1
|
Gaudin K. Potential of green solvents as mobile phases in liquid chromatography. J Chromatogr A 2025; 1750:465810. [PMID: 40179669 DOI: 10.1016/j.chroma.2025.465810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
This review summarizes the key points and focuses on the use of green solvents in reversed-phase high-performance liquid chromatography. Ethanol, acetone, ethyl lactate, propylene carbonate, dimethyl carbonate, methyl acetate, Cyrene, and glycerol are examined as green solvents, with an emphasis on their properties related to HPLC applications. A total of 135 articles published between 1990 and the present, which utilize ethanol-water mobile phases in RP-HPLC, highlight the established use of ethanol as a green solvent for RP-HPLC. Although ethanol is often characterized by its high viscosity and UV absorbance, it remains one of the most commonly used green solvents. This study shows that approximately 30 % of the ethanol-based methods developed employed columns with reduced particle diameters, without the need for column heating. In 26 % of cases, UV detection was used, even at wavelengths egal to or below 220 nm. However, ethanol's volatility and flammability pose risks of operator exposure and fire hazards. Consequently, alternative solvents have been explored to mitigate these issues. Acetone, with over 20 years of use, presents similar safety concerns, compounded by its high UV absorbance. Recent advances in greener solvents, such as Cyrene, glycerol, and natural deep eutectic solvents, have been investigated to address VOC concerns in HPLC. However, these solvents still face challenges, including UV absorption, immiscibility with water, high viscosity, and limited availability in HPLC-grade quality. Therefore, additional research is needed to facilitate their broader application.
Collapse
Affiliation(s)
- Karen Gaudin
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
2
|
Gomes M, Felgueiras HP, Leite BR, Soares GMB. Colourful Protection: Challenges and Perspectives of Antibacterial Pigments Extracted from Bacteria for Textile Applications. Antibiotics (Basel) 2025; 14:520. [PMID: 40426586 PMCID: PMC12108507 DOI: 10.3390/antibiotics14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial pigments have gained significant attention across multiple industries due to their natural hues and unique functional properties. Beyond coloration, some of these pigments exhibit antibacterial activity, making them particularly valuable in the textile industry as sustainable alternatives to synthetic antimicrobial treatments. Bacteria produce a vast array of pigments through diverse biosynthetic pathways, which reflect their metabolic adaptability and ecological roles. These pathways are influenced by environmental factors such as pH, temperature, and nutrient availability. Key pigments, including carotenoids, melanin, violacein, and prodigiosin, are synthesised through distinct mechanisms, often involving tightly regulated enzymatic reactions. For example, carotenoid biosynthesis relies on isoprenoid precursors, while melanin formation involves the oxidation of aromatic amino acids. Understanding these pathways provides insights into bacterial survival strategies, stress responses, and interactions with their environment. This review examines the dyeing potential of bacterial pigments on natural and synthetic fabrics, highlighting advancements in environmentally friendly extraction methods to minimise the ecological impact. Additionally, it explores safety, biocompatibility, and industrial challenges associated with bacterial pigment applications. Finally, future perspectives on integrating these pigments into various industries are discussed, emphasising their potential as bio-based solutions for sustainable and functional materials.
Collapse
Affiliation(s)
- Micaela Gomes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.G.); (G.M.B.S.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.G.); (G.M.B.S.)
| | - Barbara R. Leite
- RDD Textiles, Rua do Arranjinho 381 Fração, Q Pavilhão 17, 4750-803 Barcelos, Portugal;
| | - Graça M. B. Soares
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.G.); (G.M.B.S.)
| |
Collapse
|
3
|
Lin Y, Wang Y, Li Y. Exploring alternative solvents to n-hexane for green extraction of lipid from camellia oil cakes. Food Chem X 2025; 27:102443. [PMID: 40248316 PMCID: PMC12005931 DOI: 10.1016/j.fochx.2025.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Camellia oleifera Abel. is an important woody oilseed tree to help increase the self-sufficiency rate. In this study, lipid extraction focuses more on the solvent extraction of Camellia seed oil (CO) cakes rather than conventional cold pressing, where the performance of candidate alternative green solvents selected from hurdle technology was first evaluated. Compared to n-hexane (89.50 ± 0.00 %) and subcritical n-butane (83.75 ± 0.43 %), 2-methyloxolane (2-MeOx) performed the best with the comprehensive consideration of extraction ratio (94.79 ± 0.00 %), lipid composition and environmental impact (0.38 ± 0.07 kg of CO2 emission). Intriguingly, 2-MeOx exhibited the highest diffusion rate at both 25 °C and 55 °C in the extraction kinetic study, which could also extract the highest total phenolic contents (351.6 ± 0.02 mg GAE/kg dw) corresponding to its best oxidative stability. Besides, Hansen solubility modeling could help better understand the dissolving mechanism. 2-MeOx was demonstrated as the optimal alternative bio-based solvent to n-hexane with comparable extractability and selectivity in the CO extraction.
Collapse
Affiliation(s)
- Yingyi Lin
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou 510632, China
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou 510632, China
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou 510632, China
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Zheng S, Sun S, Manker LP, Luterbacher JS. Aldehyde-Stabilization Strategies for Building Biobased Consumer Products around Intact lignocellulosic Structures. Acc Chem Res 2025; 58:877-892. [PMID: 40048243 DOI: 10.1021/acs.accounts.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Dwindling fossil resources and their associated environmental concerns have increased interest in biobased products. In particular, many approaches to convert lignocellulosic biomass into small-molecule building blocks are being explored via thermal, chemical, and biological processes. Depending on their structure, these molecules can be used as direct (i.e., drop-in) or indirect (different molecule from what is used today) substitutes for petrochemicals. In all such cases, biomass must be deconstructed, which involves the depolymerization of lignin and polysaccharides as well as their further transformation to produce these substitutes. Deconstruction often requires harsh conditions that cause degradation, and further upgrading implies multiple conversion steps, especially for drop-in molecules, all of which lead to low atom economy. Our group has developed an aldehyde-stabilization strategy that facilitates the depolymerization of lignocellulose to monomers in high yields by stabilizing intermediates under biomass deconstruction conditions. This strategy has now been adapted to prepare indirect substitutes for petrochemicals with very high atom economy including biobased solvents, plastic precursors, adhesives, and surfactants, which have widespread applications in modern society.In this Account, we first introduce the function of aldehydes using formaldehyde (FA) as an example. Specifically, we discuss their role in assisting lignin isolation and their ability to stabilize lignin by looking at the lignin monomer yields that can be obtained after hydrogenolysis of the associated aldehyde-functionalized lignin. Highly selective production of lignin monomers was achieved using acetaldehyde (AA) or propionaldehyde (PPA) as a stabilization reagent via either reductive or oxidative depolymerization. In a typical FA-assisted fractionation, hemicellulose was directly converted into diformylxylose (DFX), while cellulose with properties similar to those obtained by organosolv was isolated but could be converted to diformyl-glucose isomers (DFGs) by further hydrolysis. These stable molecules provide us a new method to preserve sugar molecules that often degrade during acidic fractionation, which will be discussed in Section 3. Besides, DFX can also be used as a green solvent (Section 4), while FA-lignin exhibits excellent adhesion properties for plywood preparation (Section 5). Biobased glyoxylic acid (GA) was used to convert hemicellulose into a high yield of dimethylglyoxylic-acid-xylose (DMGX), a terephthalic acid (TA) substitute for bioplastics production (Section 6), while GA-lignin demonstrates great amphiphilic properties and finds applications as surfactants in cosmetic products (Section 7). When fatty aldehydes were used as stabilization reagents, both lignin and hemicellulose were converted to surfactants by downstream defunctionalization (Section 7). We will also discuss the current limitations of this aldehyde-stabilization strategy for biomass utilization as well as potential solutions and improvements to said limitations. With this Account, we hope to spur further interest in aldehyde stabilization as a tool to deconstruct biomass and build new consumer products around functionalized and thus largely preserved natural structures.
Collapse
Affiliation(s)
- Shasha Zheng
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Songlan Sun
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lorenz P Manker
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jeremy S Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
5
|
Lemos AA, Chapana AL, Lujan CE, Botella MB, Oviedo MN, Wuilloud RG. Eco-friendly solvents in liquid-liquid microextraction techniques for biological and environmental analysis: a critical review. Anal Bioanal Chem 2025; 417:1239-1259. [PMID: 39392506 DOI: 10.1007/s00216-024-05578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In recent years, green solvents have emerged as promising alternatives in the field of analytical chemistry, replacing conventional organic solvents known for their toxicity, volatility, and flammability. The combination of these solvents with liquid-liquid microextraction techniques has facilitated the development of simpler, faster, more economical, and environment-friendly methodologies for the analysis of samples of varying complexity. This review discusses the fundamental physicochemical properties and advantages of using deep eutectic solvents, ionic liquids, switchable-hydrophilicity solvents, supramolecular solvents, and surfactants as extractants. Furthermore, analytical methods based on liquid-liquid microextraction techniques developed in the last 5 years for the determination of organic compounds and metals in biological and environmental samples are presented and discussed, highlighting their applications and benefits to improve analytical performance and sustainability.
Collapse
Affiliation(s)
- Aldana A Lemos
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Agostina L Chapana
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Cecilia E Lujan
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - María B Botella
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - María N Oviedo
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica Para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500), Mendoza, Argentina.
| |
Collapse
|
6
|
Uzunlu Ince N, Pongrácz P, Kollár L, Szilágyi A, Takács A, Mika LT. Alkyl 4-Alkoxyvalerates: Characterization and Application in Pd-Catalyzed Aminocarbonylation of Iodo(hetero)arene Compounds. Chempluschem 2025; 90:e202400713. [PMID: 39714987 DOI: 10.1002/cplu.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The palladium-catalyzed aminocarbonylation is one of the most effective methods for the synthesis of carboxamides having great importance. Replacing fossil-based organic solvents in this routinely used catalytic protocol with biomass-derived media is crucial for developing environmentally safe alternatives and towards sustainability considerations. In this study, the open-chain derivatives of bio-originated substance γ-valerolactone i. e. alkyl 4-alkoxyvalerates (alkyl: methyl, ethyl, and propyl) were characterized and tested as potential polar aprotic alternatives of fossil-based common N,N-dimethylformamide (DMF) in aminocarbonylation protocols. First, the temperature-dependent physicochemical properties of alkyl 4-alkoxyvalerates were determined. Based on their characteristics, methyl 4-methoxyvalerate (Me-4MeOV) was selected and introduced in the Pd-catalyzed aminocarbonylation of iodobenzene and morpholine as a model reaction, and an optimization study was carried out. Using the optimized conditions, several substituted iodobenzenes, as well as heteroaryl iodides, were successfully applied resulting in the target carboxamides selectively in short reaction time. Furthermore, the aminocarbonylation of iodobenzene in the presence of various amines was also accomplished extending the scope of the carboxamides produced in this alternative medium. Considering our observations, such as high conversions (up to 95 %) in short reaction time and selective amide formation, it has been justified that Me-4MeOV could be an appropriate alternative medium in aminocarbonylation protocols.
Collapse
Affiliation(s)
- Nuray Uzunlu Ince
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - Péter Pongrácz
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Material Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Attila Takács
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| |
Collapse
|
7
|
Li X, Yun Y, Wang Y, Zhu W, Bu Q, Fan Y, Wang H. High-performance delivery capsules co-assembled from lignin and chitosan with avermectin for sustainable pest management. Int J Biol Macromol 2025; 289:138894. [PMID: 39701228 DOI: 10.1016/j.ijbiomac.2024.138894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Inexpensive biomass materials hold great potential for the development of green delivery systems aimed at improving the extremely low utilization efficiency of pesticides. However, current systems face challenges in achieving both high encapsulation rates and drug loading capacities. This study introduces a novel method using chitosan (CS) and sodium lignosulfonate (SL) to co-assemble with avermectin (AVM), a widely used hydrophobic pesticide, forming AVM-CS-SL micro-nano capsules. Engineered under optimized conditions of pH 5 and 40 °C, the capsules exhibit an AVM encapsulation efficiency of 84.27 % and a loading capacity of 90 %. The AVM-CS-SL capsules demonstrate multifunctional attributes that enhance pesticide application. The capsules, with an average diameter of 356 nm, facilitate stable embedding in leaf grooves and enable effective adhesion to leaf surfaces, thereby improving their resistance to wash-off by rain compared to conventional formulations. Their core-shell structure protects AVM from photodegradation, ensuring long-term stability and efficacy. The capsules also exhibit enhanced bioactivity, with higher mortality rates in Plutella xylostella larvae and low genotoxicity to Vicia faba plants. These findings highlight the strategy of developing multifunctional delivery systems by the co-assembled carrier materials with active ingredients, offering an effective solution for the sustainable development of society and environment.
Collapse
Affiliation(s)
- Xuan Li
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yixin Yun
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yitong Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wanbin Zhu
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Quan Bu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yaxun Fan
- University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, and School of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, China.
| | - Hongliang Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
8
|
Singh PK, Singh N, Singh AP, Bhardwaj P, Sachan K, Singh S. Mixed Solvency Concept to Replace Harmful Organic Solvent: Recent Trends and Future Challenges in Formulation Development. Comb Chem High Throughput Screen 2025; 28:226-238. [PMID: 38504573 DOI: 10.2174/0113862073285654240308055228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/27/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Organic solvents are hazardous and should be replaced with less harmful alternatives. When developing a new formulation for a medicine with low aqueous solubility, improving its solubility might be a significant difficulty. According to the mixed solvency concept, a novel concept of solubilization, the solubility of poorly soluble drugs can be increased by dissolving them in a concentrated solution comprising various substances. Methods commonly used to improve solubility include complexation, pH modification, salt formation, hydrotropy, cosolvency, and micelle solubilization. By reducing the concentration of specific solubilizers, this method can be used to reduce the toxicity of solubilizers in various formulations of poorly soluble medicines. This review aims to provide scientists with a fresh concept for enhancing medication solubility. The benefits and drawbacks of currently available green solvents have been analyzed as potential replacements for traditional solvents. Some examples of these solvents are bio-based solvents like ethanol, methanol, and cyrene; d-limonene; deep eutectic solvents such as ionic liquids and natural deep eutectic solvents; supercritical fluids; subcritical water; surfactant-based solutions like hydrotopes and supramolecular solvents; and deep eutectic solvents like cyrene.
Collapse
Affiliation(s)
- Pranjal Kumar Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Nidhi Singh
- Sunder Deep Pharmacy College, Dasna, Ghaziabad, Uttar Pradesh, India
| | - Atul Pratap Singh
- School of Pharmaceutical Sciences, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, India
| | - Poonam Bhardwaj
- NKBR College of Pharmacy and Research Center, Phaphunda, Meerut, Uttar Pradesh, India
| | - Kapil Sachan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Smita Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
9
|
Carbonell-Rozas L, Canales R, Romero-González R, Silva MF, Frenich AG. Structural characterization and physicochemical properties of different hydrophilic natural deep eutectic solvents. Anal Bioanal Chem 2025; 417:183-197. [PMID: 39531057 DOI: 10.1007/s00216-024-05636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
To overcome the toxic nature of organic solvents, scientific interest in the use of green solvents, particularly natural deep eutectic solvents (NADES), has increased over the past decade, leading to new applications in the food, nutraceutical, pharmaceutical, and cosmetic industries. Understanding the physicochemical properties and molecular interactions of NADES is essential for uncovering new potential applications in these fields. In this study, several lactic and citric acid-based NADES, as well as chloride choline- and urea-based NADES, were evaluated for their physicochemical properties, including density, pH, viscosity, conductivity, and refractive index. Additionally, nuclear magnetic resonance (NMR), and in particular nuclear Overhauser enhancement spectroscopy (NOESY), was employed to investigate the intermolecular interactions between the NADES components to confirm the formation of the eutectic mixture. The extraction efficiency of the confirmed NADES was tested for extracting polyphenols as a proof of concept to highlight their relationship with the measured properties. Lactic and choline chloride-based NADES provided the highest extraction yields. These results were also compared with the predicted extraction capabilities of each NADES provided by the COSMO-RS software.
Collapse
Affiliation(s)
- Laura Carbonell-Rozas
- Analytical Chemistry of Contaminants, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120, Almeria, Spain.
| | - Romina Canales
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Roberto Romero-González
- Analytical Chemistry of Contaminants, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120, Almeria, Spain
| | - María Fernanda Silva
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Antonia Garrido Frenich
- Analytical Chemistry of Contaminants, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, E-04120, Almeria, Spain
| |
Collapse
|
10
|
Saboury F, Azizi N, Mirjafari Z, Hashemi MM. Efficient synthesis of α-aminophosphonates using magnetically retrievable ionic nanocatalysts under ultrasound acceleration. Sci Rep 2024; 14:31145. [PMID: 39732790 DOI: 10.1038/s41598-024-82375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of Fe3O4@SiO2@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified Fe3O4. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis. The results confirmed the successful attachment of the ionic liquid to the magnetic substrate. Subsequently, the magnetic nanocatalyst was employed for the green synthesis of α-aminophosphonate derivatives. The synthesis was achieved via a one-pot, three-component reaction involving various aldehydes, amines, and different trialkyl(aryl) phosphite derivatives. The reactions were conducted under ultrasound conditions for a duration of 10-25 min, resulting in good to excellent product yields (64-97%). Its recyclability was tested for up to five cycles using magnetic separation which makes it a highly efficient method for quickly separating catalysts from the reaction medium without compromising catalytic activity.
Collapse
Affiliation(s)
- Farzaneh Saboury
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Zohreh Mirjafari
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
11
|
Boichenko DS, Kolomoets NI, Boiko DA, Galushko AS, Posvyatenko AV, Kolesnikov AE, Egorova KS, Ananikov VP. Build-a-Bio-Strip: An Online Platform for Rapid Toxicity Assessment in Chemical Synthesis. J Chem Inf Model 2024; 64:8373-8378. [PMID: 39488853 DOI: 10.1021/acs.jcim.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The increasing need to understand and control the environmental impact of chemical processes has revealed the challenge in efficient evaluation of toxicity of the vast number of chemical compounds and their varying effects on biological systems. In this study, we introduce "Build-a-bio-Strip", a novel online service designed to carry out a quick initial analysis of the toxic impact of chemical processes. This platform enables users to automatically generate toxicity characteristics of chemical reactions using their own data on cytotoxicity or median lethal doses of the substances involved or computational predictions based on SMILES strings. The service calculates the toxicity metrics such as bio-Factors and cytotoxicity potentials, which can be used to identify the substances with significant contributions to the overall toxicity of a particular process. This facilitates the selection of safer synthetic routes and the optimization of chemical processes from a toxicity perspective. "Build-a-bio-Strip" represents a step toward safer and more sustainable chemical practices. It is available free-of-charge at http://app.ananikovlab.ai:8080/.
Collapse
Affiliation(s)
- Dmitry S Boichenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory GSP-1, 1-3, Moscow 119991, Russia
| | - Nikita I Kolomoets
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Andrey E Kolesnikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
12
|
Sarmah D, Choudhury A, Bora U. Palladium nanoparticle catalyzed synthesis of indoles via intramolecular Heck cyclisation. Org Biomol Chem 2024; 22:6419-6431. [PMID: 39069947 DOI: 10.1039/d4ob01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A system utilizing palladium(II)-PEG has been devised for the intramolecular Heck cyclization of N-vinyl and N-allyl-2-haloanilines. The synthesis of a variety of indoles, including 2,3-diester substituted ones and 3-methyl indoles, has been accomplished using this catalytic system. The N-vinyl starting materials are obtained by the aza-Michael addition of 2-haloanilines with alkynecarboxylate esters, which, upon cyclization, yield ester-substituted indoles. Conversely, N-allyl-2-haloanilines yield 3-methylated indoles as the major products. The high activity of the system is owed to the in situ generation of Pd nanoparticles.
Collapse
Affiliation(s)
- Debasish Sarmah
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
- Department of Chemistry, Dakshin Kamup College, Mirza, Kamrup, Assam, India
| | - Anup Choudhury
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, India
| | - Utpal Bora
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
| |
Collapse
|
13
|
Dutta S. Catalytic Transformation of Carbohydrates into Renewable Organic Chemicals by Revering the Principles of Green Chemistry. ACS OMEGA 2024; 9:26805-26825. [PMID: 38947803 PMCID: PMC11209912 DOI: 10.1021/acsomega.4c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Adherence to the principles of green chemistry in a biorefinery setting ensures energy efficiency, reduces the consumption of materials, simplifies reactor design, and rationalizes the process parameters for synthesizing affordable organic chemicals of desired functional efficacy and ingrained sustainability. The green chemistry metrics facilitate assessing the relative merits and demerits of alternative synthetic pathways for the targeted product(s). This work elaborates on how green chemistry has emerged as a transformative framework and inspired innovations toward the catalytic conversion of biomass-derived carbohydrates into fuels, chemicals, and synthetic polymers. Specific discussions have been incorporated on the judicious selection of feedstock, reaction parameters, reagents (stoichiometric or catalytic), and other synthetic auxiliaries to obtain the targeted product(s) in desired selectivity and yield. The prospects of a carbohydrate-centric biorefinery have been emphasized and research avenues have been proposed to eliminate the remaining roadblocks. The analyses presented in this review will steer to developing superior synthetic strategies and processes for envisaging a sustainable bioeconomy centered on biomass-derived carbohydrates.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore-575025, Karnataka, India
| |
Collapse
|
14
|
Armandsefat F, Hamzehzadeh S, Azizi N. Efficient and promising oxidative desulfurization of fuel using Fenton like deep eutectic solvent. Sci Rep 2024; 14:12614. [PMID: 38824177 PMCID: PMC11144205 DOI: 10.1038/s41598-024-62781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Oxidative desulfurization (ODS) has emerged as a prominent technique for the removal of sulfur compounds from fuels, aiming to comply with stringent environmental regulations and minimize sulfur dioxide emissions. Herein, Fenton-like deep eutectic solvents (DESs) were synthesized as a catalyst and reaction medium and their application for the ODS process was investigated. The study encompassed the optimization of DES composition, reaction conditions, and the influence of different parameters on the desulfurization efficiency. The experimental findings demonstrated that the Fenton-like DES exhibited outstanding catalytic activity in the oxidative desulfurization of fuel. The optimized conditions involved conducting the reaction at room temperature for 2.5 h, using 200 mg of the prepared DES (HNFM-FeCl4) as both the extraction solvent and catalyst. An oxidant-to-sulfur (O/S) ratio of approximately 3:1 was maintained, with a 30 wt% H2O2 solution utilized as the oxidant. The analysis of the reaction products using GC-MS revealed a remarkable yield of 98% for dibenzothiophene sulfone. The DES provided a suitable medium for the reaction, enhancing the solubility and availability of sulfur compounds. The iron catalyst, in the presence of hydrogen peroxide, facilitated the oxidation of sulfur-containing compounds to their corresponding sulfones, which can be easily separated from the fuel phase. The DES catalysts exhibited stability and recyclability, making them suitable for practical applications in fuel desulfurization processes.
Collapse
Affiliation(s)
- Fatemeh Armandsefat
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
| | - Sholeh Hamzehzadeh
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| |
Collapse
|
15
|
Rabadán González I, McLean JT, Ostrovitsa N, Fitzgerald S, Mezzetta A, Guazzelli L, O'Shea DF, Scanlan EM. A thiol-ene mediated approach for peptide bioconjugation using 'green' solvents under continuous flow. Org Biomol Chem 2024; 22:2203-2210. [PMID: 38414440 DOI: 10.1039/d4ob00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Flow chemistry has emerged as an integral process within the chemical sector permitting energy efficient synthetic scale-up while improving safety and minimising solvent usage. Herein, we report the first applications of the photoactivated, radical-mediated thiol-ene reaction for peptide bioconjugation under continuous flow. Bioconjugation reactions employing deep eutectic solvents, bio-based solvents and fully aqueous systems are reported here for a range of biologically relevant peptide substrates. The use of a water soluble photoinitiator, Irgacure 2959, permitted synthesis of glycosylated peptides in fully aqueous conditions, obviating the need for addition of organic solvents and enhancing the green credentials of these rapid, photoactivated, bioconjugation reactions.
Collapse
Affiliation(s)
- Inés Rabadán González
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Sheila Fitzgerald
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Donal F O'Shea
- Department of Chemistry, RCSI, 123 St Stephen's Green, Dublin 2, Ireland
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
16
|
Michel T, Loyet C, Boulho R, Eveno M, Audo G. Investigation of alternative two-phase solvent systems for purification of natural products by centrifugal partition chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:401-408. [PMID: 37872711 DOI: 10.1002/pca.3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Centrifugal partition chromatography (CPC) is a liquid-liquid chromatography characterised by its solvent flexibility. The compounds undergoing separation are subjected to a continuous partition process between two immiscible phases in a column space free of solid support. In the context of green chemistry, it is important to substitute halogenated and petroleum-based solvents commonly used in purification processes. OBJECTIVES The main goal of the current study was to replace classical solvents used in CPC (e.g., hexane and methanol) by green and renewable alternatives. METHODS Solvents were first selected based on literature. Their commercial availability, price, recyclability, toxicity and ability to form two phases were particularly sought after. KEY FINDINGS The new two-phase solvent systems were evaluated for the purification of two compounds of interest: piperine and cannabidiol. Using these alternative two-phase solvent systems allows us to isolate natural products with a high purity level (> 95%). CONCLUSION Substituting petroleum-based solvents with bio-sourced, renewable alternatives reduces the environmental impact of CPC. Herein, new biphasic solvent systems were built using hexamethyldisiloxane, ethyl isobutyrate and 2-methyl tetrahydrofuran in combination with ethanol and water. Furthermore, this research provides a scientific basis for developing new and sustainable solvent systems in CPC.
Collapse
|
17
|
Patel M, Bambharoliya T, Shah D, Patel K, Patel M, Shah U, Patel S, Mahavar A, Patel A. Emerging green synthetic routes for thiazole and its derivatives: Current perspectives. Arch Pharm (Weinheim) 2024; 357:e2300420. [PMID: 38013395 DOI: 10.1002/ardp.202300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
This review article provides an overview of the green synthesis of thiazole derivatives, emphasizing sustainable and environmentally friendly methodologies. Thiazole derivatives possess significant value and find diverse applications across various fields. However, conventional synthesis methods often involve hazardous reagents and generate substantial waste, posing environmental concerns. The green synthesis of thiazole derivatives employs renewable starting materials, nontoxic catalysts, and mild reaction conditions to minimize environmental impact. Innovative techniques such as microwave irradiation, ultrasound synthesis, green solvents, a green catalyst-based approach, and mechanochemistry-mediated synthesis are employed, offering advantages in terms of scalability, cost-effectiveness, and purification simplicity. The resulting thiazole derivatives exhibit comparable or enhanced biological activities, showcasing the feasibility and practicality of green synthesis in drug discovery. This review paper underscores the importance of sustainable approaches in functional molecular synthesis and encourages further research in this domain.
Collapse
Affiliation(s)
- Maitri Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Tushar Bambharoliya
- Department of Fiber and Polymer Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Drashti Shah
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Krina Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Mehul Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Umang Shah
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Swayamprakash Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Anjali Mahavar
- Faculty of Computer Application, Chandaben Mohanbhai Patel Institute of Computer Application, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Ashish Patel
- Faculty of Pharmacy, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
18
|
Zhang Q, Hu C, Pang X, Chen X. Multi-Functional Organofluoride Catalysts for Polyesters Production and Upcycling Degradation. CHEMSUSCHEM 2024; 17:e202300907. [PMID: 37735092 DOI: 10.1002/cssc.202300907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The production and degradation of polyesters are two crucial processes in polyester materials' life cycle. In this work, multi-functional organocatalysts based on fluorides for both processes are described. Organofluorides were developed as catalysts for ring-opening polymerization of lactide (lactone). Compared with a series of organohalides, organofluoride performed the best catalytic reactivity because of the hydrogen bond interaction between F- and alcohol initiator. The Mn values of polyester products could be up to 72 kg mol-1 . With organofluoride catalysts, the ring-opening copolymerization between various anhydrides and epoxides could be established. Furthermore, terpolymerization of anhydride, epoxide, and lactide could be constructed by the self-switchable organofluoride catalyst to yield a block polymer with a strictly controlled polymerization sequence. Organofluorides were also efficient catalysts for upcycling polyester plastic wastes via alcoholysis. Mixed polyester materials could also be hierarchically recycled.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| |
Collapse
|
19
|
Ali A, Naveed A, Maroń A, Younis MA, Moradian JM, Yousaf B, Aziz T, Ali RN, Ahmad N, Alomar SY, Zheqiang F, Guo L. Copolymerization of ethylene and isoprene via silicon bridge metallocene [rac-Me 2Si(2-Me-4-Ph-Ind) 2ZrCl 2] catalyst: A new way to control the composition and microstructure of copolymers. CHEMOSPHERE 2024; 347:140700. [PMID: 37977533 DOI: 10.1016/j.chemosphere.2023.140700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The copolymerization of ethylene (E) with isoprene (Ip) was performed catalyzed by a symmetrical catalyst exhibiting a silicon bridge [rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 with the combination of borate/TIBA activator. The effect of cocatalyst, Ip concentration, and polymerization temperature on the activity, molecular weight (Mw), distribution (MWD), comonomer composition, chain structure (regio- and stereoselectivity), and resulting side reactions were logically addressed. Gel-permeation chromatography (GPC) was used to characterize the Mw and polydispersity, while nuclear magnetic resonance (NMR) was employed for the chain structure of the polymers. The catalytic activity was significantly lower by increasing the Ip concentration in the feed, and the isoprene content in resulting polymers was lower under the reaction condition, leading to higher activity. Insertion of isoprene units in polymer structure demonstrates the higher regioselectivity for the 3,4 connections than the 1,4 connections and is expected to be a high-resistance polymer against acids. The MWD presented monomodal even with a higher concentration (1.44 mol/L) and did not appear as low Mw peaks of Ip. The Mw was higher with a broader MWD when purely TIBA was used as a cocatalyst, and it significantly reduced and presented a narrowed MWD with TEA in the cocatalyst. The higher efficiency of the catalyst for the higher insertion of Ip (C=C double bond) effectively modifies the polymer backbone. It is expected to be a promising candidate for easily degradable and favorable solutions for solving environmental problems caused by PE. wastes.
Collapse
Affiliation(s)
- Amjad Ali
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-600, Poland; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ahmad Naveed
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Anna Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-600, Poland
| | - Muhammad Adnan Younis
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, PR China
| | | | - Balal Yousaf
- Department of Technologies and Installations for West Management, Faculty of Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Tariq Aziz
- School of Engineering Yunqi Campus, Westlake University, Hangzhou, Zhejiang, 310024, PR China
| | - Rai Nauman Ali
- Laboratory of Inorganic Materials for Sustainable Energy Technologies, Mohammed IV Polytechnic University, Benguirer, Morocco
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Fan Zheqiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
20
|
Fischer D. Sustainability in Drug and Nanoparticle Processing. Handb Exp Pharmacol 2024; 284:45-68. [PMID: 37306814 DOI: 10.1007/164_2023_659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formulation of drugs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles can be accomplished by various methods, with nanoprecipitation and nanoemulsion being among the most commonly used manufacturing techniques to provide access to high-quality nanomaterials with reproducible quality. Current trends turned to sustainability and green concepts leading to a re-thinking of these techniques, particularly as the conventional solvents for the dissolution of the polymer suffer from limitations like hazards for human health and natural environment. This chapter gives an overview about the different excipients used in classical nanoformulations with a special focus on the currently applied organic solvents. As alternatives, the status quo of green, sustainable, and alternative solvents regarding their application, advantages, and limitations will be highlighted as well as the role of physicochemical solvent characteristics like water miscibility, viscosity, and vapor pressure for the selection of the formulation process, and for particle characteristics. New alternative solvents will be introduced for PLGA nanoparticle formation and compared regarding particle characteristics and biological effects as well as for in situ particle formation in a matrix consisting of nanocellulose. Conclusively, new alternative solvents are available that present a significant advancement toward the replacement of organic solvents in PLGA nanoparticle formulations.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
21
|
Kapitanov IV, Špulák M, Pour M, Soukup O, Marek J, Jun D, Novak M, Diz de Almeida JSF, França TCC, Gathergood N, Kuča K, Karpichev Y. Sustainable ionic liquids-based molecular platforms for designing acetylcholinesterase reactivators. Chem Biol Interact 2023; 385:110735. [PMID: 37802409 DOI: 10.1016/j.cbi.2023.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
We report a green chemistry approach for preparation of oxime-functionalized ILs as AChE reactivators: amide/ester linked IL, l-alanine, and l-phenylalanine derived salts bearing pyridinium aldoxime moiety. The reactivation capacities of the novel oximes were evaluated towards AChE inhibited by typical toxic organophosphates, sarin (GB), VX, and paraoxon (PON). The studied compounds are mostly non-toxic up to the highest concentrations screened (2 mM) towards Gram-negative and Gram-positive bacteria cell lines and both filamentous fungi and yeasts in the in vitro screening experiments as well as towards the eukaryotic cell (CHO-K1 cell line). Introduction of the oxime moiety in initially biodegradable structure decreases its ability to biodegradation. The compound 3d was shown to reveal remarkable activity against the AChE inhibited by VX, exceeding conventional reactivators 2-PAM and obidoxime. The regularities on antidotal activity, cell viability, plasma stability, biodegradability as well as molecular docking study of the newly synthesized oximes will be used for further improvement of their structures.
Collapse
Affiliation(s)
- Illia V Kapitanov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Marcel Špulák
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic
| | - Ondřej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Marek
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Epidemiology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Epidemiology, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Martin Novak
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Joyce S F Diz de Almeida
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Tanos C C França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Nicholas Gathergood
- School of Chemistry, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
22
|
Simon P, Lőrinczi B, Hetényi A, Szatmári I. Novel Eco-friendly, One-Pot Method for the Synthesis of Kynurenic Acid Ethyl Esters. ACS OMEGA 2023; 8:17966-17975. [PMID: 37251176 PMCID: PMC10210203 DOI: 10.1021/acsomega.3c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
The synthesis of kynurenic acid derivatives with potential biological effect was investigated and optimized for one-batch, two-step microwave-assisted reactions. Utilizing both chemically and biologically representative non-, methyl-, methoxy-, and chlorosubstituted aniline derivatives, in catalyst-free conditions, syntheses of seven kynurenic acid derivatives were achieved in a time frame of 2-3.5 h. In place of halogenated reaction media, tuneable green solvents were introduced for each analogue. The potential of green solvent mixtures to replace traditional solvents and to alter the regioisomeric ratio regarding the Conrad-Limpach method was highlighted. The advantages of the fast, eco-friendly, inexpensive analytic technique of TLC densitometry were emphasized for reaction monitoring and conversion determination in comparison to quantitative NMR. Moreover, the developed 2-3.5 h syntheses were scaled-up to achieve gram-scale products of KYNA derivatives, without altering the reaction time in the halogenated solvent DCB and more importantly in its green substitutes.
Collapse
Affiliation(s)
- Péter Simon
- Institute
of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute
of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Anasztázia Hetényi
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute
of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry
Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
23
|
Kapitanov IV, Sudheer SM, Yadav T, Ghosh KK, Gathergood N, Gupta VK, Karpichev Y. Sustainable Phenylalanine-Derived SAILs for Solubilization of Polycyclic Aromatic Hydrocarbons. Molecules 2023; 28:molecules28104185. [PMID: 37241924 DOI: 10.3390/molecules28104185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The solubilization capacity of a series of sustainable phenylalanine-derived surface-active ionic liquids (SAILs) was evaluated towards polycyclic aromatic hydrocarbons-naphthalene, anthracene and pyrene. The key physico-chemical parameters of the studied systems (critical micelle concentration, spectral properties, solubilization parameters) were determined, analyzed and compared with conventional cationic surfactant, CTABr. For all studied PAH solubilization capacity increases with extension of alkyl chain length of PyPheOCn SAILs reaching the values comparable to CTABr for SAILs with n = 10-12. A remarkable advantage of the phenylalanine-derived SAILs PyPheOCn and PyPheNHCn is a possibility to cleave enzymatically ester and/or amide bonds under mild conditions, to separate polycyclic aromatic hydrocarbons in situ. A series of immobilized enzymes was tested to determine the most suitable candidates for tunable decomposition of SAILs. The decomposition pathway could be adjusted depending on the choice of the enzyme system, reaction conditions, and selection of SAILs type. The evaluated systems can provide selective cleavage of the ester and amide bond and help to choose the optimal decomposition method of SAILs for enzymatic recycling of SAILs transformation products or as a pretreatment towards biological mineralization. The concept of a possible practical application of studied systems for PAHs solubilization/separation was also discussed focusing on sustainability and a green chemistry approach.
Collapse
Affiliation(s)
- Illia V Kapitanov
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
| | - Surya M Sudheer
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
| | - Toshikee Yadav
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 92010, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 92010, India
| | - Nicholas Gathergood
- School of Chemistry, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
- Biorefining and Advanced Materials Research Centre, SRUC, Parkgate, Dumfries DG1 3NE, UK
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), 12618 Tallinn, Estonia
| |
Collapse
|
24
|
Xu Z, Liu S, Lai H, You L, Zhao Z. Green-Efficient Enzymatic Synthesis and Characterization of Liposoluble 6'/6″- O-Lauryl Phenolic Glycosides with Enhanced Intestinal Permeability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7689-7702. [PMID: 37167604 DOI: 10.1021/acs.jafc.3c00527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Arbutin, salidroside, polydatin, and phlorizin are typically natural bioactive phenolic glycosides. To improve the liposolubility and bioavailability, highly liposoluble derivatives including 6'-O-lauryl arbutin, 6'-O-lauryl salidroside, 6″-O-lauryl polydatin, and 6″-O-lauryl phlorizin were efficiently synthesized by enzymatic acylation in a green solvent 2-MeTHF. Their reaction conversions reached 84.4, 99.5, 99.8, and 89.1%, respectively, when catalyzed by Lipozyme 435 at 20 mg/mL at 50 °C. As expected, the derivatives had high log P (1.66-2.37) and retained good antioxidant activity, making them potential alternatives to butylated hydroxytoluene (BHT) and tert-butyl-hydroquinone (TBHQ) in lipid systems. Then, the intestinal permeability characteristics and metabolism of phenolic glycosides and their derivatives were investigated based on Caco-2 monolayers. The permeability of polydatin and phlorizin was mainly through active transport, but that of arbutin and salidroside involved both passive diffusion and active uptake. The acylated derivatives suffered from severe CES-mediated hydrolysis but exhibited a larger transported amount than phenolic glycosides.
Collapse
Affiliation(s)
- Zhengming Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huining Lai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
25
|
Zhang Y, Wang S, Fang Z, Li H, Fang J. Molecular design and experimental study of deep eutectic solvent extraction of keratin derived from feathers. Int J Biol Macromol 2023; 241:124512. [PMID: 37086760 DOI: 10.1016/j.ijbiomac.2023.124512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Feather keratin has a complex structure, hard texture and must be treated to improve its bioavailability. In this paper, according to the designability of DES, some deep eutectic solvents (DESs) were prepared to degrade feathers and extract keratin. Calculations by quantum chemical methods showed that DESs were considered molecular scissors with the ability to break initial hydrogen bonds and form new bonds only when the Gibbs free energy change for the degradation process was ΔG < 0, i.e., hydrogen binding energy ΔE < -0.3038 kcal/mol. Then, the degradation mechanism was predicted to provide guidance for the molecular design of DES. Finally, experimental results showed that the same ratio of choline chloride-based DESs had higher catalytic performance, in which [ChCl][P][ZnCl2] 1:5:2 was used with a high yield of keratin of 85.46 %. DES had a high catalytic performance after multiple recycling cycles and this method has no H2S gas generation, which improves the atomic utilization.
Collapse
Affiliation(s)
- Yanhua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Shizhuo Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhiqiang Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
26
|
Ullah N, Haseeb A, Tuzen M. Application of Recently used Green Solvents in Sample Preparation Techniques: A Comprehensive Review of Existing Trends, Challenges, and Future Opportunities. Crit Rev Anal Chem 2023; 54:2714-2733. [PMID: 37067946 DOI: 10.1080/10408347.2023.2197495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Green solvents (GSs) has gained significant attention in recent years due to their potential as safer and more sustainable alternatives to traditional organic solvents. Solvents are used in a wide range of applications, from industrial processes to everyday products. Solvent emissions and losses can have a significant impact on the environment and human health, which is why many initiatives are being undertaken to get rid of or switch to eco-friendly alternatives. A key area of green chemistry that led to the concept of "green" solvents is the development of alternative solvents that are less toxic and more environmentally friendly than traditional organic solvents. The advantages of using green solvents over conventional ones are their environmental friendliness, biocompatibility, biodegradability, and simplicity of preparation. Different sample preparation techniques have successfully utilized green solvents to offer a sustainable separation media for the extraction of a variety of inorganic and organic compounds which are crucial for research in environmental samples. Recent developments in green analytical chemistry (GAC) have focused on how to prepare and use samples using environmentally sustainable solvents. The current study covers the advance and currently used green solvents with an emphasis on environmentally friendly sample preparation methods. This review aims to briefly summarize the current state of knowledge about the use of green solvents particularly ionic liquids, deep eutectic solvents and switchable solvents (SSs) with the perspective of GAC in sample preparation methods.
Collapse
Affiliation(s)
- Naeem Ullah
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Abdul Haseeb
- Department of Engineering and Chemical Science, Karlstad University, Karlstad, Sweden
- National Institute of Oceanography, Karachi, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
27
|
Shaaban MS, Shalabi K, Fouda AEAS, Deyab MA. New imidazolium-based ionic liquids for mitigating carbon steel corrosion in acidic condition. Z PHYS CHEM 2023; 237:211-241. [DOI: 10.1515/zpch-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Two environmentally friendly inhibitors of imidazolium-based ionic liquids namely 3-benzyl-1-hexadecyl-1H-imidazol-3-ium chloride (IL-H), and 3-(4-chlorobenzyl)-1-hexadecyl-1H-imidazol-3-ium chloride (IL-Cl) were manufactured and their chemical structures were confirmed by spectra tools (FT-IR, and 1H NMR). The utilizing of these two new ionic liquids as green corrosion inhibitors for low carbon steel (LCS) in 1.0 M HCl under altered experimental conditions. Mass loss (ML), potentiodynamic polarization (PP), AC impedance spectroscopy (EIS) and surface morphology are take place in this study. The protection performance found to increase with increasing ionic liquid dose and temperature, reaching 92.9% and 95.1% for IL-H and IL-Cl at 120 ppm, respectively. Based on the PP records, the investigated ionic liquids behave as mixed-type inhibitors, influencing both anodic and cathodic responses. The inhibitory activity from these explored ionic liquids was stimulated by their adsorption on the effective surfaces of the steel surface in accordance with the Langmuir adsorption isotherm. The Density Functional Theory (DFT) method is used to analyze the relationship between quantum chemical calculations and the protection efficiency of ionic liquids.
Collapse
Affiliation(s)
- Munira S. Shaaban
- Chemistry Department , Faculty of Science, Mansoura University , Mansoura 35516 , Egypt
| | - Kamal Shalabi
- Chemistry Department , Faculty of Science, Mansoura University , Mansoura 35516 , Egypt
| | - Abd El-Aziz S. Fouda
- Chemistry Department , Faculty of Science, Mansoura University , Mansoura 35516 , Egypt
| | - Mohamed A. Deyab
- Egyptian Petroleum Research Institute (EPRI) , Nasr City , Cairo , Egypt
| |
Collapse
|
28
|
Chatterjee S, Chowdhury T, Bagchi S. Does variation in composition affect dynamics when approaching the eutectic composition? J Chem Phys 2023; 158:114203. [PMID: 36948840 DOI: 10.1063/5.0139153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Deep eutectic solvent is a mixture of two or more components, mixed in a certain molar ratio, such that the mixture melts at a temperature lower than individual substances. In this work, we have used a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations to investigate the microscopic structure and dynamics of a deep eutectic solvent (1:2 choline chloride: ethylene glycol) at and around the eutectic composition. In particular, we have compared the spectral diffusion and orientational relaxation dynamics of these systems with varying compositions. Our results show that although the time-averaged solvent structures around a dissolved solute are comparable across compositions, both the solvent fluctuations and solute reorientation dynamics show distinct differences. We show that these subtle changes in solute and solvent dynamics with changing compositions arise from the variations in the fluctuations of the different intercomponent hydrogen bonds.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Tubai Chowdhury
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
29
|
Recent Advances in Greener Asymmetric Organocatalysis Using Bio-Based Solvents. Catalysts 2023. [DOI: 10.3390/catal13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Efficient synthetic methods that avoid the extensive use of hazardous reagents and solvents, as well as harsh reaction conditions, have become paramount in the field of organic synthesis. Organocatalysis is notably one of the best tools in building chemical bonds between carbons and carbon-heteroatoms; however, most examples still employ toxic volatile organic solvents. Although a portfolio of greener solvents is now commercially available, only ethyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, supercritical carbon dioxide, ethyl lactate, and diethyl carbonate have been explored with chiral organocatalysts. In this review, the application of these bio-based solvents in asymmetric organocatalytic methods reported in the last decade is discussed, highlighting the proposed mechanism pathway for the transformations.
Collapse
|
30
|
Chen L, Zhang S, Liu X, Ge X. Recent Advances in Water-Mediated Multiphase Catalysis. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2023.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
31
|
Klinksiek M, Baco S, Leveneur S, Legros J, Held C. Activity-Based Models to Predict Kinetics of Levulinic Acid Esterification. Chemphyschem 2023; 24:e202200729. [PMID: 36264764 DOI: 10.1002/cphc.202200729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Indexed: 11/09/2022]
Abstract
The solvent is of prime importance in biomass conversion as it influences dissolution, reaction kinetics, catalyst activity and thermodynamic equilibrium of the reaction system. So far, activity-based models were developed to predict kinetics and equilibria, but the influence of the catalyst on kinetics has not been succesfully predicted by thermodynamic models. In this work, the thermodynamic model ePC-SAFT advanced was used to predict the activities of the reactants and of the catalyst at various conditions (temperature, reactant concentrations, γ-valerolactone GVL cosolvent addition, catalyst concentration) for the homogeneously acid-catalyzed esterification of levulinic acid (LA) with ethanol. Different kinetic models were applied, and it was found that the catalyst influence on kinetics could be predicted correctly by simultaneously solving the dissociation equilibrium of H2 SO4 catalyst along the reaction coordinate and by relating reaction kinetics to proton activity. ePC-SAFT advanced model parameters were only fitted to reaction-independent phase equilibrium data. The key reaction properties were determined by applying ePC-SAFT advanced to one experimental kinetic curve for a set of temperatures, yielding the reaction enthalpy at standard state Δ R H 0 = 11 . 48 k J m o l - 1 ${{\Delta }^{R}{H}^{0}=11.48\ kJ\ mo{l}^{-1}}$ , activation energy E A = 30 . 28 k J m o l - 1 ${{E}_{A}=30.28\ kJ\ mo{l}^{-1}}$ and the intrinsic reaction rate constant k=0.011 s-1 at 323 K, which is independent of catalyst concentration. The new procedure allowed an a-priori identification of the effects of catalyst, solvent and reactant concentration on LA esterification.
Collapse
Affiliation(s)
- Marcel Klinksiek
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Sindi Baco
- INSA Rouen, UNIROUEN, Normandie Univ, LSPC UR4704, 76000, Rouen, France.,INSA Rouen, CNRS, Normandie Université, UNIROUEN COBRA laboratory, 76000, Rouen, France
| | | | - Julien Legros
- INSA Rouen, CNRS, Normandie Université, UNIROUEN COBRA laboratory, 76000, Rouen, France
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| |
Collapse
|
32
|
D’Orsi R, Di Fidio N, Antonetti C, Raspolli Galletti AM, Operamolla A. Isolation of Pure Lignin and Highly Digestible Cellulose from Defatted and Steam-Exploded Cynara cardunculus. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1875-1887. [PMID: 36778524 PMCID: PMC9906737 DOI: 10.1021/acssuschemeng.2c06356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In this work, a three-step approach to isolate the main components of lignocellulosic cardoon, lignin and cellulose, was investigated. The raw defatted biomass, Cynara cardunculus, after steam explosion was subjected to a mild organosolv treatment to extract soluble lignin (L1). Then, enzymatic hydrolysis was performed to achieve decomposition of the saccharidic portion into monosaccharides and isolate residual lignin (L2). The fractionation conditions were optimized to obtain a lignin as less degraded as possible and to maximize the yield of enzymatic hydrolysis. Furthermore, the effect of the use of aqueous ammonia as an extraction catalyst on both fractions was studied. Each fraction was characterized by advanced techniques, such as elemental analysis and 31P nuclear magnetic resonance (NMR), 13C-1H two-dimensional (2D)-NMR, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and UV-vis spectroscopies for lignin and X-ray diffraction (XRD), Klason compositional analysis, elemental analysis, and ATR-FTIR spectroscopy for cellulose-rich fractions. The impact of the cellulose-rich fraction composition and crystallinity was also correlated to the efficiency of the hydrolysis step, performed using the enzymatic complex Cellic CTec3.
Collapse
Affiliation(s)
- Rosarita D’Orsi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Nicola Di Fidio
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Claudia Antonetti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Anna Maria Raspolli Galletti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Alessandra Operamolla
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| |
Collapse
|
33
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Biopolymer - A sustainable and efficacious material system for effluent removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130168. [PMID: 36302289 DOI: 10.1016/j.jhazmat.2022.130168] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Undesired discharge of various effluents directly into the aquatic ecosystem can adversely affect water quality, endangering aquatic and terrestrial flora and fauna. Therefore, the conceptual design and fabrication of a sustainable system for alleviating the harmful toxins that are discharged into the atmosphere and water bodies using a green sustainable approach is a fundamental standpoint. Adsorptive removal of toxins (∼99% removal efficacy) is one of the most attractive and facile approaches for cleaner technologies that remediate the environmental impacts and provide a safe operating space. Recently, the introduction of biopolymers for the adsorptive abstraction of toxins from water has received considerable attention due to their eclectic accessibility, biodegradability, biocompatibility, non-toxicity, and enhanced removal efficacy (∼ 80-90% for electrospun fibers). This review summarizes the recent literature on the biosorption of various toxins by biopolymers and the possible interaction between the adsorbent and adsorbate, providing an in-depth perspective of the adsorption mechanism. Most of the observed results are explained in terms of (1) biopolymers classification and application, (2) toxicity of various effluents, (3) biopolymers in wastewater treatment and their removal mechanism, and (4) regeneration, reuse, and biodegradation of the adsorbent biopolymer.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia; Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| |
Collapse
|
34
|
Mikucka W, Witońska I, Zielińska M, Bułkowska K, Binczarski M. Concept for the valorization of cereal processing waste: Recovery of phenolic acids by using waste-derived tetrahydrofurfuryl alcohol and biochar. CHEMOSPHERE 2023; 313:137457. [PMID: 36470358 DOI: 10.1016/j.chemosphere.2022.137457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Valorization of agro-food waste by converting it into a renewable resource plays a crucial role in a bio-based circular economy. Therefore, this study was designed to evaluate the suitability of distillery stillage (DS), which comes from alcohol production from cereals, for producing value-added products that can be used synergistically. The main objective was to investigate the usefulness of two substances for the recovery of phenolic acids, which have antioxidant activity, from the liquid fraction of DS: namely, tetrahydrofurfuryl alcohol (THFA) as a solvent and biochar as an adsorbent, both produced from the solid fraction of cereal processing waste. The effect of THFA concentration (80 and 100%) on phenolic acid yield in ultrasound-assisted extraction was studied. The solubilization predictions of phenolic compounds by the Hansen solubility parameters were in accordance with the experimental results: the yield of phenolic acids in the extracts was highest (3.76 μg g-1 dry mass) with 80% THFA. Among the extracted phenolic acids, hydroxycinnamic acids predominated over hydroxybenzoic acids, which may affect the bioactive properties of the extracts and their future applications for industrial purposes. Phenolic acids from the extracts were adsorbed on 17-170 g biochar L-1 and desorbed into water at 40-60 °C. The phenolic acid recovery was highest (∼92%) when the biochar dose was 85 g L-1 and when desorption was performed at 50 °C. After adsorption/desorption, ∼95% of the antioxidant activity of the phenolic acids in the extracts was maintained. As biochar has a smaller specific surface area than commercial powdered activated carbon (PAC), the biochar dose should be about 5 times higher than an equivalent PAC dose for adsorption efficiency above 90%.
Collapse
Affiliation(s)
- Wioleta Mikucka
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland.
| | - Izabela Witońska
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| | - Magdalena Zielińska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Katarzyna Bułkowska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Environmental Biotechnology, Słoneczna St. 45G, 10-709, Olsztyn, Poland
| | - Michał Binczarski
- Lodz University of Technology, Faculty of Chemistry, Institute of General and Ecological Chemistry, Zeromskiego St. 116, 90-924, Lodz, Poland
| |
Collapse
|
35
|
Sethi S, Jana NC, Behera S, Behera RR, Bagh B. Azide-Alkyne Cycloaddition Catalyzed by Copper(I) Coordination Polymers in PPM Levels Using Deep Eutectic Solvents as Reusable Reaction Media: A Waste-Minimized Sustainable Approach. ACS OMEGA 2023; 8:868-878. [PMID: 36643452 PMCID: PMC9835663 DOI: 10.1021/acsomega.2c06231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Two air-stable copper(I)-halide coordination polymers 1 and 2 with NNS and NNO ligand frameworks were synthesized and successfully utilized as efficient catalysts in an important organic reaction, namely, copper-catalyzed azide-alkyne cycloaddition, which is generally conducted in a mixture of water and organic solvents. The azide-alkyne "click" reaction was successfully conducted in pure water at r.t. under aerobic conditions. Other green solvents, including ethanol and glycerol, were also effectively used. Finally, deep eutectic solvents as green and sustainable reaction media were successfully utilized. In deep eutectic solvents, complete conversion with excellent isolated yield was achieved in a short period of time (1 h) with low catalyst loading (1 mol %) at r.t. Full conversion could also be achieved within 24 h with ppm-level (50 ppm) catalyst loading at 70 °C. Optimized reaction conditions were used for the syntheses of a large number of 1,4-disubstituted 1,2,3-triazoles with various functionalities. Triazole products were easily isolated by simple filtration. The reaction media, such as water and deep eutectic solvents, were recovered and recycled in three consecutive runs. The limited waste production is reflected in a very low E-factor (0.3-2.8). Finally, the CHEM21 green metrics toolkit was employed to evaluate the sustainability credentials of different optimized protocols in various green solvents such as water, ethanol, glycerol, and deep eutectic solvents.
Collapse
|
36
|
Chen Z, Li H, Sheng K, Dong X, Yuan J, Hao S, Li M, Bai R, Queneau Y, Sidorenko A, Huang J, Gu Y. Dipolar Modification in Heterogeneous Catalysts under Electron Beam Irradiation for the Conversion of Biomass-Derived Platform Molecules. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhiyan Chen
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haozhe Li
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Keyan Sheng
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| | - Xiaohan Dong
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jushigang Yuan
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| | - Shuai Hao
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghao Li
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rongxian Bai
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Queneau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Université de Lyon, CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, Université Claude Bernard, Bâtiment Lederer, 1 Rue Victor Grignard, 69622 Villeurbanne, France
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna str, 36, 220084 Minsk, Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanlong Gu
- Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Hashemi B, Shiri F, Švec F, Nováková L. Green solvents and approaches recently applied for extraction of natural bioactive compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Kumar G, Bhargava G, Kumar R. Trio Role of Deep Eutectic Solvents in the Green Synthesis of 1,4-Dihydropyridine Synthesis via Hantzsch Reaction. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gobind Kumar
- Department of Chemical Sciences, I. K. G. Punjab Technical University, Kapurthala, India
| | - Gaurav Bhargava
- Department of Chemical Sciences, I. K. G. Punjab Technical University, Kapurthala, India
| | - Rupesh Kumar
- Department of Chemical Sciences, I. K. G. Punjab Technical University, Kapurthala, India
| |
Collapse
|
39
|
Almofti N, González-Rubio S, Ballesteros-Gómez A, Girela E, Rubio S. Green nanostructured liquids for the analysis of urine in drug-facilitated sexual assault cases. Anal Bioanal Chem 2022; 415:2025-2035. [PMID: 36239753 DOI: 10.1007/s00216-022-04358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
Abstract
In this work, we optimize and validate a simple, time-saving, and environmentally friendly sample preparation method based on supramolecular solvents (SUPRAS), green nanostructured liquids, for the extraction of selected drug-facilitated sexual assault (DFSA) substances from human urine. The methodology was fast and simple (stirring, centrifugation, and dilution). Cubosomic SUPRAS were formed by the addition of 1,2-hexanediol (200 μL) to 1.0 mL of human urine containing 1 M Na2SO4. SUPRAS extracts were analyzed by LC-MS/MS. The method was fully validated for 23 DFSA compounds including 10 benzodiazepines, 1 z-hypnotic drug, 5 amphetamine derivatives, 3 cocaine metabolites, and 4 miscellaneous compounds. Extraction efficiency varied between 79 and 119%, and matrix effects were acceptable (-14.3/+21.5) for 87% of the compounds. Method detection and quantification limits ranged from 0.003 to 0.75 ng/mL and from 0.01 to 2.50 ng/mL, respectively. These values were low enough for the established minimum required performance limits (MRPL) of these substances. This simple and green method has a great potential to be implemented for the monitoring of illegal drugs involved in DFSA cases by forensic laboratories.
Collapse
Affiliation(s)
- Nouman Almofti
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Universidad de Córdoba, Anexo Marie Curie, Campus de Rabanales, 14071, Córdoba, Spain.,Section of Forensic and Legal Medicine, Department of Morphological and Sociosanitary Sciences, Faculty of Medicine and Nursing, University of Córdoba, 14071, Córdoba, Spain
| | - Soledad González-Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Universidad de Córdoba, Anexo Marie Curie, Campus de Rabanales, 14071, Córdoba, Spain
| | - Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Universidad de Córdoba, Anexo Marie Curie, Campus de Rabanales, 14071, Córdoba, Spain.
| | - Eloy Girela
- Section of Forensic and Legal Medicine, Department of Morphological and Sociosanitary Sciences, Faculty of Medicine and Nursing, University of Córdoba, 14071, Córdoba, Spain
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Universidad de Córdoba, Anexo Marie Curie, Campus de Rabanales, 14071, Córdoba, Spain
| |
Collapse
|
40
|
|
41
|
Characterization of a new sustainable supramolecular solvent and application to the determination of oxy-PAHs in meat, seafood and fish tissues. Food Chem 2022; 405:134731. [DOI: 10.1016/j.foodchem.2022.134731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
|
42
|
Noor R, Zahoor AF, Irfan M, Hussain SM, Ahmad S, Irfan A, Kotwica-Mojzych K, Mojzych M. Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. Molecules 2022; 27:5654. [PMID: 36080422 PMCID: PMC9458230 DOI: 10.3390/molecules27175654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Hiyama cross-coupling is a versatile reaction in synthetic organic chemistry for the construction of carbon-carbon bonds. It involves the coupling of organosilicons with organic halides using transition metal catalysts in good yields and high enantioselectivities. In recent years, hectic progress has been made by researchers toward the synthesis of diversified natural products and pharmaceutical drugs using the Hiyama coupling reaction. This review emphasizes the recent synthetic developments and applications of Hiyama cross-coupling.
Collapse
Affiliation(s)
- Rida Noor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, Faisalabad Campus, University of Engineering and Technology Lahore, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
43
|
Dalla Torre D, Annatelli M, Aricò F. Acid catalyzed synthesis of dimethyl isosorbide via dimethyl carbonate chemistry. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Design of spherical agglomerates via crystallization with a non-toxic bridging liquid: From mechanism to application. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Abstract
Until the year 2000, gold compounds were considered catalytically inert. Subsequently, it was found that they are able to promote the nucleophilic attack on unsaturated substrates by forming an Au–π-system. The main limitation in the use of these catalytic systems is the ease with which they decompose, which is avoided by stabilization with an ancillary ligand. N-heterocyclic carbenes (NHCs), having interesting s-donor capacities, are able to stabilize the gold complexes (Au (I/III) NHC), favoring the exploration of their catalytic activity. This review reports the state of the art (years 2007–2022) in the nucleophilic addition of amines (hydroamination) and water (hydration) to the terminal and internal alkynes catalyzed by N-heterocyclic carbene gold (I/III) complexes. These reactions are particularly interesting both because they are environmentally sustainable and because they lead to the production of important intermediates in the chemical and pharmaceutical industry. In fact, they have an atom economy of 100%, and lead to the formation of imines and enamines, as well as the formation of ketones and enols, all important scaffolds in the synthesis of bioactive molecules, drugs, heterocycles, polymers, and bulk and fine chemicals.
Collapse
|
46
|
Liu X, Pollard B, Banwell MG, Yu LJ, Coote ML, Gardiner MG, van Vugt-Lussenburg BMA, van der Burg B, Grasset FL, Campillo E, Sherwood J, Byrne FP, Farmer TJ. Simple and modestly scalable synthesis of. Aust J Chem 2022. [DOI: 10.1071/ch22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bio-derived platform molecule levoglucosenone (LGO, 1), which is the precursor to the green solvent Cyrene® (2), has been converted, at multi-gram scale, into its pseudo-enantiomer (iso-LGO, 2) and then reduced to iso-Cyrene (4). A less effective synthesis of this last compound from D-glucose is also described. Various physicochemical as well as certain toxicological properties of compound 4 are reported and compared to those established for the now commercially available Cyrene® (2). Such studies reveal that there are significant enough differences in the properties of the sustainably-derived Cyrene® (2) and isomer 4 (iso-Cyrene) to suggest they will exert complementary effects as solvents in a range of settings.
Collapse
|
47
|
Almeida LD, Delolo FG, Costa AP, Gusevskaya EV, Robles-Azocar PA. Catalytic aerobic epoxidation of bio-renewable alkenes using organic carbonates as green solvents. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Sánchez-Vallejo C, Ballesteros-Gómez A, Rubio S. Tailoring composition and nanostructures in supramolecular solvents: Impact on the extraction efficiency of polyphenols from vegetal biomass. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Millán D, González-Turen F, Perez-Recabarren J, Gonzalez-Ponce C, Rezende MC, Da Costa Lopes AM. Solvent effects on the wood delignification with sustainable solvents. Int J Biol Macromol 2022; 211:490-498. [PMID: 35569683 DOI: 10.1016/j.ijbiomac.2022.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
Solutions of a pure organic solvent acidified with 1% sulfuric acid, and some of their aqueous mixtures were used for lignin extraction in the Pinus radiata sawdust delignification. Organic acid solvents including acetic, lactic and citric acids as well as non-acidic compounds such as γ-valerolactone, 2-methyltetrahydrofuran, glycerol and ethylene glycol were studied. Crude lignin extractions yields (%) ranging between ca. 5-50% were obtained, from which ethylene glycol (33%), γ-valerolactone (48%) and propylene carbonate (52%) showed the greatest effectiveness. The effect of added water on the lignin extraction was investigated in mixtures of an organic solvent with a variable water content (75%w/w, 50% w/w, 25%w/w and 10% w/w) where it was observed that the yield of extraction decreased with the increased water content. Moreover, the purity of extracted lignins were analyzed by spectroscopic methods (UV and IR). Kamlet-Taft solvent polarity parameters, were determined with the solvatochromic probes 4-nitroaniline, N,N-diethyl-4-nitroaniline, Nile Red and 6-propionyl-2-N,N-dimethylaminonaphthalene (PRODAN), and then correlated to lignin extraction yields to explain the influence of the solute-solvent interactions on biomass delignification. A reasonable correlation was found between the medium polarizability-dipolarity π* and the effectiveness of the solvent mixture on the extraction of lignin wood.
Collapse
Affiliation(s)
- Daniela Millán
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Chile.
| | - Felipe González-Turen
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Chile
| | - Josei Perez-Recabarren
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Chile
| | - Christopher Gonzalez-Ponce
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, Chile
| | - Marcos Caroli Rezende
- Facultad de Química y Biología, Universidad de Santiago, Av. Bernardo O'Higgins 3363, Santiago, Chile
| | - André M Da Costa Lopes
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; CECOLAB, Collaborative Laboratory Towards Circular Economy, R. Nossa Senhora da Conceição, 3405-155 Oliveira do Hospital, Portugal
| |
Collapse
|
50
|
Zheng YN, Liu Y, Cai XE, Wu HL, Huang XJ, Liu Y, Wei WT. Ring‐opening/cyclization of cyclobutanone oxime esters with alkenes in biomass‐derived solvent using copper catalyst and inorganic oxidant. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yan-Nan Zheng
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yi Liu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xue-Er Cai
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Hong-Li Wu
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Xun-Jie Huang
- Ningbo University School of Materials Science and Chemical Engineering 315211 Ningbo CHINA
| | - Yilin Liu
- Huaihua University College of Chemistry and Materials Engineering 418008 Huaihua CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|