1
|
Masuda Y, Ohbayashi K, Iba K, Kitano R, Kimura T, Yamada T, Hira T, Yada T, Iwasaki Y. Abilities of Rare Sugar Members to Release Glucagon-like Peptide-1 and Suppress Food Intake in Mice. Nutrients 2025; 17:1221. [PMID: 40218979 PMCID: PMC11990814 DOI: 10.3390/nu17071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Rare sugars, which naturally exist in small quantities, have gained attention as next-generation functional sugars due to their sweetness and low calorie content. Some of them have already been commercialized. Rare sugar-containing syrups, produced through alkaline isomerization of high-fructose corn syrup, are effective in preventing obesity and type 2 diabetes. However, the mechanisms underlying these effects remain incompletely understood. Recently, D-allulose has been found to improve hyperphagic obesity by stimulating the secretion of the intestinal hormone glucagon-like peptide-1 (GLP-1). The present study aimed to determine the comparative effects of aldohexoses (D-glucose, D-allose) and ketohexoses (D-fructose, D-allulose, D-tagatose, D-sorbose) on GLP-1 secretion and food intake in male mice. Method and Results: Single peroral administration of four ketohexoses at 1 and 3 g/kg, but not aldohexoses at 1 and 3 g/kg, significantly increased plasma GLP-1 concentrations with comparable efficacy. Moreover, these ketohexoses at 1 g/kg suppressed food intake in the short term, an effect blunted by GLP-1 receptor antagonism. In contrast, zero-calorie D-allose at 3 g/kg suppressed feeding without raising plasma GLP-1 levels. Conclusions: These results demonstrate that D-allulose, D-tagatose, and D-sorbose, which are low-calorie rare sugars classified as ketohexoses, suppress food intake through promoting GLP-1 secretion, showing their potential to prevent and/or ameliorate type 2 diabetes, obesity and related diseases.
Collapse
Affiliation(s)
- Yuta Masuda
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Kengo Iba
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Rika Kitano
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| | - Tomonori Kimura
- Research and Development, Matsutani Chemical Industry Company, Limited, Itami 664-8508, Japan
| | - Takako Yamada
- Research and Development, Matsutani Chemical Industry Company, Limited, Itami 664-8508, Japan
| | - Tohru Hira
- Laboratory of Nutritional Biochemistry, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan;
| | - Toshihiko Yada
- Center for Integrative Physiology, Kansai Electric Power Medical Research Institute, Osaka 553-0003, Japan
- Department of Diabetes, Endocrinology and Metabolism/Rheumatology and Clinical Immunology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu 501-1194, Japan
| | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan; (Y.M.); (K.O.)
| |
Collapse
|
2
|
Movahednasab M, Dianat-Moghadam H, Khodadad S, Nedaeinia R, Safabakhsh S, Ferns G, Salehi R. GLP-1-based therapies for type 2 diabetes: from single, dual and triple agonists to endogenous GLP-1 production and L-cell differentiation. Diabetol Metab Syndr 2025; 17:60. [PMID: 39962520 PMCID: PMC11834518 DOI: 10.1186/s13098-025-01623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone mainly secreted by enteroendocrine intestinal L-cells. GLP-1 is also secreted by α-cells of the pancreas and the central nervous system (CNS). GLP-1 secretion is stimulated by nutrient intake and exerts its effects on glucose homeostasis by stimulating insulin secretion, gastric emptying confiding the food intake, and β-cell proliferation. The insulinotropic effects of GLP-1, and the reduction of its effects in type 2 diabetes mellitus (T2DM), have made GLP-1 an attractive option for the treatment of T2DM. Furthermore, GLP-1-based medications such as GLP-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, have been shown to improve diabetes control in preclinical and clinical trials with human subjects. Importantly, increasing the endogenous production of GLP-1 by different mechanisms or by increasing the number of intestinal L-cells that tend to produce this hormone may be another effective therapeutic approach to managing T2DM. Herein, we briefly describe therapeutic agents/compounds that enhance GLP-1 function. Then, we will discuss the approaches that can increase the endogenous production of GLP-1 through various stimuli. Finally, we introduce the potential of L-cell differentiation as an attractive future therapeutic approach to increase GLP-1 production as an attractive therapeutic alternative for T2DM.
Collapse
Affiliation(s)
- Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Khodadad
- Department of Genetics and Molecular Biology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Safabakhsh
- Micronesian Institute for Disease Prevention and Research, 736 Route 4, Suite 103, Sinajana, GU, 96910, USA
| | - Gordon Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Abdelaziz A, El-Far YM, Abdel-Rahman N. Citronellal Alleviates Insulin Resistance in High-Fat Diet/Streptozocin Model: Role of Asprosin/Olfactory Receptor Axis. Mol Nutr Food Res 2025; 69:e202400654. [PMID: 39821628 DOI: 10.1002/mnfr.202400654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Ectopic olfactory receptors are expressed in nonolfactory tissues and perform diverse roles including regulation of glucose homeostasis. We explored the effect of citronellal treatment on olfactory receptor 4M1 subtype (OR4M1) signaling in insulin resistance and Type II diabetes in rats. We aimed to validate the anti-diabetic effect of citronellal through Asprosin/OR4M1 modulation. Exploring new antidiabetics and pharmacological targets is important to improve quality of life and limit complications. The model was established in Sprague-Dawley rats by a high-fat diet for 4 weeks followed by a single low-dose streptozotocin (STZ) (35 mg/kg/ip). One week after STZ injection, oral citronellal (100 mg/kg) was administered for 4 weeks. Citronellal lowered serum glucose and triglycerides and ameliorated OGTT and HOMA-IR results. Docking results revealed that citronellal blocked the Asprosin binding site at OR4M1. The hepatic expression of OR4M1 and Asprosin was reduced. Citronellal lowered cAMP levels causing attenuated levels of protein kinase A and downstream gluconeogenic enzymes: glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Citronellal also inhibited the expression of hepatic TLR-4 and inhibited JNK phosphorylation. Citronellal attenuated hepatic levels of NF-κB, p-NF-κB, and downstream proteins MCP-1 and TNF-α. These results suggest that citronellal alleviates insulin resistance by mitigating Asprosin/OR4M1 and Asprosin/TLR4/JNK signaling.
Collapse
Affiliation(s)
- Aya Abdelaziz
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yousra M El-Far
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Luo HY, Fang J, Zhang WH, Chan KC, Chan YM, Dong CX, Li SL, Lyu AP, Xu J. Dissecting the anti-obesity components of ginseng: How ginseng polysaccharides and ginsenosides target gut microbiota to suppress high-fat diet-induced obesity. J Adv Res 2024:S2090-1232(24)00558-7. [PMID: 39672231 DOI: 10.1016/j.jare.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Ginseng demonstrates therapeutic potential in treating obesity, with both experimental and clinical studies suggesting its anti-obesity effects are mediated by gut microbiota. Nonetheless, the specific chemical components responsible for this effect remain largely unidentified. OBJECTIVES This study aims to investigate the anti-obesity effects and mechanisms of ginseng polysaccharides (GP) and ginsenosides (GS), the primary chemical components of ginseng, with a focus on their impact on gut microbiota. METHODS The impact of GP and GS on high-fat diet (HFD)-induced obesity was assessed using a mouse model. Molecular mechanisms were explored through a combination of chemical analysis, metagenomics, RT-qPCR, ELISA, and biochemical assays. RESULTS GP or GS administration effectively prevented adiposity in HFD-fed mice, and both effects were mediated by gut microbiota. Chemical analysis revealed diverse glycosyl groups in GP and GS. Metagenomics data suggested that GP-enriched species, e.g., Bacteroides stercorirosoris and Clostridiales bacterium encoded carbohydrate-active enzymes GH35, GH43 and PL9_1, while GS-enriched Sulfurospirillum halorespirans encoded GH16_5. These enzymes facilitated the utilization of glycosyl groups in GP and GS, selectively stimulating bacterial growth and reshaping the gut microbiota. Furthermore, bacterial species enriched by GP or GS encoded specific functional genes involved in short-chain fatty acid (SCFA) synthesis (K00625 and K00925 for GP; K18118, K00100, and K18122 for GS) and intestinal gluconeogenesis (IGN) (K01678, K00024, and K01596 for GP; K18118 and K00278 for GS). Consequently, the SCFA-GLP-1/PYY signaling and IGN were activated by both GP and GS to ameliorate obesity phenotypes. CONCLUSION GP and GS, containing diverse glycosyl groups, selectively stimulate specific gut bacteria, triggering mechanisms involved in SCFA-GLP-1/PYY signaling and IGN activation to reduce adiposity in HFD-fed mice. The study enhances understanding of the chemical components crucial for the gut microbiota-mediated anti-obesity effect of ginseng. The mechanistic understanding provides valuable insights for developing ginseng-based drugs or health products to combat obesity.
Collapse
Affiliation(s)
- Han-Yan Luo
- Institute of Systems Medicine and Health Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong; Research Centre for Standardization of Chinese Medicines, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong
| | - Jing Fang
- Research Centre for Standardization of Chinese Medicines, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong
| | - Wei-Hao Zhang
- Institute of Systems Medicine and Health Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong; Research Centre for Standardization of Chinese Medicines, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong
| | - Kam-Chun Chan
- Institute of Systems Medicine and Health Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong; Research Centre for Standardization of Chinese Medicines, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong
| | - Yui-Man Chan
- Institute of Systems Medicine and Health Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong; Research Centre for Standardization of Chinese Medicines, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong
| | - Cai-Xia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis and Metabolomics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Ai-Ping Lyu
- Institute of Systems Medicine and Health Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong.
| | - Jun Xu
- Institute of Systems Medicine and Health Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong; Research Centre for Standardization of Chinese Medicines, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong; Department of Pharmaceutical Analysis and Metabolomics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
5
|
Jee W, Cho HS, Kim SW, Bae H, Chung WS, Cho JH, Kim H, Song MY, Jang HJ. Lycium chinense Mill Induces Anti-Obesity and Anti-Diabetic Effects In Vitro and In Vivo. Int J Mol Sci 2024; 25:8572. [PMID: 39201257 PMCID: PMC11354703 DOI: 10.3390/ijms25168572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the effects of Lycium chinense Mill (LCM) extract on obesity and diabetes, using both in vitro and high-fat diet (HFD)-induced obesity mouse models. We found that LCM notably enhanced glucagon-like peptide-1 (GLP-1) secretion in NCI-h716 cells from 411.4 ± 10.75 pg/mL to 411.4 ± 10.75 pg/mL compared to NT (78.0 ± 0.67 pg/mL) without causing cytotoxicity, implying the involvement of Protein Kinase A C (PKA C) and AMP-activated protein kinase (AMPK) in its action mechanism. LCM also decreased lipid droplets and lowered the expression of adipogenic and lipogenic indicators, such as Fatty Acid Synthase (FAS), Fatty Acid-Binding Protein 4 (FABP4), and Sterol Regulatory Element-Binding Protein 1c (SREBP1c), indicating the suppression of adipocyte differentiation and lipid accumulation. LCM administration to HFD mice resulted in significant weight loss (41.5 ± 3.3 g) compared to the HFD group (45.1 ± 1.8 g). In addition, improved glucose tolerance and serum lipid profiles demonstrated the ability to counteract obesity-related metabolic issues. Additionally, LCM exhibited hepatoprotective properties by reducing hepatic lipid accumulation and diminishing white adipose tissue mass and adipocyte size, thereby demonstrating its effectiveness against hepatic steatosis and adipocyte hypertrophy. These findings show that LCM can be efficiently used as a natural material to treat obesity and diabetes, providing a new approach for remedial and therapeutic purposes.
Collapse
Affiliation(s)
- Wona Jee
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hong-Seok Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok Woo Kim
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hanbit Bae
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won-Seok Chung
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Heung Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Yeon Song
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-S.C.); (W.-S.C.); (J.-H.C.); (H.K.)
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (W.J.); (S.W.K.); (H.B.)
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
8
|
Kim TH. Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights. J Ginseng Res 2024; 48:276-285. [PMID: 38707641 PMCID: PMC11068994 DOI: 10.1016/j.jgr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Park JH, Jee W, Park SM, Park YR, Kim SW, Bae H, Chung WS, Cho JH, Kim H, Song MY, Jang HJ. Timosaponin A3 Induces Anti-Obesity and Anti-Diabetic Effects In Vitro and In Vivo. Int J Mol Sci 2024; 25:2914. [PMID: 38474161 DOI: 10.3390/ijms25052914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), a natural compound extracted from AA, has demonstrated potential therapeutic effects in various disease models. However, its effects on diabetes and obesity remain largely unexplored. We investigated the anti-obesity and anti-diabetic properties of TA3 using in vitro and in vivo models. TA3 treatment in NCI-H716 cells stimulated the secretion of glucagon-like peptide 1 (GLP-1) through the activation of phosphorylation of protein kinase A catalytic subunit (PKAc) and 5'-AMP-activated protein kinase (AMPK). In 3T3-L1 adipocytes, TA3 effectively inhibited lipid accumulation by regulating adipogenesis and lipogenesis. In a high-fat diet (HFD)-induced mice model, TA3 administration significantly reduced body weight gain and food intake. Furthermore, TA3 improved glucose tolerance, lipid profiles, and mitigated hepatic steatosis in HFD-fed mice. Histological analysis revealed that TA3 reduced the size of white adipocytes and inhibited adipose tissue generation. Notably, TA3 downregulated the expression of lipogenic factor, including fatty-acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP1c), emphasizing its potential as an anti-obesity agent. These findings revealed that TA3 may be efficiently used as a natural compound for tackling obesity, diabetes, and associated metabolic disorders, providing a novel approach for therapeutic intervention.
Collapse
Affiliation(s)
- Ji-Hyuk Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wona Jee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - So-Mi Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ye-Rin Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seok Woo Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hanbit Bae
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Won-Suk Chung
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Heung Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Yeon Song
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeung-Jin Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
PING Y, LIU J, WANG H, WANG Y, QIU H, ZHANG Y. Research progress in the treatment of an immune system disease-type 1 diabetes-by regulating the intestinal flora with Chinese medicine and food homologous drugs. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:150-161. [PMID: 38966054 PMCID: PMC11220337 DOI: 10.12938/bmfh.2023-068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/06/2024] [Indexed: 07/06/2024]
Abstract
Type 1 diabetes (T1D) is a specific autoimmune disease related to genetic and autoimmune factors. Recent studies have found that the intestinal flora is one of the important environmental factors in the development of T1D. The gut microbiota is the largest microbiota in the human body and has a significant impact on material and energy metabolism. Related studies have found that the intestinal floras of T1D patients are unbalanced. Compared with normal patients, the abundance of beneficial bacteria is reduced, and various pathogenic bacteria are significantly increased, affecting the occurrence and development of diabetes. Medicinal and food homologous traditional Chinese medicine (TCM) has a multicomponent, multitarget, and biphasic regulatory effect. Its chemical composition can increase the abundance of beneficial bacteria, improve the diversity of the intestinal flora, reduce blood sugar, and achieve the purpose of preventing and treating T1D by regulating the intestinal flora and its metabolites. Therefore, based on a review of T1D, intestinal flora, and TCM derived from medicine and food, this review describes the relationship between T1D and the intestinal flora, as well as the research progress of TCM interventions for T1D through regulation of the intestinal flora. Medicine and food homologous TCM has certain advantages in treating diabetes and regulating the intestinal flora. It can be seen that there is still great research space and broad development prospects for the treatment of diabetes by regulating the intestinal flora with drug and food homologous TCM.
Collapse
Affiliation(s)
- Yang PING
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| | - Jianing LIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Huilin WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yan WANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Hongbin QIU
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
| | - Yu ZHANG
- College of Pharmacy, Jiamusi University, Jiamusi 154007,
Heilongjiang, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi
154007, Heilongjiang, China
| |
Collapse
|
11
|
Lee SH, Ko HM, Jee W, Kim H, Chung WS, Jang HJ. Isosinensetin Stimulates Glucagon-like Peptide-1 Secretion via Activation of hTAS2R50 and the G βγ-Mediated Signaling Pathway. Int J Mol Sci 2023; 24:ijms24043682. [PMID: 36835092 PMCID: PMC9959872 DOI: 10.3390/ijms24043682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bitter taste receptors (TAS2Rs) are G protein-coupled receptors localized in the taste buds of the tongue. They may also be present in non-lingual organs, including the brain, lung, kidney, and gastrointestinal (GI) tract. Recent studies on bitter taste receptor functions have suggested TAS2Rs as potential therapeutic targets. The human bitter taste receptor subtype hTAS2R50 responds to its agonist isosinensetin (ISS). Here, we demonstrated that, unlike other TAS2R agonists, isosinensetin activated hTAS2R50 as well as increased Glucagon-like peptide 1 (GLP-1) secretion through the Gβγ-mediated pathway in NCI-H716 cells. To confirm this mechanism, we showed that ISS increased intracellular Ca2+ and was suppressed by the IP3R inhibitor 2-APB as well as the PLC inhibitor U73122, suggesting that TAS2Rs alters the physiological state of enteroendocrine L cells in a PLC-dependent manner. Furthermore, we demonstrated that ISS upregulated proglucagon mRNA and stimulated GLP-1 secretion. ISS-mediated GLP-1 secretion was suppressed in response to small interfering RNA-mediated silencing of Gα-gust and hTAS2R50 as well as 2-APB and U73122. Our findings improved the understanding of how ISS modulates GLP-1 secretion and indicates the possibility of using ISS as a therapeutic agent in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Seung-Hyeon Lee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Min Ko
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Won-Seok Chung
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
12
|
Chang SN, Park JG, Kang SC. Therapeutic propensity of ginsenosides Rg1 and Rg3 in rhabdomyolysis-induced acute kidney injury and renohepatic crosstalk in rats. Int Immunopharmacol 2023; 115:109602. [PMID: 36580761 DOI: 10.1016/j.intimp.2022.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ginseng is a traditional herbal medicine used for thousands of years in Southeast Asian countries because of its medicinal properties. Ginsenosides Rg1 and Rg3 have demonstrated therapeutic properties against a broad spectrum of diseases. PURPOSE Here in this study, we investigated the therapeutic efficacy of Rg1 and Rg3 in alleviating glycerol-induced acute kidney injury, also known as rhabdomyolysis-induced acute kidney injury (RAKI). METHODS AKI was induced in male Wistar rats through intramuscular injection of 10 mL/kg glycerol and simultaneous oral treatment of ginsenosides Rg1 and Rg3 for 3 days. We also evaluated the therapeutic potential of Rg1 and Rg3 on human embryonic kidney epithelial (HEK-293). Cell viability and LDH assay were performed on HEK-293 cells to evaluate the toxicity of Rg1 and Rg3. Evaluation of important kidney damage markers such as creatinine and blood urea nitrogen (BUN) was carried out at different time points from the rat serum. Histopathological analysis was performed on kidney tissues. We also performed experiments such as ELISA assay, immunohistochemistry, immunofluorescence staining, COMET assay, western blotting, TUNEL assay, and flow cytometry to obtain results. RESULTS Rg1 and Rg3 significantly downregulated the expression of kidney damage markers such as creatinine and BUN in a dose-dependent manner. Histopathological analysis revealed damage across the glomerulus, tubules, and collecting duct rendering the kidney dysfunctional in glycerol treatment groups. However, Rg1 and Rg3 treated groups showed a significant reduction in tubular necrosis at both 10 and 20 mg/kg. There was also a sharp downregulation of oxidative and ER stress markers. Additionally, we observed nuclear translocation of Nrf2 which were more prominent in kidney tissues. Rg1 and Rg3 were also able to mitigate apoptotic cell death in vitro and in vivo evaluated through immunofluorescence staining for p53, TUNEL assay, flow cytometry, and immunoblotting for intrinsic apoptosis markers. CONCLUSION In summary, we conclude that Rg1 and Rg3 exhibited natural therapeutic remedy against AKI.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
13
|
Protopanaxadiol ameliorates palmitate-induced lipotoxicity and pancreatic β-cell dysfunction in INS-1 cells. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
14
|
Ginsenoside compound K increases glucagon-like peptide-1 release and L-cell abundance in db/db mice through TGR5/YAP signaling. Int Immunopharmacol 2022; 113:109405. [DOI: 10.1016/j.intimp.2022.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
|
15
|
Przeor M. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 2022; 15:ph15010065. [PMID: 35056122 PMCID: PMC8778315 DOI: 10.3390/ph15010065] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a metabolic disease that affected 9.3% of adults worldwide in 2019. Its co-occurrence is suspected to increase mortality from COVID-19. The treatment of diabetes is mainly based on the long-term use of pharmacological agents, often expensive and causing unpleasant side effects. There is an alarming increase in the number of pharmaceuticals taken in Europe. The aim of this paper is to concisely collect information concerning the few antidiabetic or hypoglycaemic raw plant materials that are present in the consciousness of Europeans and relatively easily accessible to them on the market and sometimes even grown on European plantations. The following raw materials are discussed in this mini-review: Morus alba L., Cinnamomum zeylanicum J.Presl, Trigonella foenum-graecum L., Phaseolus vulgaris L., Zingiber officinale Rosc., and Panax ginseng C.A.Meyer in terms of scientifically tested antidiabetic activity and the presence of characteristic biologically active compounds and their specific properties, including antioxidant properties. The characteristics of these raw materials are based on in vitro as well as in vivo studies: on animals and in clinical studies. In addition, for each plant, the possibility to use certain morphological elements in the light of EFSA legislation is given.
Collapse
Affiliation(s)
- Monika Przeor
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
16
|
Bioconversion of Ginsenosides in American Ginseng Extraction Residue by Fermentation with Ganoderma lucidum Improves Insulin-like Glucose Uptake in 3T3-L1 Adipocytes. FERMENTATION 2021. [DOI: 10.3390/fermentation7040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ginseng is one of the most popular traditional Chinese medicines that have been widely used in China and other Asian countries for thousands of years. Ginsenosides are the unique bioactive saponins occurring in ginseng, and their biological activities have been extensively investigated. A large amount of ginseng residue is produced as waste product due to its applications in manufacturing functional food products, even though it may still contain bioactive components. Thus, the objective of this study was to investigate the hypoglycemic activities of American ginseng extraction residue (AmR) via fermentation with Ganoderma lucidum. Our results showed that the total phenolic contents and β-glucosidase activity of AmR profoundly increased after fermentation with G. lucidum. In 3T3-L1 adipocytes, stimulation of glucose uptake by treatment with AmR was not significant, while fermented AmR (FAmR) exhibited insulin-like glucose-uptake-stimulatory effects. Importantly, the hypoglycemic effects of FAmR were positively associated with the amount of the deglycosylated minor ginsenosides Rg1, Rg3, and compound K. Taken together, our current findings suggest that bioconversion of AmR by fermentation with G. lucidum may be a feasible and eco-friendly approach to developing a functional ingredient for the management of diabetes, while also resolving the problem of ginseng waste.
Collapse
|
17
|
Effect of the Gintonin-Enriched Fraction on Glucagon-Like-Protein-1 Release. Molecules 2021; 26:molecules26206298. [PMID: 34684879 PMCID: PMC8539011 DOI: 10.3390/molecules26206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.
Collapse
|
18
|
Aminifard T, Razavi BM, Hosseinzadeh H. The effects of ginseng on the metabolic syndrome: An updated review. Food Sci Nutr 2021; 9:5293-5311. [PMID: 34532035 PMCID: PMC8441279 DOI: 10.1002/fsn3.2475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is a group of risk factors including high blood glucose, dyslipidemia, high blood pressure, and high body weight. It can increase the risk of diabetes and cardiovascular disorders, which are the important reasons for death around the world. Nowadays, there are numerous demands for herbal medicine because of less harmful effects and more useful effects in comparison with chemical options. Ginseng is one of the most famous herbs used as a drug for a variety of disorders in humans. The antihyperlipidemia, antihypertension, antihyperglycemic, and anti-obesity effects of ginseng and its active constituents such as ginsenosides have been shown in different studies. In this review article, the different in vitro, in vivo, and human studies concerning the effects of ginseng and its active constituents in metabolic syndrome have been summarized. According to these studies, ginseng can control metabolic syndrome and related diseases.
Collapse
Affiliation(s)
- Tahereh Aminifard
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
19
|
Hira T, Trakooncharoenvit A, Taguchi H, Hara H. Improvement of Glucose Tolerance by Food Factors Having Glucagon-Like Peptide-1 Releasing Activity. Int J Mol Sci 2021; 22:6623. [PMID: 34205659 PMCID: PMC8235588 DOI: 10.3390/ijms22126623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone released from enteroendocrine L cells in response to meal ingestion. GLP-1 receptor agonists and GLP-1 enhancers have been clinically employed to treat diabetes owing to their glucose-dependent insulin-releasing activity. The release of GLP-1 is primarily stimulated by macronutrients such as glucose and fatty acids, which are nutritionally indispensable; however, excessive intake of sugar and fat is responsible for the development of obesity and diabetes. Therefore, GLP-1 releasing food factors, such as dietary peptides and non-nutrients, are deemed desirable for improving glucose tolerance. Human and animal studies have revealed that dietary proteins/peptides have a potent effect on stimulating GLP-1 secretion. Studies in enteroendocrine cell models have shown that dietary peptides, amino acids, and phytochemicals, such as quercetin, can directly stimulate GLP-1 secretion. In our animal experiments, these food factors improved glucose metabolism and increased GLP-1 secretion. Furthermore, some dietary peptides not only stimulated GLP-1 secretion but also reduced plasma peptidase activity, which is responsible for GLP-1 inactivation. Herein, we review the relationship between GLP-1 and food factors, especially dietary peptides and flavonoids. Accordingly, utilization of food factors with GLP-1-releasing/enhancing activity is a promising strategy for preventing and treating obesity and diabetes.
Collapse
Affiliation(s)
- Tohru Hira
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan;
- School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan;
| | | | - Hayate Taguchi
- School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan;
| | - Hiroshi Hara
- Department of Food Science and Human Nutrition, Fuji Women’s University, Ishikari-shi 061-320, Japan;
| |
Collapse
|
20
|
Lee M, Ban JJ, Won BH, Im W, Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington's disease. In Vitro Cell Dev Biol Anim 2021; 57:641-648. [PMID: 34128157 DOI: 10.1007/s11626-021-00595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington's disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Bo Hee Won
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Institute of Women's Life Medical Science, Gangnam Severance Hospital, Seoul, South Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Neuroscience Research Institute, College of Medicine, Seoul National University , Seoul, South Korea. .,Protein Metabolism and Neuroscience Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
21
|
Jiang LS, Li W, Zhuang TX, Yu JJ, Sun S, Ju ZC, Wang ZT, Ding LL, Yang L. Ginsenoside Ro Ameliorates High-Fat Diet-Induced Obesity and Insulin Resistance in Mice via Activation of the G Protein-Coupled Bile Acid Receptor 5 Pathway. J Pharmacol Exp Ther 2021; 377:441-451. [PMID: 33820830 DOI: 10.1124/jpet.120.000435] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity, a well known risk factor in multiple metabolic diseases, is dramatically increasing worldwide. Ginsenosides extracted from ginseng have been reported against obesity and the associated metabolic disorders. As a subtype of ginsenoside, ginsenoside Ro is a critical constituent of ginseng. However, its specific effects on obesity remain unknown. G protein-coupled bile acid receptor 5 (TGR5) (also known as GPBAR1) is a bile acid membrane receptor, widely expressed in human tissues contributing to various metabolic processes to confer the regulations of glucose and lipid homeostasis. TGR5 has displayed potential as a therapeutic target for the treatment of metabolic disorders. Here, we explore the antiobesity effect of ginsenoside Ro with TGR5 activation screened by a library of natural products. Our results showed that the ginsenoside Ro (90mg/kg) treatment ameliorated body weight and lipid accumulation in multiple metabolic organs of high-fat diet-induced obese (DIO) mice without affecting food intake and improved oral glucose tolerance tests, intraperitoneal insulin tolerance tests, and fasting serum glucose. We also found that triglyceride and total cholesterol in serum and liver were significantly decreased after ginsenoside Ro treatment. Then we used Tgr5 knockout mice to explore the role of Tgr5 in the antiobesity effect of ginsenoside Ro. Our results further demonstrated that ginsenoside Ro promoted glucagon-like peptide 1 (GLP-1) secretion and energy expenditure in wild-type DIO mice. However, the stimulation of ginsenoside Ro on GLP-1 secretion and energy expenditure were restrained in the Tgr5 knockout mice. In conclusion, our findings demonstrated that ginsenoside Ro ameliorates obesity and insulin resistance in DIO mice via activating TGR5, indicating a potential therapeutic role of ginsenoside Ro to treat obesity and its associated metabolic diseases. SIGNIFICANCE STATEMENT: Obesity is dramatically increasing worldwide, and it contributes to multiple metabolic diseases. G protein-coupled bile acid receptor 5 (TGR5) is a potential therapeutic target for the treatment of metabolic disorders. Ginsenoside Ro, as an oleanane-type ginsenoside, ameliorates obesity and insulin resistance, promotes glucagon-like peptide 1 secretion, and increases energy expenditure via activating TGR5. Ginsenoside Ro could be a potential leading compound for treating obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Lin-Shan Jiang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Tong-Xi Zhuang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Jie-Jing Yu
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Shuai Sun
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Zheng-Cai Ju
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Zheng-Tao Wang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Li-Li Ding
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica (L.J., W.L., T..Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.), and Institute of Interdisciplinary Integrative Medicine Research (L.J., J.Y., L.Y.), Shanghai University of Traditional Chinese Medicine, Shanghai, China; and Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China (L.J., W.L., T.Z., J.Y., S.S., Z.J., Z.W., L.D., L.Y.)
| |
Collapse
|
22
|
Prashanth G, Vastrad B, Tengli A, Vastrad C, Kotturshetti I. Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules. BMC Endocr Disord 2021; 21:80. [PMID: 33902539 PMCID: PMC8074411 DOI: 10.1186/s12902-021-00718-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. METHODS To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. RESULTS A total of 820 DEGs were identified between healthy obese and metabolically unhealthy obese, among 409 up regulated and 411 down regulated genes. The GO enrichment analysis results showed that these DEGs were significantly enriched in ion transmembrane transport, intrinsic component of plasma membrane, transferase activity, transferring phosphorus-containing groups, cell adhesion, integral component of plasma membrane and signaling receptor binding, whereas, the REACTOME pathway enrichment analysis results showed that these DEGs were significantly enriched in integration of energy metabolism and extracellular matrix organization. The hub genes CEBPD, TP73, ESR2, TAB1, MAP 3K5, FN1, UBD, RUNX1, PIK3R2 and TNF, which might play an essential role in obesity associated type 2 diabetes mellitus was further screened. CONCLUSIONS The present study could deepen the understanding of the molecular mechanism of obesity associated type 2 diabetes mellitus, which could be useful in developing therapeutic targets for obesity associated type 2 diabetes mellitus.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, Karnataka, 577501, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka, 582103, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka, 582209, India
| |
Collapse
|
23
|
Boosting GLP-1 by Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:513-522. [DOI: 10.1007/978-3-030-73234-9_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Ginsenosides for the treatment of metabolic syndrome and cardiovascular diseases: Pharmacology and mechanisms. Biomed Pharmacother 2020; 132:110915. [DOI: 10.1016/j.biopha.2020.110915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
|
25
|
Changes of Ginsenoside Composition in the Creation of Black Ginseng Leaf. Molecules 2020; 25:molecules25122809. [PMID: 32570758 PMCID: PMC7355439 DOI: 10.3390/molecules25122809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022] Open
Abstract
Ginseng is an increasingly popular ingredient in supplements for healthcare products and traditional medicine. Heat-processed ginsengs, such as red ginseng or black ginseng, are regarded as more valuable for medicinal use when compared to white ginseng due to some unique less polar ginsenosides that are produced during heat-treatment. Although ginseng leaf contains abundant ginsenosides, attention has mostly focused on ginseng root; relatively few publications have focused on ginseng leaf. Raw ginseng leaf was steamed nine times to make black ginseng leaf using a process that is similar to that used to produce black ginseng root. Sixteen ginsenosides were analyzed during each steaming while using high-performance liquid chromatography (HPLC). The contents of ginsenosides Rd and Re decreased and the less polar ginsenosides (F2, Rg3, Rk2, Rk3, Rh3, Rh4, and protopanaxatriol) enriched during steam treatment. After nine cycles of steaming, the contents of the less polar ginsenosides F2, Rg3, and Rk2 increased by 12.9-fold, 8.6-fold, and 2.6-fold, respectively. Further, we found that the polar protopanaxadiol (PPD) -type ginsenosides are more likely to be converted from ginsenoside Rg3 to ginsenosides Rk1 and Rg5 via dehydration from Rg3, and from ginsenoside Rh2 to ginsenosides Rk2 and Rh3 through losing an H2O molecule than to be completely degraded to the aglycones PPD during the heat process. This study suggests that ginseng leaves can be used to produce less polar ginsenosides through heat processes, such as steaming.
Collapse
|
26
|
Sharma D, Kumar Tekade R, Kalia K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153235. [PMID: 32563017 DOI: 10.1016/j.phymed.2020.153235] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/03/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Kaempferol is a natural polyflavonol that has gained considerable attention as antidiabetic therapeutics. Recent reports emphasize the role of hyperglycemia and RhoA/Rho Kinase activity in the pathogenesis of diabetic nephropathy (DN). This study aims to evaluate the GLP-1 and insulin release along with RhoA/Rho Kinase inhibition pertaining to the anti-fibrotic and reno-protective effects of Kaempferol in DN. METHODS The effect of Kaempferol on GLP-1 and insulin release along with underlying mechanisms (Ca2+ and cAMP levels) in GLUTag and MIN6 cells as well as in their co-culture has been evaluated. Further, the effect of Kaempferol on GLP-1 and insulin release was evaluated under in-vivo circumstances in the DN C57BL/6 mouse model. Histology and fibrosis specific staining was performed to study the renal injuries and fibrosis, while the expression of mRNA and protein of interest was evaluated by RT-PCR and western blot analysis. RESULTS Kaempferol treatment promoted the GLP-1 and insulin release, which was accompanied by increased intracellular levels of cAMP and Ca2+ in GLUTag and MIN6 cells. In agreement with in vitro studies, Kaempferol also increased the release of GLP-1 and insulin in the DN mouse model. Notably, Kaempferol showed the potential to ameliorate the histological changes as well as renal fibrosis while decreasing the expression levels of DN markers including TGF-β1, CTGF, fibronectin, collagen IV, IL-1β, RhoA, ROCK2, and p-MYPT1 in DN kidney tissues. A rise in the expression of E-cadherin and nephrin was also noted in the same study. CONCLUSION This study establishes that Kaempferol ameliorates renal injury and fibrosis by enhancing the release of GLP-1, insulin, and inhibition of RhoA/Rho Kinase. This study recommends Kaempferol for further clinical trials to be developed as novel therapeutics for improving the renal function in DN patients.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
27
|
Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Review of Ginseng Anti-Diabetic Studies. Molecules 2019; 24:molecules24244501. [PMID: 31835292 PMCID: PMC6943541 DOI: 10.3390/molecules24244501] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is one of the most valuable and commonly used Chinese medicines not only in ancient China but also worldwide. Ginsenosides, also known as saponins or triterpenoids, are thought to be responsible for the beneficial effects of ginseng. In this review, we summarize recent publications on anti-diabetic studies of ginseng extracts and ginsenosides in cells, animals, and humans. It seems that the anti-diabetic effect of ginseng is positive for type 2 diabetic patients but has no significant impact on prediabetes or healthy adults. Regulation of insulin secretion, glucose uptake, anti-oxidative stress, and anti-inflammatory pathways may be the mechanisms involved with ginseng's anti-diabetic effects. Taken together, this summary provides evidence for the anti-diabetes effects of ginseng extracts and ginsenosides as well as the underlying mechanisms of their impact on diabetes.
Collapse
|
29
|
Ginsenoside Rg3 Prolongs Survival of the Orthotopic Hepatocellular Carcinoma Model by Inducing Apoptosis and Inhibiting Angiogenesis. Anal Cell Pathol (Amst) 2019; 2019:3815786. [PMID: 31534898 PMCID: PMC6732603 DOI: 10.1155/2019/3815786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Aim Microvessel density is a marker of tumor angiogenesis activity for development and metastasis. Our preliminary study showed that ginsenoside Rg3 (Rg3) induces apoptosis in hepatocellular carcinoma (HCC) in vitro. The aim of this study was to investigate the cross-link for apoptosis induction and antiangiogenesis effect of Rg3 on orthotopic HCC in vivo. Methods The murine HCC cells Hep1-6 were implanted in the liver of mouse. With oral feeding of Rg3 (10 mg/kg once a day for 30 days), the quantitative analysis of apoptosis was performed by using pathology and a transmission electron microscope and microvessel density was quantitatively measured by immunohistochemical staining of the CD105 antibody. The mice treated with Rg3 (n = 10) were compared with the control (n = 10) using Kaplan-Meier analysis. Animal weight and tumor weight were measured to determine the toxicity of Rg3 and antitumor effect on an orthotopic HCC tumor model. Results With oral feeding of Rg3 daily in the first 30 days on tumor implantation, Rg3 significantly decreased the orthotopic tumor growth and increased the survival of animals (P < 0.05). Rg3-treated mice showed a longer survival than the control (P < 0.05). Rg3 treatment induced apoptosis and inhibited angiogenesis. They contributed to the tumor shrinkage. Rg3 initialized the tumor apoptotic progress, which then weakened the tumor volume and its capability to produce the vascularized network for further growth of the tumor and remote metastasis. Conclusion Rg3 inhibited the activation of microtumor vessel formation in vivo besides its apoptosis induction. Rg3 may be used as an adjuvant agent in the clinical HCC treatment regimen.
Collapse
|
30
|
Sacco F, Seelig A, Humphrey SJ, Krahmer N, Volta F, Reggio A, Marchetti P, Gerdes J, Mann M. Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets. Cell Metab 2019; 29:1422-1432.e3. [PMID: 30879985 DOI: 10.1016/j.cmet.2019.02.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/03/2018] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Progressive decline of pancreatic beta cell function is central to the pathogenesis of type 2 diabetes. Protein phosphorylation regulates glucose-stimulated insulin secretion from beta cells, but how signaling networks are remodeled in diabetic islets in vivo remains unknown. Using high-sensitivity mass spectrometry-based proteomics, we quantified 6,500 proteins and 13,000 phosphopeptides in islets of obese diabetic mice and matched controls, revealing drastic remodeling of key kinase hubs and signaling pathways. Integration with a literature-derived signaling network implicated GSK3 kinase in the control of the beta cell-specific transcription factor PDX1. Deep phosphoproteomic analysis of human islets chronically treated with high glucose demonstrated a conserved glucotoxicity-dependent role of GSK3 kinase in regulating insulin secretion. Remarkably, the ability of beta cells to secrete insulin in response to glucose was rescued almost completely by pharmacological inhibition of GSK3. Thus, our resource enables investigation of mechanisms and drug targets in type 2 diabetes.
Collapse
Affiliation(s)
- Francesca Sacco
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Biology, University of Rome Tor Vergata, 00100 Rome, Italy.
| | - Anett Seelig
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), 85748 Garching, Munich, Germany
| | - Sean J Humphrey
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natalie Krahmer
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Francesco Volta
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), 85748 Garching, Munich, Germany
| | - Alessio Reggio
- Department of Biology, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Jantje Gerdes
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), 85748 Garching, Munich, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
31
|
Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:209-238. [PMID: 31351526 DOI: 10.1016/bs.afnr.2019.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease, characterized by elevated levels of blood glucose and insufficiency in production and action of insulin is the seventh leading cause of death worldwide. Numerous studies have shown that diabetes mellitus is associated with increased formation of free radicals and decrease in antioxidant potential. In the patients with diabetes mellitus, the levels of antioxidant parameters are found to decrease, hence in many studies phytochemicals which can exert antioxidant and free radical scavenging activities, are suggested to improve the insulin sensitivity. Several phytoactive compounds such as flavonoids, lignans, prophenylphenols, are also found to combat the complications of diabetes. This chapter mainly focuses on the relationship between diabetes mellitus and preventive roles of various phytochemicals on diabetes via their antioxidant properties.
Collapse
Affiliation(s)
- Merve Bacanli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey.
| | - Sevtap Aydin Dilsiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Nurşen Başaran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - A Ahmet Başaran
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Kim KH, Lee IS, Park JY, Kim Y, An EJ, Jang HJ. Cucurbitacin B Induces Hypoglycemic Effect in Diabetic Mice by Regulation of AMP-Activated Protein Kinase Alpha and Glucagon-Like Peptide-1 via Bitter Taste Receptor Signaling. Front Pharmacol 2018; 9:1071. [PMID: 30298009 PMCID: PMC6161541 DOI: 10.3389/fphar.2018.01071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Taste receptors exist in several organs from tongue to colon and have diverse functions dependent on specific cell type. In enteroendocrine L-cells, stimulation of taste receptor signaling induces incretin hormones. Among incretin hormones, glucagon-like peptide-1 (GLP-1) induces insulinotropic action by activating GLP-1 receptor of pancreatic β-cells. However, GLP-1 mimetic medicines have reported clinical side effects, such as autoimmune hepatitis, acute kidney injury, pancreatitis, and pancreatic cancer. Here, we hypothesized that if natural components in ethnomedicines can activate agonistic action of taste receptor; they may stimulate GLP-1 and therefore, could be developed as safe and applicable medicines to type 2 diabetes mellitus (T2DM) with minimal side effects. Cucurbitacin B (CuB) is composed of triterpenoid structure and its structural character, that represents bitterness, can stimulate AMP-activated protein kinase (AMPK) pathway. CuB ameliorated hyperglycemia by activating intestinal AMPK levels and by inducing plasma GLP-1 and insulin release in diabetic mice. This hypoglycemic action was decreased in dorsomorphin-injected mice and α-gustducin null mice. Moreover, systemic inhibition study in differentiated NCI-H716 cell line showed that CuB-mediated GLP-1 secretion was involved in activation of AMPK through α-gustducin and Gβγ-signaling of taste receptors. In summary, we conclude that, CuB represents novel hypoglycemic agents by activation of AMPK and stimulation of GLP-1 in differentiated enteroendocrine L-cells. These results suggest that taste receptor signaling-based therapeutic agents within tremendously diverse ethnomedicines, could be applied to developing therapeutics for T2DM patients.
Collapse
Affiliation(s)
- Kang-Hoon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - In-Seung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ji Young Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Yumi Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Eun-Jin An
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeung-Jin Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea.,Department of Biochemistry, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
33
|
Guo M, Xiao J, Sheng X, Zhang X, Tie Y, Wang L, Zhao L, Ji X. Ginsenoside Rg3 Mitigates Atherosclerosis Progression in Diabetic apoE-/- Mice by Skewing Macrophages to the M2 Phenotype. Front Pharmacol 2018; 9:464. [PMID: 29867472 PMCID: PMC5954105 DOI: 10.3389/fphar.2018.00464] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/20/2018] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis (AS) in diabetic patients is often associated with low stability, which might be largely attributed to unfavorable macrophage polarization and increased inflammatory response induced by hyperglycaemia. Ginsenoside Rg3 is one of the main active principles of Panax Ginseng, which has been reported to be a natural ligand of peroxisome proliferator-activated receptor-gamma (PPARγ), a key nuclear transcriptional factor involved in inflammation and macrophage differentiation. However, it remains unclear if Rg3 could exert protective effects on plaque stability in diabetes. In this study, we investigated the role of ginsenoside 20(S)-Rg3 in macrophage polarization and AS plaque stability using advanced glycation end products-treated macrophages and diabetic AS mice models. In vitro, advanced glycation end products (AGEs) treatment promoted the expression of proinflammatory molecules and M1 surface markers, whereas 20(S)-Rg3 could reverse the M1 polarization to the M2 phenotype. In vivo, the administration of 20(S)-Rg3 promoted AS lesion stability and reduced the plaque burden, accompanied by increased M2 macrophages and reduced M1 macrophages. In addition, PPARγ antagonist GW9662 co-administration mostly blocked these effects, suggesting the important role of PPARγ pathways in mediating 20(S)-Rg3 effects in macrophage polarization and atherosclerosis progression. Together, these results demonstrated an immunomodulatory role of ginsenoside 20(S)-Rg3 in promoting macrophages to a profile of the M2 type through PPARγ-dependent mechanisms, and indicated a potential role of 20(S)-Rg3 in the prevention and treatment of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Xiao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xi Sheng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuanyuan Tie
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lang Zhao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
34
|
Bai L, Gao J, Wei F, Zhao J, Wang D, Wei J. Therapeutic Potential of Ginsenosides as an Adjuvant Treatment for Diabetes. Front Pharmacol 2018; 9:423. [PMID: 29765322 PMCID: PMC5938666 DOI: 10.3389/fphar.2018.00423] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Ginseng, one of the oldest traditional Chinese medicinal herbs, has been used widely in China and Asia for thousands of years. Ginsenosides extracted from ginseng, which is derived from the roots and rhizomes of Panax ginseng C. A. Meyer, have been used in China as an adjuvant in the treatment of diabetes mellitus. Owing to the technical complexity of ginsenoside production, the total ginsenosides are generally extracted. Accumulating evidence has shown that ginsenosides exert antidiabetic effects. In vivo and in vitro tests revealed the potential of ginsenoside Rg1, Rg3, Rg5, Rb1, Rb2, Rb3, compound K, Rk1, Re, ginseng total saponins, malonyl ginsenosides, Rd, Rh2, F2, protopanaxadiol (PPD) and protopanaxatriol (PPT)-type saponins to treat diabetes and its complications, including type 1 diabetes mellitus, type 2 diabetes mellitus, diabetic nephropathy, diabetic cognitive dysfunction, type 2 diabetes mellitus with fatty liver disease, diabetic cerebral infarction, diabetic cardiomyopathy, and diabetic erectile dysfunction. Many effects are attributed to ginsenosides, including gluconeogenesis reduction, improvement of insulin resistance, glucose transport, insulinotropic action, islet cell protection, hepatoprotective activity, anti-inflammatory effect, myocardial protection, lipid regulation, improvement of glucose tolerance, antioxidation, improvement of erectile dysfunction, regulation of gut flora metabolism, neuroprotection, anti-angiopathy, anti-neurotoxic effects, immunosuppression, and renoprotection effect. The molecular targets of these effects mainly contains GLUTs, SGLT1, GLP-1, FoxO1, TNF-α, IL-6, caspase-3, bcl-2, MDA, SOD, STAT5-PPAR gamma pathway, PI3K/Akt pathway, AMPK-JNK pathway, NF-κB pathway, and endoplasmic reticulum stress. Rg1, Rg3, Rb1, and compound K demonstrated the most promising therapeutic prospects as potential adjuvant medicines for the treatment of diabetes. This paper highlights the underlying pharmacological mechanisms of the anti-diabetic effects of ginsenosides.
Collapse
Affiliation(s)
- Litao Bai
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Danwei Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9:22194-22219. [PMID: 29774132 PMCID: PMC5955138 DOI: 10.18632/oncotarget.25175] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nicole A. Shonka
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
36
|
Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 2018; 130:451-465. [PMID: 29395440 DOI: 10.1016/j.phrs.2018.01.015] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have implied that diabetes mellitus (DM) will become an epidemic accompany with metabolic and endocrine disorders worldwide. Most of DM patients are affected by type 2 diabetes mellitus (T2DM) with insulin resistance and insulin secretion defect. Generally, the strategies to treat T2DM are diet control, moderate exercise, hypoglycemic and lipid-lowing agents. Despite the therapeutic benefits for the treatment of T2DM, most of the drugs can produce some undesirable side effects. Considering the pathogenesis of T2DM, natural products (NPs) have become the important resources of bioactive agents for anti-T2DM drug discovery. Recently, more and more natural components have been elucidated to possess anti-T2DM properties, and many efforts have been carried out to elucidate the possible mechanisms. The aim of this paper was to overview the activities and underlying mechanisms of NPs against T2DM. Developments of anti-T2DM agents will be greatly promoted with the increasing comprehensions of NPs for their multiple regulating effects on various targets and signal pathways.
Collapse
Affiliation(s)
- Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yue Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yan Dai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
37
|
Kee JY, Hong SH. Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway. J Ginseng Res 2018; 43:282-290. [PMID: 30976166 PMCID: PMC6437450 DOI: 10.1016/j.jgr.2018.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background Ginsenoside Rg3 (G-Rg3) is the major bioactive ingredient of Panax ginseng and has many pharmacological effects, including antiadipogenic, antiviral, and anticancer effects. However, the effect of G-Rg3 on mast cell–mediated allergic inflammation has not been investigated. Method The antiallergic effects of G-Rg3 on allergic inflammation were evaluated using the human and rat mast cell lines HMC-1 and RBL-2H3. Antiallergic effects of G-Rg3 were detected by measuring cyclic adenosine monophosphate (cAMP), detecting calcium influx, and using real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and in vivo experiments. Results G-Rg3 decreased histamine release from activated mast cells by enhancing cAMP levels and calcium influx. Proinflammatory cytokine production was suppressed by G-Rg3 treatment via regulation of the mitogen-activated protein kinases/nuclear factor-kappa B and receptor-interacting protein kinase 2 (RIP2)/caspase-1 signaling pathway in mast cells. Moreover, G-Rg3 protected mice against the IgE-mediated passive cutaneous anaphylaxis reaction and compound 48/80-induced anaphylactic shock. Conclusion G-Rg3 may serve as an alternative therapeutic agent for improving allergic inflammatory disorders.
Collapse
Affiliation(s)
- Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| |
Collapse
|
38
|
Jang SH, Park J, Kim SH, Choi KM, Ko ES, Cha JD, Lee YR, Jang H, Jang YS. Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model. PHARMACEUTICAL BIOLOGY 2017; 55:317-323. [PMID: 27927080 PMCID: PMC6130625 DOI: 10.1080/13880209.2016.1237978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/13/2016] [Indexed: 05/28/2023]
Abstract
CONTEXT Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. OBJECTIVE To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. MATERIALS AND METHODS The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. RESULTS Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. DISCUSSION AND CONCLUSION Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.
Collapse
Affiliation(s)
- Sun-Hee Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Jisang Park
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| | - Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| | - Kyung-Min Choi
- Department of Efficacy Research, Institute of Jinan Red Ginseng, Jinan, Korea
| | - Eun-Sil Ko
- Department of Efficacy Research, Institute of Jinan Red Ginseng, Jinan, Korea
| | - Jeong-Dan Cha
- Department of Efficacy Research, Institute of Jinan Red Ginseng, Jinan, Korea
| | - Young-Ran Lee
- Department of Mathematics, Sogang University, Seoul, Korea
| | - Hyonseok Jang
- Department of Oral Maxillofacial Surgery, Korea University Ansan Hospital, Ansan, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
- Department of Efficacy Research, Institute of Jinan Red Ginseng, Jinan, Korea
| |
Collapse
|
39
|
Activation of intestinal olfactory receptor stimulates glucagon-like peptide-1 secretion in enteroendocrine cells and attenuates hyperglycemia in type 2 diabetic mice. Sci Rep 2017; 7:13978. [PMID: 29070885 PMCID: PMC5656655 DOI: 10.1038/s41598-017-14086-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/27/2017] [Indexed: 12/01/2022] Open
Abstract
Odorants are non-nutrients. However, they exist abundantly in foods, wines, and teas, and thus can be ingested along with the other nutrients during a meal. Here, we have focused on the chemical-recognition ability of these ORs and hypothesized that the odorants ingested during a meal may play a physiological role by activating the gut-expressed ORs. Using a human-derived enteroendocrine L cell line, we discovered the geraniol- and citronellal-mediated stimulation of glucagon-like peptide-1 (GLP-1) secretion and elucidated the corresponding cellular downstream signaling pathways. The geraniol-stimulated GLP-1 secretion event in the enteroendocrine cell line was mediated by the olfactory-type G protein, the activation of adenylyl cyclase, increased intracellular cAMP levels, and extracellular calcium influx. TaqMan qPCR demonstrated that two ORs corresponding to geraniol and citronellal were expressed in the human enteroendocrine cell line and in mouse intestinal specimen. In a type 2 diabetes mellitus mouse model (db/db), oral administration of geraniol improved glucose homeostasis by increasing plasma GLP-1 and insulin levels. This insulinotropic action of geraniol was GLP-1 receptor-mediated, and also was glucose-dependent. This study demonstrates that odor compounds can be recognized by gut-expressed ORs during meal ingestion and therefore, participate in the glucose homeostasis by inducing the secretion of gut-peptides.
Collapse
|
40
|
Zhang H, Zhou Z, Chen Z, Zhong Z, Li Z. Ginsenoside Rg3 exerts anti-depressive effect on an NMDA-treated cell model and a chronic mild stress animal model. J Pharmacol Sci 2017; 134:45-54. [PMID: 28461003 DOI: 10.1016/j.jphs.2017.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
Depression is a common mental disorder and a leading cause of disability. At its most severe, it can lead to suicide. Recently, there has been growing interest in the application of natural herbs for the prevention and treatment of depression. In this report, we found that the ginsenoside active component Rg3 has an apparent antidepressant effect. In N-methyl-d-aspartic acid (NMDA)-treated HT22 murine hippocampal neuronal cells, Rg3 recovered proliferation and inhibited apoptosis by altering the cell cycle. More interestingly, Rg3 led to apparent physiological behavior change in a chronic mild stress model as seen in forced swim, tail suspension, and sucrose preference tests. This effect was mediated by the phosphorylation of cAMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) signaling. This study provides direct evidence to support the antidepressant effects of ginsenoside Rg3, potentially indicating its application in the treatment of clinical depression.
Collapse
Affiliation(s)
- Hualin Zhang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Zhongliu Zhou
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Ziming Chen
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Zhiyong Zhong
- Guangdong Medical Laboratory Animal Center, Guangzhou 528248, China
| | - Zhong Li
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, China; Shenzhen Research Institute of Sun Yat-Sen University, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, China.
| |
Collapse
|
41
|
|
42
|
Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2017; 42:123-132. [PMID: 29719458 PMCID: PMC5926405 DOI: 10.1016/j.jgr.2017.01.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/02/2022] Open
Abstract
Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-d-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| |
Collapse
|
43
|
Jeong D, Irfan M, Kim SD, Kim S, Oh JH, Park CK, Kim HK, Rhee MH. Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 2017; 41:548-555. [PMID: 29021703 PMCID: PMC5628340 DOI: 10.1016/j.jgr.2016.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 11/27/2022] Open
Abstract
Background Korean Red Ginseng has been used for several decades to treat many diseases, enhancing both immunity and physical strength. Previous studies have documented the therapeutic effects of ginseng, including its anticancer, antiaging, and anti-inflammatory activities. These activities are mediated by ginsenosides present in the ginseng plant. Ginsenoside Rg3, an effective compound from red ginseng, has been shown to have antiplatelet activity in addition to its anticancer and anti-inflammatory activities. Platelets are important for both primary hemostasis and the repair of the vessels after injury; however, they also play a crucial role in the development of acute coronary diseases. We prepared ginsenoside Rg3-enriched red ginseng extract (Rg3-RGE) to examine its role in platelet physiology. Methods To examine the effect of Rg3-RGE on platelet activation in vitro, platelet aggregation, granule secretion, intracellular calcium ([Ca2+]i) mobilization, flow cytometry, and immunoblot analysis were carried out using rat platelets. To examine the effect of Rg3-RGE on platelet activation in vivo, a collagen plus epinephrine-induced acute pulmonary thromboembolism mouse model was used. Results We found that Rg3-RGE significantly inhibited collagen-induced platelet aggregation and [Ca2+]i mobilization in a dose-dependent manner in addition to reducing ATP release from collagen-stimulated platelets. Furthermore, using immunoblot analysis, we found that Rg3-RGE markedly suppressed mitogen-activated protein kinase phosphorylation (i.e., extracellular stimuli-responsive kinase, Jun N-terminal kinase, p38) as well as the PI3K (phosphatidylinositol 3 kinase)/Akt pathway. Moreover, Rg3-RGE effectively reduced collagen plus epinephrine-induced mortality in mice. Conclusion These data suggest that ginsenoside Rg3-RGE could be potentially be used as an antiplatelet therapeutic agent against platelet-mediated cardiovascular disorders.
Collapse
Affiliation(s)
- Dahye Jeong
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Irfan
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jun-Hwan Oh
- Research and Development Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Research and Development Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Hyun-Kyoung Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
44
|
The anti-hyperglycemic efficacy of a lipid-lowering drug Daming capsule and the underlying signaling mechanisms in a rat model of diabetes mellitus. Sci Rep 2016; 6:34284. [PMID: 27721485 PMCID: PMC5056381 DOI: 10.1038/srep34284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder manifested by hyperglycemia. Daming Capsule (DMC), a combination of traditional Chinese herbs, is used clinically as a lipid-lowering drug. This study was designed to evaluate if DMC possesses an anti-hyperglycemic effect and to elucidate the underlying mechanisms. Compared to diabetic rats, the rats received DMC (200 mg/kg/d) had significantly lower blood lipid and glucose levels. DMC markedly restored the decreased secretion of GLP-1 and GIP as well as the coding gene GCG and GIP in ileum. Moreover, DMC normalized depressed GCG and GIP transcription by significantly enhancing the GSK-3β/β-catenin signaling pathway and expression of TCF7L2, a transactivator of GCG and GIP in diabetic rats. DMC possesses an anti-hyperglycemic property characterized by preservation/stimulation of GLP-1 and GIP secretion in DM rats. Here, we proposed DMC → GSK-3β/β-catenin↑ → TCF7L2↑ → GLP-1, GIP secretion↑ → blood glucose↓ as a regulatory pathway of blood glucose homeostasis. Our findings suggest DMC as a promising therapeutic drug in the clinical treatment of diabetes.
Collapse
|
45
|
Hsiao YH, Hsu CH, Chen C. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing. Molecules 2016; 21:E896. [PMID: 27399663 PMCID: PMC6273845 DOI: 10.3390/molecules21070896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022] Open
Abstract
The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca(2+) concentration. However, glucose evoked a rapid elevation of intracellular Ca(2+) followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.
Collapse
Affiliation(s)
- Yi-Hsing Hsiao
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Chia-Hsien Hsu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|