Particularly, qPCR revealed that the senescence and inflammation markers Vimentin and Ptgs2 were elevated by DSS exposure with Fisetin treatment inhibiting the expression of p53, Bcl2, Cxcl1, and Mcp1, indicating that the treatment reduced senescent cell burden in the DSS targeted intestine. Alongside, senescence and inflammation associated miRNAs miR-149-5p, miR-96-5p, miR-34a-5p, and miR-30e-5p were significantly inhibited by DSS exposure and restored by Fisetin treatment, revealing novel targets for the treatment of IBDs. Metagenomics was implemented to assess impacts on the microbiota, with DSS increasing the prevalence of bacteria in the phyla Bacteroidetes. Meanwhile, Fisetin restored gut health through increased abundance of Akkermansia muciniphila, which is negatively correlated with senescence and inflammation. Our study suggests that Fisetin mitigates DSS-induced colitis by targeting senescence and inflammation and restoring beneficial bacteria in the gut indicating its potential as a therapeutic intervention for IBDs.
Collapse
Affiliation(s)
- Sarah A Ashiqueali
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Diptaraj Chaudhari
- University of South Florida Morsani College of Medicine, Neurosurgery & Brain Repair, Tampa, FL, USA
| | - Xiang Zhu
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Sarah Noureddine
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Sarah Siddiqi
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Driele N Garcia
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Aleksandra Gostynska
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Maciej Stawny
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Pharmaceutical Chemistry, Poznan, Poland
| | - Bianka M Zanini
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Mishfak A M Mansoor
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Augusto Schneider
- Faculdade de Nutricao, Universidade Federal de Pelotas, Pelotas, Rio Grande Do Sul, Brazil
| | - Saleh A Naser
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Hariom Yadav
- University of South Florida Morsani College of Medicine, Neurosurgery & Brain Repair, Tampa, FL, USA
| | - Michal M Masternak
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
3
|
Huynh TN, Toperzer J, Scherer A, Gumina A, Brunetti T, Mansour MK, Markovitz DM, Russo BC. Vimentin regulates mitochondrial ROS production and inflammatory responses of neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589146. [PMID: 38659904 PMCID: PMC11042233 DOI: 10.1101/2024.04.11.589146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The intermediate filament vimentin is present in immune cells and is implicated in proinflammatory immune responses. Whether and how it supports antimicrobial activities of neutrophils is not well established. Here, we developed an immortalized neutrophil model to examine the requirement of vimentin. We demonstrate that vimentin restricts the production of proinflammatory cytokines and reactive oxygen species (ROS), but enhances phagocytosis and swarming. We observe that vimentin is dispensable for neutrophil extracellular trap (NET) formation, degranulation, and inflammasome activation. Moreover, gene expression analysis demonstrated that the presence of vimentin was associated with changes in expression of multiple genes required for mitochondrial function and ROS overproduction. Treatment of wild-type cells with rotenone, an inhibitor for complex I of the electron transport chain, increases the ROS levels. Likewise, treatment with mitoTEMPO, a SOD mimetic, rescues the ROS production in cells lacking vimentin. Together, these data show vimentin regulates neutrophil antimicrobial functions and alters ROS levels through regulation of mitochondrial activity.
Collapse
|
4
|
Coelho-Rato LS, Parvanian S, Modi MK, Eriksson JE. Vimentin at the core of wound healing. Trends Cell Biol 2024; 34:239-254. [PMID: 37748934 DOI: 10.1016/j.tcb.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
As a member of the large family of intermediate filaments (IFs), vimentin has emerged as a highly dynamic and versatile cytoskeletal protein involved in many key processes of wound healing. It is well established that vimentin is involved in epithelial-mesenchymal transition (EMT) during wound healing and metastasis, during which epithelial cells acquire more dynamic and motile characteristics. Moreover, vimentin participates in multiple cellular activities supporting growth, proliferation, migration, cell survival, and stress resilience. Here, we explore the role of vimentin at each phase of wound healing, with focus on how it integrates different signaling pathways and protects cells in the fluctuating and challenging environments that characterize a healing tissue.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Mayank Kumar Modi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
5
|
Wu J, Wu X, Cheng C, Liu L, Xu L, Xu Z, Wang S, Symmes D, Mo L, Chen R, Zhang J. Therapeutic targeting of vimentin by ALD-R491 impacts multiple pathogenic processes to attenuate acute and chronic colitis in mice. Biomed Pharmacother 2023; 168:115648. [PMID: 37812892 DOI: 10.1016/j.biopha.2023.115648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Vimentin, an intermediate filament protein, crucially contributes to the pathogenesis of inflammatory bowel disease (IBD) by interacting with genetic risk factors, facilitating pathogen infection, and modulating both innate and adaptive immune responses. This study aimed to demonstrate preclinical proof-of-concept for targeting vimentin therapeutically in IBD across diverse etiologies. METHODS The small molecule compound ALD-R491 was assessed for vimentin binding using microscale thermophoresis, off-target effects via Eurofins screening, and therapeutic effects in mice with dextran sulfate sodium (DSS)-induced acute colitis and in IL-10 KO with spontaneous colitis. Parameters measured included body weight, survival, disease activity, colon length, and histology. The study analyzed intestinal proinflammatory cytokines, Th17/Treg cells, and epithelial barrier molecules, along with gut microbiota profiling. RESULTS ALD-R491 specifically bound vimentin with a dissociation constant (KD) of 328 ± 12.66 nM and no off-target effects. In the DSS model, orally administered ALD-R491 exhibited dose-dependent therapeutic effects, superior to 5-ASA and Tofacitinib. In the IL-10 KO model, ALD-R491 significantly delayed colitis onset and progression, with near-zero disease activity index scores over a 15-week treatment. ALD-R491 consistently showed in both models a reduced proinflammatory cytokine expression, including TNF-α, IL-1β, IL-6, IL-17, IL-22, a rebalanced Th17/Treg axis by reducing RORγt while enhancing FoxP3 expression, and an improved epithelial barrier integrity by increasing intestinal expressions of Mucin-2, ZO-1 and Claudin5. The intestinal dysbiosis was restored with enriched presence of probiotics. CONCLUSIONS Targeting vimentin exhibits significant therapeutic effects on various facets of IBD pathogenesis, representing a compelling approach for the development of highly effective treatments in IBD.
Collapse
Affiliation(s)
- Jianping Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Cheng
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, China
| | - Lu Liu
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuaishuai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Union City, CA 94587, USA
| | - Lian Mo
- Aluda Pharmaceuticals, Inc., Union City, CA 94587, USA
| | - Ruihuan Chen
- Aluda Pharmaceuticals, Inc., Union City, CA 94587, USA; Luoda Biosciences, Inc., Chuzhou, Anhui, China.
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Parvanian S, Coelho-Rato LS, Eriksson JE, Patteson AE. The molecular biophysics of extracellular vimentin and its role in pathogen-host interactions. Curr Opin Cell Biol 2023; 85:102233. [PMID: 37677998 PMCID: PMC10841047 DOI: 10.1016/j.ceb.2023.102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Vimentin, an intermediate filament protein typically located in the cytoplasm of mesenchymal cells, can also be secreted as an extracellular protein. The organization of extracellular vimentin strongly determines its functions in physiological and pathological conditions, making it a promising target for future therapeutic interventions. The extracellular form of vimentin has been found to play a role in the interaction between host cells and pathogens. In this review, we first discuss the molecular biophysics of extracellular vimentin, including its structure, secretion, and adhesion properties. We then provide a general overview of the role of extracellular vimentin in mediating pathogen-host interactions, with a focus on its interactions with viruses and bacteria. We also discuss the implications of these findings for the development of new therapeutic strategies for combating infectious diseases.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Euro-Bioimaging ERIC, 20520, Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
7
|
van Loon K, van Breest Smallenburg ME, Huijbers EJM, Griffioen AW, van Beijnum JR. Extracellular vimentin as a versatile immune suppressive protein in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188985. [PMID: 37717859 DOI: 10.1016/j.bbcan.2023.188985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
The interest in finding new targets in the tumor microenvironment for anti-cancer therapy has increased rapidly over the years. More specifically, the tumor-associated blood vessels are a promising target. We recently found that the intermediate filament protein vimentin is externalized by endothelial cells of the tumor vasculature. Extracellular vimentin was shown to sustain angiogenesis by mimicking VEGF and supporting cell migration, as well as endothelial cell anergy, the unresponsiveness of the endothelium to proinflammatory cytokines. The latter hampers immune cell infiltration and subsequently provides escape from tumor immunity. Other studies showed that extracellular vimentin plays a role in sustained systemic and local inflammation. Here we will review the reported roles of extracellular vimentin with a particular emphasis on its involvement in the interactions between immune cells and the endothelium in the tumor microenvironment. To this end, we discuss the different ways by which extracellular vimentin modulates the immune system. Moreover, we review how this protein can alter immune cell-vessel wall adhesion by altering the expression of adhesion proteins, attenuating immune cell infiltration into the tumor parenchyma. Finally, we discuss how vimentin-targeting therapy can reverse endothelial cell anergy and promote immune infiltration, supporting anti-tumor immunity.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mathilda E van Breest Smallenburg
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Alsharabasy AM, Aljaabary A, Bohara R, Farràs P, Glynn SA, Pandit A. Nitric Oxide-Scavenging, Anti-Migration Effects, and Glycosylation Changes after Hemin Treatment of Human Triple-Negative Breast Cancer Cells: A Mechanistic Study. ACS Pharmacol Transl Sci 2023; 6:1416-1432. [PMID: 37854626 PMCID: PMC10580390 DOI: 10.1021/acsptsci.3c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/20/2023]
Abstract
The enhanced expression of nitric oxide (•NO) synthase predicts triple-negative breast cancer outcome and its resistance to different therapeutics. Our earlier work demonstrated the efficiency of hemin to scavenge the intra- and extracellular •NO, proposing its potency as a therapeutic agent for inhibiting cancer cell migration. In continuation, the present work evaluates the effects of •NO on the migration of MDA-MB-231 cells and how hemin modulates the accompanied cellular behavior, focusing on the corresponding expression of cellular glycoproteins, migration-associated markers, and mitochondrial functions. We demonstrated for the first time that while •NO induced cell migration, hemin contradicted that by •NO-scavenging. This was in combination with modulation of the •NO-enhanced glycosylation patterns of cellular proteins with inhibition of the expression of specific proteins involved in the epithelial-mesenchymal transition. These effects were in conjunction with changes in the mitochondrial functions related to both •NO, hemin, and its nitrosylated product. Together, these results suggest that hemin can be employed as a potential anti-migrating agent targeting •NO-scavenging and regulating the expression of migration-associated proteins.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Amal Aljaabary
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Raghvendra Bohara
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway H91 TK33, Ireland
| | - Sharon A. Glynn
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Discipline
of Pathology, Lambe Institute for Translational Research, School of
Medicine, University of Galway, Galway H91 YR71, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
9
|
Berr AL, Wiese K, Dos Santos G, Koch CM, Anekalla KR, Kidd M, Davis JM, Cheng Y, Hu YS, Ridge KM. Vimentin is required for tumor progression and metastasis in a mouse model of non-small cell lung cancer. Oncogene 2023:10.1038/s41388-023-02703-9. [PMID: 37161053 DOI: 10.1038/s41388-023-02703-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/15/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Vimentin is highly expressed in metastatic cancers, and its expression correlates with poor patient prognoses. However, no causal in vivo studies linking vimentin and non-small cell lung cancer (NSCLC) progression existed until now. We use three complementary in vivo models to show that vimentin is required for the progression of NSCLC. First, we crossed LSL-KrasG12D; Tp53fl/fl mice (KPV+/+) with vimentin knockout mice (KPV-/-) to demonstrate that KPV-/- mice have attenuated tumor growth and improved survival compared with KPV+/+ mice. Next, we therapeutically treated KPV+/+ mice with withaferin A (WFA), an agent that disrupts vimentin intermediate filaments (IFs). We show that WFA suppresses tumor growth and reduces tumor burden in the lung. Finally, luciferase-expressing KPV+/+, KPV-/-, or KPVY117L cells were implanted into the flanks of athymic mice to track cancer metastasis to the lung. In KPVY117L cells, vimentin forms oligomers called unit-length filaments but cannot assemble into mature vimentin IFs. KPV-/- and KPVY117L cells fail to metastasize, suggesting that cell-autonomous metastasis requires mature vimentin IFs. Integrative metabolomic and transcriptomic analysis reveals that KPV-/- cells upregulate genes associated with ferroptosis, an iron-dependent form of regulated cell death. KPV-/- cells have reduced glutathione peroxidase 4 (GPX4) levels, resulting in the accumulation of toxic lipid peroxides and increased ferroptosis. Together, our results demonstrate that vimentin is required for rapid tumor growth, metastasis, and protection from ferroptosis in NSCLC.
Collapse
Affiliation(s)
- Alexandra L Berr
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Kristin Wiese
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Gimena Dos Santos
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Clarissa M Koch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Martha Kidd
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer M Davis
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan-Shih Hu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA.
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Jung JW, Li H, Lee JH, Hwang YJ, Dan K, Park MK, Han D, Suh MW. Dual viscosity mixture vehicle for intratympanic steroid treatment modifies the ROS and inflammation related proteomes. Front Pharmacol 2023; 14:1081724. [PMID: 36744248 PMCID: PMC9892634 DOI: 10.3389/fphar.2023.1081724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Until recently, the most standard treatment for sensorineural or sudden hearing loss, which is caused by inner ear damage or deterioration, has been systemic oral steroid administration. In recent, intratympanic steroid injections such as dexamethasone have been used for the treatment of sudden hearing loss as well. It is injected into the tympanic cavity through its membrane and is expected to diffuse over the round window located between the tympanic cavity and the inner ear. However, in clinical situations, the delivery time of steroids to the inner ear is shorter than 24 h, which does not allow for a sufficient therapeutic effect. Therefore, we applied a previously invented dual viscosity mixture vehicle (DVV) for intratympanic dexamethasone to a guinea pig model, which could reduce the side effects of systemic steroid administration with sufficient dwelling time for the treatment of hearing loss, and we investigated the physiological changes with a global proteomic approach. In this study, we extracted perilymph in three different conditions from guinea pigs treated with dexamethasone-embedded DVV, dexamethasone mixed in saline, and control groups to compare proteomic changes using tandem mass spectrometry analysis. After liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) analysis, we first identified 46 differentially expressed proteins (DEPs) that were statistically significant after one-way ANOVA multiple-sample test. We also performed pairwise comparisons among each group to identify DEPs closely related to the treatment response of dexamethasone-embedded DVV. Gene ontology enrichment analysis showed that these DEPs were mostly related to inflammation, immune, actin remodeling, and antioxidant-related processes. As a result, the proteome changes in the DVV-treated groups revealed that most upregulated proteins activate the cell proliferation process, and downregulated proteins inhibit apoptosis and inflammatory reactions. Moreover, the reactive oxygen process was also regulated by DEPs after DVV treatment.
Collapse
Affiliation(s)
- Jin Woo Jung
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hui Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jung Hun Lee
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yu-Jung Hwang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Kisoon Dan
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Dohyun Han
- Proteomics Core Facility, Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea,Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Dohyun Han, ; Myung-Whan Suh,
| |
Collapse
|
11
|
Wang L, Zhang Y, Yu M, Yuan W. Identification of Hub Genes in the Remodeling of Non-Infarcted Myocardium Following Acute Myocardial Infarction. J Cardiovasc Dev Dis 2022; 9:jcdd9120409. [PMID: 36547406 PMCID: PMC9788553 DOI: 10.3390/jcdd9120409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: There are few diagnostic and therapeutic targets for myocardial remodeling in the salvageable non-infarcted myocardium. (2) Methods: Hub genes were identified through comprehensive bioinformatics analysis (GSE775, GSE19322, and GSE110209 from the gene expression omnibus (GEO) database) and the biological functions of hub genes were examined by gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, the differential expression of hub genes in various cell populations between the acute myocardial infarction (AMI) and sham-operation groups was analyzed by processing scRNA data (E-MTAB-7376 from the ArrayExpress database) and RNA-seq data (GSE183168). (3) Results: Ten strongly interlinked hub genes (Timp1, Sparc, Spp1, Tgfb1, Decr1, Vim, Serpine1, Serpina3n, Thbs2, and Vcan) were identified by the construction of a protein-protein interaction network from 135 differentially expressed genes identified through comprehensive bioinformatics analysis and their reliability was verified using GSE119857. In addition, the 10 hub genes were found to influence the ventricular remodeling of non-infarcted tissue by modulating the extracellular matrix (ECM)-mediated myocardial fibrosis, macrophage-driven inflammation, and fatty acid metabolism. (4) Conclusions: Ten hub genes were identified, which may provide novel potential targets for the improvement and treatment of AMI and its complications.
Collapse
|
12
|
Melatonin Alleviates Oxidative Stress Induced by H2O2 in Porcine Trophectodern Cells. Antioxidants (Basel) 2022; 11:antiox11061047. [PMID: 35739944 PMCID: PMC9219737 DOI: 10.3390/antiox11061047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023] Open
Abstract
Placental oxidative stress has been implicated as a main risk factor for placental dysfunction. Alleviation of oxidative stress and enhancement of antioxidant capacity of porcine trophectoderm (PTr2) cells are effective means to maintaining normal placental function. The present study was conducted to evaluate the protective effect of melatonin (MT) on H2O2-induced oxidative damage in PTr2 cells. Our data revealed that pretreatment with MT could significantly improve the decrease in cell viability induced by H2O2, and reduce intracellular reactive oxygen species (ROS) levels and the ratio of apoptotic cells. Here, we compared the transcriptomes of untreated versus melatonin-treated PTr2 cells by RNA-seq analysis and found that differentially expressed genes (DEGs) were highly enriched in the Wnt signaling, TGF-beta signaling and mTOR signaling pathways. Moreover, pretreatment with MT upregulated the antioxidant-related genes such as early growth response3 (EGR3), WAP four-disulfide core domain1 (WFDC1), heme oxygenase1 (HMOX1) and vimentin (VIM). These findings reveal that melatonin protects PTr2 cells from H2O2-induced oxidative stress damage.
Collapse
|
13
|
Wang L, Mohanasundaram P, Lindström M, Asghar MN, Sultana G, Misiorek JO, Jiu Y, Chen H, Chen Z, Toivola DM, Cheng F, Eriksson JE. Vimentin Suppresses Inflammation and Tumorigenesis in the Mouse Intestine. Front Cell Dev Biol 2022; 10:862237. [PMID: 35399505 PMCID: PMC8993042 DOI: 10.3389/fcell.2022.862237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Vimentin has been implicated in wound healing, inflammation, and cancer, but its functional contribution to intestinal diseases is poorly understood. To study how vimentin is involved during tissue injury and repair of simple epithelium, we induced colonic epithelial cell damage in the vimentin null (Vim−/−) mouse model. Vim−/− mice challenged with dextran sodium sulfate (DSS) had worse colitis manifestations than wild-type (WT) mice. Vim−/− colons also produced more reactive oxygen and nitrogen species, possibly contributing to the pathogenesis of gut inflammation and tumorigenesis than in WT mice. We subsequently describe that CD11b+ macrophages served as the mainly cellular source of reactive oxygen species (ROS) production via vimentin-ROS-pSTAT3–interleukin-6 inflammatory pathways. Further, we demonstrated that Vim−/− mice did not develop colitis-associated cancer model upon DSS treatment spontaneously but increased tumor numbers and size in the distal colon in the azoxymethane/DSS model comparing with WT mice. Thus, vimentin has a crucial role in protection from colitis induction and tumorigenesis of the colon.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ponnuswamy Mohanasundaram
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Michelle Lindström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Muhammad Nadeem Asghar
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Giulia Sultana
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Julia O Misiorek
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Yaming Jiu
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland.,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| |
Collapse
|
14
|
Abstract
More than 27 yr ago, the vimentin knockout (Vim-/- ) mouse was reported to develop and reproduce without an obvious phenotype, implying that this major cytoskeletal protein was nonessential. Subsequently, comprehensive and careful analyses have revealed numerous phenotypes in Vim-/- mice and their organs, tissues, and cells, frequently reflecting altered responses in the recovery of tissues following various insults or injuries. These findings have been supported by cell-based experiments demonstrating that vimentin intermediate filaments (IFs) play a critical role in regulating cell mechanics and are required to coordinate mechanosensing, transduction, signaling pathways, motility, and inflammatory responses. This review highlights the essential functions of vimentin IFs revealed from studies of Vim-/- mice and cells derived from them.
Collapse
Affiliation(s)
- Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| | - John E Eriksson
- Cell Biology, Faculty of Science and Technology, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
- Euro-Bioimaging European Research Infrastructure Consortium (ERIC), FIN-20521 Turku, Finland
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 413 90 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- University of Newcastle, Newcastle, New South Wales 2300, Australia
| | - Robert D Goldman
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
15
|
Protective Effects of Aminooxyacetic Acid on Colitis Induced in Mice with Dextran Sulfate Sodium. BIOMED RESEARCH INTERNATIONAL 2022; 2021:1477345. [PMID: 35299827 PMCID: PMC8923778 DOI: 10.1155/2021/1477345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023]
Abstract
As a known inhibitor of pyridoxal phosphate-dependent transaminase glutamic-oxaloacetic transaminase 1 (GOT1), aminooxyacetic acid (AOAA) has been pointed out to have potential pharmacological effects in antiepileptic, anticonvulsant, antibacterial, cancer cell proliferation inhibition, and acute myocardial infarction (MI) relief. However, its role in inflammatory bowel disease (IBD) has not been reported. Through the in vivo experiment of dextran sulfate sodium- (DSS-) induced colitis in mice, it was found that AOAA significantly attenuated the symptoms, signs, and pathological changes of colitis. In addition, AOAA treatment prevented gut barrier damages by enhancing the expression of zona occludens- (ZO-) 1, occludin, claudin-1, and E-cadherin and recovering the upregulation of the most abundant intermediate filament protein (vimentin). Moreover, the release of interleukin- (IL-) 1β, IL-6, and tumour necrosis factor- (TNF-) α was suppressed, yet the level of IL-10 was upregulated by AOAA treatment compared to the model group. Furthermore, it was shown that AOAA administration boosted M2-like phenotype and effectively reduced M1 macrophage phenotype in the lamina propria of mouse colonic epithelium. Similarly, the effect of AOAA was verified in vitro. AOAA effectively inhibited the classically activated M1 macrophage phenotype and proinflammatory cytokine (IL-1β, TNF-α, and IL-6) expression induced by lipopolysaccharide (LPS) and promoted M2-like phenotype. Collectively, this study reveals for the first time that short-term treatment of AOAA can significantly alleviate DSS-induced acute colitis by regulating intestinal barrier function and macrophage polarization, which provides a theoretical basis for the potential use of AOAA in the treatment of IBD.
Collapse
|
16
|
Li Z, Wu J, Zhou J, Yuan B, Chen J, Wu W, Mo L, Qu Z, Zhou F, Dong Y, Huang K, Liu Z, Wang T, Symmes D, Gu J, Sho E, Zhang J, Chen R, Xu Y. A Vimentin-Targeting Oral Compound with Host-Directed Antiviral and Anti-Inflammatory Actions Addresses Multiple Features of COVID-19 and Related Diseases. mBio 2021; 12:e0254221. [PMID: 34634931 PMCID: PMC8510534 DOI: 10.1128/mbio.02542-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Damage in COVID-19 results from both the SARS-CoV-2 virus and its triggered overactive host immune responses. Therapeutic agents that focus solely on reducing viral load or hyperinflammation fail to provide satisfying outcomes in all cases. Although viral and cellular factors have been extensively profiled to identify potential anti-COVID-19 targets, new drugs with significant efficacy remain to be developed. Here, we report the potent preclinical efficacy of ALD-R491, a vimentin-targeting small molecule compound, in treating COVID-19 through its host-directed antiviral and anti-inflammatory actions. We found that by altering the physical properties of vimentin filaments, ALD-491 affected general cellular processes as well as specific cellular functions relevant to SARS-CoV-2 infection. Specifically, ALD-R491 reduced endocytosis, endosomal trafficking, and exosomal release, thus impeding the entry and egress of the virus; increased the microcidal capacity of macrophages, thus facilitating the pathogen clearance; and enhanced the activity of regulatory T cells, therefore suppressing the overactive immune responses. In cultured cells, ALD-R491 potently inhibited the SARS-CoV-2 spike protein and human ACE2-mediated pseudoviral infection. In aged mice with ongoing, productive SARS-CoV-2 infection, ALD-R491 reduced disease symptoms as well as lung damage. In rats, ALD-R491 also reduced bleomycin-induced lung injury and fibrosis. Our results indicate a unique mechanism and significant therapeutic potential for ALD-R491 against COVID-19. We anticipate that ALD-R491, an oral, fast-acting, and non-cytotoxic agent targeting the cellular protein with multipart actions, will be convenient, safe, and broadly effective, regardless of viral mutations, for patients with early- or late-stage disease, post-COVID-19 complications, and other related diseases. IMPORTANCE With the Delta variant currently fueling a resurgence of new infections in the fully vaccinated population, developing an effective therapeutic drug is especially critical and urgent in fighting COVID-19. In contrast to the many efforts to repurpose existing drugs or address only one aspect of COVID-19, we are developing a novel agent with first-in-class mechanisms of action that address both the viral infection and the overactive immune system in the pathogenesis of the disease. Unlike virus-directed therapeutics that may lose efficacy due to viral mutations, and immunosuppressants that require ideal timing to be effective, this agent, with its unique host-directed antiviral and anti-inflammatory actions, can work against all variants of the virus, be effective during all stages of the disease, and even resolve post-disease damage and complications. Further development of the compound will provide an important tool in the fight against COVID-19 and its complications, as well as future outbreaks of new viruses.
Collapse
Affiliation(s)
- Zhizhen Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Jianping Wu
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Luoda Biosciences, Inc., Chuzhou, Anhui, China
| | - Ji Zhou
- Institute of Biology and Medical Sciences, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Baoshi Yuan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Jiqiao Chen
- KCI Biotech (Suzhou) Inc., Suzhou, Jiangsu, China
| | - Wanchen Wu
- Joinn Laboratories (Suzhou), Co., Ltd., Suzhou, Jiangsu, China
| | - Lian Mo
- Aluda Pharmaceuticals, Inc., Menlo Park, California, USA
| | - Zhipeng Qu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Fei Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Yingying Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Kai Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Zhiwei Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Tao Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Menlo Park, California, USA
| | - Jingliang Gu
- Joinn Laboratories (Suzhou), Co., Ltd., Suzhou, Jiangsu, China
| | - Eiketsu Sho
- KCI Biotech (Suzhou) Inc., Suzhou, Jiangsu, China
| | - Jingping Zhang
- Institute of Biology and Medical Sciences, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Ruihuan Chen
- Luoda Biosciences, Inc., Chuzhou, Anhui, China
- Aluda Pharmaceuticals, Inc., Menlo Park, California, USA
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Korolowicz KE, Suresh M, Li B, Huang X, Yon C, Kallakury BV, Lee KP, Park S, Kim YW, Menne S. Combination Treatment with the Vimentin-Targeting Antibody hzVSF and Tenofovir Suppresses Woodchuck Hepatitis Virus Infection in Woodchucks. Cells 2021; 10:2321. [PMID: 34571970 PMCID: PMC8466705 DOI: 10.3390/cells10092321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Current treatment options for patients infected with hepatitis B virus (HBV) are suboptimal, because the approved drugs rarely induce cure due to the persistence of the viral DNA genome in the nucleus of infected hepatocytes, and are associated with either severe side effects (pegylated interferon-alpha) or require life-long administration (nucleos(t)ide analogs). We report here the evaluation of the safety and therapeutic efficacy of a novel, humanized antibody (hzVSF) in the woodchuck model of HBV infection. hzVSF has been shown to act as a viral entry inhibitor, most likely by suppressing vimentin-mediated endocytosis of virions. Targeting the increased vimentin expression on liver cells by hzVSF after infection with HBV or woodchuck hepatitis virus (WHV) was demonstrated initially. Thereafter, hzVSF safety was assessed in eight woodchucks naïve for WHV infection. Antiviral efficacy of hzVSF was evaluated subsequently in 24 chronic WHV carrier woodchucks by monotreatment with three ascending doses and in combination with tenofovir alafenamide fumarate (TAF). Consistent with the proposed blocking of WHV reinfection, intravenous hzVSF administration for 12 weeks resulted in a modest but transient reduction of viral replication and associated liver inflammation. In combination with oral TAF dosing, the antiviral effect of hzVSF was enhanced and sustained in half of the woodchucks with an antibody response to viral proteins. Thus, hzVSF safely but modestly alters chronic WHV infection in woodchucks; however, as a combination partner to TAF, its antiviral efficacy is markedly increased. The results of this preclinical study support future evaluation of this novel anti-HBV drug in patients.
Collapse
Affiliation(s)
- Kyle E. Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Changsuek Yon
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Kyoung-pil Lee
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Sungman Park
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Yoon-Won Kim
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| |
Collapse
|
18
|
Hoffsten A, Markasz L, Lilja HE, Olsson KW, Sindelar R. Early Postnatal Comprehensive Biomarkers Cannot Identify Extremely Preterm Infants at Risk of Developing Necrotizing Enterocolitis. Front Pediatr 2021; 9:755437. [PMID: 34746064 PMCID: PMC8570110 DOI: 10.3389/fped.2021.755437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Necrotizing enterocolitis (NEC) is a fatal disease where current diagnostic tools are insufficient for preventing NEC. Early predictive biomarkers could be beneficial in identifying infants at high risk of developing NEC. Objective: To explore early biomarkers for predicting NEC in extremely preterm infants (EPIs). Methods: Blood samples were collected on day 2 (median 1.7; range 1.5-2.0) from 40 EPI (median 25 gestational weeks; range 22-27): 11 developed NEC and 29 did not (controls). In each infant, 189 inflammatory, oncological, and vascular proteomic biomarkers were quantified through Proximity Extension Assay. Biomarker expression and clinical data were compared between the NEC group and Controls. Based on biomarker differences, controls were sorted automatically into three subgroups (1, 2, and 3) by a two-dimensional hierarchical clustering analysis. Results: None of the biomarkers differed in expression between all controls and the NEC group. Two biomarkers were higher in Control 1, and 16 biomarkers were lower in Control group 2 compared with the NEC group. No biomarker distinguished Control 3 from the NEC group. Perinatal data were similar in the whole population. Conclusions: Early postnatal comprehensive biomarkers do not identify EPIs at risk of developing NEC in our study. Future studies of predictors of NEC should include sequential analysis of comprehensive proteomic markers in large cohorts.
Collapse
Affiliation(s)
- Alice Hoffsten
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Neonatal Intensive Care Unit, University Children's Hospital, Uppsala, Sweden
| | - Helene Engstrand Lilja
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Section of Pediatric Surgery, University Children's Hospital, Uppsala, Sweden
| | - Karl Wilhelm Olsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Neonatal Intensive Care Unit, University Children's Hospital, Uppsala, Sweden
| |
Collapse
|
19
|
Morrow CS, Moore DL. Vimentin's side gig: Regulating cellular proteostasis in mammalian systems. Cytoskeleton (Hoboken) 2020; 77:515-523. [PMID: 33190414 DOI: 10.1002/cm.21645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) perform a diverse set of well-known functions including providing structural support for the cell and resistance to mechanical stress, yet recent evidence has revealed unexpected roles for IFs as stress response proteins. Previously, it was shown that the type III IF protein vimentin forms cage-like structures around centrosome-associated proteins destined for degradation, structures referred to as aggresomes, suggesting a role for vimentin in protein turnover. However, vimentin's function at the aggresome has remained largely understudied. In a recent report, vimentin was shown to be dispensable for aggresome formation, but played a critical role in protein turnover at the aggresome through localizing proteostasis-related machineries, such as proteasomes, to the aggresome. Here, we review evidence for vimentin's function in proteostasis and highlight the organismal implications of these findings.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Pechstein J, Schulze-Luehrmann J, Bisle S, Cantet F, Beare PA, Ölke M, Bonazzi M, Berens C, Lührmann A. The Coxiella burnetii T4SS Effector AnkF Is Important for Intracellular Replication. Front Cell Infect Microbiol 2020; 10:559915. [PMID: 33282747 PMCID: PMC7691251 DOI: 10.3389/fcimb.2020.559915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen and the causative agent of the zoonotic disease Q fever. Following uptake by alveolar macrophages, the pathogen replicates in an acidic phagolysosomal vacuole, the C. burnetii-containing vacuole (CCV). Effector proteins translocated into the host cell by the type IV secretion system (T4SS) are important for the establishment of the CCV. Here we focus on the effector protein AnkF and its role in establishing the CCV. The C. burnetii AnkF knock out mutant invades host cells as efficiently as wild-type C. burnetii, but this mutant is hampered in its ability to replicate intracellularly, indicating that AnkF might be involved in the development of a replicative CCV. To unravel the underlying reason(s), we searched for AnkF interactors in host cells and identified vimentin through a yeast two-hybrid approach. While AnkF does not alter vimentin expression at the mRNA or protein levels, the presence of AnkF results in structural reorganization and vesicular co-localization with recombinant vimentin. Ectopically expressed AnkF partially accumulates around the established CCV and endogenous vimentin is recruited to the CCV in a time-dependent manner, suggesting that AnkF might attract vimentin to the CCV. However, knocking-down endogenous vimentin does not affect intracellular replication of C. burnetii. Other cytoskeletal components are recruited to the CCV and might compensate for the lack of vimentin. Taken together, AnkF is essential for the establishment of the replicative CCV, however, its mode of action is still elusive.
Collapse
Affiliation(s)
- Julian Pechstein
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Bisle
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Martha Ölke
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
Lam FW, Brown CA, Valladolid C, Emebo DC, Palzkill TG, Cruz MA. The vimentin rod domain blocks P-selectin-P-selectin glycoprotein ligand 1 interactions to attenuate leukocyte adhesion to inflamed endothelium. PLoS One 2020; 15:e0240164. [PMID: 33048962 PMCID: PMC7553327 DOI: 10.1371/journal.pone.0240164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
Acute inflammation begins with leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) binding to P-selectin on inflamed endothelium and platelets. In pathologic conditions, this process may contribute to secondary organ damage, like sepsis-induced liver injury. Therefore, developing novel therapies to attenuate inflammation may be beneficial. We previously reported that recombinant human vimentin (rhVim) binds P-selectin to block leukocyte adhesion to endothelium and platelets. In this study, we used SPOT-peptide arrays to identify the rod domain as the active region within rhVim that interacts with P-selectin. Indeed, recombinant human rod domain of vimentin (rhRod) binds to P-selectin with high affinity, with in silico modeling suggesting that rhRod binds P-selectin at or near the PSGL-1 binding site. Using bio-layer interferometry, rhRod decreases PSGL-1 binding to immobilized P-selectin, corroborating the in silico data. Under parallel-plate flow, rhRod blocks leukocyte adhesion to fibrin(ogen)-captured platelets, P-selectin/Fc-coated channels, and IL-1β/IL-4-co-stimulated human umbilical vein endothelial cells. Finally, using intravital microscopy in endotoxemic C57Bl/6 mice, rhRod co-localizes with P-selectin in the hepatic sinusoids and decreases neutrophil adhesion to hepatic sinusoids. These data suggest a potential role for rhRod in attenuating inflammation through directly blocking P-selectin-PSGL-1 interactions.
Collapse
Affiliation(s)
- Fong Wilson Lam
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Cameron August Brown
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christian Valladolid
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dabel Cynthia Emebo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Timothy Gerald Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Miguel Angel Cruz
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Kechida M. Update on Autoimmune Diseases Pathogenesis. Curr Pharm Des 2020; 25:2947-2952. [PMID: 31686634 DOI: 10.2174/1381612825666190709205421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autoimmune diseases result from the interplay of cellular effectors like T and B cells, regulatory cells in addition to molecular factors like cytokines and regulatory molecules. METHODS Different electronic databases were searched in a non-systematic way to find out the literature of interest. RESULTS Pathogenesis of autoimmune diseases involves typical factors such as genetic background including HLA and non HLA system genes, environmental factors such as infectious agents and inflammatory cells mainly T and B lymphocytes abnormally activated leading to immune dysfunction. Other recently reported less typical factors such as micro-RNAs, circular RNAs, myeloperoxidase, vimentine and microbiome dysbiosis seem to be potential target therapies. CONCLUSION We aimed in this manuscript to review common factors in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Melek Kechida
- Internal Medicine and Endocrinology Department of Fattouma Bourguiba University Hospital, University of Monastir, BP 56 Avenue Taher Haddad, Monastir 5000, Tunisia
| |
Collapse
|
23
|
Wilhelmsson U, Stillemark-Billton P, Borén J, Pekny M. Vimentin is required for normal accumulation of body fat. Biol Chem 2020; 400:1157-1162. [PMID: 30995202 DOI: 10.1515/hsz-2019-0170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Intermediate filaments (nanofilaments) have many functions, especially in response to cellular stress. Mice lacking vimentin (Vim-/-) display phenotypes reflecting reduced levels of cell activation and ability to counteract stress, for example, decreased reactivity of astrocytes after neurotrauma, decreased migration of astrocytes and fibroblasts, attenuated inflammation and fibrosis in lung injury, delayed wound healing, impaired vascular adaptation to nephrectomy, impaired transendothelial migration of lymphocytes and attenuated atherosclerosis. To address the role of vimentin in fat accumulation, we assessed the body weight and fat by dual-energy X-ray absorptiometry (DEXA) in Vim-/- and matched wildtype (WT) mice. While the weight of 1.5-month-old Vim-/- and WT mice was comparable, Vim-/- mice showed decreased body weight at 3.5, 5.5 and 8.5 months (males by 19-22%, females by 18-29%). At 8.5 months, Vim-/- males and females had less body fat compared to WT mice (a decrease by 24%, p < 0.05, and 33%, p < 0.0001, respectively). The body mass index in 8.5 months old Vim-/- mice was lower in males (6.8 vs. 7.8, p < 0.005) and females (6.0 vs. 7.7, p < 0.0001) despite the slightly lower body length of Vim-/- mice. Increased mortality was observed in adult Vim-/- males. We conclude that vimentin is required for the normal accumulation of body fat.
Collapse
Affiliation(s)
- Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden
| | - Pia Stillemark-Billton
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy at the University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, S-40530 Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
24
|
Pisanu S, Cacciotto C, Pagnozzi D, Puggioni GMG, Uzzau S, Ciaramella P, Guccione J, Penati M, Pollera C, Moroni P, Bronzo V, Addis MF. Proteomic changes in the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci. Sci Rep 2019; 9:15850. [PMID: 31676851 PMCID: PMC6825138 DOI: 10.1038/s41598-019-52063-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Subclinical mastitis by Staphylococcus aureus (SAU) and by non-aureus staphylococci (NAS) is a major issue in the water buffalo. To understand its impact on milk, 6 quarter samples with >3,000,000 cells/mL (3 SAU-positive and 3 NAS-positive) and 6 culture-negative quarter samples with <50,000 cells/mL were investigated by shotgun proteomics and label-free quantitation. A total of 1530 proteins were identified, of which 152 were significantly changed. SAU was more impacting, with 162 vs 127 differential proteins and higher abundance changes (P < 0.0005). The 119 increased proteins had mostly structural (n = 43, 28.29%) or innate immune defence functions (n = 39, 25.66%) and included vimentin, cathelicidins, histones, S100 and neutrophil granule proteins, haptoglobin, and lysozyme. The 33 decreased proteins were mainly involved in lipid metabolism (n = 13, 59.10%) and included butyrophilin, xanthine dehydrogenase/oxidase, and lipid biosynthetic enzymes. The same biological processes were significantly affected also upon STRING analysis. Cathelicidins were the most increased family, as confirmed by western immunoblotting, with a stronger reactivity in SAU mastitis. S100A8 and haptoglobin were also validated by western immunoblotting. In conclusion, we generated a detailed buffalo milk protein dataset and defined the changes occurring in SAU and NAS mastitis, with potential for improving detection (ProteomeXchange identifier PXD012355).
Collapse
Affiliation(s)
| | - Carla Cacciotto
- Porto Conte Ricerche, Alghero, Italy.,Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Sassari, Italy
| | | | | | - Sergio Uzzau
- Porto Conte Ricerche, Alghero, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Paolo Ciaramella
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Jacopo Guccione
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Naples, Italy
| | - Martina Penati
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Claudia Pollera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy.,Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | - Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Alghero, Italy. .,Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Su L, Pan P, Yan P, Long Y, Zhou X, Wang X, Zhou R, Wen B, Xie L, Liu D. Role of vimentin in modulating immune cell apoptosis and inflammatory responses in sepsis. Sci Rep 2019; 9:5747. [PMID: 30952998 PMCID: PMC6451033 DOI: 10.1038/s41598-019-42287-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/27/2019] [Indexed: 01/04/2023] Open
Abstract
New diagnostic biomarkers or therapeutic targets for sepsis have substantial significance for critical care medicine. In this study, 192 differentially expressed proteins were selected through iTRAQ. Based on cluster analysis of protein expression dynamics and protein-protein interactions, hemopexin, vimentin, and heat shock protein 90 were selected for further investigation. It was demonstrated that serum vimentin (VIM) levels were significantly increased in patients with sepsis and septic shock compared to controls and that VIM expression was significantly increased in lymphocytes isolated from septic shock and sepsis patients compared to controls. Moreover, a nonsurvivor group had higher serum VIM levels and VIM expression in lymphocytes. Caspase-3 was significantly upregulated in Jurkat T cells lacking VIM and when exposed to LPS compared to control cells. In contrast, caspase-3 was reduced nearly 40% in cells over-expressing VIM. IL-2, IL-10 and IFN-α levels were significantly decreased in cells lacking VIM compared to control cells, whereas they were not significantly altered in cells over-expressing VIM. These findings suggest that VIM modulates lymphocyte apoptosis and inflammatory responses and that VIM could be a new target for the diagnosis and prognostic prediction of patients with sepsis or septic shock.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Pan Pan
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Tiantan Xili the 6th, Dongcheng District, Beijing, 100050, China
| | - Peng Yan
- Department of Respiratory and Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Rd, Haidian District, Beijing, 100853, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiang Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ruo Zhou
- Shenzhen Proteome Engineering Laboratory, BGI Shenzhen, Shenzhen, 518083, Guangdong Province, China
| | - Bo Wen
- Shenzhen Proteome Engineering Laboratory, BGI Shenzhen, Shenzhen, 518083, Guangdong Province, China
| | - Lixin Xie
- Department of Respiratory and Critical Care Medicine, Chinese PLA General Hospital, 28th Fuxing Rd, Haidian District, Beijing, 100853, China.
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
26
|
Håversen L, Sundelin JP, Mardinoglu A, Rutberg M, Ståhlman M, Wilhelmsson U, Hultén LM, Pekny M, Fogelstrand P, Bentzon JF, Levin M, Borén J. Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Sci Rep 2018; 8:16973. [PMID: 30451917 PMCID: PMC6242955 DOI: 10.1038/s41598-018-34659-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
The aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim-/-) and wild-type (Vim+/+) mice. Atherosclerosis was induced in Ldlr-/- mice transplanted with Vim-/- and Vim+/+ bone marrow, and in Vim-/- and Vim+/+ mice injected with a PCSK9 gain-of-function virus. The mice were fed an atherogenic diet for 12-15 weeks. We observed impaired uptake of native LDL but increased uptake of oxLDL in Vim-/- macrophages. FACS analysis revealed increased surface expression of the scavenger receptor CD36 on Vim-/- macrophages. Vim-/- macrophages also displayed increased markers of oxidative stress, activity of the transcription factor NF-κB, secretion of proinflammatory cytokines and GLUT1-mediated glucose uptake. Vim-/- mice displayed decreased atherogenesis despite increased vascular inflammation and increased CD36 expression on macrophages in two mouse models of atherosclerosis. We demonstrate that vimentin has a strong suppressive effect on oxidative stress and that Vim-/- mice display increased vascular inflammation with increased CD36 expression on macrophages despite decreased subendothelial lipid accumulation. Thus, vimentin has a key role in regulating inflammation in macrophages during atherogenesis.
Collapse
Affiliation(s)
- Liliana Håversen
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeanna Perman Sundelin
- Strategic planning and operations, Cardiovascular and metabolic diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, SE1 9RT, United Kingdom
| | - Mikael Rutberg
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience/Center for Brain Repair, University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Milos Pekny
- Department of Clinical Neuroscience/Center for Brain Repair, University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jacob Fog Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, and Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Malin Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
27
|
Abstract
The vimentin gene (
VIM) encodes one of the 71 human intermediate filament (IF) proteins, which are the building blocks of highly ordered, dynamic, and cell type-specific fiber networks. Vimentin is a multi-functional 466 amino acid protein with a high degree of evolutionary conservation among vertebrates.
Vim
−/− mice, though viable, exhibit systemic defects related to development and wound repair, which may have implications for understanding human disease pathogenesis. Vimentin IFs are required for the plasticity of mesenchymal cells under normal physiological conditions and for the migration of cancer cells that have undergone epithelial–mesenchymal transition. Although it was observed years ago that vimentin promotes cell migration, the molecular mechanisms were not completely understood. Recent advances in microscopic techniques, combined with computational image analysis, have helped illuminate vimentin dynamics and function in migrating cells on a precise scale. This review includes a brief historical account of early studies that unveiled vimentin as a unique component of the cell cytoskeleton followed by an overview of the physiological vimentin functions documented in studies on
Vim
−/− mice. The primary focus of the discussion is on novel mechanisms related to how vimentin coordinates cell migration. The current hypothesis is that vimentin promotes cell migration by integrating mechanical input from the environment and modulating the dynamics of microtubules and the actomyosin network. These new findings undoubtedly will open up multiple avenues to study the broader function of vimentin and other IF proteins in cell biology and will lead to critical insights into the relevance of different vimentin levels for the invasive behaviors of metastatic cancer cells.
Collapse
Affiliation(s)
- Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Samed Delic
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.,Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
29
|
Musaelyan A, Lapin S, Nazarov V, Tkachenko O, Gilburd B, Mazing A, Mikhailova L, Shoenfeld Y. Vimentin as antigenic target in autoimmunity: A comprehensive review. Autoimmun Rev 2018; 17:926-934. [DOI: 10.1016/j.autrev.2018.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
|
30
|
Invasion of the Brain by Listeria monocytogenes Is Mediated by InlF and Host Cell Vimentin. mBio 2018; 9:mBio.00160-18. [PMID: 29487235 PMCID: PMC5829824 DOI: 10.1128/mbio.00160-18] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that is frequently associated with food-borne infection. Of particular concern is the ability of L. monocytogenes to breach the blood-brain barrier, leading to life-threatening meningitis and encephalitis. The mechanisms used by bacterial pathogens to infect the brain are not fully understood. Here we show that L. monocytogenes is able to utilize vimentin for invasion of host cells. Vimentin is a type III intermediate filament protein within the cytosol but is also expressed on the host cell surface. We found that L. monocytogenes interaction with surface-localized vimentin promoted bacterial uptake. Furthermore, in the absence of vimentin, L. monocytogenes colonization of the brain was severely compromised in mice. The L. monocytogenes virulence factor InlF was found to bind vimentin and was necessary for optimal bacterial colonization of the brain. These studies reveal a novel receptor-ligand interaction that enhances infection of the brain by L. monocytogenes and highlights the importance of surface vimentin in host-pathogen interactions.IMPORTANCEListeria monocytogenes is an intracellular bacterial pathogen that is capable of invading numerous host cells during infection. L. monocytogenes can cross the blood-brain barrier, leading to life-threatening meningitis. Here we show that an L. monocytogenes surface protein, InlF, is necessary for optimal colonization of the brain in mice. Furthermore, in the absence of vimentin, a cytosolic intermediate filament protein that is also present on the surface of brain endothelial cells, colonization of the brain was significantly impaired. We further show that InlF binds vimentin to mediate invasion of host cells. This work identifies InlF as a bacterial surface protein with specific relevance for infection of the brain and underscores the significance of host cell surface vimentin interactions in microbial pathogenesis.
Collapse
|
31
|
Lam FW, Da Q, Guillory B, Cruz MA. Recombinant Human Vimentin Binds to P-Selectin and Blocks Neutrophil Capture and Rolling on Platelets and Endothelium. THE JOURNAL OF IMMUNOLOGY 2018; 200:1718-1726. [PMID: 29335256 DOI: 10.4049/jimmunol.1700784] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/20/2017] [Indexed: 01/30/2023]
Abstract
Leukocyte adhesion to vascular endothelium and platelets is an early step in the acute inflammatory response. The initial process is mediated through P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes binding to platelets adhered to endothelium and the endothelium itself via P-selectin. Although these interactions are generally beneficial, pathologic inflammation may occur in undesirable circumstances, such as in acute lung injury (ALI) and ischemia and reperfusion injury. Therefore, the development of novel therapies to attenuate inflammation may be beneficial. In this article, we describe the potential benefit of using a recombinant human vimentin (rhVim) on reducing human leukocyte adhesion to vascular endothelium and platelets under shear stress. The addition of rhVim to whole blood and isolated neutrophils decreased leukocyte adhesion to endothelial and platelet monolayers. Furthermore, rhVim blocked neutrophil adhesion to P-selectin-coated surfaces. Binding assays showed that rhVim binds specifically to P-selectin and not to its counterreceptor, PSGL-1. Finally, in an endotoxin model of ALI in C57BL/6J mice, treatment with rhVim significantly decreased histologic findings of ALI. These data suggest a potential role for rhVim in attenuating inflammation through blocking P-selectin-PSGL-1 interactions.
Collapse
Affiliation(s)
- Fong W Lam
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030; .,Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030; and
| | - Qi Da
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030.,Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Bobby Guillory
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030.,Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Miguel A Cruz
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030.,Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
32
|
Moriggi M, Pastorelli L, Torretta E, Tontini GE, Capitanio D, Bogetto SF, Vecchi M, Gelfi C. Contribution of Extracellular Matrix and Signal Mechanotransduction to Epithelial Cell Damage in Inflammatory Bowel Disease Patients: A Proteomic Study. Proteomics 2017; 17. [PMID: 29027377 DOI: 10.1002/pmic.201700164] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Indexed: 12/14/2022]
Abstract
This study utilizes 2D-DIGE (difference gel etrophoresis), isotope-coded protein labeling and biochemical assays to characterize protein alteration in ulcerative colitis (UC) and Crohn's disease (CD) in human epithelial cell and mucosal biopsies in inflammatory bowel disease (IBD)-affected patients. The aim of this study is to identify the key molecular signatures involved in epithelial cell structure of IBDs. In non-inflamed UC (QUC) keratins, vimentin, and focal adhesion kinase (7) increased, whereas vinculin and de-tyrosinated α-tubulin decreased; inflammation (IUC) exacerbated molecular changes, being collagen type VI alpha 1 chain (COL6A1), tenascin-C and vimentin increased. In non-inflamed CD (QCD), tenascin C, de-tyrosinated α-tubulin, vinculin, FAK, and Rho-associated protein kinase 1 (ROCK1) decreased while vimentin increased. In inflamed CD (ICD), COL6A1, vimentin and integrin alpha 4 increased. In QUC, cell metabolism is characterized by a decrease of the tricarboxylic acid cycle enzymes and a decrease of short/branched chain specific acyl-CoA dehydrogenase, fatty acid synthase, proliferator-activated receptors alpha, and proliferator-activated receptors gamma. In QCD a metabolic rewiring occurs, as suggested by glycerol-3-phosphate dehydrogenase (GPD2), pyruvate dehydrogenase E1 component subunit beta, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, and 4-trimethylaminobutyraldehyde dehydrogenase increment, while dihydrolipoyl dehydrogenase decreased. Macroautophagy is activated in QUC and IUC, with increased levels of p62, HSC70, major vault protein, myosin heavy chain 9, whereas it is blunted in QCD and ICD. The differing pattern of extracellular matrix, cytoskeletal derangements, cellular metabolism, and autophagy in UC and CD may contribute to the pathophysiological understanding of these disorders and serve as diagnostic markers in IBD patients.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Luca Pastorelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Gian Eugenio Tontini
- Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Maurizio Vecchi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Clinical Proteomics Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
33
|
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. BIOCHEMISTRY (MOSCOW) 2017; 81:1698-1708. [PMID: 28260491 DOI: 10.1134/s0006297916130071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton consists of three distinct types of protein polymer structures - microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation - a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.
Collapse
Affiliation(s)
- N Sandbo
- University of Wisconsin, Department of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
34
|
Mor-Vaknin N, Saha A, Legendre M, Carmona-Rivera C, Amin MA, Rabquer BJ, Gonzales-Hernandez MJ, Jorns J, Mohan S, Yalavarthi S, Pai DA, Angevine K, Almburg SJ, Knight JS, Adams BS, Koch AE, Fox DA, Engelke DR, Kaplan MJ, Markovitz DM. DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nat Commun 2017; 8:14252. [PMID: 28165452 PMCID: PMC5303823 DOI: 10.1038/ncomms14252] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Novel therapeutics are required for improving the management of chronic inflammatory diseases. Aptamers are single-stranded RNA or DNA molecules that have recently shown utility in a clinical setting, as they can specifically neutralize biomedically relevant proteins, particularly cell surface and extracellular proteins. The nuclear chromatin protein DEK is a secreted chemoattractant that is abundant in the synovia of patients with juvenile idiopathic arthritis (JIA). Here, we show that DEK is crucial to the development of arthritis in mouse models, thus making it an appropriate target for aptamer-based therapy. Genetic depletion of DEK or treatment with DEK-targeted aptamers significantly reduces joint inflammation in vivo and greatly impairs the ability of neutrophils to form neutrophil extracellular traps (NETs). DEK is detected in spontaneously forming NETs from JIA patient synovial neutrophils, and DEK-targeted aptamers reduce NET formation. DEK is thus key to joint inflammation, and anti-DEK aptamers hold promise for the treatment of JIA and other types of arthritis.
Collapse
MESH Headings
- Adult
- Animals
- Aptamers, Nucleotide/therapeutic use
- Arthritis, Juvenile/immunology
- Arthritis, Juvenile/therapy
- Chemotactic Factors/antagonists & inhibitors
- Chemotactic Factors/genetics
- Chemotactic Factors/immunology
- Chemotactic Factors/metabolism
- Chromosomal Proteins, Non-Histone/antagonists & inhibitors
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/immunology
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Extracellular Traps/immunology
- Extracellular Traps/metabolism
- Female
- Healthy Volunteers
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/immunology
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Oncogene Proteins/immunology
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/immunology
- Poly-ADP-Ribose Binding Proteins/metabolism
- Primary Cell Culture
- Synovial Fluid/chemistry
- Synovial Fluid/cytology
- Synovial Fluid/immunology
- Zymosan/immunology
Collapse
Affiliation(s)
- Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Anjan Saha
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Maureen Legendre
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - M Asif Amin
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bradley J. Rabquer
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Marta J. Gonzales-Hernandez
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Julie Jorns
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Smriti Mohan
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Srilakshmi Yalavarthi
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dave A. Pai
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristine Angevine
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shelley J. Almburg
- Microscopy & Image – Analysis Laboratory, University of Michigan, Ann Arbor, Michigan 48109, USA
- Deceased
| | - Jason S. Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Barbara S. Adams
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alisa E. Koch
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
- VA Medical Service, Department of Internal Medicine/Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - David A. Fox
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David R. Engelke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
- Programs in Immunology, Cellular & Molecular Biology, and Cancer Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
35
|
|
36
|
Huang SH, Chi F, Peng L, Bo T, Zhang B, Liu LQ, Wu X, Mor-Vaknin N, Markovitz DM, Cao H, Zhou YH. Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier. PLoS One 2016; 11:e0162641. [PMID: 27657497 PMCID: PMC5033352 DOI: 10.1371/journal.pone.0162641] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis. METHODOLOGY/PRINCIPAL FINDINGS The role of vimentin in IbeA+ E. coli K1-induced NF-κB activation, pathogen invasion, leukocyte transmigration across the BBB has now been demonstrated by using vimentin knockout (KO) mice. In the in vivo studies presented here, IbeA-induced NF-κB activation, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the BBB were significantly reduced in Vim-/- mice. Decreased neuronal injury in the hippocampal dentate gyrus was observed in Vim-/- mice with meningitis. The major inflammatory regulator α7 nAChR and several signaling molecules contributing to NF-κB activation (p65 and p-CamKII) were significantly reduced in the brain tissues of the Vim-/- mice with E. coli meningitis. Furthermore, Vim KO resulted in significant reduction in neuronal injury and in α7 nAChR-mediated calcium signaling. CONCLUSION/SIGNIFICANCE Vimentin, a novel NF-κB regulator, plays a detrimental role in the host defense against meningitic infection by modulating the NF-κB signaling pathway to increase pathogen invasion, PMN recruitment, BBB permeability and neuronal inflammation. Our findings provide the first evidence for Vim-dependent mechanisms underlying the pathogenic triad of bacterial meningitis.
Collapse
Affiliation(s)
- Sheng-He Huang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou 510515, China
- * E-mail: (YHZ); (SHH)
| | - Feng Chi
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Pathology, Southern California Research Center for ALPD and Cirrhosis, the Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Liang Peng
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Clinic Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Tao Bo
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bao Zhang
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li-Qun Liu
- Saban Research Institute of Childrens Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, California, United States of America
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nirit Mor-Vaknin
- Department of Internal Medicine, Division of Infectious Diseases, 5220 MSRB III, 1150 West Medical Center Drive, University of Michigan, Ann Arbor, MI, United States of America
| | - David M. Markovitz
- Department of Internal Medicine, Division of Infectious Diseases, 5220 MSRB III, 1150 West Medical Center Drive, University of Michigan, Ann Arbor, MI, United States of America
| | - Hong Cao
- Department of Microbiology, School of Public Health and Tropocal Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yan-Hong Zhou
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (YHZ); (SHH)
| |
Collapse
|
37
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
38
|
Mak TN, Brüggemann H. Vimentin in Bacterial Infections. Cells 2016; 5:cells5020018. [PMID: 27096872 PMCID: PMC4931667 DOI: 10.3390/cells5020018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022] Open
Abstract
Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.
Collapse
Affiliation(s)
- Tim N Mak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
39
|
Lazarova DL, Bordonaro M. Vimentin, colon cancer progression and resistance to butyrate and other HDACis. J Cell Mol Med 2016; 20:989-93. [PMID: 27072512 PMCID: PMC4882977 DOI: 10.1111/jcmm.12850] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 12/17/2022] Open
Abstract
Dietary fibre protects against colorectal cancer (CRC) most likely through the activity of its fermentation product, butyrate. Butyrate functions as a histone deacetylase inhibitor (HDACi) that hyperactivates Wnt signalling and induces apoptosis of CRC cells. However, individuals who consume a high‐fibre diet may still develop CRC; therefore, butyrate resistance may develop over time. Furthermore, CRC cells that are resistant to butyrate are cross‐resistant to clinically relevant therapeutic HDACis, suggesting that the development of butyrate resistance in vivo can result in HDACi‐resistant CRCs. Butyrate/HDACi‐resistant CRC cells differ from their butyrate/HDACi‐sensitive counterparts in the expression of many genes, including the gene encoding vimentin (VIM) that is usually expressed in normal mesenchymal cells and is involved in cancer metastasis. Interestingly, vimentin is overexpressed in butyrate/HDACi‐resistant CRC cells although Wnt signalling is suppressed in such cells and that VIM is a Wnt activity‐targeted gene. The expression of vimentin in colonic neoplastic cells could be correlated with the stage of neoplastic progression. For example, comparative analyses of LT97 microadenoma cells and SW620 colon carcinoma cells revealed that although vimentin is not detectable in LT97 cells, it is highly expressed in SW620 cells. Based upon these observations, we propose that the differential expression of vimentin contributes to the phenotypic differences between butyrate‐resistant and butyrate‐sensitive CRC cells, as well as to the differences between early‐stage and metastatic colorectal neoplastic cells. We discuss the hypothesis that vimentin is a key factor integrating epithelial to mesenchymal transition, colonic neoplastic progression and resistance to HDACis.
Collapse
Affiliation(s)
- Darina L Lazarova
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
40
|
Kumar V, Bouameur JE, Bär J, Rice RH, Hornig-Do HT, Roop DR, Schwarz N, Brodesser S, Thiering S, Leube RE, Wiesner RJ, Vijayaraj P, Brazel CB, Heller S, Binder H, Löffler-Wirth H, Seibel P, Magin TM. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J Cell Biol 2016; 211:1057-75. [PMID: 26644517 PMCID: PMC4674273 DOI: 10.1083/jcb.201404147] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidermal keratin filaments are important components and organizers of the cornified envelope and regulate mitochondrial metabolism by modulating their membrane composition. Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI−/− and KtyII−/−K8 mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.
Collapse
Affiliation(s)
- Vinod Kumar
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Jamal-Eddine Bouameur
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Janina Bär
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Hue-Tran Hornig-Do
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Dennis R Roop
- Department of Dermatology, University of Colorado, Denver, CO 80045 Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Denver, CO 80045
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Susanne Brodesser
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | - Sören Thiering
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, 50931 Cologne, Germany Center for Molecular Medicine Cologne, 50931 Cologne, Germany
| | | | - Christina B Brazel
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Heller
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Henry Löffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, 04103 Leipzig, Germany
| | - Thomas M Magin
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, 04103 Leipzig, Germany Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
41
|
Russo BC, Stamm LM, Raaben M, Kim CM, Kahoud E, Robinson LR, Bose S, Queiroz AL, Herrera BB, Baxt LA, Mor-Vaknin N, Fu Y, Molina G, Markovitz DM, Whelan SP, Goldberg MB. Intermediate filaments enable pathogen docking to trigger type 3 effector translocation. Nat Microbiol 2016; 1:16025. [PMID: 27572444 PMCID: PMC5006386 DOI: 10.1038/nmicrobiol.2016.25] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
Abstract
Type 3 secretion systems (T3SSs) of bacterial pathogens translocate bacterial effector proteins that mediate disease into the eukaryotic cytosol. Effectors traverse the plasma membrane through a translocon pore formed by T3SS proteins. In a genome-wide selection, we identified the intermediate filament vimentin as required for infection by the T3SS-dependent pathogen S. flexneri. We found that vimentin is required for efficient T3SS translocation of effectors by S. flexneri and other pathogens that use T3SS, Salmonella enterica serovar Typhimurium and Yersinia pseudotuberculosis. Vimentin and the intestinal epithelial intermediate filament keratin 18 interact with the C-terminus of the Shigella translocon pore protein IpaC. Vimentin and its interaction with IpaC are dispensable for pore formation, but are required for stable docking of S. flexneri to cells; moreover, stable docking triggers effector secretion. These findings establish that stable docking of the bacterium specifically requires intermediate filaments, is a process distinct from pore formation, and is a prerequisite for effector secretion.
Collapse
Affiliation(s)
- Brian C. Russo
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Luisa M. Stamm
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthijs Raaben
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Caleb M. Kim
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emily Kahoud
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lindsey R. Robinson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sayantan Bose
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ana L. Queiroz
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bobby Brooke Herrera
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leigh A. Baxt
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nirit Mor-Vaknin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yang Fu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gabriel Molina
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David M. Markovitz
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Sean P. Whelan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcia B. Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species. Sci Rep 2016; 6:21526. [PMID: 26876331 PMCID: PMC4753491 DOI: 10.1038/srep21526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/22/2016] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium tuberculosis persists primarily in macrophages after infection and manipulates the host defence pathways in its favour. 2D gel electrophoresis results showed that vimentin, an intermediate filament protein, is downregulated in macrophages infected with live Mycobacterium tuberculosis H37Rv when compared to macrophages infected with heat- killed H37Rv. The downregulation was confirmed by Western blot and quantitative RT-PCR. Besides, the expression of vimentin in avirulent strain, Mycobacterium tuberculosis H37Ra- infected macrophages was similar to the expression in heat-killed H37Rv- infected macrophages. Increased expression of vimentin in H2O2- treated live H37Rv-infected macrophages and decreased expression of vimentin both in NAC and DPI- treated heat-killed H37Rv-infected macrophages showed that vimentin expression is positively regulated by ROS. Ectopic expression of ESAT-6 in macrophages decreased both the level of ROS and the expression of vimentin which implies that Mycobacterium tuberculosis-mediated downregulation of vimentin is at least in part due to the downregulation of ROS by the pathogen. Interestingly, the incubation of macrophages with anti-vimentin antibody increased the ROS production and decreased the survival of H37Rv. In addition, we also showed that the pattern of phosphorylation of vimentin in macrophages by PKA/PKC is different from monocytes, emphasizing a role for vimentin phosphorylation in macrophage differentiation.
Collapse
|
43
|
Nagy Z, Acs B, Butz H, Feldman K, Marta A, Szabo PM, Baghy K, Pazmany T, Racz K, Liko I, Patocs A. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease. J Steroid Biochem Mol Biol 2016; 155:76-84. [PMID: 26480216 DOI: 10.1016/j.jsbmb.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/11/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies.
Collapse
Affiliation(s)
- Zsolt Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary
| | - Bence Acs
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Karolina Feldman
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Alexa Marta
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter M Szabo
- Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Kornelia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Karoly Racz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Hungarian Academy of Sciences-Semmelweis University Molecular Medicine Research Group, Budapest, Hungary
| | - Istvan Liko
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary; Gedeon Richter PLC, Budapest, Hungary
| | - Attila Patocs
- Hungarian Academy of Sciences-Semmelweis University "Lendulet" Hereditary Endocrine Tumors Research Group, Budapest, Hungary; Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
44
|
Mortensen JH, Godskesen LE, Jensen MD, Van Haaften WT, Klinge LG, Olinga P, Dijkstra G, Kjeldsen J, Karsdal MA, Bay-Jensen AC, Krag A. Fragments of Citrullinated and MMP-degraded Vimentin and MMP-degraded Type III Collagen Are Novel Serological Biomarkers to Differentiate Crohn's Disease from Ulcerative Colitis. J Crohns Colitis 2015; 9:863-72. [PMID: 26188349 DOI: 10.1093/ecco-jcc/jjv123] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS A hallmark of inflammatory bowel disease [IBD] is chronic inflammation, which leads to excessive extracellular matrix [ECM] remodelling and release of specific protein fragments, called neoepitopes. We speculated that the biomarker profile panel for ulcerative colitis [UC] and Crohn's disease [CD] represent a heterogeneous expression pattern, and may be applied as a tool to aid in the differentiation between UC and CD. METHODS Serum biomarkers of degraded collagens I, III-IV [C1M, C3M, and C4M], collagen type 1 and IV formation [P1NP, P4NP], and citrullinated and MMP-degraded vimentin [VICM] were studied with a competitive ELISA assay system in a cohort including 164 subjects [CD n = 72, UC n = 60, and non-IBD controls n = 32] and a validation cohort of 61 subjects [CD n = 46, and UC n = 15]. Receiver operating characteristic curve analysis and logistic regression modelling were carried out to evaluate the discriminative power of the biomarkers. RESULTS All biomarkers were corrected for confounding factors. VICM and C3M demonstrated the highest diagnostic power, alone, to differentiate CD from UC with an area under the curve [AUC] of 0.77 and 0.69, respectively. Furthermore, the biomarkers C1M [AUC = 0.81], C3M [AUC = 0.83], VICM [AUC = 0.83], and P1NP [AUC = 0.77] were best to differentiate UC from non-IBD. The best combinations of biomarkers to differentiate CD from UC and UC from non-IBD were VICM, C3M, C4M [AUC = 0.90] and VICM, C3M [AUC = 0.98] respectively. CONCLUSIONS Specific extracellular matrix degradation markers are elevated in IBD and can discriminate CD from UC and UC from non-IBD controls with a high diagnostic accuracy.
Collapse
Affiliation(s)
| | | | - Michael Dam Jensen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Wouter Tobias Van Haaften
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Lone Gabriels Klinge
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Peter Olinga
- Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jens Kjeldsen
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | | | | | - Aleksander Krag
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
45
|
Tanaka H, Goto H, Inoko A, Makihara H, Enomoto A, Horimoto K, Matsuyama M, Kurita K, Izawa I, Inagaki M. Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice. J Biol Chem 2015; 290:12984-98. [PMID: 25847236 PMCID: PMC4505553 DOI: 10.1074/jbc.m114.633891] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 01/16/2023] Open
Abstract
Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIMSA/SA) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIMSA/SA-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIMSA/SA mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.
Collapse
Affiliation(s)
- Hiroki Tanaka
- From the Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681
| | - Hidemasa Goto
- From the Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, the Departments of Cellular Oncology and
| | - Akihito Inoko
- From the Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681
| | - Hiroyuki Makihara
- From the Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, the Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya 466-8550, and
| | - Atsushi Enomoto
- Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550
| | - Katsuhisa Horimoto
- the Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Makoto Matsuyama
- From the Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681
| | - Kenichi Kurita
- the Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya 466-8550, and
| | - Ichiro Izawa
- From the Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681
| | - Masaki Inagaki
- From the Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya 464-8681, the Departments of Cellular Oncology and
| |
Collapse
|
46
|
Szilagyi K, Gijbels MJ, van der Velden S, Heinsbroek SE, Kraal G, de Winther MP, van den Berg TK. Dectin-1 deficiency does not affect atherosclerosis development in mice. Atherosclerosis 2015; 239:318-21. [DOI: 10.1016/j.atherosclerosis.2015.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 01/28/2023]
|
47
|
Vimentin regulates activation of the NLRP3 inflammasome. Nat Commun 2015; 6:6574. [PMID: 25762200 PMCID: PMC4358756 DOI: 10.1038/ncomms7574] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/09/2015] [Indexed: 01/12/2023] Open
Abstract
Activation of the NLRP3 inflammasome and subsequent maturation of IL-1β have been implicated in acute lung injury (ALI), resulting in inflammation and fibrosis. We investigated the role of vimentin, a type III intermediate filament, in this process using three well-characterized murine models of ALI known to require NLRP3 inflammasome activation. We demonstrate that central pathophysiologic events in ALI (inflammation, IL-1β levels, endothelial and alveolar epithelial barrier permeability, remodelling and fibrosis) are attenuated in the lungs of Vim(-/-) mice challenged with LPS, bleomycin and asbestos. Bone marrow chimeric mice lacking vimentin have reduced IL-1β levels and attenuated lung injury and fibrosis following bleomycin exposure. Furthermore, decreased active caspase-1 and IL-1β levels are observed in vitro in Vim(-/-) and vimentin-knockdown macrophages. Importantly, we show direct protein-protein interaction between NLRP3 and vimentin. This study provides insights into lung inflammation and fibrosis and suggests that vimentin may be a key regulator of the NLRP3 inflammasome.
Collapse
|
48
|
Nguyen TC, Gushiken F, Correa JI, Dong JF, Dasgupta SK, Thiagarajan P, Cruz MA. A recombinant fragment of von Willebrand factor reduces fibrin-rich microthrombi formation in mice with endotoxemia. Thromb Res 2015; 135:1025-30. [PMID: 25769494 DOI: 10.1016/j.thromres.2015.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Disseminated fibrin deposition in the microvasculature such as in disseminated intravascular coagulation (DIC) arises from uninhibited activated coagulation secondary to sustained systemic inflammation. Currently there is no treatment for DIC. Treating the underlying trigger and supportive care are the current recommendations to manage DIC. This study aims at using recombinant von Willebrand factor (VWF) A2 domain polypeptide to inhibit VWF-mediated platelet adhesion to fibrin and prevent DIC. MATERIALS AND METHODS We use flow chamber assay to test the capacity of purified A2 protein to inhibit platelet adhesion to immobilized fibrin(ogen) and platelet-fibrin clot formation. We use a murine model of lipopolysaccharide-induced DIC to examine the effect of A2 protein on DIC. RESULTS The A2 protein blocked flow-dependent platelet adhesion to fibrin, delayed fibrin polymerization, and inhibited platelet-fibrin clot formation in vitro. The infusion of the purified A2 protein to the endotoxin-treated mice prevented fibrin-rich microthrombi formation in brain, lung, kidney, and liver. It also attenuated levels of inflammatory mediators, and markedly reduced mortality rates at 96hours. CONCLUSIONS The A2 protein inhibited platelet interaction with fibrin(ogen). Furthermore, A2 prevented disseminated fibrin-rich microthrombi and decrease mortality in a lipopolysaccharide-induced DIC murine model. A2 could provide a novel therapeutic approach in critically ill patients with uninhibited activated coagulation and disseminated fibrin deposition such as DIC.
Collapse
Affiliation(s)
- Trung C Nguyen
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX 77030; Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| | - Francisca Gushiken
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| | - Juliana I Correa
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Jing-Fei Dong
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Swapan K Dasgupta
- Department of Pathology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| | - Perumal Thiagarajan
- Department of Pathology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States.
| |
Collapse
|