1
|
Xin J, Zhang H, Li Y, Dai Y, Chen X, Zou J, Wang R, Liu Z, Wang B. Effect of cold atmospheric plasma on common oral pathogenic microorganisms: a narrative review. Ann Med 2025; 57:2457518. [PMID: 39865862 PMCID: PMC11774187 DOI: 10.1080/07853890.2025.2457518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND The oral microbiota is a diverse and complex community that maintains a delicate balance. When this balance is disturbed, it can lead to acute and chronic infectious diseases such as dental caries and periodontitis, significantly affecting people's quality of life. Developing a new antimicrobial strategy to deal with the increasing microbial variability and resistance is important. Cold atmospheric plasma (CAP), as the fourth state of matter, has gradually become a hot topic in the field of biomedicine due to its good antibacterial, anti-inflammatory, and anti-tumor capabilities. It is expected to become a major asset in the regulation of oral microbiota. METHODS We conducted a search in PubMed, Medline, and Wiley databases, focusing on studies related to CAP and oral pathogenic microorganisms. We explored the biological effects of CAP and summarized the antimicrobial mechanisms behind it. RESULTS Numerous articles have shown that CAP has a potent antimicrobial effect against common oral pathogens, including bacteria, fungi, and viruses, primarily due to the synergy of various factors, especially reactive oxygen and nitrogen species. CONCLUSIONS CAP is effective against various oral pathogenic microorganisms, and it is anticipated to offer a new approach to treating oral infectious diseases. The future objective is to precisely adjust the parameters of CAP to ensure safety and efficacy, and subsequently develop a comprehensive CAP treatment protocol. Achieving this objective is crucial for the clinical application of CAP, and further research is necessary.
Collapse
Affiliation(s)
- Jiajun Xin
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Hao Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yushen Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Yifei Dai
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Xiantao Chen
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Jiatong Zou
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Rui Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, People’s Republic of China
| | - Bowei Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Harimawan A, Devianto H, Baihaqi B, Nisa NK, Aslan C. Influence of consortium culture and mixed culture on carbon steel corrosion in B30 storage system. Colloids Surf B Biointerfaces 2025; 251:114587. [PMID: 40023119 DOI: 10.1016/j.colsurfb.2025.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
B30, which consisted of 30 %-v biodiesel and 70 %-v petrodiesel, is a renewable fuel that is being developed in Indonesia. In the B30 storage system, microbes utilize B30 and cause corrosion of carbon steel. This research aims to compare the interaction effect of consortium culture (S. marcescens - B. megaterium and S. marcescens - B. licheniformis) and mixed culture on the corrosion of carbon steel in the B30 storage system. The experiment was carried out by immersing carbon steel ST-37 specimens in B30 test medium for 21 days. Sample testing and analysis includes the number of microbial colonies, chemical bonds of biofilm composition, morphology of biofilms and metal surfaces, corrosion rate and corrosion products. The results shows that antagonistic interactions occurred in the consortium culture, resulting in the decrease of corrosion rate. Meanwhile, synergistic interaction occurred between the microbes in the mixed culture, resulting in higher corrosion rate. The corrosion mechanism that occurs in consortium culture and mixed culture involves the same electrochemical reactions.
Collapse
Affiliation(s)
- Ardiyan Harimawan
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Hary Devianto
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Byan Baihaqi
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Nilam Khairon Nisa
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Christian Aslan
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
3
|
Tóth ZR, Feraru A, Saszet K, Veréb G, Vodnar DC, Todea M, Timar-Gabor A, Dave AK, Sand D, Dreanca A, Magyari K, Baia L. Relation between shape-tailored CeO 2 nanoparticles morphology and hemocompatibility and antimicrobial effect. BIOMATERIALS ADVANCES 2025; 171:214229. [PMID: 39983502 DOI: 10.1016/j.bioadv.2025.214229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Cerium is one of the most studied rare elements whose oxidative state (Ce3+ and Ce4+) can be changed in different environments. Cerium oxide nanoparticles (CeO2 NPs), which are nevertheless more complex chemical structures, are nowadays very exciting entities involved in the biomedical field, particularly in the four stages of wound healing. In the first stage, called hemostasis, several issues such as the required morphology to be biologically efficient, and the effect of Ce3+ and Ce4+ on the applicability potential of CeO2 NPs remain unclear. Our interest is focused in this study on the detailed understanding of the cations' location, when differently shaped CeO2 NPs (i.e., nanocube, nanosphere, nanorod, and polyhedral particles) were used. Additionally, the present research highlights the applicability of nanoparticles in direct contact with blood and the antibacterial and antifungal properties of the samples. A correlation between the fungicidal properties of the samples and the Ce3+ cations formed on the surface was performed. The nanosphere/nanorod particles show the highest interaction with the hemoglobin (Hb). In addition, it was concluded that negatively charged surfaces favor the antibacterial properties using gram-negative bacteria. The morphologies' applicability will depend on the following parameters: surface area/volume ratio, crystallinity, hydrophilicity, Ce3+/Ce4+ ion distribution, and surface charge. Considering all these parameters and the nanoparticle applications, the nanorod will be the most suitable for antimicrobiological applications (antibacterial and antifungal), and showing the highest hemocompatibility.
Collapse
Affiliation(s)
- Zsejke-Réka Tóth
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; Doctoral School in Physics, Faculty of Physics, Babeș-Bolyai University, M. Kogălniceanu str. 1, RO-400084, Cluj-Napoca, Romania
| | - Alexandra Feraru
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; Doctoral School in Physics, Faculty of Physics, Babeș-Bolyai University, M. Kogălniceanu str. 1, RO-400084, Cluj-Napoca, Romania
| | - Kata Saszet
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; Doctoral School in Physics, Faculty of Physics, Babeș-Bolyai University, M. Kogălniceanu str. 1, RO-400084, Cluj-Napoca, Romania
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Dan C Vodnar
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, RO-400372 Cluj-Napoca, Romania
| | - Milica Todea
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babeş 8, RO-400012 Cluj-Napoca, Romania
| | - Alida Timar-Gabor
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; Faculty of Environmental Sciences and Engineering, Babeș Bolyai University, Fântânele 30, RO-400535 Cluj-Napoca, Romania
| | - Aditi K Dave
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; Faculty of Environmental Sciences and Engineering, Babeș Bolyai University, Fântânele 30, RO-400535 Cluj-Napoca, Romania
| | - Denisa Sand
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, RO-400372 Cluj-Napoca, Romania
| | - Alexandra Dreanca
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, RO-400372 Cluj-Napoca, Romania
| | - Klara Magyari
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; INSPIRE Research Platform InfoBioNano4Health & Biomedical Imaging, Babeș Bolyai University, Arany Janos 11, 400084 Cluj-Napoca, Romania.
| | - Lucian Baia
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian str. 42, RO-400271, Cluj-Napoca, Romania; Faculty of Physics, Babeș-Bolyai University, M. Kogălniceanu str. 1, RO-400084 Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Li J, Xiong W, Yang J, Liao W, Gao Y, Chai J, Wu J, Liu S, Xu X. Characterization of the first antimicrobial peptide from Sea Seal with potent therapeutic effect in septic mice. Biochem Pharmacol 2025; 236:116891. [PMID: 40147802 DOI: 10.1016/j.bcp.2025.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Marine organisms are a valuable source of natural bioactive substances, and an increasing number of marine antimicrobial peptides as the potential alternative to antibiotics are being developed. Nonetheless, antimicrobial peptides from Antarctic mammals have not been reported heretofore. In this context, we identified a Cathelicidin antimicrobial peptide, Cath-LW (RLRDLIRRGRQKIGRRINRLGRRIQDILKNLQPGKVS), from the whole-genome database of Leptonychotes weddellii, an Antarctic mammal. Cath-LW was characterized to exhibit a typical α-helix structure and broad-spectrum antimicrobial activity. Furthermore, Cath-LW was found to exert its antibacterial effect by destroying cytomembrane, binding to bacterial genome, and inhibiting DNA function. Additionally, Cath-LW could neutralize lipopolysaccharide (LPS) and inhibit LPS-induced inflammatory responses. Interestingly, Cath-LW also showed anticoagulant activity and suppressed FeCl3-induced carotid thrombosis in mice. Finally, in septic mice, Cath-LW was demonstrated to improve the survival rate by effectively alleviating organ inflammation and damage, as well as thrombus formation. These findings not only deepen our understanding of the survival strategies of L. weddellii against microbial infections but also provide a crucial template for developing a novel multifunctional anti-sepsis drug.
Collapse
Affiliation(s)
- Jiali Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianxi Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weifei Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihan Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Tadimarri VS, Tyagi TA, Duong CN, Rasheed S, Müller R, Sankaran S. Adaptations of Gram-Negative and Gram-Positive Probiotic Bacteria in Engineered Living Materials. ACS Biomater Sci Eng 2025. [PMID: 40360387 DOI: 10.1021/acsbiomaterials.5c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Encapsulation of microbes in natural or synthetic matrices is a key aspect of engineered living materials, although the influence of such confinement on microbial behavior is poorly understood. A few recent studies have shown that the spatial confinement and mechanical properties of the encapsulating material significantly influence microbial behavior, including growth, metabolism, and gene expression. However, comparative studies within different bacterial species under identical confinement conditions are limited. In this study, Gram-negative Escherichia coli Nissle 1917 and Gram-positive Lactiplantibacillus plantarum WCFS1 were encapsulated in hydrogel matrices, and their growth, metabolic activity, and recombinant gene expression were examined under varying degrees of hydrogel stiffness, achieved by adjusting the polymer concentration and chemical cross-linking. Both bacteria grow from single cells into confined colonies, but more interestingly, in E. coli gels, mechanical properties influenced colony growth, size, and morphology, whereas this did not occur in L. plantarum gels. However, with both bacteria, increased matrix stiffness led to higher levels of recombinant protein production within the colonies. By measuring metabolic heat from the bacterial gels using the isothermal microcalorimetry technique, it was inferred that E. coli adapts to the mechanical restrictions through multiple metabolic transitions and is significantly affected by the different hydrogel properties. Contrastingly, both of these aspects were not observed with L. plantarum. These results revealed that despite both bacteria being gut-adapted probiotics with similar geometries, mechanical confinement affects them considerably differently. The weaker influence of matrix stiffness on L. plantarum is attributed to its slower growth and thicker cell wall, possibly enabling the generation of higher turgor pressures to overcome restrictive forces under confinement. By providing fundamental insights into the interplay between mechanical forces and bacterial physiology, this work advances our understanding of how matrix properties shape bacterial behavior. The implications of these findings will aid the design of engineered living materials for therapeutic applications.
Collapse
Affiliation(s)
- Varun Sai Tadimarri
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, Saarbrücken 66123, Germany
- Saarland University, Saarbrücken 66123, Germany
| | - Tanya Amit Tyagi
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, Saarbrücken 66123, Germany
- Saarland University, Saarbrücken 66123, Germany
| | - Cao Nguyen Duong
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, Saarbrücken 66123, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus E8 1, Saarbrücken 66123, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Braunschweig 38124, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus E8 1, Saarbrücken 66123, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Braunschweig 38124, Germany
- Saarland University, Saarbrücken 66123, Germany
| | - Shrikrishnan Sankaran
- INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, Saarbrücken 66123, Germany
| |
Collapse
|
6
|
Barner N, Nelles M, Garbe LA. The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative. Foods 2025; 14:1635. [PMID: 40361717 PMCID: PMC12071361 DOI: 10.3390/foods14091635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Cold atmospheric plasma (CAP) is a novel and versatile technology, which is not yet used in the food and agricultural sector for barley processing. In lab-scale applications, the technology shows potential in extending shelf life and ensuring food safety and quality, e.g., during storage. CAP reactive nature counteracts insect pests, fungi, and bacteria, but also improves seed germination and facilitates plant growth not only under stress conditions. Its generation does not require water, chemicals, or solvents and consumes little energy due to low operating temperatures (<60 °C) with a short time span that makes additional production steps (e.g., cooling) obsolete. Therefore, CAP is a sustainable technology capable of further optimising the use of limited resources with the potential of offering solutions for upcoming environmental challenges and political requirements for replacing existing practices and technologies due to the growing impact of climate change. This review summarises recent developments and findings concerning CAP application in barley production and processing with air as the process gas. Furthermore, this comprehensive overview could help identify further research needs to overcome its current technical limitations, e.g., efficiency, capacity, etc., that hamper the upscale and market introduction of this environmentally friendly technology.
Collapse
Affiliation(s)
- Norman Barner
- Department of Agriculture and Food Sciences, University of Applied Sciences Neubrandenburg, Brodaer Straße 2, 17033 Neubrandenburg, Germany;
| | - Michael Nelles
- Department of Waste and Resource Management, Faculty of Agriculture and Environmental Sciences, University of Rostock, Justus von Liebig Weg 6, 18059 Rostock, Germany;
| | - Leif-Alexander Garbe
- Department of Agriculture and Food Sciences, University of Applied Sciences Neubrandenburg, Brodaer Straße 2, 17033 Neubrandenburg, Germany;
| |
Collapse
|
7
|
Seol Y, Ganguly K, Patil TV, Dutta SD, Park H, Lee J, Randhawa A, Kim H, Lim KT. Zinc Oxide@Tetracycline Spiky Microparticles Design for Persistent Antibacterial Therapy. J Biomed Mater Res A 2025; 113:e37915. [PMID: 40269589 DOI: 10.1002/jbm.a.37915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Antibiotics have revolutionized medical treatment by effectively combating bacterial infections, particularly those associated with chronic wounds and implant complications. Nevertheless, the persistent use of these drugs has resulted in an increase in antibiotic-resistant bacteria and biofilm infections, highlighting the urgent need for alternative therapies. This study presents an approach for combating persistent bacterial and biofilm infections through the integration of biomimetic design and advanced nanotechnology. Inspired by the natural defense mechanisms of pollen grains and lotus leaves, we engineered zinc oxide spiky microparticles combined with tetracycline-loaded beads mimicking the structure of lotus leaf papillae. This biomimetic design exhibits a multifaceted antimicrobial strategy, leveraging hierarchical micro/nanostructures and the inherent antibacterial properties of their natural counterparts. ZnO microparticles, which mimic the morphology of pollen grains, provide topological cues to rupture adhered bacteria, whereas tetracycline beads, inspired by lotus leaf papillae, deliver a controlled release of antibiotics to target persistent bacteria. Using a synergistic multimodal approach, our biomimetic materials demonstrated exceptional efficacy in eradicating persistent methicillin-resistant Staphylococcus aureus and Escherichia coli infections, offering promising prospects for the development of advanced antibacterial therapies. This study not only underscores the importance of biomimicry in material design but also highlights the potential of integrating nature-inspired strategies with nanotechnology for biomedical applications.
Collapse
Affiliation(s)
- Youjin Seol
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon, Gangwon-do, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
8
|
Malik H, Amir F, Jahan Z, Liaqat U, Andleeb S, Bandyopadhyay S, Khan Niazi MB. Study of shape of zinc oxide nanoparticles on the in-vitro and in-vivo performance of polymeric hydrogels for wound dressing. Int J Pharm 2025; 674:125482. [PMID: 40097054 DOI: 10.1016/j.ijpharm.2025.125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Extensive fluid loss, tissue damage, and bacterial infection are some important aspects that need to be addressed for designing ideal burn wound dressings. Hydrogel-based dressings cater to most of these functions; additionally, the incorporation of metal oxide nanoparticles (NPs) provides antibacterial properties that enhance the performance of wound dressings. We report here for the first time, how by employing different shapes of ZnO NPs, viz quasi-spherical, floral, and rods; in hydrogels made of PVA - P(AMPS) (Poly (vinyl alcohol) (PVA) - Poly (2-Acrylamido-2-Methyl Propane Sulfonic Acid)) along with g-C3N4, one could correlate structure-property relationships to wound healing efficiency. The incorporation of g-C3N4 was to enhance the thermo-mechanical stability of hydrogel, Maximum tensile strength of the hydrogel was obtained for 150 mg of g-C3N4 incorporated hydrogels, same amount being used for other systems studied. The impact of the incorporation of different shapes and amounts of ZnO NPs on the hydrogels has been studied and our results show maximum swelling ability (∼110 %), high moisture retention capacity (>90 %), and moderate water vapor transmission rate (82 g/m2h) for selected systems. Among these different shapes incorporated hydrogels, remarkable enhancement in tensile strength (76 %) was observed for quasi-spherical ZnO NPs incorporated hydrogels compared to bare. These hydrogels showed high cell viability (>70 %), high antibacterial activities against E. coli and S. aureus, and high wound healing efficiency (>80 %) in an in-vivo rat model, proving their potential to be used in wound dressing applications.
Collapse
Affiliation(s)
- Hizbullah Malik
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; Particle Engineering Centre, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Fatima Amir
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Saadia Andleeb
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sulalit Bandyopadhyay
- Particle Engineering Centre, Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals (KFUPM), 31261 Dhahran, Saudi Arabia.
| |
Collapse
|
9
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Euteneuer CF, Davis BN, Lui LM, Neville AJ, Davis PH. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens 2025; 14:290. [PMID: 40137776 PMCID: PMC11946689 DOI: 10.3390/pathogens14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The rise of bacterial infections is a global health issue that calls for the development and availability of additional antimicrobial agents. Known for its in vitro effects on Gram-positive organisms, the drug-like small molecule marinopyrrole A was re-examined for the potential of broader efficacy against a wider array of microbes. We uncovered selective efficacy against an important subset of Gram-negative bacteria from three genera: Neisseria, Moraxella, and Campylobacter. This susceptibility is correlated with the absence of canonical LPS in these specific Gram-negative species, a phenomenon observed with other hydrophobic anti-microbial compounds. Further, when exposed to molecules which inhibit the LpxC enzyme of the LPS synthesis pathway, previously resistant LPS-producing Gram-negative bacteria showed increased susceptibility to marinopyrrole A. These results demonstrate marinopyrrole A's efficacy against a broader range of Gram-negative bacteria than previously known, including N. gonorrhea, a species identified as a priority pathogen by the WHO.
Collapse
Affiliation(s)
| | | | | | | | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (C.F.E.); (B.N.D.); (L.M.L.); (A.J.N.)
| |
Collapse
|
11
|
Zou F, Yang M, Wu J, Wang L, Wang H. The potential of plasma-activated water in safe and sustainable food production: a comprehensive review of recent advances and future trends. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 40089909 DOI: 10.1080/10408398.2025.2477799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Climate change and food security issues have increased the demand for effective and sustainable technologies in the food and agriculture sectors. Plasma-activated water (PAW), a novel cleaning and disinfecting agent enriched with reactive oxygen species and reactive nitrogen species, has attracted widespread attention due to its potential application in maintaining microbiological safety and other quality parameters of food products. Compared to traditional disinfection methods, PAW is rapid and effective for various products, unrestricted by the volume or shape of the treated sample, and is green and sustainable. This article reviews research progress on latest preparation methods, physicochemical properties, antimicrobial activities, potential antimicrobial mechanisms of PAW, and their applications in the food industry. In addition, current methods for preparing PAW suffer from low efficiency, poor antimicrobial stability, and a lack of technology validation and safety evaluation. To solve these challenges, the synergies between PAW and other technologies, the impact on food quality, and current methods for assessing the safety of PAW are highlighted. Technology readiness, energy consumption, international regulations, toxic intermediate products during PAW production, scalability, and important directions for future research on the commercialization of PAW are also presented. It provides the necessary theoretical basis for regulating the generation of high-throughput PAW and demonstrates the feasibility of PAW as a novel food cleaning and sanitizing agent. In summary, this review provides essential insights into PAW's safety, application potential, and sustainability for the food industry.
Collapse
Affiliation(s)
- Fanglei Zou
- College of Engineering, China Agricultural University, Beijing, China
| | - Miao Yang
- College of Engineering, China Agricultural University, Beijing, China
| | - Junhua Wu
- College of Engineering, China Agricultural University, Beijing, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing, China
| | - Hongying Wang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Eltarahony MM, Elblbesy MA, Hanafy TA, Kandil BA. Synthesis, characterizations and disinfection potency of gelatin based Gum Arabic antagonistic films. Sci Rep 2025; 15:8279. [PMID: 40064949 PMCID: PMC11894130 DOI: 10.1038/s41598-025-90431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Water-borne infections are considered as one of the major risky concerns regarding the sanitary state of water bodies dedicated to drinking water supply. Therefore, the employment of environmentally benign materials in water/wastewater treatment is an indispensable aspect to solve the water crisis problem in an eco-friendly and economic manner. This study describes the synthesis, characterization, and disinfection potency of different formulas of gelatin-based Gum Arabic composites, for the first time. SEM, XRD, FTIR, ζ-potential, and swelling tests were used to assess their physicochemical properties, which revealed the enhanced compatibility and miscibility with increasing Gum Arabic concentration. The formula of GEL/50%GA showed more homogenously distributed pores as visualized by SEM with noticeable shifts in the characteristic FTIR-band and more negatively charged surface, reflecting the considerable stability as indicated by ζ-potential. Besides, it also had superior hydrophilic and swellability levels. Interestingly, the results of antimicrobial activity showed the susceptibility of broad-spectrum microbes against examined composites, especially with elevating the concentration of Gum Arabic incorporated in the composite. As a natural alternative disinfectant, the as-prepared composites (3 and 10% W/V) were evaluated in the disinfection of real wastewater samples. The results revealed that GEL/50%GA (10% W/V) exhibited a noticeable reduction in total plate count by 45.62 ± 1.48% and 37.48 ± 1.63% and in coliforms by 58.43 ± 2.07% and 40.88 ± 2.24% for municipal and industrial effluents, respectively. However, the microbial metabolic activity via MTT assay was diminished by more than 50% in both effluents; denoting the efficient inhibiting capability of GEL supplemented with GA films in restricting microbial viability even in unculturable microbes. Overall, the antagonistic activity of examined composites offers promising insights for recruitment in different disciplines such as anti-biofouling membranes, food coating, dietary supplements, wound healing, and drug delivery.
Collapse
Affiliation(s)
- Marwa M Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Mohamed A Elblbesy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Taha A Hanafy
- Nanotechnology Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Physics Department, Faculty of Science, El Fayoum University, Fayoum, Egypt
| | - Bothaina A Kandil
- Department of Radiological Science and Medical Imaging, Faculty of Allied Medical Science, Pharos University, Alexandria, Egypt
| |
Collapse
|
13
|
Tumuluri T, Inanoglu S, Schaffner DW, Karwe MV. Effect of surface roughness on the efficacy of Plasma Activated Mist (PAM) for inactivation of Listeria innocua and Klebsiella michiganensis. Int J Food Microbiol 2025; 431:111070. [PMID: 39862742 DOI: 10.1016/j.ijfoodmicro.2025.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Cold plasma generated by dielectric barrier discharge (DBD) and DBD combined with nebulized liquid microdroplets to generate plasma-activated mist (PAM) have shown the potential as a surface decontamination method for the food industry. The objective of this research was to measure the microbial inactivation caused by DBD and by PAM on tryptic soy agar (TSA) and on glass slides and to determine the efficacy of PAM on selected surfaces having different surface topographies. Tryptic soy agar in Petri dishes and on glass slides (surface roughness Pq = 0.28 ± 0.02 μm) was inoculated with either 0.1 mL of inoculum containing Listeria innocua (8.4 ± 0.1 log CFU/mL) or Klebsiella michiganensis (8.8 ± 0.2 log CFU/mL) and exposed to either DBD or PAM for 5 to 20 min. Glass slides, grape tomatoes (Pq = 5.17 μm ± 0.53 μm), limes (Pq = 18.76 μm ± 3.00 μm), and spiny gourds (Pq = 101.50 μm ± 10.95 μm) were also surface-inoculated with L. innocua or K. michiganensis and exposed to PAM for 5 to 20 min. No significant difference in microbial inactivation was observed between DBD plasma and PAM for all treatment times. The smoothest surface (glass) showed the highest reduction in L. innocua (3.4 ± 0.2 log CFU/item) and K. michiganensis (5.7 ± 0.0 log CFU/item) after PAM treatment. The roughest surface (spiny gourd) yielded a significantly lower reduction for L. innocua (1.0 ± 0.2 log CFU/item) and K. michiganensis (1.8 ± 0.1 log CFU/item). L. innocua was less susceptible to inactivation by PAM compared K. michiganensis. This study highlighted the importance of surface roughness on microbial inactivation of L. innocua and K. michiganensis by DBD and PAM on produce surfaces.
Collapse
Affiliation(s)
- Tejaswini Tumuluri
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sumeyye Inanoglu
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Mukund V Karwe
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
Li R, Wang S, Lan P, Luo X, Zhuang D, Zhu J. Novel Co-MOF-doped gelatin/agar intelligent film for beef freshness visual tracking based on the structural change of ZIF-67 under ammonia etching effect. Int J Biol Macromol 2025; 296:139699. [PMID: 39793822 DOI: 10.1016/j.ijbiomac.2025.139699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
It is an important task to construct intelligent packaging for meat freshness monitoring with good color stability and indication function. Herein, cobalt-based metal-organic framework nanomaterials (Co-MOF, ZIF-67) with antimicrobial and ammonia-sensitive properties were successfully synthesized and added into gelatin/agar (GA) matrix to develop highly stable intelligent films (GA/ZIF67). The incorporation of ZIF-67 nanoparticles enhanced the hydrophobicity (water contact angle >90°) and UV-blocking properties (close to 0.3 % at T280) of the films and endowed the films with excellent antimicrobial activity. The GA/ZIF67 films exhibited outstanding ammonia-sensitive functionality and color stability. More crucially, the ammonia-sensitive color-changing mechanism of ZIF-67 may be attributed to the slow etching effect of its crystal facets upon exposure to ammonia. With the gradual spoilage of beef, the color of the GA/ZIF67 film changes from blue-violet to gray-yellow/orange-red. In addition, the RGB value of the film collected by a mobile device App was used to quickly determine the freshness of beef, reducing individual variability in color perception. Overall, this work offers novel insights into exploring Co-MOF as a new type of indicator for developing a rapid and real-time beef freshness monitoring system, which has great potential for application in the intelligent packaging field.
Collapse
Affiliation(s)
- Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Minzu University, Nanning, Guangxi 530008, China.
| | - Xizi Luo
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.; Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Minzu University, Nanning, Guangxi 530008, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Putrie RFW, Aryantha INP, Iriawati, Antonius S. Drought Tolerant Capability of Pineapple [ Ananas comosus (L.) Merr] Plant Microbiome. Trop Life Sci Res 2025; 36:57-75. [PMID: 40276053 PMCID: PMC12017287 DOI: 10.21315/tlsr2025.36.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/12/2024] [Indexed: 04/26/2025] Open
Abstract
The microbiomes of Indonesian pineapple plants cover drought-resistant microorganisms that have not yet been studied. Therefore, this research aims to analyse the pineapple's endophytic and rhizobacteria capability to survive and support the plant in drought. The screening used polyethylene glycol (PEG) 6000 with specific osmotic pressures as a form of stress simulation. The isolates were further tested for their production of exopolysaccharides (EPS) and growth hormones (IAA), survival at high temperatures and salinity and other vital, drought-tolerant factors. Based on PEG 6000 analysis with certain osmotic pressure, about 13 isolates could survive at -0.73 MPa. Some isolates can produce EPS up to 89.23 mg/mL at -0.73 MPa, survive at 10% salinity, at a temperature of 50°C, pH 4 and produce IAA up to 7.5 ppm on medium. Most isolates can improve corn seedlings' growth quality and produce ACC deaminase and catalase enzymes. Isolate BDO 8 and BAO 5 showed more constant results compared with others. Based on the 16S rRNA gene, these isolates were identified as Bacillus cereus strain ATCC 14579T.112 and Bacillus cereus strain WHX1 with 99.91% and 100% sequence similarities, respectively. These findings suggest that these isolates could be developed as bioinoculant candidates for use in dry agricultural areas.
Collapse
Affiliation(s)
- Rahayu Fitriani Wangsa Putrie
- Research Center for Applied Microbiology, National Research and Innovation Agency. JL. Raya Bogor KM. 46 Cibinong 16911, West Java, Indonesia
- School of Life Sciences and Technology, Bandung Institute of Technology. JL Ganesa 10, Bandung 4013, West Java, Indonesia
| | - I Nyoman Pugeg Aryantha
- School of Life Sciences and Technology, Bandung Institute of Technology. JL Ganesa 10, Bandung 4013, West Java, Indonesia
- Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Kab. Lampung Selatan, Lampung 35365, Indonesia
| | - Iriawati
- School of Life Sciences and Technology, Bandung Institute of Technology. JL Ganesa 10, Bandung 4013, West Java, Indonesia
| | - Sarjiya Antonius
- Research Center for Applied Microbiology, National Research and Innovation Agency. JL. Raya Bogor KM. 46 Cibinong 16911, West Java, Indonesia
| |
Collapse
|
16
|
Nikolaou A, Salvador M, Wright I, Wantock T, Sandison G, Harle T, Carta D, Gutierrez-Merino J. The ratio of reactive oxygen and nitrogen species determines the type of cell death that bacteria undergo. Microbiol Res 2025; 292:127986. [PMID: 39675140 DOI: 10.1016/j.micres.2024.127986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Reactive oxygen and nitrogen species (RONS) are emerging as a novel antibacterial strategy to combat the alarming increase in antimicrobial resistance (AMR). RONS can inhibit bacterial growth through reactions with cellular molecules, compromising vital biological functions and leading to cell death. While their mechanisms of action have been studied, many remain unclear, especially in biologically relevant environments. In this study, we exposed Gram-positive and Gram-negative bacteria to varying RONS ratios, mimicking what microbes may naturally encounter. A ratio in favour of RNS induced membrane depolarization and pore formation, resulting in an irreversible bactericidal effect. By contrast, ROS predominance caused membrane permeabilization and necrotic-like responses, leading to biofilm formation. Furthermore, bacterial cells exposed to more RNS than ROS activated metabolic processes associated with anaerobic respiration, DNA & cell wall/membrane repair, and cell signalling. Our findings suggest that the combination of ROS and RNS can be an effective alternative to inhibit bacteria, but only under higher RNS levels, as ROS dominance might foster bacterial tolerance, which in the context of AMR could have devastating consequences.
Collapse
Affiliation(s)
- Athanasios Nikolaou
- School of Biosciences, University of Surrey, Guildford GU2 7XH, United Kingdom; School of Chemistry and Chemical Engineering, University of Surrey, Guildford G2 7XH, United Kingdom
| | - Manuel Salvador
- IDENER, Early Ovington 24-8, La Rinconada, Seville 41300, Spain
| | - Ian Wright
- School of Biosciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Thomas Wantock
- Fourth State Medicine Ltd., Longfield, Fernhurst, Haslemere GU27 3HA, United Kingdom
| | - Gavin Sandison
- Fourth State Medicine Ltd., Longfield, Fernhurst, Haslemere GU27 3HA, United Kingdom
| | - Thomas Harle
- Fourth State Medicine Ltd., Longfield, Fernhurst, Haslemere GU27 3HA, United Kingdom
| | - Daniela Carta
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford G2 7XH, United Kingdom
| | - Jorge Gutierrez-Merino
- School of Biosciences, University of Surrey, Guildford GU2 7XH, United Kingdom; School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, United Kingdom.
| |
Collapse
|
17
|
Duarte Bernardino C, Lee M, Ren Q, Ruehle B. Facile Spray-Coating of Antimicrobial Silica Nanoparticles for High-Touch Surface Protection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12507-12519. [PMID: 39939280 PMCID: PMC11873980 DOI: 10.1021/acsami.4c18916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
The rising threat from infectious pathogens poses an ever-growing challenge. Metal-based nanomaterials have gained a great deal of attention as active components in antimicrobial coatings. Here, we report on the development of readily deployable, sprayable antimicrobial surface coatings for high-touch stainless steel surfaces that are ubiquitous in many healthcare facilities to combat the spread of pathogens. We synthesized mesoporous silica nanoparticles (MSNs) with different surface functional groups, namely, amine (MSN-NH2), carboxy (MSN-COOH), and thiol groups (MSN-SH). These were chosen specifically due to their high affinity to copper and silver ions, which were used as antimicrobial payloads and could be incorporated into the mesoporous structure through favorable host-guest interactions, allowing us to find the most favorable combinations to achieve antimicrobial efficacy against various microbes on dry or semidry high-touch surfaces. The antimicrobial MSNs were firmly immobilized on stainless steel through a simple two-step spray-coating process. First, the stainless steel surfaces are primed with sprayable polyelectrolyte solutions acting as adhesion layers, and then, the loaded nanoparticle dispersions are spray-coated on top. The employed polyelectrolytes were selected and functionalized specifically to adhere well to stainless steel substrates while at the same time being complementary to the MSN surface groups to enhance the adhesion, wettability, homogeneity, and stability of the coatings. The antimicrobial properties of the nanoparticle suspension and the coatings were tested against three commonly found pathogenic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, as well as a fungal pathogen, Candida albicans. Especially MSN-SH loaded with silver ions showed excellent antimicrobial efficacy against all tested pathogens under application-relevant, (semi)dry conditions. The findings obtained here facilitate our understanding of the correlation between the surface properties, payloads, and antimicrobial activity and show a new pathway toward simple and easily deployable solutions to combat the spread of pathogens with the help of sprayable antimicrobial surface coatings.
Collapse
Affiliation(s)
- Carolina Duarte Bernardino
- Federal
Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
- Humboldt
University Berlin, Unter
den Linden 6, D-10117 Berlin, Germany
| | - Mihyun Lee
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bastian Ruehle
- Federal
Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| |
Collapse
|
18
|
Na B, Park J, Park S, Park E, Jang J, Kim YH, Lee J, Chung HS. Comparison evaluation of bacterial DNA extraction methods for improved molecular diagnostic accuracy of sepsis-causing pathogens in clinical whole blood samples. Sci Rep 2025; 15:4167. [PMID: 39905084 PMCID: PMC11794844 DOI: 10.1038/s41598-025-87225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Sepsis, a leading cause of mortality, requires rapid and accurate pathogen identification to ensure effective treatment. Current diagnostic methods such as blood cultures are time-consuming, whereas molecular diagnostic techniques represent a promising alternative for faster pathogen detection. Therefore, the aim of this study was to evaluate different DNA extraction methods for the improved detection of infectious pathogens in the bloodstream. Specifically, we compared one column-based DNA extraction method (QIAamp DNA Blood Mini Kit) with two magnetic bead-based DNA extraction methods (K-SL DNA Extraction Kit and GraBon™ system). Real-time PCR was performed using specific primers to assess the efficiency of each method. The K-SL DNA Extraction Kit and GraBon™ system exhibited higher accuracy rates of 77.5% (22/40) and 76.5% (21/40), respectively, compared to the QIAamp DNA Blood Mini Kit, which had an accuracy rate 65.0% (12/40) for Escherichia coli detection, whereas the GraBon™ system demonstrated higher accuracy rate of 77.5% (22/40) than the other two methods, which had an accuracy rates of 67.5% (14/40) for Staphylococcus aureus detection. All methods displayed high specificity for negative samples (100%). These findings highlight the superior performance of magnetic bead-based methods, particularly when automated, for extracting bacterial DNA from whole blood samples. Such methods may enable the more rapid and accurate diagnosis of bloodstream infections, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Byungjoon Na
- KingoBio, Inc. Research Center, Seoul, South Korea
| | - Junghun Park
- Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea
| | - Sojin Park
- KingoBio, Inc. Research Center, Seoul, South Korea
| | - Eunseon Park
- KingoBio, Inc. Research Center, Seoul, South Korea
| | - Jimin Jang
- KingoBio, Inc. Research Center, Seoul, South Korea
| | - Yu-Hee Kim
- Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea
- Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Jinyeop Lee
- KingoBio, Inc. Research Center, Seoul, South Korea.
| | - Hae-Sun Chung
- Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea.
- Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.
| |
Collapse
|
19
|
Bielska B, Wrońska N, Kołodziejczyk-Czepas J, Mignani S, Majoral JP, Waczulikova I, Lisowska K, Bryszewska M, Miłowska K. Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing. Mol Pharm 2025; 22:927-939. [PMID: 39797813 PMCID: PMC11795522 DOI: 10.1021/acs.molpharmaceut.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing (in vitro). Therefore, the degree of toxicity of the tested compounds for human erythrocytes and the human fibroblast cell line (BJ) was determined, and it was found that at low concentrations, the tested compounds are compatible with blood. The influence of phosphorus dendrimers on plasma proteins (human serum albumin (HSA) and fibrinogen) was examined, with a lack of conformational changes in the structure of these proteins, suggesting that their physiological function was not disturbed. The effects on plasma coagulation cascade and fibrinolysis were also assessed, and it was found that phosphorus dendrimers in low concentrations are blood compatible and interfere neither with coagulation processes nor in clot breakdown. Skin injuries, especially chronic wounds, are also susceptible to infection; therefore, the antimicrobial potential of dendrimers was tested, and it was found that these dendrimers had antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest activity of the tested compounds was found for higher applied concentrations.
Collapse
Affiliation(s)
- Beata Bielska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
- Doctoral
School of Exact and Natural Sciences, University
of Lodz, 21/23 Jana Matejki
Street, 90-237 Lodz, Poland
| | - Natalia Wrońska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Joanna Kołodziejczyk-Czepas
- Department
of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Serge Mignani
- CQM-Centro
de Química da Madeira, Universidade
da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Centre d’Etudes
et de Recherche sur le Medicament de Normandie (CERMN), Université de Caen Normandie, Caen 14032, France
| | - Jean-Pierre Majoral
- Laboratoire
de Chimie de Coordination CNRS, 205 Route de Narbonne, Toulouse 31077, France
| | - Iveta Waczulikova
- Department
of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics
and Informatics, Comenius University, Mlynska Dolina F1, 84248 Bratislava, Slovakia
| | - Katarzyna Lisowska
- Department
of Industrial Microbiology and Biotechnology, Faculty of Biology and
Environmental Protection, University of
Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Maria Bryszewska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Katarzyna Miłowska
- Department
of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
20
|
Mmbando GS, Wilson Salaja M. The potential of Streptococcus pyogenes and Escherichia coli bacteriocins in synergistic control of Staphylococcus aureus. Prep Biochem Biotechnol 2025:1-9. [PMID: 39873152 DOI: 10.1080/10826068.2025.2457556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Staphylococcus aureus has developed resistance to most conventional antibiotics and is a causative agent of serious infections. Alternative therapies are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, including Escherichia coli (E. coli) and Streptococcus pyogenes (S. pyogenes), and represent a potential solution. While several bacteriocins have shown promise, their synergy with bacteriocins from other bacterial species remains largely unexplored. This work used agar diffusion on Muller-Hinton Agar (MHA) with S. aureus as a test bacterium to evaluate E. coli, S. pyogenes and their combined bacteriocins. The bacteriocins of S. pyogenes showed the maximum antimicrobial activity of zone of inhibition (ZOI), 24.93 mm, compared to that of E. coli bacteriocin, which was 19.28 mm, and that of the combined ones at 100% concentration, 22.6 mm. The combined bacteriocins at 50% concentration showed a reduced activity of 18.35 mm. These observations suggest that the bacteriocins produced by S. pyogenes have higher specificity and activity against S. aureus, making them effective therapeutic agents in the fight against multidrug-resistant infections.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| | - Musa Wilson Salaja
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
21
|
Lavrikova A, Janda M, Bujdáková H, Hensel K. Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178184. [PMID: 39718071 DOI: 10.1016/j.scitotenv.2024.178184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited. This study reports the effects of a cold plasma generated by a pulsed streamer corona discharge in air on single- and mixed-species biofilms of P. aeruginosa and S. aureus. The plasma causes significant biofilm biomass reduction, bacteria inactivation, and alteration in intracellular metabolism. For single-species biofilms S. aureus is found more tolerant to plasma than P. aeruginosa, and mixed-species biofilms display higher tolerance of both bacteria to plasma than in single-species biofilms. A comparison between wet and dehydrated biofilms reveals reduced plasma efficacy in wet environments. Consequently, biofilm dehydration prior to the plasma treatment facilitates penetration of plasma reactive species leading to higher bacteria inactivation. The evaluation of plasma-generated gaseous reactive species reveals O3 and NO2 being dominant species contributing to the etching mechanism of the overall plasma anti-biofilm effect. Despite the strong anti-biofilm effect is obtained, the biofilm regrowth on the next day after plasma treatment implies on the inability of pulsed streamer corona discharge to permanently eradicate biofilms on a surface. The search for adequate plasma treatment conditions of biofilms remains crucial to avoid the appearance of more adaptive biofilms.
Collapse
Affiliation(s)
- Aleksandra Lavrikova
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia; Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.
| | - Mário Janda
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Karol Hensel
- Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| |
Collapse
|
22
|
Kala A, Saini K, Kimothi S, Verma R, Kar KK, Chamoli P. Curcumin-assisted Preparation of α-Fe 2O 3@TiO 2 Nanocomposites for Antibacterial and Photocatalytic Activity. Recent Pat Biotechnol 2025; 19:331-345. [PMID: 39428940 DOI: 10.2174/0118722083332040241011050802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Harmful microorganisms like pathogens significantly impact human health. Meanwhile, industrial growth causes pollution and water contamination by releasing untreated hazardous waste. Effective treatment of these microorganisms and contaminants is essential, and nanocomposites may be a promising solution. The present attempt demonstrates the green synthesis of α-Fe2O3@TiO2 nanocomposites (FTNCs) for the effective treatment of pathogens and organic contaminants. METHODS The FTNCs have been synthesized through a green approach utilizing curcumin extract. Curcumin (Turmeric) extract (TEx) was prepared by washing, drying, and crushing 5 g of turmeric, then boiling it in 100 mL distilled water at 70°C for 1 hour. Metal salts (Fe3+/Ti4+, 2:1) were added to 100 mL of TEx under continuous stirring at 70°C for 24 h. The solution was rinsed and dried at 80°C overnight and heated at 300°C for 3 h to remove impurities. RESULTS Synthesized FTNCs have been tested for the potent antibacterial activity against both Gram-positive (Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Salmonella Abony, Pseudomonas sp.). Observations discovered noteworthy inhibition of both Gram-positive and Gramnegative bacteria by FTNCs. Furthermore, the FTNCs system shows the energy band gap of ~2.6 eV which may suppress electron recombination, thereby enhancing photocatalysis. The photo-degradation is examined against Evans blue (EB) and Congo red (CR) dyes under UV and visible light (125 W) irradiation. The remarkable photocatalytic degradation efficiency (DE) for CR reached ~67.4% in 60 min. CONCLUSION A simple green approach has been demonstrated for the synthesis of the FTNCs using curcumin-mediated reduction. As prepared FTNCs have been evaluated for potent antibacterial activity against both Gram-positive (Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Salmonella Abony, Pseudomonas sp.). The results show that the highest zone of inhibition diameter values have been obtained for 5 mg/mL concertation of FTNCs of ~14, 22, 18, 21, and 20 and 29 mm for E. coli, S. abony, S. aureus, B. subtilis, E. faecalis, and Pseudomonas sp., respectively. Additionally, FTNCs demonstrate remarkable photocatalytic degradation efficiency against EB and CR dyes under UV (125 W) irradiation, achieving 56, 67% degradation within 60 min, respectively. The findings indicate that FTNCs show long-term antimicrobial effectiveness and potential for water treatment through photocatalysis. This examination highlights recent advancements in intellectual property rights (IPR) and patent strategies, shedding light on how patents influence eco-friendly synthesis and the development of multifunctional, high-performance nanocomposites.
Collapse
Affiliation(s)
- Anuskha Kala
- Department of Biotechnology, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Krati Saini
- Department of Physics, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Sanjeev Kimothi
- Department of Physics, Graphic Era Deemed to be University, Dehradun-248001, Uttarakhand, India
| | - Rashmi Verma
- Department of Biotechnology, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Pankaj Chamoli
- Department of Physics, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| |
Collapse
|
23
|
Moonsub K, Seesuriyachan P, Boonyawan D, Rachtanapun P, Sawangrat C, Opassuwan T, Wattanutchariya W. Combating foodborne pathogens: Efficacy of plasma-activated water with supplementary methods for Staphylococcus aureus eradication on chicken, and beef. Food Chem X 2024; 24:101890. [PMID: 39498257 PMCID: PMC11533612 DOI: 10.1016/j.fochx.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
The research study suggested using plasma-activated water (PAW) along with auxiliary technologies, such as micro/nanobubbles (MNB), ultraviolet (UV) photolysis, and ultrasonication (US), to increase the effectiveness of sterilization. By using Factorial Design of Experiments (DOE) techniques, the characteristics and optimal production that contributed to disinfecting pathogens were assessed. Analysis revealed that Staphylococcus aureus (S. aureus) infection rate was most significantly influenced by factors including duration of MNB, UV, and the interaction term between MNB*UV. The optimal conditions for S. aureus reduction in chicken and beef of 8.41 and 8.20 log10 CFU/ml, respectively, which were found when PAW was combined with UV and US for 20 min of treatment. This study arrives to the conclusion that combining PAW with appropriate supplementary technologies increased efficiency and enhance disinfection effectiveness in chicken and beef which could be implemented for another alternative pathogen inactivation in food industry. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Kochakon Moonsub
- Advanced Technology and Innovation Management for Creative Economy Research Group (AIMCE), Chiang Mai University, Chiang Mai, Thailand
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Advanced Technology and Innovation Management for Creative Economy Research Group (AIMCE), Chiang Mai University, Chiang Mai, Thailand
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University, Chiang Mai, Thailand
| | - Takron Opassuwan
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University, Chiang Mai, Thailand
| | - Wassanai Wattanutchariya
- Advanced Technology and Innovation Management for Creative Economy Research Group (AIMCE), Chiang Mai University, Chiang Mai, Thailand
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
24
|
Jyung S, Kim SH, Kang DH. Evaluation of the bactericidal activity of plasma-activated NaCl solution (PAN) against foodborne pathogens: Inactivation mechanism and application to mackerel. Food Res Int 2024; 198:115283. [PMID: 39643354 DOI: 10.1016/j.foodres.2024.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
The objective of this study was to assess the bactericidal effect of plasma-activated NaCl solution (PAN) against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and apply PAN as a brine salting solution for mackerel. To enhance the bactericidal effect of plasma-activated water (PAW), NaCl solutions (0, 3.5, 7, and 10%) were treated with plasma for 20 and 40 min to generate PAN. Plasma-activated glycerol solution (PAG) was also included to evaluate the influence of water activity on plasma activation and its effect on microbial activity. Physicochemical analysis revealed that elevating the NaCl concentration of PAN led to a decrease in pH, an increase in oxidation-reduction potential, and higher levels of reactive species such as H2O2 and HOCl. PAN showed greater antibacterial activity compared to PAW and PAG, except for L. monocytogenes, where 40 min activation time and treatment time exceeding 20 min was required for significantly higher reduction to occur. PAN exhibited greater antibacterial activity at higher NaCl concentrations, which was attributed to increased ionic strength and reactive chlorine species. Additionally, we evaluated the microbial mechanisms of PAN by assessing cellular damage and alterations. The common observation across the three pathogens was that PAN resulted in increased cell membrane damage, reduced intermembrane enzyme activity, higher intracellular ROS levels, and changes in zeta potential values, while DNA damage was observed only in PAN-treated L. monocytogenes. Furthermore, when PAW and PAN were stored for up to four weeks, PAN showed higher efficacy compared to PAW. 10% PAN was also effective against foodborne pathogens on mackerel, achieving log reductions of 3.62 for E. coli O157:H7, 4.62 for S. Typhimurium, and 3.18 for L. monocytogenes after a 20 min treatment without adversely affecting quality. Our results demonstrated the antibacterial activity and action mechanism of PAN, presenting its potential application in the seafood industry.
Collapse
Affiliation(s)
- Sunna Jyung
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
25
|
Murali R, Singh P, Ragunathan D, Damarla R, Kichenaradjou D, Surriyanarayanan KM, Jayaram SK, Chandramoorthy HC, Kumar A, Krishnan MEG, Gandhirajan RK. Antimicrobial Activity of Cold Atmospheric Plasma on Bacterial Strains Derived from Patients with Diabetic Foot Ulcers. J Microbiol Biotechnol 2024; 34:2353-2361. [PMID: 39403720 PMCID: PMC11637820 DOI: 10.4014/jmb.2407.07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Bacterial infections or their biofilms in diabetic foot ulcer (DFU) are a key cause of drug-resistant wounds and amputations. Cold atmospheric plasma (CAP) is well documented for its antibacterial effect and promoting wound healing. In the current study, we built an argon-based, custom CAP device and investigated its potential in eliminating laboratory and clinical bacterial strains derived from DFU. The CAP device performed as expected with generation of hydroxyl, reactive nitrogen species, and argon species as determined by optical emission spectroscopy. A dose-dependent increase in oxidation reduction potential (ORP) and nitrites in the liquid phase was observed. The CAP treatment eliminated both gram-positive (Staphylococcus aureus, Entrococcus faecalis) and negative bacteria (Pseudomonas aeruginosa, Proteus mirabilis) laboratory strains. Clinical samples collected from DFU patients exhibited a significant decrease in both types of bacteria, with gram-positive strains showing higher susceptibility to the CAP treatment in an ex vivo setting. Moreover, exposure to CAP of polymicrobial biofilms from DFU led to a notable disruption in biofilm and an increase in free bacterial DNA. The duration of CAP exposure used in the current study did not induce DNA damage in peripheral blood lymphocytes. These results suggest that CAP could serve as an excellent tool in treating patients with DFUs.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Pooja Singh
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Divya Ragunathan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Ramya Damarla
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Dharshini Kichenaradjou
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Kirtanna Malichetty Surriyanarayanan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Satish Kumar Jayaram
- Department of Plastic Surgery, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Harish C. Chandramoorthy
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ashish Kumar
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| |
Collapse
|
26
|
Gama GSP, Pimenta AS, Feijó FMC, Aires CAM, de Melo RR, dos Santos CS, de Medeiros LCD, da Costa Monteiro TV, Fasciotti M, de Medeiros PL, de Morais MRM, de Azevedo TKB. Antimicrobial Impact of Wood Vinegar Produced Through Co-Pyrolysis of Eucalyptus Wood and Aromatic Herbs. Antibiotics (Basel) 2024; 13:1056. [PMID: 39596750 PMCID: PMC11590886 DOI: 10.3390/antibiotics13111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The search for substances that can overcome microorganisms' resistance and enhance the antimicrobial activity of given products has attracted the attention of researchers. Eucalyptus wood vinegar (WV) is a promising product for developing alternative antimicrobials. OBJECTIVES This study aimed to evaluate whether the production of WV in the co-pyrolysis of eucalyptus wood with aromatic herbs would incorporate compounds from them into WV and if that would enhance its antimicrobial action. METHODOLOGY WV was produced alone and through co-pyrolysis with marjoram (Origanum majorana), Peruvian oregano (Origanum vulgare), rosemary (Salvia rosmarinus), thyme (Thymus vulgaris), and Turkish oregano (Origanum onites) at a proportion of 25% of herbs to the bone-dry wood weight. The antimicrobial effects were assessed against strains of gram-negative and -positive bacteria, and Candida glabrata. Microorganisms' colony growth in agar had their absorbances recorded after inoculation and incubation. Chemical characterization of the new products was performed by gas chromatography and mass spectrometry (GC/MS). RESULTS After coproduction, there were relevant chemical changes concerning the original WV. Thymol, for instance, was incorporated into the WV through co-pyrolysis with marjoram, Peruvian and Turkish oregano, and thyme. The coproducts were more efficient than the WV produced only with wood, with thyme-incorporated products having the highest efficiency. This can be attributed to the increase and incorporation of the substances after coproduction, and particularly the role of thymol in enhancing the antimicrobial action. CONCLUSION Given the results, the co-production of WV with eucalyptus wood and aromatic herbs has the potential to provide alternative antimicrobial products.
Collapse
Affiliation(s)
- Gil Sander Próspero Gama
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Alexandre Santos Pimenta
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Francisco Marlon Carneiro Feijó
- Graduate Program in Environment, Technology, and Society—PPGATS, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil; (F.M.C.F.); (R.R.d.M.); (C.S.d.S.)
| | - Caio Augusto Martins Aires
- Departament of Health Sciences, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil;
| | - Rafael Rodolfo de Melo
- Graduate Program in Environment, Technology, and Society—PPGATS, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil; (F.M.C.F.); (R.R.d.M.); (C.S.d.S.)
| | - Caio Sérgio dos Santos
- Graduate Program in Environment, Technology, and Society—PPGATS, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil; (F.M.C.F.); (R.R.d.M.); (C.S.d.S.)
| | - Lúcio César Dantas de Medeiros
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Thays Vieira da Costa Monteiro
- Laboratory of Organic Analyses, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, Xerém, Duque de Caxias 25250-020, RJ, Brazil; (T.V.d.C.M.); (M.F.)
| | - Maíra Fasciotti
- Laboratory of Organic Analyses, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, Xerém, Duque de Caxias 25250-020, RJ, Brazil; (T.V.d.C.M.); (M.F.)
| | - Priscila Lira de Medeiros
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Maria Rita Macêdo de Morais
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| | - Tatiane Kelly Barbosa de Azevedo
- Graduate Program in Forest Sciences—PPGCFL, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba 59280-000, RN, Brazil; (G.S.P.G.); (L.C.D.d.M.); (P.L.d.M.); (M.R.M.d.M.); (T.K.B.d.A.)
| |
Collapse
|
27
|
Cho J, Kang D, Kong U, Lee J, Kim J, Lee C. Enhanced bactericidal effects of povidone-iodine in the presence of silver ions. CHEMOSPHERE 2024; 368:143734. [PMID: 39536830 DOI: 10.1016/j.chemosphere.2024.143734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The rising prevalence of antibiotic-resistant infections worldwide necessitates the development of innovative antimicrobial systems for effective pathogen control. This study investigates the synergistic bactericidal effects of a combined system comprising povidone-iodine (PVP-I) and silver ions (Ag(I)). The PVP-I/Ag(I) system exhibited enhanced bactericidal activity against four key surrogate bacterial species: two Gram-negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and two Gram-positive bacteria, Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis). Our experiments revealed that Ag(I) interacts with iodide ions (I-) to form silver iodide (AgI). This reaction promotes the formation of hypoiodous acid (HOI), a more potent bactericidal agent than other reactive iodine species (RIS), by shifting the equilibrium of RIS released from PVP-I. Under representative conditions ([PVP-I]0 = 1 mg/L, [Ag(I)]0 = 5 μM, pH = 7.3), the concentration of HOI in the PVP-I/Ag(I) system was 2.4-3.9 times higher than in the PVP-I system alone, aligning with theoretical predictions. The bactericidal efficacy of the PVP-I/Ag(I) system was influenced by pH variations, affecting HOI formation. This system represents a promising tool for rapid and effective microbial control, potentially enhancing public health outcomes.
Collapse
Affiliation(s)
- Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dongwoo Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Uimin Kong
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
28
|
Kitsiou M, Wantock T, Sandison G, Harle T, Gutierrez-Merino J, Klymenko OV, Karatzas KA, Velliou E. Determination of the combined effect of grape seed extract and cold atmospheric plasma on foodborne pathogens and their environmental stress knockout mutants. Appl Environ Microbiol 2024; 90:e0017724. [PMID: 39254318 PMCID: PMC11497776 DOI: 10.1128/aem.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The study aimed to explore the antimicrobial efficacy of grape seed extract (GSE) and cold atmospheric plasma (CAP) individually or in combination against L. monocytogenes and E. coli wild type (WT) and their isogenic mutants in environmental stress genes. More specifically, we examined the effects of 1% (wt/vol) GSE, 4 min of CAP treatment, and their combined effect on L. monocytogenes 10403S WT and its isogenic mutants ΔsigB, ΔgadD1, ΔgadD2, ΔgadD3, as well as E. coli K12 and its isogenic mutants ΔrpoS, ΔoxyR, and ΔdnaK. In addition, the sequence of the combined treatments was tested. A synergistic effect was achieved for all L. monocytogenes strains when exposure to GSE was followed by CAP treatment. However, the same effect was observed against E. coli strains, only for the reversed treatment sequence. Additionally, L. monocytogenes ΔsigB was more sensitive to the individual GSE and the combined GSE/CAP treatment, whereas ΔgadD2 was more sensitive to CAP, as compared to the rest of the mutants under study. Individual GSE exposure was unable to inhibit E. coli strains, and individual CAP treatment resulted in higher inactivation of E. coli in comparison to L. monocytogenes with the strain ΔrpoS appearing the most sensitive among all studied strains. Our findings provide a step toward a better understanding of the mechanisms playing a role in the tolerance/sensitivity of our model Gram-positive and Gram-negative bacteria toward GSE, CAP, and their combination. Therefore, our results contribute to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.IMPORTANCEAlternative approaches to conventional sterilization are gaining interest from the food industry, driven by (i) the consumer demand for minimally processed products and (ii) the need for sustainable, environmentally friendly processing interventions. However, as such alternative approaches are milder than conventional heat sterilization, bacterial pathogens might not be entirely killed by them, which means that they could survive and grow, causing food contamination and health hazards. In this manuscript, we performed a systematic study of the impact of antimicrobials derived from fruit industry waste (grape seed extract) and cold atmospheric plasma on the inactivation/killing as well as the damage of bacterial pathogens and their genetically modified counterparts, for genes linked to the response to environmental stress. Our work provides insights into genes that could be responsible for the bacterial capability to resist/survive those novel treatments, therefore, contributing to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.
Collapse
Affiliation(s)
- Melina Kitsiou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Thomas Wantock
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | - Gavin Sandison
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | - Thomas Harle
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | | | - Oleksiy V. Klymenko
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
| | - Kimon Andreas Karatzas
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Eirini Velliou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
29
|
Pious A, Venkatasubramanian V, Singaravelu DK, Ramesh S, Ameen F, Veerappan A. Synthesis of cationic N-acylated thiazolidine for selective activity against Gram-positive bacteria and evaluation of N-acylation's role in membrane-disrupting activity. RSC Med Chem 2024:d4md00626g. [PMID: 39507614 PMCID: PMC11537284 DOI: 10.1039/d4md00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
The evolution of antimicrobial-resistant strains jeopardizes the existing clinical drugs and demands new therapeutic interventions. Herein, we report the synthesis of cationic thiazolidine bearing a quaternary pyridinium group, in which thiazolidine was N-acylated with fatty acid to establish a hydrophilic-lipophilic balance that disrupts bacterial membranes. The bacterial growth inhibition assays and hemolytic activity against human red blood cells indicate that the N-acylated cationic thiazolidine (QPyNATh) inhibits Gram-positive bacteria at lower minimum inhibitory concentrations (MIC) and is selective for bacteria over mammalian cells. N-Acylation modulates MIC, and it is found that the N-palmitoylated compound, QPyN16Th, had the lowest MIC (1.95 μM) against Gram-positive, Enterococcus faecalis, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). In contrast, the N-myristoylated compound, QPyN14Th, showed the lowest MIC (31.25 μM) against Gram-negative, Escherichia coli, uropathogenic Escherichia coli, and Pseudomonas aeruginosa. At 1× MIC, QPyNATh permeabilizes the bacterial membrane, depolarizes the cytoplasmic membranes, and produces excess reactive oxygen species to kill the bacteria, as evidenced by live and dead staining. Interestingly, only QPyNATh containing a palmitoyl acyl chain demonstrated membrane-damaging activity at 2 μM concentrations, suggesting that the optimal hydrophilic-lipophilic balance enables QPyN16Th to selectively kill Gram-positive bacteria at lower doses. S. aureus develops resistance to ciprofloxacin quickly; however, no resistance to QPyN16Th is observed after several passages. As a proof of concept, the animal study revealed that QPyN16Th treatment reduced the bacterial burden in MRSA-infected zebrafish, allowing them to recover from infection and resume normal life. The results imply that lipidation and derivatizing thiazolidine with cationic charge offer an antimicrobial that is selective to treat Gram-positive bacterial infections, biocompatible, and less prone to develop resistance.
Collapse
Affiliation(s)
- Aleena Pious
- Department of Chemistry, School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Vignesh Venkatasubramanian
- Department of Chemistry, School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Dharshini Karnan Singaravelu
- Department of Chemistry, School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University Thanjavur - 613401 Tamil Nadu India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Anbazhagan Veerappan
- Department of Chemistry, School of Chemical & Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed University Thanjavur - 613401 Tamil Nadu India
| |
Collapse
|
30
|
Tosun ŞY, Kartal S, Akan T, Mol S, Coşansu S, Üçok D, Ulusoy Ş, Doğruyol H, Bostan K. Innovative Pathogen Reduction in Exported Sea Bass Through Atmospheric Cold Plasma Technology. Foods 2024; 13:3290. [PMID: 39456352 PMCID: PMC11507185 DOI: 10.3390/foods13203290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The safety of sea bass is critical for the global food trade. This study evaluated the effectiveness of atmospheric cold plasma in reducing food safety risks posed by Salmonella Enteritidis and Listeria monocytogenes, which can contaminate sea bass post harvest. Cold plasma was applied to inoculated sea bass for 2 to 18 min, achieving a maximum reduction of 1.43 log CFU/g for S. Enteritidis and 0.80 log CFU/g for L. monocytogenes at 18 min. Longer treatments resulted in greater reductions; however, odor and taste quality declined to a below average quality in samples treated for 12 min or longer. Plasma treatment did not significantly alter the color, texture, or water activity (aw) of the fish. Higher levels of thiobarbituric acid reactive substances (TBARSs) were observed with increased exposure times. Cold plasma was also tested in vitro on S. Enteritidis and L. monocytogenes on agar surfaces. A 4 min treatment eliminated the initial loads of S. Enteritidis (2.71 log CFU) and L. monocytogenes (2.98 log CFU). The findings highlight the potential of cold plasma in enhancing the safety of naturally contaminated fish. Cold plasma represents a promising technology for improving food safety in the global fish trade and continues to be a significant area of research in food science.
Collapse
Affiliation(s)
- Şehnaz Yasemin Tosun
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Sehban Kartal
- Department of Physics, Faculty of Science, Istanbul University, Vezneciler, 34452 Istanbul, Türkiye;
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskişehir Osmangazi University, 26040 Eskişehir, Türkiye;
| | - Sühendan Mol
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Serap Coşansu
- Department of Food Engineering, Engineering Faculty, Sakarya University, 54050 Sakarya, Türkiye
| | - Didem Üçok
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Şafak Ulusoy
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Kalenderhane, Onaltı Mart Şehitleri St., No. 2, Vezneciler-Fatih, 34134 Istanbul, Türkiye; (Ş.Y.T.); (S.M.); (D.Ü.); (Ş.U.)
| | - Hande Doğruyol
- Department of Food Safety, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134 Istanbul, Türkiye;
| | - Kamil Bostan
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Istanbul Aydın University, Küçükçekmece, 34295 Istanbul, Türkiye;
| |
Collapse
|
31
|
Bagagnan S, Jusselme MD, Alphonse V, Guerin-Rechdaoui S, Marconi A, Rocher V, Moilleron R. Assessing the effectiveness of performic acid disinfection on effluents: focusing on bacterial abundance and diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58252-58262. [PMID: 39292307 PMCID: PMC11467000 DOI: 10.1007/s11356-024-34958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Poorly-treated wastewater harbors harmful microorganisms, posing risks to both the environment and public health. To mitigate this, it is essential to implement robust disinfection techniques in wastewater treatment plants. The use of performic acid (PFA) oxidation has emerged as a promising alternative, due to its powerful disinfection properties and minimal environmental footprint. While PFA has been used to inactivate certain microbial indicators, its potential to tackle the entire microbial community in effluents, particularly resistant bacterial strains, remains largely unexplored. The present study evaluates the efficacy of PFA disinfection on the microbial communities of a WWTP effluent, through microbial resistance mechanisms due to their membrane structure. The effluent microbiome was quantified and identified. The results showed that the number of damaged cells increases with CT, reaching a maximum for CT = 240 mg/L•min and plateauing around 60 mg/L•min, highlighting the optimal conditions for PFA-disinfection against microbial viability. A low PFA level with a 10-min contact time significantly affected the microbial composition. It is worth noting the sensitivity of several bacterial genera such as Flavobacterium, Pedobacter, Massilia, Exiguobacterium, and Sphingorhabdus to PFA, while others, Acinetobacter, Leucobacter, Thiothrix, Paracoccus, and Cloacibacterium, showed resistance. The results detail the resistance and sensitivity of bacterial groups to PFA, correlated with their Gram-positive or Gram-negative membrane structure. These results underline PFA effectiveness in reducing microbial levels and remodeling bacterial composition, even with minimal concentrations and short contact times, demonstrating its suitability for widespread application in WWTPs.
Collapse
Affiliation(s)
- Sadia Bagagnan
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France
| | - My Dung Jusselme
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France.
| | - Vanessa Alphonse
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France
| | | | | | - Vincent Rocher
- Direction de L'Innovation, SIAAP, 92700, Colombes, France
| | - Regis Moilleron
- Laboratoire Eau Environnement Et Systèmes Urbains (Leesu), Univ Paris Est Creteil, Ecole Des Ponts, 61 Avenue du Général de Gaulle, 94000, Créteil, France
| |
Collapse
|
32
|
Omran BA, Rabbee MF, Baek KH. Biologically inspired nanoformulations for the control of bacterial canker pathogens Clavibacter michiganensis subsp. michiganensis and subsp. capsici. J Biotechnol 2024; 392:34-47. [PMID: 38925504 DOI: 10.1016/j.jbiotec.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) and C. michiganensis subsp. capsici (Cmc) are phytopathogenic bacteria that cause bacterial canker disease in tomatoes and peppers, respectively. Bacterial canker disease poses serious challenges to solanaceous crops, causing significant yield losses and economic costs. Effective management necessitates the development of sustainable control strategies employing nanobiotechnology. In this study, the antibacterial effects of four Aspergillus sojae-mediated nanoformulations, including cobalt oxide nanoparticles (Co3O4 NPs), zinc oxide nanoparticles (ZnO NPs), cobalt ferrite nanoparticles (CoFe2O4 NPs), and CoFe2O4/functionalized multi-walled carbon nanotube (fMWCNT) bionanocomposite, were evaluated against Cmm and Cmc. The diameters of the zone of inhibition of A. sojae-mediated Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm and Cmc were 23.60 mm, 22.09 mm, 27.65 mm, 22.51 mm, and 19.33 mm, 17.66 mm, 21.64 mm, 18.77 mm, respectively. The broth microdilution assay was conducted to determine the minimal inhibitory and bactericidal concentrations. The MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmm were 2.50 mg/mL, 1.25 mg/mL, 2.50 mg/mL, and 2.50 mg/mL, respectively. While, their respective MBCs against Cmm were 5.00 mg/mL, 2.50 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. The respective MICs of Co3O4 NPs, ZnO NPs, CoFe2O4 NPs, and CoFe2O4/fMWCNT bionanocomposite against Cmc were 2.50 mg/mL, 1.25 mg/mL, 5.00 mg/mL, and 5.00 mg/mL. While, their respective MBCs against Cmc were 5.00 mg/mL, 2.50 mg/mL, 10.00 mg/mL, and 10.00 mg/mL. The morphological and ultrastructural changes of Cmm and Cmc cells were observed using field-emission scanning and transmission electron microscopy before and after treatment with sub-minimal inhibitory concentrations of the nanoformulations. Nanoformulation-treated bacterial cells became deformed and disrupted, displaying pits, deep cavities, and groove-like structures. The cell membrane detached from the bacterial cell wall, electron-dense particles accumulated in the cytoplasm, cellular components disintegrated, and the cells were lysed. Direct physical interactions between the prepared nanoformulations with Cmm and Cmc cells might be the major mechanism for their antibacterial potency. Further research is required for the in vivo application of the mycosynthesized nanoformulations as countermeasures to combat bacterial phytopathogens.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt.
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
33
|
Ni JB, Ding CJ, Zhang JS, Fang XM, Xiao HW. Insight into the surface discharge cold plasma efficient inactivation of Pseudomonas fluorescens in water based on exogenous reactive oxygen and nitrogen species: Synergistic mechanism and energy benefits. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134984. [PMID: 38943891 DOI: 10.1016/j.jhazmat.2024.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
As well known, surface discharge cold plasma has efficient inactivation ability and a variety of RONS are main active particles for inactivation, but their synergistic mechanism is still not clear. Therefore, surface discharge cold plasma system was applied to treat Pseudomonas fluorescens to study bacterial inactivation mechanism and energy benefit. Results showed that energy efficiency was directly proportional to applied voltage and inversely proportional to initial concentration. Cold plasma treatment for 20 min was inactivated by approximately > 4-log10Pseudomonas fluorescens and application of •OH and 1O2 scavengers significantly improved survival rate. In addition, •OH and 1O2 destroyed cell membrane structure and membrane permeability, which promoted diffusion of RONS into cells and affecting energy metabolism and antioxidant capacity, leading to bacterial inactivation. Furthermore, accumulation of intracellular NO and ONOOH was related to infiltration of exogenous RNS, while accumulation of •OH, H2O2, 1O2, O2- was the result of joint action of endogenous and exogenous ROS. Transcriptome analysis revealed that different RONS of cold plasma were responsible for Pseudomonas fluorescens inactivation and related to activation of intracellular antioxidant defense system and regulation of genes expression related to amino acid metabolism and energy metabolism, which promoting cellular process, catalytic activity and other biochemical pathways.
Collapse
Affiliation(s)
- Jia-Bao Ni
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Jing-Shou Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
34
|
Taveira I, Castro RO, Cypriano J, Santos HF, Abreu F, de Araújo FV. Retrieving the real microbial diversity in aquatic plastisphere. MARINE POLLUTION BULLETIN 2024; 206:116719. [PMID: 39029147 DOI: 10.1016/j.marpolbul.2024.116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Disposed plastics in oceans provide a substrate to which microbes can adhere and structure the biofilm, namely the plastisphere. In this study, we showed that the mesoplastic density-based separation, routinely used in quantification assays, is detrimental to studying the microbiome diversity and ecology as it underestimates the real microbial diversity within these samples. Based on SEM and microbiome observations, we propose that chemically fixing samples before density separation preserves cellular diversity (2.32-fold change) and richness (1.12-fold change) that would be naturally lost due to the current methodology. OTUs assigned to Gram-negative bacterial species are the most negatively affected by omitting fixation and polymer composition was not decisive in shifting microbiome composition. Considering our findings, the formaldehyde-fixation step should be incorporated into the current methodology described in most studies as this is crucial to promote a deeper understanding of the microbial community in this ecosystem and biofilm-adhered scattering through aquatic ecosystems.
Collapse
Affiliation(s)
- Igor Taveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
| | - Rebeca O Castro
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Rua São João Batista, s/n, 24220900 Niterói, RJ, Brazil
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Henrique F Santos
- Departamento de Biologia Marinha, Universidade Federal Fluminense, Rua São João Batista, s/n, 24220900 Niterói, RJ, Brazil; Instituto Coral Vivo, Rio de Janeiro, RJ, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Fábio V de Araújo
- Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Centro, 24020-971 Niterói, RJ, Brazil; Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Francisco Portela 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| |
Collapse
|
35
|
Oguzlu H, Baldelli A, Mohammadi X, Kong A, Bacca M, Pratap-Singh A. Cold Plasma for the Modification of the Surface Roughness of Microparticles. ACS OMEGA 2024; 9:35634-35644. [PMID: 39184515 PMCID: PMC11339808 DOI: 10.1021/acsomega.4c03787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024]
Abstract
Cold plasma treatment is commonly used for sterilization. However, another potential of cold plasma treatment is surface modification. To date, several efforts have been directed toward investigating the effect of cold plasma treatment in modifying the surfaces of films. Here, the impact of suspension properties and parameters of cold plasma treatment on the changes of surfaces of monodisperse polymeric microparticles is tested. The plasma treatment did not touch the surface chemistry of the monodisperse polymeric microparticles. The concentration of suspensions of 1 mg/mL was determined to relate to a stronger effect of the plasma treatment on the roughness of the microparticles. Microparticles with an average diameter of 20 μm show a roughness increase with the plasma treatment time. However, a plasma treatment time longer than 15 min damages the microparticles, as observed in particles with an average diameter of 20 and 50 μm. We finally prototyped monodisperse microparticles to deliver drugs to the nasal mucosa by studying the effect of roughness in their (undesired) self-adhesion and (desired) adhesion with tissue. A moderate roughness, with an average peak-to-valley distance of 500 nm, appears to be the most effective in reducing the detachment forces with nasal tissue by up to 5 mN.
Collapse
Affiliation(s)
- Hale Oguzlu
- Faculty
of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver V6T 1Z4, Canada
- Sustainable
Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- School
of Chemical Engineering, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Alberto Baldelli
- School
of Agriculture and Food Sustainability, The University of Queensland, Brisbane 4072, Australia
- Queensland
Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4067, Australia
- Faculty of
Food and Land Systems, The University of
British Columbia, Vancouver V6T 1Z4, Canada
| | - Xanyar Mohammadi
- Faculty of
Food and Land Systems, The University of
British Columbia, Vancouver V6T 1Z4, Canada
| | - Albert Kong
- Department
of Mechanical Engineering, The University
of British Columbia, Vancouver V6T 1Z4, Canada
| | - Mattia Bacca
- Department
of Mechanical Engineering, The University
of British Columbia, Vancouver V6T 1Z4, Canada
| | - Anubhav Pratap-Singh
- Faculty of
Food and Land Systems, The University of
British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
36
|
Xu Y, Jin T, Bai Y, Zhou X, Lv H, Dai C, Wu Z, Xu Q. Plasma-activated water: Candidate hand disinfectant for SARS-CoV-2 transmission disruption. Heliyon 2024; 10:e34337. [PMID: 39144986 PMCID: PMC11320155 DOI: 10.1016/j.heliyon.2024.e34337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
The global epidemic caused by SARS-CoV-2 has brought about worldwide burden and a sense of danger for more than two years, leading to a wide range of social, public health, economic and environmental issues. Self-inoculation through hands has been the primary way for environmental transmission of SARS-CoV-2. Plasma-activated water (PAW) has been reported as an effective, safe and environmentally friendly disinfectant against SARS-CoV-2. However, the inactivating effect of PAW on SARS-CoV-2 located on skin surface and its underlying mechanism of action have not been elucidated. In this study, PAW was prepared using an air-pressure plasma jet device. The antiviral efficiency of PAW1, PAW3, and PAW5 on the SARS-CoV-2 pseudovirus was 8.20 % (±2.88 %), 46.24 % (±1.79 %), and 91.71 % (±0.47 %), respectively. Additionally, determination of PAW's physicochemical properties, identification of major sterile effector in PAW, transmission electron microscopy analysis, malondialdehyde (MDA) assessment, SDS-PAGE, ELISA, and qPCR were conducted to reveal the virucidal mechanism of PAW. Our experimental results suggested that peroxynitrite, which was generated by the synergism of acidic environment and reactive species, was the major sterile effector of PAW. Furthermore, we found that PAW treatment significantly inactivated SARS-CoV-2 pseudovirus through the destruction of its structure of and the degradation of the viral RNA. Therefore, the possible mechanism for the structural destruction of SARS-COV-2 by PAW is through the action of peroxynitrite generated by the synergism of acidic environment and reactive species, which might react with and destroy the lipid envelope of SARS-CoV-2 pseudovirus. Nevertheless, further studies are required to shed light on the interaction mechanism of PAW-inherent RONS and viral components, and to confirm the determinant factors for virus inactivation of SARS-COV-2 by PAW. Therefore, PAW may be a candidate hand disinfectant used to disrupt the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Yong Xu
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yu Bai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Han Lv
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qinghua Xu
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
37
|
Gross T, Ledernez LA, Birrer L, Bergmann ME, Altenburger MJ. Guided Plasma Application in Dentistry-An Alternative to Antibiotic Therapy. Antibiotics (Basel) 2024; 13:735. [PMID: 39200035 PMCID: PMC11350922 DOI: 10.3390/antibiotics13080735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cold atmospheric plasma (CAP) is a promising alternative to antibiotics and chemical substances in dentistry that can reduce the risk of unwanted side effects and bacterial resistance. AmbiJet is a device that can ignite and deliver plasma directly to the site of action for maximum effectiveness. The aim of the study was to investigate its antimicrobial efficacy and the possible development of bacterial resistance. The antimicrobial effect of the plasma was tested under aerobic and anaerobic conditions on bacteria (five aerobic, three anaerobic (Gram +/-)) that are relevant in dentistry. The application times varied from 1 to 7 min. Possible bacterial resistance was evaluated by repeated plasma applications (10 times in 50 days). A possible increase in temperature was measured. Plasma effectively killed 106 seeded aerobic and anaerobic bacteria after an application time of 1 min per 10 mm2. Neither the development of resistance nor an increase in temperature above 40 °C was observed, so patient discomfort can be ruled out. The plasma treatment proved to be effective under anaerobic conditions, so the influence of ROS can be questioned. Our results show that AmbiJet efficiently eliminates pathogenic oral bacteria. Therefore, it can be advocated for clinical therapeutic use.
Collapse
Affiliation(s)
- Tara Gross
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (T.G.); (L.B.)
- Center for Tissue Replacement, Regeneration & Neogenesis (GERN), Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Loic Alain Ledernez
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (L.A.L.); (M.E.B.)
| | - Laurent Birrer
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (T.G.); (L.B.)
- Center for Tissue Replacement, Regeneration & Neogenesis (GERN), Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (L.A.L.); (M.E.B.)
| | - Michael Eckhard Bergmann
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (L.A.L.); (M.E.B.)
| | - Markus Jörg Altenburger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (T.G.); (L.B.)
- Center for Tissue Replacement, Regeneration & Neogenesis (GERN), Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
38
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
39
|
Kusior A, Mazurkow J, Jelen P, Bik M, Raza S, Wdowiak M, Nikiforov K, Paczesny J. Copper Oxide Electrochemical Deposition to Create Antiviral and Antibacterial Nanocoatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14838-14846. [PMID: 38978473 PMCID: PMC11270987 DOI: 10.1021/acs.langmuir.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The impact of the reaction environment on the formation of the polycrystalline layer and its biomedical (antimicrobial) applications were analyzed in detail. Copper oxide layers were synthesized using an electrodeposition technique, with varying additives influencing the morphology, thickness, and chemical composition. Scanning electron microscopy (SEM) images confirmed the successful formation of polyhedral structures. Unmodified samples (CuL) crystallized as a mixture of copper oxide (I) and (II), with a thickness of approximately 1.74 μm. The inclusion of the nonconductive polymer polyvinylpyrrolidone (PVP) during synthesis led to a regular and compact CuO-rich structure (CuL-PVP). Conversely, adding glucose resulted in forming a Cu2O-rich nanostructured layer (CuL-D(+)G). Both additives significantly reduced the sample thickness to 617 nm for CuL-PVP and 560 nm for CuL-D(+)G. The effectiveness of the synthesized copper oxide layers was demonstrated in their ability to significantly reduce the T4 phage titer by approximately 2.5-3 log. Notably, CuL-PVP and CuL-D(+)G showed a more substantial reduction in the MS2 phage titer, achieving about a 5-log decrease. In terms of antibacterial activity, CuL and CuL-PVP exhibited moderate efficacy against Escherichia coli, whereas CuL-D(+)G reduced the E. coli titer to undetectable levels. All samples induced similar reductions in Staphylococcus aureus titer. The study revealed differential susceptibilities, with Gram-negative bacteria being more vulnerable to CuL-D(+)G due to its unique composition and morphology. The antimicrobial properties were attributed to the redox cycling of Cu ions, which generate ROS, and the mechanical damage caused by nanostructured surfaces. A crucial finding was the impact of surface composition rather than surface morphology on antimicrobial efficacy. Samples with a dominant Cu2O composition exhibited potent antibacterial and antiviral properties, whereas CuO-rich materials showed predominantly enhanced antiviral activity. This research highlights the significance of phase composition in determining the antimicrobial properties of copper oxide layers synthesized through electrodeposition.
Collapse
Affiliation(s)
- Anna Kusior
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Julia Mazurkow
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Piotr Jelen
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Maciej Bik
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Sada Raza
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Mateusz Wdowiak
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Kostyantyn Nikiforov
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Jan Paczesny
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| |
Collapse
|
40
|
Meghani N, Mansuri A, Chaudhari R, Kumar A. Fabrication, assessment, and potential anti-bacterial activity of sandalwood oil nanoemulsion and its hand rub sanitizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46546-46557. [PMID: 37074605 DOI: 10.1007/s11356-023-26945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
In the last decade, extensive research has been performed on developing hand sanitizers that can be used to eradicate the diseases that are caused due to poor hand hygiene. Essential oils possess antibacterial and antifungal properties and thus have great potential to replace the available antibacterial agents. In the present study, sandalwood oil-based nanoemulsion (NE) and sanitizer have been formulated and well characterized for their properties. Antibacterial activity was assessed using growth inhibition studies, agar cup, viability assay, etc. The sandalwood oil NE synthesized had oil to surfactant ratio of 1:0.5 (2.5% sandalwood oil and 0.5% Tween 80) and was observed to have a droplet diameter of 118.3 ± 0.92 nm, the zeta potential of - 18.8 ± 2.01 mV, and stability of 2 months. The antibacterial activity of sandalwood NE and sanitizer was evaluated against microorganisms. The antibacterial activity was assessed using the zone of inhibition value of sanitizer, which was in the range of 19 to 25 mm against all microorganisms. Morphological analysis showed distant changes in membrane shape and size and microorganisms' morphology. The synthesized NE was thermodynamically stable and efficient enough to be used in sanitizer, and the formulated sanitizer showed great antibacterial efficacy.
Collapse
Affiliation(s)
- Nikita Meghani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ramesh Chaudhari
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
41
|
An Y, Wang Z, Wu FG. Fluorescent carbon dots for discriminating cell types: a review. Anal Bioanal Chem 2024; 416:3945-3962. [PMID: 38886239 DOI: 10.1007/s00216-024-05328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Carbon dots (CDs) are quasi-spherical carbon nanoparticles with excellent photoluminescence, good biocompatibility, favorable photostability, and easily modifiable surfaces. CDs, serving as fluorescent probes, have emerged as an ideal tool for cellular differentiation owing to their outstanding luminescence performance and tunable surface properties. In this review, we summarize the recent research progress with CDs in the differentiation of cancer/normal cells, Gram-positive/Gram-negative bacteria, and live/dead cells, as well as the cellular differences used for differentiation. Additionally, we summarize the preparation methods, raw materials, and properties of the CDs used for cell discrimination. The differentiation mechanisms and the advantages or limitations of the differentiation methods are also introduced. Finally, we propose several research challenges in this field and future research directions that require extensive investigation. It is hoped that this review will help researchers in the design of new CDs as ideal fluorescent probes for realizing diverse cell differentiation applications.
Collapse
Affiliation(s)
- Yaolong An
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Key Laboratory for Biomaterials and Devices of Jiangsu Province, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
42
|
Kim YE, Myung GE, Jeon YJ, Min SC. Integrated in-package treatment of hydrogen peroxide and cold plasma for microbial inactivation of cabbage slices. Food Sci Biotechnol 2024; 33:1633-1640. [PMID: 38623427 PMCID: PMC11016018 DOI: 10.1007/s10068-024-01536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 04/17/2024] Open
Abstract
The efficacy of an in-package microbial inactivation method, combining H2O2 and atmospheric dielectric barrier discharge cold plasma (ADCP) treatments (H2O2-ADCP), in reducing contamination of Brassica oleracea (cabbage) slices was investigated. Cabbage slices were placed in a polyethylene terephthalate container with a H2O2-soaked polypropylene pad attached to the inside of the lid, followed by subjecting the closed container to ADCP treatment. The H2O2-ADCP treatment inactivated Escherichia coli O157:H7 and Listeria monocytogenes, resulting in reductions of 1.8 and 2.0 log CFU/g, respectively, which were greater than the sum of the inactivation effects observed with each individual treatment. The combined treatment decreased the count of Bacillus cereus spores and indigenous bacteria by 1.0 log spores/g and 1.3 log CFU/g, respectively. Moreover, the in-package method did not alter the moisture content or texture of cabbage slices. These results demonstrate the potential of H2O2-ADCP as a microbial decontamination method for packaged cabbage slices.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| | - Ga Eun Myung
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| | - Ye Jeong Jeon
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| | - Sea C. Min
- Department of Food Science and Technology, Seoul Women’s University, 621, Hwarangro, Nowon-Gu, Seoul, 01797 Republic of Korea
| |
Collapse
|
43
|
Mandal MK, Domb AJ. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024; 16:718. [PMID: 38931842 PMCID: PMC11206801 DOI: 10.3390/pharmaceutics16060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, polyphenols, are widespread in the entire kingdom of plants. They contain one or more hydroxyl groups that have a variety of biological functions in the natural environment. These uses include polyphenols in food, beauty products, dietary supplements, and medicinal products and have grown rapidly during the past 20 years. Antimicrobial polyphenols are described together with their sources, classes, and subclasses. Polyphenols are found in different sources, such as dark chocolate, olive oil, red wine, almonds, cashews, walnuts, berries, green tea, apples, artichokes, mushrooms, etc. Examples of benefits are antiallergic, antioxidant, anticancer agents, anti-inflammatory, antihypertensive, and antimicrobe properties. From these sources, different classes of polyphenols are helpful for the growth of internal functional systems of the human body, providing healthy fats, vitamins, and minerals, lowering the risk of cardiovascular diseases, improving brain health, and rebooting our cellular microbiome health by mitochondrial uncoupling. Among the various health benefits of polyphenols (curcumin, naringenin, quercetin, catechin, etc.) primarily different antimicrobial activities are discussed along with possible future applications. For polyphenols and antimicrobial agents to be proven safe, adverse health impacts must be substantiated by reliable scientific research as well as in vitro and in vivo clinical data. Future research may be influenced by this evaluation.
Collapse
Affiliation(s)
| | - Abraham J. Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
44
|
Shakeel S, Nur O, Sultana K, Razaq A, Mustafa E. Antibacterial efficacy of Rumex dentatusleaf extract-enriched zinc oxide and iron doped zinc nanoparticles: a comparative study. NANOTECHNOLOGY 2024; 35:305604. [PMID: 38631326 DOI: 10.1088/1361-6528/ad3fc3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
In the current investigation, zinc oxide (ZnO) nanoparticles and Fe-doped ZnO nanoparticles were sustainably synthesized utilizing an extract derived from theRumex dentatusplant through a green synthesis approach. The Scanning electron microscope (SEM), X-ray diffraction (XRD), Energy-dispersive x-ray spectroscopy (EDX), Ultra-violet visible spectroscopy (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) techniques were used to examine the compositional, morphological, optical, and thermal properties of both samples. The doping of iron into ZnO NPs has significantly influenced their properties. The analysis firmly established that both ZnO NPs and Fe-doped ZnO NPs have hexagonal wurtzite structures and spherical shapes by XRD and SEM. The EDX analysis suggests that iron atoms have been successfully integrated into the ZnO lattice. The change in color observed during the reaction indicated the formation of nanoparticles. The UV-vis peaks at 364 nm and 314 nm confirmed the presence of ZnO NPs and Fe-doped ZnO NPs, respectively. The band gap of ZnO NPs by Fe dopant displayed a narrowing effect. This indicates that adding iron ions to ZnO NPs offers a control band gap. The thermal study TGA revealed that Fe-doped ZnO NPs remain stable when heated up to 600 °C. The antibacterial efficacy of ZnO NPs and Fe-doped ZnO NPs was evaluated against several bacterial strains. The evaluation is based on the zone of inhibition (ZOI). Both samples exhibited excellent antibacterial properties as compared to conventional pharmaceutical agents. These results suggest that synthesizing nanoparticles through plant-based methods is a promising approach to creating versatile and environmentally friendly biomedical products.
Collapse
Affiliation(s)
- Sohail Shakeel
- Department of Physics, Hazara University, Mansehra, 21300, Pakistan
| | - Omer Nur
- Department of Physics & Measurement Technology Theoretical Physics Division-IFM S-581 83 Linkoping Norrkoping, SE 60174, Sweden
| | - Kishwar Sultana
- Department of Physics, Hazara University, Mansehra, 21300, Pakistan
| | - Aamir Razaq
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Defense Road, Off Raiwind Road Lahore, , 54000, Pakistan
| | - Elfatih Mustafa
- Department of Physics & Measurement Technology Theoretical Physics Division-IFM S-581 83 Linkoping Norrkoping, SE 60174, Sweden
| |
Collapse
|
45
|
Rahman NIA, Ramzi MM, Rawi NN, Siong JYF, Bakar K, Bhubalan K, Ariffin F, Saidin J, Azemi AK, Ismail N. Characterization of antibiofilm compound from marine sponge Stylissa carteri. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37552-37563. [PMID: 38780848 DOI: 10.1007/s11356-024-33704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The fouling phenomenon grabbed global attention and caused huge economic losses specifically in marine-related industries. Sessile behavior exposed the sponge to the risk of fouling. However, their bodies remained free from foulers, which were attributed to the chemical defense system. The objectives of this study were to determine the antibiofilm activity of the marine sponge, Stylissa carteri, and to characterize the isolated compound involved. The antibiofilm activity of S. carteri methanolic crude extract (MCE) and fractions was tested against biofilm-producing bacteria, Pseudomonas aeruginosa, using two different modes of crystal violet biofilm assays: preventive and detachment. Besides that, the disc-diffusion test was conducted to screen the antibacterial activity against gram-positive and gram-negative bacteria while a cytotoxicity assay was conducted on the HepG2 cell line. Bioassay-guided fractionation was carried out using vacuum liquid chromatography (VLC) and solid phase extraction using a C18 Sep-Pak Cartridge. The crystal compound was isolated and characterized through thin-layer chromatography (TLC), Fourier transform infrared (FTIR) spectroscopy, liquid chromatography-mass spectrometry (LCMS), and nuclear magnetic resonance (NMR) spectroscopy. The S. carteri MCE showed a promising result with a half-maximal inhibitory concentration (IC50) of 20.22 μg/mL in the preventive assay, while no IC50 was determined in the detachment assay since all inhibitions < 50%. The S. carteri MCE exhibited broad-spectrum antibacterial activity and displayed a non-cytotoxic effect. Fraction 4 from MCE of S. carteri (IC50 = 2.40 μg/mL) reduced the biofilm in the preventive assay at all concentrations and exhibited no antibacterial activity indicating the independence of antibiofilm from antibacterial properties. Based on the data obtained, an alkaloid named debromohymenialdisine (DBH) was identified from Fraction 4 of S. carteri MCE. In conclusion, S. carteri was able to reduce the establishment of the biofilm formed by P. aeruginosa and could serve as a prominent source of natural antifouling agents.
Collapse
Affiliation(s)
- Nor Izzati Abd Rahman
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Mujahidah Mohd Ramzi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Nurul Najihah Rawi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Julius Yong Fu Siong
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Kamariah Bakar
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Fazilah Ariffin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Jasnizat Saidin
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Noraznawati Ismail
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
46
|
Baroi AM, Fierascu I, Ghizdareanu AI, Trica B, Fistos T, Matei (Brazdis) RI, Fierascu RC, Firinca C, Sardarescu ID, Avramescu SM. Green Approach for Synthesis of Silver Nanoparticles with Antimicrobial and Antioxidant Properties from Grapevine Waste Extracts. Int J Mol Sci 2024; 25:4212. [PMID: 38673798 PMCID: PMC11050308 DOI: 10.3390/ijms25084212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The present work aims to study the possibilities of developing silver nanoparticles using natural extracts of grape pomace wastes originating from the native variety of Fetească Neagră 6 Șt. This study focused on investigating the influence of grape pomace extract obtained by two different extraction methods (classical temperature extraction and microwave-assisted extraction) in the phytosynthesis process of metal nanoparticles. The total phenolic content of the extracts was assessed using the spectrophotometric method with the Folin-Ciocâlteu reagent, while the identification and quantification of specific components were conducted through high-performance liquid chromatography with a diode array detector (HPLC-DAD). The obtained nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), along with assessing their antioxidant and antimicrobial properties against Gram-positive bacteria. The data collected from the experiments indicated that the nanoparticles were formed in a relatively short period of time (96 h) and, for the experimental variant involving the use of a 1:1 ratio (v/v, grape pomace extract: silver nitrate) for the nanoparticle phytosynthesis, the smallest crystallite sizes (from X-ray diffraction-4.58 nm and 5.14 nm) as well as spherical or semispherical nanoparticles with the lowest average diameters were obtained (19.99-23 nm, from TEM analysis). The phytosynthesis process was shown to enhance the antioxidant properties (determined using the DPPH assay) and the antimicrobial potential (tested against Gram-positive strains) of the nanoparticles, as evidenced by comparing their properties with those of the parent extracts; at the same time, the nanoparticles exhibited a selectivity in action, being active against the Staphylococcus aureus strain while presenting no antimicrobial potential against the Enterococcus faecalis strain.
Collapse
Affiliation(s)
- Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Andra-Ionela Ghizdareanu
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Roxana Ioana Matei (Brazdis)
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Cristina Firinca
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Ionela Daniela Sardarescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
- National Research and Development Institute for Biotechnology in Horticulture, Bucharet-Pitesti Str., 117715 Stefanesti, Romania
| | - Sorin Marius Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania;
- Research Centre for Environmental Protection and Waste Management (PROTMED), University of Bucharest, 91–95 Spl. Independenței, Sect. 5, 050107 Bucharest, Romania
| |
Collapse
|
47
|
Shereen MA, Ahmad A, Khan H, Satti SM, Kazmi A, Bashir N, Shehroz M, Hussain S, Ilyas M, Khan MI, Niyazi HA, Zouidi F. Plant extract preparation and green synthesis of silver nanoparticles using Swertia chirata: Characterization and antimicrobial activity against selected human pathogens. Heliyon 2024; 10:e28038. [PMID: 38524534 PMCID: PMC10957427 DOI: 10.1016/j.heliyon.2024.e28038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Herbal medicinal plants have been used for centuries in traditional medicine, and it is interesting to see how modern research has identified the active compounds responsible for their therapeutic effects. The green synthesis of silver nanoparticles using herbal medicinal plants, such as Swertia chirata, is particularly noteworthy due to its antimicrobial properties. In the current study, the Swertia chirata plant was collected for the first time from the region of Murree, Punjab, Pakistan. After collection, extracts were prepared in different solvents (ethanol, methanol, chloroform, and distilled water), and silver nanoparticles were synthesized by reducing silver nitrate (AgNO3). The UV-visible spectrophotometer, SEM, and EDX were used to characterize the synthesized nanoparticles in terms of their size and shape. The phytochemical analysis of crude extract was performed to determine the presence of different kinds of phytochemicals. The antibacterial activity of plant extracts and the silver nanoparticles were then assessed using the agar well diffusion method against various pathogenic bacteria. The results showed that the plant contains several phytochemicals with remarkable antioxidant potential. The antibacterial analysis revealed that silver nanoparticles and the plant extracts exhibited a significant zone of inhibition against human pathogenic bacteria (Escherichia coli, S. capitis, B. subtilis, and Pseudomonas aeruginosa) as compared to the cefixime and norfloxacin. This implies that the nanoparticles have the potential to be used in nano-medicine applications, such as drug delivery systems, as well as for their antibacterial, antifungal, and antiviral activities. Additionally, the development and application of materials and technologies at the nanometer scale opens possibilities for the creation of novel drugs and therapies. Overall, the study highlights the promising potential of herbal medicinal plants found in Murree, Punjab, Pakistan, and green-synthesized silver nanoparticles in various fields of medicine and nanotechnology.
Collapse
Affiliation(s)
| | - Aftab Ahmad
- Department of Microbiology, Kohsar University Murree, Murree, 47150, Pakistan
| | - Hashir Khan
- Department of Microbiology, Kohsar University Murree, Murree, 47150, Pakistan
| | - Sadia Mehmood Satti
- Department of Microbiology, Kohsar University Murree, Murree, 47150, Pakistan
- Alpha Genomics (Pvt), PWD Society, Islamabad, Punjab, Pakistan
| | - Abeer Kazmi
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Nadia Bashir
- Department of Microbiology, College of Life Sciences, Wuhan University, 430072, Wuhan, PR China
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree, 47150, Pakistan
| | - Shahid Hussain
- Department of Biotechnology, Kohsar University Murree, Murree, 47150, Pakistan
| | - Muhammad Ilyas
- Department of Botany, Kohsar University Murree, Murree, 47150, Pakistan
| | - M. Ijaz Khan
- Department of Mechanical Engineering, Lebanese American University, Kraytem, 1102-2801, Beirut, Lebanon
| | - Hatoon A. Niyazi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University Jeddah, 21589, Saudi Arabia
| | - Ferjeni Zouidi
- Faculty of Science and Arts, Muhayil Asser, King Khalid University, Saudi Arabia
| |
Collapse
|
48
|
Zuke JD, Burton BM. From isotopically labeled DNA to fluorescently labeled dynamic pili: building a mechanistic model of DNA transport to the cytoplasmic membrane. Microbiol Mol Biol Rev 2024; 88:e0012523. [PMID: 38466096 PMCID: PMC10966944 DOI: 10.1128/mmbr.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
49
|
Le PH, Linklater DP, Medina AA, MacLaughlin S, Crawford RJ, Ivanova EP. Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomater 2024; 177:20-36. [PMID: 38342192 DOI: 10.1016/j.actbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; Department of Biomedical Engineering, The Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arturo Aburto Medina
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shane MacLaughlin
- ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; BlueScope Steel Research, Port Kembla, NSW 2505, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia.
| |
Collapse
|
50
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|