1
|
Hara J, Vercauteren M, Schoenaers S, Janssen CR, Blust R, Asselman J, Town RM. Differential sensitivity of hemocyte subpopulations (Mytilus edulis) to aged polyethylene terephthalate micro- and nanoplastic particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117255. [PMID: 39490108 DOI: 10.1016/j.ecoenv.2024.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Bivalve hemocytes, particularly granulocytes and hyalinocytes, play a crucial role in cell-mediated immunity. However, their interactions with aged plastic particles, exhibiting altered properties that more closely resemble those in natural environments, remain largely underexplored. This study assesses the differential responses of hemocyte subpopulations (Mytilus edulis) to chemically aged polyethylene terephthalate (PET) microplastic (MPs) and nanoplastic (NPs) particles across multiple cellular effect endpoints. Particle characteristics were analyzed using Single Particle Extinction and Scattering, Raman Spectroscopy, Scanning Electron Microscopy, and Dynamic Light Scattering. In vitro experiments with aged PET MPs (1.9 µm) and NPs (0.68 µm) were conducted at three internally relevant concentrations: 10 (C1), 10³ (C2), and 10⁵ particles/mL (C3). Cellular responses were assessed by measuring lysosomal content stability, reactive oxygen species (ROS) production, cellular mortality, and morphological parameters using flow cytometry at 6, 12, 24, and 48 hours. Our findings provide mechanistic insights into the differential sensitivities of granulocytes and hyalinocytes to aged PET, influenced by particle size and concentration. Specifically, aged PET MPs and NPs induce distinct size and concentration-dependent patterns of lysosomal destabilization, coinciding with the loss of functional integrity. Elevated ROS levels were observed only in granulocytes and hyalinocytes exposed to high concentrations of aged PET NPs, underscoring the effects on oxidative stress. Both aged PET MPs and NPs induce significant increases in cellular mortality, particularly after 24 h of exposure at high concentrations. These findings reveal the complex cellular mechanisms underlying hemocyte functional impairment following exposure to aged PET particles under environmentally and biologically relevant conditions.
Collapse
Affiliation(s)
- Jenevieve Hara
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Ostend 8400, Belgium.
| | - Maaike Vercauteren
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Ostend 8400, Belgium
| | - Sébastjen Schoenaers
- IMPRES, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Colin R Janssen
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Ostend 8400, Belgium
| | - Ronny Blust
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Ostend 8400, Belgium
| | - Raewyn M Town
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| |
Collapse
|
2
|
Xiao S, Wang J, Digiacomo L, Amici A, De Lorenzi V, Pugliese LA, Cardarelli F, Cerrato A, Laganà A, Cui L, Papi M, Caracciolo G, Marchini C, Pozzi D. Protein corona alleviates adverse biological effects of nanoplastics in breast cancer cells. NANOSCALE 2024; 16:16671-16683. [PMID: 39171675 DOI: 10.1039/d4nr01850h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Pollution from micro- and nanoplastics (MNPs) has long been a topic of concern due to its potential impact on human health. MNPs can circulate through human blood and, thus far, have been found in the lungs, spleen, stomach, liver, kidneys and even in the brain, placenta, and breast milk. While data are already available on the adverse biological effects of pristine MNPs (e.g. oxidative stress, inflammation, cytotoxicity, and even cancer induction), no report thus far clarified whether the same effects are modulated by the formation of a protein corona around MNPs. To this end, here we use pristine and human-plasma pre-coated polystyrene (PS) nanoparticles (NPs) and investigate them in cultured breast cancer cells both in terms of internalization and cell biochemical response to the exposure. It is found that pristine NPs tend to stick to the cell membrane and inhibit HER-2-driven signaling pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are associated with cancer cell survival and growth. By contrast, the formation of a protein corona around the same NPs can promote their uptake by endocytic vesicles and final sequestration within lysosomes. Of note is that such intracellular fate of PS-NPs is associated with mitigation of the biochemical alterations of the phosphorylated AKT (pAKT)/AKT and phosphorylated ERK (pERK)/ERK levels. These findings provide the distribution of NPs in human breast cancer cells, may broaden our understanding of the interactions between NPs and breast cancer cells and underscore the crucial role of the protein corona in modulating the impact of MNPs on human health.
Collapse
Affiliation(s)
- Siyao Xiao
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Valentina De Lorenzi
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Licia Anna Pugliese
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Cardarelli
- Laboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Lishan Cui
- Department of Neuroscience, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Massimiliano Papi
- Department of Neuroscience, Catholic University of the Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
3
|
Li X, Yao E, Li J, Lu W. Differential toxic effects of nano-titanium dioxide on clams (Meretrix meretrix) with various individuality. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107045. [PMID: 39142141 DOI: 10.1016/j.aquatox.2024.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Nano-TiO2 is inevitably released into aquatic environment with increasing of nanotechnology industries. Study pointed that different individuality showed divergent behavioral and physiological response when facing environmental stress. However, the effects of nano-TiO2 on tolerance of bivalves with different individualities remain unknown. In the study, clams were divided into two types of individuality - proactive and reactive by post-stress recovery method. It turned out that proactive individuals had quicker shell opening level, stronger burrowing behavior, faster feeding recovery, higher standard metabolic rate and more rapid ammonia excretion ability than reactive individuals after exposed to air. Then, the survival rate, hemocytes response and oxidase activity of classified clams were evaluated after nano-TiO2 exposure. Results showed that after 30 d exposure, proactive individuals accelerated burrowing behavior with higher survival rate. Moreover, proactive clams had better adaptability and less hemocytes response and oxidative damage than reactive clams. The study highlights the individualities of marine shell fish determine individual capacity to adapt to environmental changes, play important roles in aquaculture and coastal ecosystem health.
Collapse
Affiliation(s)
- Xiaoxue Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Erzhou Yao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Jie Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology Shanghai, 201306, China.
| |
Collapse
|
4
|
Feng X, Brown CM, Wang H, Kashif S, Roberts S, Yan L, Munshi T, Hands PJW, Zhang W, Chen X. Carrier-free chemo-phototherapeutic nanomedicines with endo/lysosomal escape function enhance the therapeutic effect of drug molecules in tumors. J Mater Chem B 2024; 12:6703-6715. [PMID: 38895858 DOI: 10.1039/d4tb00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Carrier-free nanomedicines offer advantages of extremely high drug loading capacity (>80%), minimal non-drug constituent burden, and facile preparation processes. Numerous studies have proved that multimodal cancer therapy can enhance chemotherapy efficiency and mitigate multi-drug resistance (MDR) through synergistic therapeutic effects. Upon penetration into the tumor matrix, nanoparticles (NPs) are anticipated to be uptaken by cancer cells, primarily through clathrin-meditated endocytosis pathways, leading to their accumulation in endosomes/lysosomes within cells. However, endo/lysosomes exhibit a highly degradative environment for organic NPs and drug molecules, often resulting in treatment failure. Hence, this study designed a lysosomal escape mechanism with carrier-free nanomedicine, combining the chemotherapeutic drug, curcumin (Cur), and the photothermal/photodynamic therapeutic drug, indocyanine green (ICG), for synergistic cancer treatment (ICG-Cur NPs) via a facile preparation process. To facilitate endo/lysosomal escape, ICG-Cur NPs were modified with metal-phenolic networks (MPNs) of different thickness. The results indicate that a thick MPN coating promotes rapid endo/lysosomal escape of ICG-Cur NPs within 4 h and enhances the photothermal conversion efficiency of ICG-Cur NPs by 55.8%, significantly improving anticancer efficacy in both chemo- and photo-therapies within 3D solid tumor models. This finding underscores the critical role of endo/lysosomal escape capacity in carrier-free drug NPs for therapeutic outcomes and offers a facile solution to achieve it.
Collapse
Affiliation(s)
- Xue Feng
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Calum M Brown
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Hongdi Wang
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Saima Kashif
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Sam Roberts
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Tasnim Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, UK
| | - Philip J W Hands
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, The King's Buildings, EH9 3FF Edinburgh, UK
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, UK.
| |
Collapse
|
5
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
6
|
Huang W, Yang Y, Tang S, Yin H, Yu X, Yu Y, Wei K. The combined toxicity of polystyrene nano/micro-plastics and triphenyl phosphate (TPHP) on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116489. [PMID: 38776781 DOI: 10.1016/j.ecoenv.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Combined toxicity is a critical concern during the risk assessment of environmental pollutants. Due to the characteristics of strong hydrophobicity and large specific surface area, microplastics (MPs) and nanoplastics (NPs) have become potential carriers of organic pollutants that may pose a health risk to humans. The co-occurrence of organic pollutants and MPs would cause adverse effects on aquatic organism, while the information about combined toxicity induced by organophosphorus flame retardants and MPs on human cells was limited. This study aimed to reveal the toxicity effects of co-exposure to triphenyl phosphate (TPHP) and polystyrene (PS) particles with micron-size/nano-size on HepG2 cell line. The adsorption behaviors of TPHP on PS particles was observed, with the PS-NP exhibiting a higher adsorption capacity. The reactive oxygen species generation, mitochondrial membrane potential depolarization, lactate dehydrogenase release and cell apoptosis proved that PS-NPs/MPs exacerbated TPHP-induced cytotoxicity. The particle size of PS would affect the toxicity to HepG2 cells that PS-NP (0.07 μm) exhibited more pronounced combined toxicity than PS-MP (1 μm) with equivalent concentrations of TPHP. This study provides fundamental insights into the co-toxicity of TPHP and PS micro/nanoplastics in HepG2 cells, which is crucial for validating the potential risk of combined toxicity in humans.
Collapse
Affiliation(s)
- Wantang Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Yuanyu Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shaoyu Tang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yuanyuan Yu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Kun Wei
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| |
Collapse
|
7
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
8
|
Wang Y, Xu K, Gao X, Wei Z, Han Q, Wang S, Du W, Chen M. Polystyrene nanoplastics with different functional groups and charges have different impacts on type 2 diabetes. Part Fibre Toxicol 2024; 21:21. [PMID: 38658944 PMCID: PMC11044502 DOI: 10.1186/s12989-024-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Increasing attention is being paid to the environmental and health impacts of nanoplastics (NPs) pollution. Exposure to nanoplastics (NPs) with different charges and functional groups may have different adverse effects after ingestion by organisms, yet the potential ramifications on mammalian blood glucose levels, and the risk of diabetes remain unexplored. RESULTS Mice were exposed to PS-NPs/COOH/NH2 at a dose of 5 mg/kg/day for nine weeks, either alone or in a T2DM model. The findings demonstrated that exposure to PS-NPs modified by different functional groups caused a notable rise in fasting blood glucose (FBG) levels, glucose intolerance, and insulin resistance in a mouse model of T2DM. Exposure to PS-NPs-NH2 alone can also lead the above effects to a certain degree. PS-NPs exposure could induce glycogen accumulation and hepatocellular edema, as well as injury to the pancreas. Comparing the effect of different functional groups or charges on T2DM, the PS-NPs-NH2 group exhibited the most significant FBG elevation, glycogen accumulation, and insulin resistance. The phosphorylation of AKT and FoxO1 was found to be inhibited by PS-NPs exposure. Treatment with SC79, the selective AKT activator was shown to effectively rescue this process and attenuate T2DM like lesions. CONCLUSIONS Exposure to PS-NPs with different functional groups (charges) induced T2DM-like lesions. Amino-modified PS-NPs cause more serious T2DM-like lesions than pristine PS-NPs or carboxyl functionalized PS-NPs. The underlying mechanisms involved the inhibition of P-AKT/P-FoxO1. This study highlights the potential risk of NPs pollution on T2DM, and provides a new perspective for evaluating the impact of plastics aging.
Collapse
Affiliation(s)
- Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Dhoble S, Wu TH, Kenry. Decoding Nanomaterial-Biosystem Interactions through Machine Learning. Angew Chem Int Ed Engl 2024; 63:e202318380. [PMID: 38687554 DOI: 10.1002/anie.202318380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 05/02/2024]
Abstract
The interactions between biosystems and nanomaterials regulate most of their theranostic and nanomedicine applications. These nanomaterial-biosystem interactions are highly complex and influenced by a number of entangled factors, including but not limited to the physicochemical features of nanomaterials, the types and characteristics of the interacting biosystems, and the properties of the surrounding microenvironments. Over the years, different experimental approaches coupled with computational modeling have revealed important insights into these interactions, although many outstanding questions remain unanswered. The emergence of machine learning has provided a timely and unique opportunity to revisit nanomaterial-biosystem interactions and to further push the boundary of this field. This minireview highlights the development and use of machine learning to decode nanomaterial-biosystem interactions and provides our perspectives on the current challenges and potential opportunities in this field.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Tzu-Hsien Wu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Kenry
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
11
|
Wang S, Ma Y, Khan FU, Dupont S, Huang W, Tu Z, Shang Y, Wang Y, Hu M. Size-dependent effects of plastic particles on antioxidant and immune responses of the thick-shelled mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169961. [PMID: 38211852 DOI: 10.1016/j.scitotenv.2024.169961] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Micro-/nano-plastic particles (MNPs) are present in the ocean with potential detrimental impacts on marine ecosystems. Bivalves are often used as marine bioindicators and are ideal to evaluate the threat posed by various-sized MNPs. We exposed the mussel Mytilus coruscus to MNPs with different particle sizes (70 and 500 nm, 5, 10 and 100 μm) for 3, 72 h and 30 days. The antioxidant responses in digestive gland and the hemolymph were then evaluated. The time of exposure played a strong modulating role in the biological response. A 3-hour exposure had no significant impact on the digestive gland. After 72 h, an increase in oxidative stress was observed in the digestive gland, including increased hydrogen peroxide (H2O2) level, catalase (CAT), glutathione peroxidase (GPx) activities and malondialdehyde (MDA) production. After a 30-day exposure, the oxidative stress decreased while lipid peroxidation increased. A 30-day exposure increased hemocyte mortality (HM) and reactive oxygen species (ROS) levels in the hemolymph, while phagocytosis (PA), lysosome content (LC), mitochondrial number (MN) and mitochondrial membrane potential (MMP) significantly decreased. Longer-term exposure to MNPs caused oxidative stress in the digestive gland as well as impaired viability and immunity of hemocytes. Particle size also influenced the response with smaller particles having more severe effects. A depuration for 7 days was enough to reverse the negative effects observed on the digestive gland and hemolymph. This study provides new insights on the effects of small-sized MNPs, especially nanoplastic particles (NPs), on aquatic organisms, and provides a solid theoretical knowledge background for future studies on toxic effects of MNPs.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Yichi Ma
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Sam Dupont
- Department for Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil 45178, Sweden
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
12
|
Marcellus KA, Bugiel S, Nunnikhoven A, Curran I, Gill SS. Polystyrene Nano- and Microplastic Particles Induce an Inflammatory Gene Expression Profile in Rat Neural Stem Cell-Derived Astrocytes In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:429. [PMID: 38470760 DOI: 10.3390/nano14050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Microplastics are considered an emerging environmental pollutant due to their ubiquitous presence in the environment. However, the potential impact of microplastics on human health warrants further research. Recent studies have reported neurobehavioral and neurotoxic effects in marine and rodent models; however, their impact on the underlying cellular physiology in mammals remains unclear. Herein, we exposed neural stem cells and neural stem cell-derived astrocytes, oligodendrocytes, and neurons to various sizes and concentrations of polystyrene nano- and microplastics. We investigated their cellular uptake, impact on cytotoxicity, and alteration of gene expression through transcriptome profiling. The cell type most affected by decreased viability were astrocytes after 7 days of repeated exposure. Transcriptional analysis showed that 1274 genes were differentially expressed in astrocytes exposed to 500 nm microplastics, but only 531 genes were altered in astrocytes exposed to 50 nm nanoplastics. Both canonical pathway and Kyoto Encyclopedia of Genes and Genomes analysis showed that upregulated pathways were involved in neuroinflammation, innate and adaptive immunity, cell migration, proliferation, extracellular matrix remodeling, and cytoskeleton structures. The downregulated pathways were involved in lipid metabolism, specifically fatty acid oxidation and cholesterol metabolism. Our results show that neural stem cell-derived astrocytes repeatedly exposed to nano- and microplastics for 7 days undergo changes that are hallmarks of astrogliosis.
Collapse
Affiliation(s)
- Kristen A Marcellus
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Steven Bugiel
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Andrée Nunnikhoven
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Ivan Curran
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Santokh S Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
13
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
14
|
Martin-Folgar R, González-Caballero MC, Torres-Ruiz M, Cañas-Portilla AI, de Alba González M, Liste I, Morales M. Molecular effects of polystyrene nanoplastics on human neural stem cells. PLoS One 2024; 19:e0295816. [PMID: 38170698 PMCID: PMC10763972 DOI: 10.1371/journal.pone.0295816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Nanoplastics (NPs) have been found in many ecological environments (aquatic, terrestrial, air). Currently, there is great concern about the exposition and impact on animal health, including humans, because of the effects of ingestion and accumulation of these nanomaterials (NMs) in aquatic organisms and their incorporation into the food chain. NPs´ mechanisms of action on humans are currently unknown. In this study, we evaluated the altered molecular mechanisms on human neural stem cell line (hNS1) after 4 days of exposure to 30 nm polystyrene (PS) NPs (0.5, 2.5 and 10 μg/mL). Our results showed that NPs can induce oxidative stress, cellular stress, DNA damage, alterations in inflammatory response, and apoptosis, which could lead to tissue damage and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| | - Mª Carmen González-Caballero
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Ana I. Cañas-Portilla
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mercedes de Alba González
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Isabel Liste
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda (Madrid), Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Las Rozas (Madrid), Spain
| |
Collapse
|
15
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
He L, Lu Z, Zhang Y, Yan L, Ma L, Dong X, Wu Z, Dai Z, Tan B, Sun R, Sun S, Li C. The effect of polystyrene nanoplastics on arsenic-induced apoptosis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115814. [PMID: 38100851 DOI: 10.1016/j.ecoenv.2023.115814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Microplastics are detrimental to the environment. However, the combined effects of microplastics and arsenic (As) remain unclear. In this study, we investigated the combined effects of polystyrene (PS) microplastics and As on HepG2 cells. The results showed that PS microplastics 20, 50, 200, and 500 nm in size were taken up by HepG2 cells, causing a decrease in cellular mitochondrial membrane potential. The results of lactate dehydrogenase release and flow cytometry showed that PS microplastics, especially those of 50 nm, enhanced As-induced apoptosis. In addition, transcriptome analysis revealed that TP53, AKT1, CASP3, ACTB, BCL2L1, CASP8, XIAP, MCL1, NFKBIA, and CASP7 were the top 10 hub genes for PS that enhanced the role of As in HepG2 cell apoptosis. Our results suggest that nano-PS enhances As-induced apoptosis. Furthermore, this study is important for a better understanding of the role of microplastics in As-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zifan Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Yuanyuan Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Linhong Yan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Lihua Ma
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Xiaoling Dong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Baoyi Tan
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, PR China; Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
17
|
Liao Z, Liu X, Fan D, Sun X, Zhang Z, Wu P. Autophagy-mediated nanomaterials for tumor therapy. Front Oncol 2023; 13:1194524. [PMID: 38192627 PMCID: PMC10773885 DOI: 10.3389/fonc.2023.1194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/30/2023] [Indexed: 01/10/2024] Open
Abstract
Autophagy is a lysosomal self-degradation pathway that plays an important protective role in maintaining intracellular environment. Deregulation of autophagy is related to several diseases, including cancer, infection, neurodegeneration, aging, and heart disease. In this review, we will summarize recent advances in autophagy-mediated nanomaterials for tumor therapy. Firstly, the autophagy signaling pathway for tumor therapy will be reviewed, including oxidative stress, mammalian target of rapamycin (mTOR) signaling and autophagy-associated genes pathway. Based on that, many autophagy-mediated nanomaterials have been developed and applied in tumor therapy. According to the different structure of nanomaterials, we will review and evaluate these autophagy-mediated nanomaterials' therapeutic efficacy and potential clinical application.
Collapse
Affiliation(s)
- Zijian Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xingjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
18
|
He T, Qu Y, Yang X, Liu L, Xiong F, Wang D, Liu M, Sun R. Research progress on the cellular toxicity caused by microplastics and nanoplastics. J Appl Toxicol 2023; 43:1576-1593. [PMID: 36806101 DOI: 10.1002/jat.4449] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Microplastics (MPs) are plastic particles of a diameter of less than 5 mm and a major carrier of pollution. In accordance with its diameter range, MPs can be divided into microplastics (100-5 mm) and nanoplastics (<100 nm). In recent years, in addition to the impact of MPs on the environment, the ways in which MPs affect the body has also attracted continuous attention. However, relevant studies on the cytotoxicity of MPs are not comprehensive. Based on the current research, this paper summarizes four main cytotoxic mechanisms of MPs, inducing oxidative stress, damaging cell membrane organelles, inducing immune response, and genotoxicity. Generally, MPs cause cytotoxicity such as oxidative stress, damage to cell membranes and organelles, activation of immune responses, and genotoxicity through mechanical damage or induction of cells to produce reactive oxygen species. Understanding these toxic mechanisms is helpful for the evaluation and prevention of human toxicity of MPs. This paper also analyzes the limitations of current research and prospects for future research into cellular MPs, with the aim of providing a scientific basis and reference for further research into the toxic mechanism of MPs.
Collapse
Affiliation(s)
- Tongwei He
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yi Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xinhan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lingxiao Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Daqin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Gao Y, Huang W, Jiang N, Fang JKH, Hu M, Shang Y, Wang Y. Combined effects of microfibers and polychlorinated biphenyls on the immune function of hemocytes in the mussel Mytilus coruscus. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106214. [PMID: 37865594 DOI: 10.1016/j.marenvres.2023.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Numerous studies have shown that microplastics can interact with other pollutants in the environment to produce synergistic effects, leading to more serious impacts. To date, there is little consensus on the combined effects of microfibers (MFs) and polychlorinated biphenyls (PCBs, Aroclor 1254), two legacy and alarming environmental pollutants. There is an urgent need to assess the impact of combined exposures on bivalve immune defences. In this study, we assessed the immune response of the mussels (Mytilus coruscus) hemocyte to MFs and PCBs alone and in combination by using flow cytometry. M. coruscus were exposed to MFs (1000 pieces/L) and PCBs (PCBs) (100 ng/L and 1000 ng/L) alone or in combination for 14 consecutive days and recovered for 7 days. The hemocyte of M. coruscus was collected on day 7, 14 and 21. MF exposure alone had no effect on the hemocyte. The total hemocyte count (THC), esterase (EA), lysosomal contents (LC), mitochondrial number (MN) and mitochondrial membrane potential (MMP) of mussels showed a decreasing trend with increasing PCB concentrations, both individually and in combination; The decreases in EA, MN and MMP were associated with the induction of reactive oxygen species (ROS). Hemocyte mortality (HM) was associated with a decrease in THC. Combined exposure to MFs and PCBs would exacerbate the effects on hemocyte immunity. These new findings improve our understanding of the toxic effects of MFs and organic chemical pollutants, and demonstrate the potential mechanism of PCBs to bivalves through changes in hemolymph immunity-related indicators.
Collapse
Affiliation(s)
- Yiming Gao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Ningjin Jiang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - James K H Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
20
|
Arezki Y, Harmouch E, Delalande F, Rapp M, Schaeffer-Reiss C, Galli O, Cianférani S, Lebeau L, Pons F, Ronzani C. The interplay between lysosome, protein corona and biological effects of cationic carbon dots: Role of surface charge titratability. Int J Pharm 2023; 645:123388. [PMID: 37683981 DOI: 10.1016/j.ijpharm.2023.123388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Carbon dots (CDs) are nanoparticles (NPs) with potential applications in the biomedical field. When in contact with biological fluids, most NPs are covered by a protein corona. As well, upon cell entry, most NP are sequestered in the lysosome. However, the interplay between the lysosome, the protein corona and the biological effects of NPs is still poorly understood. In this context, we investigated the role of the lysosome in the toxicological responses evoked by four cationic CDs exhibiting protonatable or non-protonatable amine groups at their surface, and the associated changes in the CD protein corona. The four CDs accumulated in the lysosome and led to lysosomal swelling, loss lysosome integrity, cathepsin B activation, NLRP3 inflammasome activation, and cell death by pyroptosis in a human macrophage model, but with a stronger effect for CDs with titratable amino groups. The protein corona formed around CDs in contact with serum partially dissociated under lysosomal conditions with subsequent protein rearrangement, as assessed by quantitative proteomic analysis. The residual protein corona still contained binding proteins, catalytic proteins, and proteins involved in the proteasome, glycolysis, or PI3k-Akt KEGG pathways, but with again a more pronounced effect for CDs with titratable amino groups. These results demonstrate an interplay between lysosome, protein corona and biological effects of cationic NPs in link with the titratability of NP surface charges.
Collapse
Affiliation(s)
- Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Ezeddine Harmouch
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, Strasbourg, France
| | - Mickaël Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, Strasbourg, France
| | - Ophélie Galli
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC, UMR 7178, CNRS-Université de Strasbourg, Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, Strasbourg, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Illkirch, France.
| |
Collapse
|
21
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
22
|
Zhang Y, Wang X, Zhao Y, Zhao J, Yu T, Yao Y, Zhao R, Yu R, Liu J, Su J. Reproductive toxicity of microplastics in female mice and their offspring from induction of oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121482. [PMID: 36967007 DOI: 10.1016/j.envpol.2023.121482] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are an emerging pollutant that is becoming recognized as an increasingly serious environmental problem. The biological toxicity and resulting health risks of MPs have attracted much attention in the research community. While the effects of MPs on various mammalian organ systems have been described, their interactions with oocytes and the underlying mechanism of their activity within the reproductive system have remained ambiguous. Here, we discovered that oral administration of MPs to mice (40 mg/kg per day for 30 days) significantly reduced the oocyte maturation and fertilization rate, embryo development, and fertility. Ingestion of MPs significantly increased the ROS level in oocytes and embryos, leading to oxidative stress, mitochondrial dysfunction, and apoptosis. Moreover, mouse exposure to MPs caused DNA damage in oocytes, including spindle/chromosome morphology defects, and downregulation of actin and Juno expression in mouse oocytes. In addition, mice were also exposed to MPs (40 mg/kg per day) during gestation and lactation to determine trans-generational reproductive toxicity. The results showed that maternal exposure to MPs during pregnancy resulted in a decline in birth and postnatal body weight in offspring mice. Furthermore, MPs exposure of mothers markedly reduced oocyte maturation, fertilization rate, and embryonic development in their female offspring. This investigation provides new insights on the mechanism of MPs' reproductive toxicity and raises concerns for potential risks of MP pollution on the reproductive health of humans and animals.
Collapse
Affiliation(s)
- Yingbing Zhang
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xiyue Wang
- Key Laboratory of Livestock Biology, College of Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yifan Zhao
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Jianglin Zhao
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tong Yu
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yupei Yao
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ruolin Zhao
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ruiluan Yu
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Jun Liu
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Jianmin Su
- Key Laboratory of Livestock Biology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
23
|
Malinowska K, Sicińska P, Michałowicz J, Bukowska B. The effects of non-functionalized polystyrene nanoparticles of different diameters on the induction of apoptosis and mTOR level in human peripheral blood mononuclear cells. CHEMOSPHERE 2023; 335:139137. [PMID: 37285979 DOI: 10.1016/j.chemosphere.2023.139137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Particles of various types of plastics, including polystyrene nanoparticles (PS-NPs), have been determined in human blood, placenta, and lungs. These findings suggest a potential detrimental effect of PS-NPs on bloodstream cells. The purpose of this study was to assess the mechanism underlying PS-NPs-induced apoptosis in human peripheral blood mononuclear cells (PBMCs). Non-functionalized PS-NPs of three diameters: 29 nm, 44 nm, and 72 nm were studied used in this research. PBMCs were isolated from human leukocyte-platelet buffy coat and treated with PS-NPs at concentrations ranging from 0.001 to 200 μg/mL for 24 h. Apoptotic mechanism of action was evaluated by determining the level of cytosolic calcium ions, as well as mitochondrial transmembrane potential, and ATP levels. Furthermore, detection of caspase-8, -9, and -3 activation, as well as mTOR level was conducted. The presence of apoptotic PBMCs was confirmed by the method of double staining of the cells with propidium iodide and FITC-conjugated Annexin V. We found that all tested NPs increased calcium ion and depleted mitochondrial transmembrane potential levels. The tested NPs also activated caspase-9 and caspase-3, and the smallest NPs of 29 nm of diameter also activated caspase-8. The results clearly showed that apoptotic changes and an increase of mTOR level depended on the size of the tested NPs, while the smallest particles caused the greatest alterations. PS-NPs of 26 nm of diameter activated the extrinsic pathway (increased caspase-8 activity), as well as intrinsic (mitochondrial) pathway (increased caspase-9 activity, raised calcium ion level, and decreased transmembrane mitochondrial potential) of apoptosis. All PS-NPs increased mTOR level at the concentrations smaller than those that induced apoptosis and its level returned to control value when the process of apoptosis escalated.
Collapse
Affiliation(s)
- Kinga Malinowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Paulina Sicińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Jaromir Michałowicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, 141/143 Pomorska St., 90-236, Lodz, Poland.
| |
Collapse
|
24
|
Liu B, Jiang W, Ye Y, Liu L, Wei X, Zhang Q, Xing B. 2D MoS 2 Nanosheets Induce Ferroptosis by Promoting NCOA4-Dependent Ferritinophagy and Inhibiting Ferroportin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208063. [PMID: 36908089 DOI: 10.1002/smll.202208063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Indexed: 06/15/2023]
Abstract
The exposure of MoS2 nanosheets can cause cytotoxicity, which causes health risks and affects its medical applications. However, knowledge of the underlying molecular mechanisms remains limited. This study reports that MoS2 nanosheets induces ferroptosis in vivo and in vitro, which is caused by the nanosheet themselves rather than by the dissolved ions. MoS2 nanosheets induce ferroptosis in epithelial (BEAS-2B) and macrophage (RAW264.7) cells due to nuclear receptor coactivator 4 (NCOA4)-dependent excusive ferritinophagy and the inhibition of ferroportin-1 (FPN). In this process, most of the MoS2 nanosheets enter the cells via macropinocytosis and are localized to the lysosome, contributing to an increase in the lysosomal membrane permeability. At the same time, NCOA4-dependent ferritinophagy is activated, and ferritin is degraded in the lysosome, which generates Fe2+ .Fe2+ leaks into the cytoplasm, leading to ferroptosis. Furthermore, the inhibition of FPN further aggravates the overload of Fe2+ in the cell. It has also been observed that ferroptosis is increased in lung tissue in mouse models exposed to MoS2 nanosheets. This work highlights a novel mechanism by which MoS2 nanosheets induce ferroptosis by promoting NCOA4-dependent ferritinophagy and inhibiting FPN, which could be of importance to elucidate the toxicity and identify the medical applications of 2D nanoparticles.
Collapse
Affiliation(s)
- Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
| | - Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
| | - Ling Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, P. R. China
- Marine College, Shandong University, Weihai, 264209, P. R. China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
25
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
26
|
Zhu L, Xie C, Chen L, Dai X, Zhou Y, Pan H, Tian K. Transport of microplastics in the body and interaction with biological barriers, and controlling of microplastics pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114818. [PMID: 36958263 DOI: 10.1016/j.ecoenv.2023.114818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are one novel environmental pollutant sized < 5 mm that is ubiquitously present in numerous environmental media and particularly susceptible to interact with various toxic chemicals. Importantly, MPs can enter the food chain, and are bio-enriched and bio-accumulated with trophic levels, eventually endangering ecosystems and human health. However, there need to be more understanding regarding the bio-interaction of MPs with the host, particularly for biological barriers. This review aimed to summarize the latest findings regarding the main exposure routes of MPs that generated health burdens on humans. Furthermore, their interactions with biological barriers that generate adverse health effects and the underlying mechanisms were also reviewed. Additionally, we provided a comprehensive overview of recent advances regarding the removing and controlling of MPs. Finally, we discussed the future directions for MPs hazard prevention to provide helpful information for regulating decision-making and guiding safer plastics applications.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Caiyan Xie
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingyu Dai
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yuanzhong Zhou
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China
| | - Hong Pan
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China.
| | - Kunming Tian
- Department of Occupational and Environmental Health, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
27
|
Wang C, Wu W, Pang Z, Liu J, Qiu J, Luan T, Deng J, Fang Z. Polystyrene microplastics significantly facilitate influenza A virus infection of host cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130617. [PMID: 36623344 DOI: 10.1016/j.jhazmat.2022.130617] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are emerging pollutants which exist in various environments and pose a potential threat to human health. However, the effect of MP on respiratory pathogens-infected organisms is unknown. In order to explore the effect of MP on respiratory pathogen infection, we studied the effect of polystyrene microplastics (PS) on influenza A virus (IAV)-infected A549 cells. Western blot, qPCR, and viral plaque assay demonstrated that PS could promote IAV infection. Further study by bioluminescence imaging showed that a large number of IAV could be enriched on PS and entered cells through endocytosis. Meanwhile, the expression of IFITM3 in cells was significantly reduced. In addition, our results showed that PS down-regulated IRF3 and its active form P-IRF3 by down-regulating RIG-I and inhibiting TBK1 phosphorylation activation, which then significantly reduced IFN-β expression and affected the cellular innate antiviral immune system. Taken together, our results indicate the potential threat of MPs to respiratory diseases caused by IAV and provide new insights into human health protection.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Wenjiao Wu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Zefen Pang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Jiaxin Liu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Jianxiang Qiu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory 7 (Rongjiang Laboratory), Jieyang 515200, Guangdong, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Zhixin Fang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China.
| |
Collapse
|
28
|
Microbial community shifts induced by plastic and zinc as substitutes of tire abrasion. Sci Rep 2022; 12:18684. [PMID: 36333419 PMCID: PMC9636222 DOI: 10.1038/s41598-022-22906-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aquatic environments serve as a sink for anthropogenic discharges. A significant part of the discharge is tire wear, which is increasingly being released into the environment, causing environmental disasters due to their longevity and the large number of pollutants they contain. Main components of tires are plastic and zinc, which therefore can be used as substitutes for tire abrasion to study the effect on microbial life. We investigate environmentally realistic concentrations of plastic and zinc on a freshwater microeukaryotic community using high-throughput sequencing of the 18S V9 region over a 14-day exposure period. Apart from a generally unchanged diversity upon exposure to zinc and nanoplastics, a change in community structure due to zinc is evident, but not due to nanoplastics. Evidently, nanoplastic particles hardly affect the community, but zinc exposure results in drastic functional abundance shifts concerning the trophic mode. Phototrophic microorganisms were almost completely diminished initially, but photosynthesis recovered. However, the dominant taxa performing photosynthesis changed from bacillariophytes to chlorophytes. While phototrophic organisms are decreasing in the presence of zinc, the mixotrophic fraction initially benefitted and the heterotrophic fraction were benefitting throughout the exposure period. In contrast to lasting changes in taxon composition, the functional community composition is initially strongly imbalanced after application of zinc but returns to the original state.
Collapse
|
29
|
Shen F, Li D, Guo J, Chen J. Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticles based on human placental cells. WATER RESEARCH 2022; 223:118960. [PMID: 35988336 DOI: 10.1016/j.watres.2022.118960] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/23/2022] [Accepted: 08/06/2022] [Indexed: 05/14/2023]
Abstract
Nanoplastics, as emerging contaminants, may be degraded from microplastics and released into aquatic systems globally, which pose threats to human health via ingestion with food or water. Although plastic fragments have been isolated from placental tissues in pregnant women, little is known about the direct toxicity of nanoplastics on human placental cells that plays a critical role in maintaining healthy growth of fetus. This study explored the mechanistic toxicity of polystyrene nanoplastics (PS-NPs) with different sizes (25, 50, 100 and 500 nm) and surface charges (-NH2, -COOH and unlabeled) on human placental cells. Results showed that PS-NPs had size- and surface charge-specific toxicity pattern. The smaller the PS-NP size was, the greater the toxicity induced on human placental cells. In terms of surface charges, NH2-labeled PS-NPs caused greater effects on cytotoxicity, inhibition of protein kinase A (PKA) activity, oxidative stress, and cell cycle arrest compared to COOH-labeled and unmodified PS-NPs. PS-NPs also induced size- and surface charge-dependent expression profiles of genes involved in various and interrelated toxicity pathways. In particular, PS-NPs increased intracellular reactive oxygen species in human placental cells, which can induce DNA damage and lead to cell cycle arrest in G1or G2 phase, inflammation and apoptosis. Our findings provide empirical evidences that the negative effects of nanoplastics on human placental cells, and highlight the necessity to conduct risk assessment of nanoplastics on female reproduction and fetal development.
Collapse
Affiliation(s)
- Fanglin Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Im GB, Kim YG, Jo IS, Yoo TY, Kim SW, Park HS, Hyeon T, Yi GR, Bhang SH. Effect of polystyrene nanoplastics and their degraded forms on stem cell fate. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128411. [PMID: 35149489 DOI: 10.1016/j.jhazmat.2022.128411] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Several studies have examined the effects of micro- and nanoplastics on microbes, cells, and the environment. However, only a few studies have examined their effects-especially, those of their reduced cohesiveness-on cell viability and physiology. We synthesized surfactant-free amine-functionalized polystyrene (PS) nanoparticles (NPs) and PS-NPs with decreased crosslinking density (DPS-NPs) without changing other factors, such as size, shape, and zeta potential and examined their effects on cell viability and physiology. PS- and DPS-NPs exhibited reactive oxygen species (ROS) scavenging activity by upregulating GPX3 expression and downregulating HSP70 (ROS-related gene) and XBP1 (endoplasmic reticulum stress-related gene) expression in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Additionally, they led to upregulation of MFN2 (mitochondrial fusion related gene) expression and downregulation of FIS1 (mitochondrial fission related gene) expression, indicating enhanced mitochondrial fusion in hBM-MSCs. Cell-cycle analysis revealed that PS- and DPS-NPs increased the proportion of cells in the S phase, indicating that they promoted cell proliferation and, specifically, the adipogenic differentiation of hBM-MSCs. However, the cytotoxicity of DPS-NPs against hBM-MSCs was higher than that of PS-NPs after long-term treatment under adipogenic conditions.
Collapse
Affiliation(s)
- Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Seong Jo
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Tae Yong Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
31
|
Teng M, Zhao X, Wu F, Wang C, Wang C, White JC, Zhao W, Zhou L, Yan S, Tian S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. ENVIRONMENT INTERNATIONAL 2022; 163:107154. [PMID: 35334375 DOI: 10.1016/j.envint.2022.107154] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics are being detected with increasing frequency in aquatic environments. Although evidence suggests that nanoplastics can cause overt toxicity to biota across different trophic levels, but there is little understanding of how materials such as differently charged polystyrene nanoplastics (PS-NP) impact fish development and behavior. Following exposure to amino-modified (positive charge) PS-NP, fluorescence accumulation was observed in the zebrafish brain and gastrointestinal tract. Positively charged PS-NP induced stronger developmental toxicity (decreased spontaneous movement, heartbeat, hatching rate, and length) and cell apoptosis in the brain and induced greater neurobehavioral impairment as compared to carboxyl-modified (negative charge) PS-NP. These findings correlated well with fluorescence differences indicating PS-NP presence. Targeted neuro-metabolite analysis by UHPLC-MS/MS reveals that positively charged PS-NP decreased levels of glycine, cysteine, glutathione, and glutamic acid, while the increased levels of spermine, spermidine, and tyramine were induced by negatively charged PS-NP. Positively charged PS-NP interacted with the neurotransmitter receptor N-methyl-D-aspartate receptor 2B (NMDA2B), whereas negatively charged PS-NP impacted the G-protein-coupled receptor 1 (GPR1), each with different binding energies that led to behavioral differences. These findings reveal the charge-specific toxicity of nanoplastics to fish and provide new perspective for understanding PS-NP neurotoxicity that is needed to accurately assess potential environmental and health risks of these emerging contaminants.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Screening for polystyrene nanoparticle toxicity on kidneys of adult male albino rats using histopathological, biochemical, and molecular examination results. Cell Tissue Res 2022; 388:149-165. [PMID: 35088181 PMCID: PMC8976822 DOI: 10.1007/s00441-022-03581-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Abstract
Polystyrene Nanoparticles (PS-NPs) used for packaging foam, disposable cups, and food containers. Therefore, this study aimed to evaluate PS- NPs toxic effects on kidney of adult male albino rats. A total of 30 rats divided into three groups (n = 10): group I negative control group; group II orally administered 3% PS-NPs (3 mg/kg body weight/day) and group III orally administered 3% PS-NPs (10 mg/kg body weight/day) for 35 days. Blood and kidney samples collected and processed for biochemical, histopathological, and immunohistochemical examinations. Results showed that low and high doses PS-NPs had significantly increased serum blood urea nitrogen (BUN), creatinine, malondialdehyde, significantly further reduced glutathione, downregulation of nuclear factor erythroid 2–related factor 2 and glutathione peroxidase, upregulation of caspase-3 and Cytochrome-c. Histopathological examination revealed several alterations. Low dose of PS-NPs exhibited dilated glomerular capillaries, hypotrophy of some renal corpuscles significantly decreases their diameter to 62 μm. Some proximal convoluted tubules and distal convoluted tubules showed loss of cellular architecture with pyknotic nuclei. Hyalinization and vacuolation in renal medulla. In high dose PS-NPs, alterations increased in severity. A significant increase in percentage area of cyclooxygenase-2 in low and high-doses. In conclusion, PS-NPs are a nephrotoxic causing renal dysfunction.
Collapse
|
33
|
Luo Y, Wang WX. Immune responses of oyster hemocyte subpopulations to in vitro and in vivo zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106022. [PMID: 34798302 DOI: 10.1016/j.aquatox.2021.106022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Oysters are an excellent biomonitor of coastal pollution and the hyper-accumulator of toxic metals such as copper and zinc (Zn). One unique feature of molluscs is their hemocytes which are mainly involved in immune defenses. Different subpopulations of hemocytes have been identified, but their functions in metal transport and detoxification are not clear. In this study, we examined the immune responses of different subpopulations of oyster Crassostrea hongkongensis hemocytes under different periods of Zn exposure by using flow cytometer and confocal microscopy. In vitro exposure to Zn resulted in acute immune responses by increasing the reactive oxygen species (ROS) production and phagocytosis and decreased number of granulocytes and mitochondrial membrane potential (MMP) within 3 h. Granulocyte mortality and lysosomal pH increased whereas glutathione (GSH) decreased within 1 h of in vitro exposure, indicating the immune stimulation of granulocytes. Within the first 7 days of in vivo exposure, immunocompetence of granulocytes was inhibited with increasing granulocyte mortality but decreasing ROS production and phagocytosis. However, with a further extension of Zn exposure to 14 days, both phagocytosis and lysosomal content increased with an increasing number of granulocytes, indicating the increase of hemocyte-mediated immunity. Our study demonstrated that granulocytes played important roles in oyster immune defenses while other subpopulations may also participate in immune functions. The degranulation and granulation due to transition between semigranulocytes and granulocytes after Zn exposure were important in metal detoxification. The study contributed to our understanding of the immune phenomena and the adaptive capability of oysters in metal contaminated environments.
Collapse
Affiliation(s)
- Yali Luo
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
34
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
35
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1282-1295. [DOI: 10.1093/jpp/rgac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022]
|
36
|
Auguste M, Balbi T, Miglioli A, Alberti S, Prandi S, Narizzano R, Salis A, Damonte G, Canesi L. Comparison of Different Commercial Nanopolystyrenes: Behavior in Exposure Media, Effects on Immune Function and Early Larval Development in the Model Bivalve Mytilus galloprovincialis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3291. [PMID: 34947640 PMCID: PMC8705110 DOI: 10.3390/nano11123291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Abstract
In the absence of standard methods for the detection/quantification of nanoplastics (NPs) in environmental samples, commercial nanopolymers are utilized as proxies for toxicity testing and environmental risk assessment. In marine species, a considerable amount of data are now available on the effects of nanopolystyrene (PS-NPs) of different size/surface characteristics. In this work, amino modified PS-NPs (PS-NH2) (50 and 100 nm), purchased from two different companies, were compared in terms of behavior in exposure media and of biological responses, from molecular to organism level, in the model marine bivalve Mytilus. Different PS-NH2 showed distinct agglomeration and surface charge in artificial sea water (ASW) and hemolymph serum (HS). Differences in behavior were largely reflected by the effects on immune function in vitro and in vivo and on early larval development. Stronger effects were generally observed with PS-NH2 of smaller size, showing less agglomeration and higher positive charge in exposure media. Specific molecular interactions with HS components were investigated by the isolation and characterization of the NP-corona proteins. Data obtained in larvae demonstrate interference with the molecular mechanisms of shell biogenesis. Overall, different PS-NH2 can affect the key physiological functions of mussels at environmental concentrations (10 µg/L). However, detailed information on the commercial NPs utilized is required to compare their biological effects among laboratory experiments.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Environmental, Earth, and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (T.B.); (A.M.); (L.C.)
| | - Teresa Balbi
- Department of Environmental, Earth, and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (T.B.); (A.M.); (L.C.)
| | - Angelica Miglioli
- Department of Environmental, Earth, and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (T.B.); (A.M.); (L.C.)
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry (DICCI), University of Genoa, 16136 Genoa, Italy;
| | - Sonja Prandi
- Department Regional Laboratory, Sector Organic Chemistry and Physical Analysis, ARPAL, 16149 Genoa, Italy; (S.P.); (R.N.)
| | - Riccardo Narizzano
- Department Regional Laboratory, Sector Organic Chemistry and Physical Analysis, ARPAL, 16149 Genoa, Italy; (S.P.); (R.N.)
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), University of Genoa, 16136 Genoa, Italy; (A.S.); (G.D.)
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), University of Genoa, 16136 Genoa, Italy; (A.S.); (G.D.)
| | - Laura Canesi
- Department of Environmental, Earth, and Life Sciences (DISTAV), University of Genoa, 16136 Genoa, Italy; (T.B.); (A.M.); (L.C.)
| |
Collapse
|
37
|
Domenech J, de Britto M, Velázquez A, Pastor S, Hernández A, Marcos R, Cortés C. Long-Term Effects of Polystyrene Nanoplastics in Human Intestinal Caco-2 Cells. Biomolecules 2021; 11:biom11101442. [PMID: 34680075 PMCID: PMC8533059 DOI: 10.3390/biom11101442] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
The increasing presence of micro- and nanoplastics (MNPLs) in the environment, and their consequent accumulation in trophic niches, could pose a potential health threat to humans, especially due to their chronic ingestion. In vitro studies using human cells are considered pertinent approaches to determine potential health risks to humans. Nevertheless, most of such studies have been conducted using short exposure times and high concentrations. Since human exposure to MNPLs is supposed to be chronic, there is a lack of information regarding the potential in vitro MNPLs effects under chronic exposure conditions. To this aim, we assessed the accumulation and potential outcomes of polystyrene nanoparticles (PSNPs), as a model of MNPLs, in undifferentiated Caco-2 cells (as models of cell target in ingestion exposures) under a relevant long-term exposure scenario, consisting of eight weeks of exposure to sub-toxic PSNPs concentrations. In such exposure conditions, culture-media was changed every 2–3 days to maintain constant exposure. The different analyzed endpoints were cytotoxicity, dysregulation of stress-related genes, genotoxicity, oxidative DNA damage, and intracellular ROS levels. These are endpoints that showed to be sensitive enough in different studies. The obtained results attest that PSNPs accumulate in the cells through time, inducing changes at the ultrastructural and molecular levels. Nevertheless, minor changes in the different evaluated genotoxicity-related biomarkers were observed. This would indicate that no DNA damage or oxidative stress is observed in the human intestinal Caco-2 cells after long-term exposure to PSNPs. This is the first study dealing with the long-term effects of PSNPs on human cultured cells.
Collapse
|
38
|
Yang W, Gao P, Nie Y, Huang J, Wu Y, Wan L, Ding H, Zhang W. Comparison of the effects of continuous and accumulative exposure to nanoplastics on microalga Chlorella pyrenoidosa during chronic toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147934. [PMID: 34134378 DOI: 10.1016/j.scitotenv.2021.147934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Most previous studies have focused on the continuous exposure of aquatic organisms to nanoplastics. However, persistent pollutants in natural aquatic surroundings are a threat, and their concentrations are continuously increasing. The discussion and research into the effects of accumulative exposure to these materials are limited. Therefore, this study aimed to compare the effects of continuous and accumulative exposure to polystyrene (PS) nanoplastics (80 nm) on Chlorella pyrenoidosa during chronic toxicity. The results indicated that under conditions of continuous exposure, this alga exhibited self-recovery to defend against the negative effects of PS nanoplastics during 15-21 days of exposure (the 21-d inhibitory rate was 1.41%). However, one unanticipated finding was that during the same period of accumulative exposure, nanoplastics retained a substantial and stable inhibitory effect on the algal growth (the 21-d inhibitory rate was 6.79% in accumulative exposure for twice), indicating the invalid self-recovery of algae. The results of scanning electron microscopy demonstrated that on day 21, the degree of damage to the algal cells under accumulative exposure was more severe than that under continuous exposure. Hence, nanoplastics exerted an irreversibly negative effect on aquatic organisms depending on the pattern, frequency, concentration, and duration of exposure. This project evaluated the practical significance of nanoplastics in aquatic ecosystems.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Ye Nie
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Jiayi Huang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Yixiao Wu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Liang Wan
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang, Jiangxi 330029, PR China
| | - Weihao Zhang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
39
|
Matthews S, Mai L, Jeong CB, Lee JS, Zeng EY, Xu EG. Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109056. [PMID: 33894368 DOI: 10.1016/j.cbpc.2021.109056] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/27/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in aquatic and terrestrial environments, and detrimental biological effects have been observed on a variety of organisms, from bacteria and alga to plants and animals. A fast-growing number of toxicological studies report diverse responses and wide species-dependent sensitivity upon MNP exposure. While studies are dominated by in vivo animal tests, our understanding of cellular toxicity and the corresponding toxicity mechanisms is still limited. This challenges the proper assessment of environmental hazards and health risks of MNPs. In this review, we gathered and analyzed the up-to-date studies on humans, animals, plants, alga, and bacteria, and identified the similarities and differences in key toxicity mechanisms of MNPs across different taxonomic groups. Particularly, human cell-based studies at the cellular level provide fundamental and valuable information on the key toxicity mechanisms, which are essential to answer the question of whether and how MNPs pose health threats. In general, toxicity mechanisms of MNPs depend on their size, surface characteristics, polymer type, as well as cell type. Plausible toxicity mechanisms mainly include membrane disruption, extracellular polymeric substance disruption, reactive oxygen species generation, DNA damage, cell pore blockage, lysosome destabilization, and mitochondrial depolarization. A deeper understanding of these key mechanisms in different taxonomic groups can also improve both in vivo and in vitro models useful for predictive impact assessments of plastic pollution on the environment and human health.
Collapse
Affiliation(s)
- Sara Matthews
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chang-Bum Jeong
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark.
| |
Collapse
|
40
|
Yang W, Gao P, Ma G, Huang J, Wu Y, Wan L, Ding H, Zhang W. Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117413. [PMID: 34049161 DOI: 10.1016/j.envpol.2021.117413] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of nanoplastics to aquatic organisms has been widely studied in terms of biochemical indicators. However, there is little discussion about the underlying toxic mechanism of nanoplastics on microalgae. Therefore, the chronic effect of polystyrene (PS) nanoplastics (80 nm) on Chlorella pyrenoidosa was investigated, in terms of responses at the biochemical and molecular/omic level. It was surprising that both inhibitory and promoting effects of nanoplastcis on C. pyrenoidosa were found during chronic exposure. Before 13 days, the maximum growth inhibition rate was 7.55% during 10 mg/L PS nanoplastics treatment at 9 d. However, the inhibitory effect gradually weakened with the prolongation of exposure time. Interestingly, algal growth was promoted for 1-5 mg/L nanoplastics during 15-21 d exposure. Transcriptomic analysis explained that the inhibitory effect of nanoplastics could be attributed to suppressed gene expression of aminoacyl-tRNA synthetase that resulted in the reduced synthesis of related enzymes. The promotion phenomenon may be due to that C. pyrenoidosa defended against nanoplastics stress by promoting cell proliferation, regulating intracellular osmotic pressure, and accelerating the degradation of damaged proteins and organs. This study is conducive to provide theoretical basis for evaluating the actual hazard of nanoplastics to aquatic organisms.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Guoyi Ma
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Jiayi Huang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Yixiao Wu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Liang Wan
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang, Jiangxi, 330029, PR China
| | - Weihao Zhang
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China.
| |
Collapse
|
41
|
Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021; 9:5092-5115. [PMID: 34160488 DOI: 10.1039/d1bm00721a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current treatment strategies for cancer therapy have posed many problems in achieving high efficacy. Therefore, an urgent step is needed to develop innovative therapies that can win beyond satisfactory results against tumor. Ferroptosis that is a kind of non-apoptotic based programmed cell death has played a crucial role in eradicating tumors by reactive oxygen species and iron-dependent pathways. Research shows a remarkable potential of ferroptosis in eliminating aggressive malignancies resistant to traditional therapies. The combination of nanomedicine and ferroptosis has revealed a close relationship for the treatment of various cancer types with high efficacy. This review introduces the basics of nanomedicine-based ferroptosis first to emphasize the feasibility and properties of ferroptosis in cancer therapy. Then, the current research on the applications of nanomedicine for the ferroptosis-based anticancer therapy is highlighted. Finally, conclusions and future research directions in perspective of various challenges in developing nanomedicine-based ferroptosis into clinical therapeutics are discussed.
Collapse
Affiliation(s)
- Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China.
| | | | | | | | | | | |
Collapse
|
42
|
Mitrano DM, Wick P, Nowack B. Placing nanoplastics in the context of global plastic pollution. NATURE NANOTECHNOLOGY 2021; 16:491-500. [PMID: 33927363 DOI: 10.1038/s41565-021-00888-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/03/2021] [Indexed: 05/13/2023]
Abstract
Numerous studies have made the ubiquitous presence of plastic in the environment undeniable, and thus it no longer comes as a surprise when scientists measure the accumulation of macroplastic litter and microplastic fragments in both urban and remote sites. Nanoplastics have recently emerged in the discussions of scientists, regulators and the public, as the weathering of macroplastics may lead to a substantial burden of nanoplastics in various ecosystems. While nanoplastics particles themselves have not (yet) been extensively measured in the environment, there is increased concern that this size fraction of plastic may be more extensively distributed and hazardous that larger-sized particles. This assessment may emanate from an unease with the term 'nano', which may elicit a negative response over uncertainties of the pervasiveness of nanoplastics specifically, or from the lessons learned by many years of intensive environmental health and safety research of engineered nanomaterials. Ultimately, the different physical and chemical characteristics of the different size classes of plastic pollution (macroplastics, microplastics and nanoplastics) will result in divergent fate and hazards. As nanoscientists specializing in understanding the fate, transport and interactions of nanoparticles in human and environmental systems, in this Perspective, we try to place nanoplastics in the context of global plastic pollution by assessing its sources and risks, and by assessing commonalities nanoplastics may share with other nanosized objects in environmental systems, such as engineered nanomaterials and natural colloids.
Collapse
Affiliation(s)
- Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Bernd Nowack
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
43
|
Kik K, Bukowska B, Krokosz A, Sicińska P. Oxidative Properties of Polystyrene Nanoparticles with Different Diameters in Human Peripheral Blood Mononuclear Cells (In Vitro Study). Int J Mol Sci 2021; 22:ijms22094406. [PMID: 33922469 PMCID: PMC8122768 DOI: 10.3390/ijms22094406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
With the ongoing commercialization, human exposure to plastic nanoparticles will dramatically increase, and evaluation of their potential toxicity is essential. There is an ongoing discussion on the human health effects induced by plastic particles. For this reason, in our work, we assessed the effect of polystyrene nanoparticles (PS-NPs) of various diameters (29, 44 and 72 nm) on selected parameters of oxidative stress and the viability of human peripheral blood mononuclear cells (PBMCs) in the in vitro system. Cells were incubated with PS-NPs for 24 h in the concentration range of 0.001 to 100 µg/mL and then labeled: formation of reactive oxygen species (ROS) (including hydroxyl radical), protein and lipid oxidation and cell viability. We showed that PS-NPs disturbed the redox balance in PBMCs. They increased ROS levels and induced lipid and protein oxidation, and, finally, the tested nanoparticles induced a decrease in PBMCs viability. The earliest changes in the PBMCs were observed in cells incubated with the smallest PS-NPs, at a concentration of 0.01 μg/mL. A comparison of the action of the studied nanoparticles showed that PS-NPs (29 nm) exhibited a stronger oxidative potential in PBMCs. We concluded that the toxicity and oxidative properties of the PS-NPs examined depended to significant degree on their diameter.
Collapse
|
44
|
Wang Y, Wang F, Chen Z, Song M, Yao X, Jiang G. In situ High-Throughput Single-Cell Analysis Reveals the Crosstalk between Nanoparticle-Induced Cell Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5136-5142. [PMID: 33760593 DOI: 10.1021/acs.est.0c08424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterials are widely used in a variety of industrial, biological, and medical applications. Therefore, high concerns about their possible impact on human and environmental health have been raised. Here, we describe a high-throughput single-cell imaging method to reveal the crosstalk among quantum dot (QDot)-induced ROS generation, apoptosis, and changes in nucleus size in macrophages. In triple marker combinations, we assessed the correlations of three QDot-induced cellular responses via divided subsets based on single-cell analysis. In contrast to the results obtained from the cell population, we demonstrated that the change in nucleus size was positively correlated with ROS generation. We found that QDot exposure induced ROS generation, which led to cell apoptosis, followed by a change in nucleus size. In general, these observations on crosstalk of cellular responses provide detailed insights into the heterogeneity of nanoparticle exposure.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Quevedo AC, Lynch I, Valsami-Jones E. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. NANOSCALE 2021; 13:6142-6161. [PMID: 33734251 DOI: 10.1039/d0nr09024g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell death is the process that regulates homeostasis and biochemical changes in healthy cells. Silver nanoparticles (AgNPs) act as powerful cell death inducers through the disruption of cellular signalling functions. In this study, embryonic zebrafish cells (ZF4) were used as a potential early-stage aquatic model to evaluate the molecular and cell death mechanisms implicated in the toxicity of AgNPs and Ag+. Here, a low, medium, and high concentration (2.5, 5, and 10 μg mL-1) of three different sizes of AgNPs (10, 30 and 100 nm) and ionic Ag+ (1, 1.5 and 2 μg mL-1) were used to investigate whether the size of the nanomaterial, ionic form, and mass concentration were related to the activation of particular cell death mechanisms and/or induction of different signalling pathways. Changes in the physicochemical properties of the AgNPs were also assessed in the presence of complex medium (cell culture) and reference testing medium (ultra-pure water). Results demonstrated that AgNPs underwent dissolution, as well as changes in hydrodynamic size, zeta potential and polydispersity index in both tested media depending on particle size and concentration. Similarly, exposure dose played a key role in regulating the different cell death modalities (apoptosis, necrosis, autophagy), and the signalling pathways (repair mechanisms) in cells that were activated in the attempt to overcome the induced damage. This study contributes to the 3Rs initiative to replace, reduce and refine animal experimentation through the use of alternative models for nanomaterials assessment.
Collapse
Affiliation(s)
- Ana C Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, Edgbaston, UK.
| | | | | |
Collapse
|
46
|
Nanoparticle-induced inflammation and fibrosis in ex vivo murine precision-cut liver slices and effects of nanoparticle exposure conditions. Arch Toxicol 2021; 95:1267-1285. [PMID: 33555372 PMCID: PMC8032640 DOI: 10.1007/s00204-021-02992-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Chronic exposure and accumulation of persistent nanomaterials by cells have led to safety concerns on potential long-term effects induced by nanoparticles, including chronic inflammation and fibrosis. With this in mind, we used murine precision-cut liver tissue slices to test potential induction of inflammation and onset of fibrosis upon 72 h exposure to different nanomaterials (0–200 µg/ml). Tissue slices were chosen as an advanced ex vivo 3D model to better resemble the complexity of the in vivo tissue environment, with a focus on the liver where most nanomaterials accumulate. Effects on the onset of fibrosis and inflammation were investigated, with particular care in optimizing nanoparticle exposure conditions to tissue. Thus, we compared the effects induced on slices exposed to nanoparticles in the presence of excess free proteins (in situ), or after corona isolation. Slices exposed to daily-refreshed nanoparticle dispersions were used to test additional effects due to ageing of the dispersions. Exposure to amino-modified polystyrene nanoparticles in serum-free conditions led to strong inflammation, with stronger effects with daily-refreshed dispersions. Instead, no inflammation was observed when slices were exposed to the same nanoparticles in medium supplemented with serum to allow corona formation. Similarly, no clear signs of inflammation nor of onset of fibrosis were detected after exposure to silica, titania or carboxylated polystyrene in all conditions tested. Overall, these results show that liver slices can be used to test nanoparticle-induced inflammation in real tissue, and that the exposure conditions and ageing of the dispersions can strongly affect tissue responses to nanoparticles.
Collapse
|
47
|
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. NANOSCALE 2021; 13:2266-2285. [PMID: 33480938 DOI: 10.1039/d0nr08478f] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although ferroptosis is an iron-dependent cell death mechanism involved in the development of some severe diseases (e.g., Parkinsonian syndrome, stroke and tumours), the combination of nanotechnology with ferroptosis for the treatment of these diseases has attracted substantial research interest. However, it is challenging to differentiate nanoparticle-induced ferroptosis from other types of cell deaths (e.g., apoptosis, pyroptosis, and necrosis), elucidate the detailed mechanisms and identify the key property of nanoparticles responsible for ferroptotic cell deaths. Therefore, a summary of these aspects from current research on nano-ferroptosis is important and timely. In this review, we endeavour to summarize some convincing techniques that can be employed to specifically examine ferroptotic cell deaths. Then, we discuss the molecular initiating events of nanosized ferroptosis inducers and the cascade signals in cells, and therefore elaborate the ferroptosis mechanisms. Besides, the key physicochemical properties of nano-inducers are also discussed to acquire a fundamental understanding of nano-structure-activity relationships (nano-SARs) involved in ferroptosis, which may facilitate the design of nanomaterials to deliberately tune ferroptosis. Finally, future perspectives on the fundamental understanding of nanoparticle-induced ferroptosis and its applications are provided.
Collapse
Affiliation(s)
- Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
48
|
Macrophage apoptosis using alendronate in targeted nanoarchaeosomes. Eur J Pharm Biopharm 2021; 160:42-54. [PMID: 33440242 DOI: 10.1016/j.ejpb.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchaeosomes are non-hydrolysable nanovesicles made of archaeolipids, naturally functionalised with ligand for scavenger receptor class 1. We hypothesized that nitrogenate bisphosphonate alendronate (ALN) loaded nanoarchaeosomes (nanoarchaeosomes(ALN)) may constitute more efficient macrophage targeted apoptotic inducers than ALN loaded nanoliposomes (nanoliposomes (ALN)). To that aim, ALN was loaded in cholesterol containing (nanoARC-chol(ALN)) or not (nanoARC(ALN)) nanoarchaeosomes. Nanoarchaeosomes(ALN) (220-320 nm sized, ~ -40 mV ξ potential, 38-50 μg ALN/mg lipid ratio) displayed higher structural stability than nanoliposomes(ALN) of matching size and ξ potential, retaining most of ALN against a 1/200 folds dilution. The cytotoxicity of nanoARC(ALN) on J774A.1 cells, resulted > 30 folds higher than free ALN and nanoliposomes(ALN) and was reduced by cholesterol in nanoARC-chol(ALN). Devoid of ALN, nanoARC-chol was non-cytotoxic, exhibited pronounced anti-inflammatory activity on J774.1 cells, strongly reducing reactive oxygen species (ROS) and IL-6 induced by LPS. Nanoarchaeosomes bilayer extensively interacted with serum proteins but resulted refractory to phospholipases. Upon J774A.1 cells uptake, nanoarchaeosomes induced cytoplasmic acid vesicles, reduced the mitochondrial membrane potential by 20-40 % without consuming ATP neither damaging lysosomes and increasing pERK. Refractory to chemoenzymatic attacks, either void or drug loaded, nanoarchaeosomes induced either anti-inflammation or macrophages apoptosis, constituting promising targeted nanovesicles for multiple therapeutic purposes.
Collapse
|
49
|
Liu Q, Chen C, Li M, Ke J, Huang Y, Bian Y, Guo S, Wu Y, Han Y, Liu M. Neurodevelopmental Toxicity of Polystyrene Nanoplastics in Caenorhabditis elegans and the Regulating Effect of Presenilin. ACS OMEGA 2020; 5:33170-33177. [PMID: 33403278 PMCID: PMC7774258 DOI: 10.1021/acsomega.0c04830] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
Abstract
As one of the most widely used materials, plastic polymer fragments can abrasively degrade into microplastic (MP) and smaller nanoplastic (NP) particles. The present study aimed to investigate the influence of particle size on neurodevelopmental toxicity induced by polystyrene nanoplastics (PS-NPs) in Caenorhabditis elegans and to explore the underlying potential mechanism. C. elegans were exposed to different concentrations of PS-NPs with various sizes (25, 50, and 100 nm) for 72 h. Our results showed that all of these PS-NPs could dose-dependently induce an increase in reactive oxygen species production and mitochondrial damage in C. elegans, resulting in inhibition of body length, head thrashes, body bending, and dopamine (DA) contents. A weaker neurotoxicity was found in 25 nm PS-NPs compared to 50 and 100 nm PS-NPs, which might be due to preferential cellular distribution and greater polymerization capability of the smaller particles. In addition, all these PS-NPs could induce lipofuscin accumulation and apoptosis independent of particle size, suggesting that oxidative damage and mitochondrial dysfunction may not be the only way responsible for NP-induced neurotoxic effects. Furthermore, the mutant test targeting two presenilin genes (sel-12 and hop-1) showed that sel-12 and hop-1 were involved in regulation of PS-NP-induced neurodevelopmental toxicity and mitochondrial damage. In conclusion, PS-NPs could induce neurodevelopmental toxicity dependent on particle sizes mediated by mitochondrial damage and DA reduction. Enhanced expression of presenilin plays a role in PS-NP-induced oxidative stress and neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Qianyun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunxiang Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengting Li
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Ke
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yichen Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuefeng Bian
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shufen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mingyuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
50
|
Wang X, Qiu Y, Wang M, Zhang C, Zhang T, Zhou H, Zhao W, Zhao W, Xia G, Shao R. Endocytosis and Organelle Targeting of Nanomedicines in Cancer Therapy. Int J Nanomedicine 2020; 15:9447-9467. [PMID: 33268987 PMCID: PMC7701161 DOI: 10.2147/ijn.s274289] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Nanomedicines (NMs) have played an increasing role in cancer therapy as carriers to efficiently deliver therapeutics into tumor cells. For this application, the uptake of NMs by tumor cells is usually a prerequisite to deliver the cargo to intracellular locations, which mainly relies on endocytosis. NMs can enter cells through a variety of endocytosis pathways. Different endocytosis pathways exhibit different intracellular trafficking routes and diverse subcellular localizations. Therefore, a comprehensive understanding of endocytosis mechanisms is necessary for increasing cellular entry efficiency and to trace the fate of NMs after internalization. This review focuses on endocytosis pathways of NMs in tumor cells, mainly including clathrin- and caveolae-mediated endocytosis pathways, involving effector molecules, expression difference of those molecules between normal and tumor cells, as well as the intracellular trafficking route of corresponding endocytosis vesicles. Then, the latest strategies for NMs to actively employ endocytosis are described, including improving tumor cellular uptake of NMs by receptor-mediated endocytosis, transporter-mediated endocytosis and enabling drug activity by changing intracellular routes. Finally, active targeting strategies towards intracellular organelles are also mentioned. This review will be helpful not only in explicating endocytosis and the trafficking process of NMs and elucidating anti-tumor mechanisms inside the cell but also in rendering new ideas for the design of highly efficacious and cancer-targeted NMs.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuhan Qiu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Mengyan Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Conghui Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Tianshu Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Huimin Zhou
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wenxia Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Rongguang Shao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|