1
|
Ren M, Qin F, Liu Y, Liu D, Lopes RP, Astruc D, Liang L. Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores. Talanta 2025; 286:127544. [PMID: 39805202 DOI: 10.1016/j.talanta.2025.127544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions. The nanopore translocation properties reveal that the dispersion and transporting of PEI is pH-dependent, and its capture rate is much lower than that of PAA. The neutral block copolymer with longest molecular chain threads through with longest blockage duration, its highest capture rate was achieved in 0.5 M KCl at pH 5 with slow diffusion and high temporal resolution. The two generations of neutral dendrimers could also translocate under bias potentials, probably due to the ions adsorption on the dendrimers and driven by Brownian force. The TEG-81 with larger molecular size translocates with longer residence time and higher blockage ratio, as expected. Both of the dendrimers exhibit a higher blockage ratio at pH 7.4 than either acidic or alkalic condition, indicating a larger stretched conformation adopted under neutral condition. This work presents the analysis of unimolecular charged and neutral polymers and dendrimers, which will be insightful in understanding the self-assembly motion and transfer of synthetic macromolecules in confined space. It also provides a good indication for deciphering the macromolecule-nanopore interplay under electrophoretic condition.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Jiaotong University, Chongqing, 400014, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Yue Liu
- Chongqing Mental Health Center, Chongqing, 400020, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | | | - Didier Astruc
- ISM, UMR CNRS N° 5255, University of Bordeaux, Talence Cedex, 33405, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
2
|
Dai H, Pan J, Shao J, Xu K, Ruan X, Mei A, Chen P, Qu L, Dong X. Boosting Nonradiative Decay of Boron Difluoride Formazanate Dendrimers for NIR-II Photothermal Theranostics. Angew Chem Int Ed Engl 2025; 64:e202503718. [PMID: 40071493 DOI: 10.1002/anie.202503718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/21/2025]
Abstract
The development of small molecular dyes excitable in the second near-infrared window (NIR-II, 1000-1700 nm) is crucial for deep-tissue penetration and maximum permissible exposure in cancer photothermal theranostics. Herein, we employed a dendrimer engineering strategy to develop the boron difluoride formazanate (BDF) dye BDF-8OMe for photoacoustic imaging-mediated NIR-II photothermal therapy. BDF-8OMe, characterized by an increased molecular branching degree and extended π-conjugation, exhibited broad absorbance peaked at 905 nm, with the absorption tail extending to 1300 nm. Additionally, reorganization energy calculation, molecular dynamics simulation, and femtosecond transient absorption spectroscopy demonstrated that the multiple identical dendritic units of BDF-8OMe significantly enhanced the molecular motions, enabling the nanoparticles (NPs) to rapidly release 94.4% of the excited state energy through nonradiative decay at a rate of 11.7 ps. Under 1064 nm photoirradiation, BDF-8OMe NPs achieved a high photothermal conversion efficiency of 62.5%, facilitating NIR-II photothermal theranostics. This work highlights the potential of the dendrimer-building strategy in developing NIR-II excitable small molecular dyes for efficient photothermal theranostics.
Collapse
Affiliation(s)
- Hanming Dai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Jingyi Pan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Jinjun Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Kang Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Xiaohong Ruan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Anqing Mei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaochen Dong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
3
|
Miao Y, Wang K, Liu X, Wang X, Hu Y, Yuan Z, Deng D. Multifunctional biomimetic liposomal nucleic acid scavengers inhibit the growth and metastasis of breast cancer. Biomater Sci 2025; 13:2475-2488. [PMID: 40152107 DOI: 10.1039/d4bm01721h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Chemotherapy and surgery, though effective in cancer treatment, trigger the release of nucleic acid-containing pro-inflammatory compounds from damaged tumor cells, known as nucleic acid-associated damage-associated molecular patterns (NA-DAMPs). This inflammation promotes tumor metastasis, and currently, no effective treatment exists for this treatment-induced inflammation and subsequent tumor metastasis. To address this challenge, we developed a biomimetic liposome complex (Lipo-Rh2) incorporating a hybrid structure of liposomes and dendritic polymers, mimicking cell membrane morphology. Lipo-Rh2 leverages the multivalent surface properties of dendritic polymers to clear cell-free nucleic acids while serving as both a structural stabilizer and targeting ligand via embedded ginsenoside Rh2. Experimental data show that Lipo-Rh2 effectively reduces free nucleic acids in mouse serum through charge interactions, downregulates Toll-like receptor expression, decreases inflammatory cytokine secretion, and inhibits both primary tumor growth and metastasis. Compared to the current nucleic acid scavenger PAMAM-G3, Lipo-Rh2 demonstrates stronger antitumor effects, lower toxicity, and enhanced targeting capabilities. This biomimetic liposome-based nucleic acid scavenger represents a novel approach to nucleic acid clearance, expanding the framework for designing effective therapeutic agents.
Collapse
Affiliation(s)
- Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Kaizhen Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Xin Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenwei Yuan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
5
|
Li X, Ouyang Z, Hetjens L, Ni M, Lin K, Hu Y, Shi X, Pich A. Functional Dendrimer Nanogels for DNA Delivery and Gene Therapy of Tumors. Angew Chem Int Ed Engl 2025:e202505669. [PMID: 40246794 DOI: 10.1002/anie.202505669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Solving the dilemma between efficacy and cytotoxicity of cationic colloidal vectors is one of the biggest challenges in gene delivery. Cationic dendrimer assemblies with hierarchical structure, smart and biomimetic behaviors have been developed for drug/gene delivery in vivo. Among different dendrimer assemblies, the dendrimer-based nanogels were not intensively studied due to complicated synthesis and unknown properties. Here, for the first time, low-generation dendrimer nanogels with high yield and purity, tunable size, uniform morphology, and good colloidal stability were synthesized using the emulsion-free method, which cannot be obtained by the miniemulsion method. Importantly, the dendrimer nanogels integrate the advantages of low-generation dendrimer and stimuli-responsive polymer, thus achieving dual-active groups, o-hydroxyl amine units, temperature-responsiveness, polyampholyte property, and self-triggered aminolysis. With these unique properties, dendrimer nanogels can "temporarily" acquire high charge density through the covalent crosslinking of low-generation dendrimer for improved DNA compression, promoted cell internalization and lysosomal escape, and efficient DNA delivery, followed by self-triggered aminolysis into small dendrimers to control DNA release, reduce cytotoxicity, and facilitate metabolism in vivo. Compared to high-generation dendrimers, low-generation dendrimer nanogels display higher gene transfection and therapeutic efficacies, and lower side effects simultaneously. This work provides a facile strategy for the preparation of low-generation dendrimer nanogels that break up the contradiction between efficacy and cytotoxicity of cationic colloidal vectors in gene therapy. This innovative approach to construct low-generation dendrimers into smart dendrimer nanogels will have broad applicability in clinical translation.
Collapse
Affiliation(s)
- Xin Li
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
- DWI-Leibniz-nstitute for Interactive Materials, 52074, Aachen, Germany
| | - Zhijun Ouyang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Laura Hetjens
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Ming Ni
- Department of Orthopaedics, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kuailu Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xiangyang Shi
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
- DWI-Leibniz-nstitute for Interactive Materials, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, Geleen, 6167 RD, The Netherlands
| |
Collapse
|
6
|
Castro R, Granja PL, Rodrigues J, Pêgo AP, Tomás H. Bioinspired hybrid DNA/dendrimer-based films with supramolecular chirality. J Mater Chem B 2025; 13:4671-4680. [PMID: 40130482 DOI: 10.1039/d4tb02761b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Bioinspired hybrid DNA/dendrimer films were obtained by heating long double-stranded DNA (dsDNA) above its melting temperature and, while in the denatured state, mixing it with poly(amidoamine) (PAMAM) dendrimers, followed by controlled cooling. The formation of these new types of films was found to be dependent on several parameters, including the initial heating temperature, pH, buffer composition, dendrimer generation, amine/phosphate (N/P) ratio, and cooling speed. In addition to the PAMAM dendrimers (generations 3, 4, and 5), films could also be produced with branched poly(ethylenimine) with a molecular weight of 25 kDa. The results indicated that these films were formed not only through electrostatic interactions established between the negatively charged DNA molecules and the positive dendrimers, as expected, but also through random rehybridization of the single-stranded DNA (ssDNA) during the cooling process. The resulting films are water-insoluble, transparent when thin, highly elastic when air-dried, exceptionally stable over extended periods, cytocompatible, and easily scalable. Notably, the slow cooling process allowed for the establishment of at least a partially ordered structure in the films, as revealed by circular dichroism, providing evidence of supramolecular chirality. It is envisioned that these films may have significant potential in biomedical applications, such as drug/gene delivery systems, platforms for cell-free DNA transcription and components in biosensors.
Collapse
Affiliation(s)
- Rita Castro
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Pedro L Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Ana Paula Pêgo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-343 Porto, Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
7
|
Mostafa MAH, Khojah HMJ. Nanoparticle-based delivery systems for phytochemicals in cancer therapy: molecular mechanisms, clinical evidence, and emerging trends. Drug Dev Ind Pharm 2025:1-17. [PMID: 40116905 DOI: 10.1080/03639045.2025.2483425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE This review examines recent advancements in nanoparticle-based delivery systems for phytochemicals, focusing on their role in overcoming multidrug resistance, improving therapeutic efficacy, and facilitating clinical translation. SIGNIFICANCE This review highlights recent advances in nanoparticle-enabled phytochemical delivery to enhance bioavailability, improve therapeutic outcomes, and enable targeted applications. By comparing various nanoparticle systems, formulation methods, and efficacy data, it identifies gaps in current research and guides the development of more effective, next-generation phytochemical-loaded nanocarriers. METHODS A systematic review of literature published between 2000 and 2024 was conducted using PubMed, Scopus, and Web of Science. Articles focusing on nanoparticle-based phytochemical delivery in cancer therapy were included. KEY FINDINGS Compounds such as curcumin, resveratrol, quercetin, and epigallocatechin gallate demonstrate enhanced anti-cancer efficacy when encapsulated in nanoparticles, leading to improved bioavailability, increased tumor cell targeting, and reduced toxicity. Clinical trials indicate tumor regression and fewer adverse effects. Emerging approaches-such as nanogels, hybrid nanoparticles, and combination therapies with immune checkpoint inhibitors-further refine treatment efficacy. CONCLUSIONS Nanoparticle-based delivery systems significantly improve the therapeutic potential of phytochemicals, making them promising candidates for safer, more effective cancer treatments. However, challenges related to regulatory guidelines, scalability, and long-term safety must be addressed to fully realize their clinical potential.
Collapse
Affiliation(s)
- Mahmoud A H Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
8
|
Kojima C, Hirata R, Dei N, He H, Ikemoto Y, Matsumoto A. Hydration and Biodistribution of Zwitterionic Dendrimers Conjugating a Sulfobetaine Monomer and Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1411-1417. [PMID: 39778908 PMCID: PMC11755784 DOI: 10.1021/acs.langmuir.4c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Zwitterionic polymers exhibit strong hydration, high biocompatibility, and antifouling properties. Dendrimers are regularly branched polymers, which are used in the drug delivery system (DDS). In this study, we synthesized zwitterionic monomer- and polymer-conjugated dendrimers as a biocompatible nanoparticle to investigate the relation between the hydration property and biodistribution. A sulfobetaine monomer (SBM) was conjugated at the termini of the polyamidoamine (PAMAM) dendrimer. Polysulfobetaines (PSBs) were produced by reversible addition-fragmentation chain transfer polymerization and were also conjugated at the termini. Intermediate water, that is, water molecules loosely bound to the material, can be estimated from the melting peaks at less than 0 °C in differential scanning calorimetry (DSC) measurement. Our DSC results showed that the PSB-conjugated dendrimers (PSM-dens) contained more intermediate water than the SBM-conjugated dendrimer (SBM-den). PSB-dens accumulated in the tumor after intravenous administration, but SBM-den did not. These suggested that the amount of intermediate water, that is, the hydration property, was related to the biodistribution of the zwitterionic dendrimers. This relation is a possible design criterion for drug carriers. PSB-dens accumulated in the tumor even after the second injection, possibly overcoming the accelerated blood clearance observed with poly(ethylene glycol)-modified nanoparticles. Thus, this kind of zwitterionic polymer-conjugated dendrimer is useful for the DDS in cancer treatment.
Collapse
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Rikuto Hirata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Nanako Dei
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hao He
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuka Ikemoto
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
10
|
Zhao Y, Hu K, Wang F, Zhao L, Su Y, Chen J, Zou G, Yang L, Wei L, Deng M, He Y, Wang P, Ruan XZ, Chen Y, Yu C. Guanidine-Derived Polymeric Nanoinhibitors Target the Lysosomal V-ATPase and Activate AMPK Pathway to Ameliorate Liver Lipid Accumulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408906. [PMID: 39499772 PMCID: PMC11714212 DOI: 10.1002/advs.202408906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Indexed: 11/07/2024]
Abstract
Current research efforts in polymer and nanotechnology applications are primarily focused on cargo delivery to enhance the therapeutic index, with limited attention being paid to self-molecularly targeted nanoparticles, which may also exhibit significant therapeutic potential. Long-term and anomalous lipid accumulation in the liver is a highly relevant factor contributing to liver diseases. However, the development of the reliable medications and their pharmacological mechanisms remain insufficient. Herein, a polyguanide nanoinhibitors (PGNI) depot is constructed by copolymerizing biguanide derivatives in different proportions onto prepolymers. The nanoinhibitors for their ability to ameliorate lipid accumulation in vitro and in vivo is screened, and subsequently demonstrated that covalently polymeric guanidine chains exhibit superior efficacy in ameliorating hepatic lipid accumulation via heterogeneous mechanisms compared to small-molecule guanidine. It is found that PGNIs stabilize guanidine metabolism in the liver, preferably for biosafety. More importantly, PGNI is ingested and localized in hepatocyte lysosomes and is locked to interact with vesicular adenosine triphosphatase (V-ATPase) on lysosomes, leading to the inhibition of V-ATPase and lysosomal acidification, thereby activating the AMPK pathway, reducing fatty acid synthesis, and enhancing lipolysis and fatty acid oxidation. These results imply that polymer-formed nanoparticles can serve as targeted inhibitors, offering a novel approach for therapeutic applications.
Collapse
Affiliation(s)
- Yunfei Zhao
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Ke Hu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Fangliang Wang
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Lulu Zhao
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Yu Su
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Jun Chen
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Gang Zou
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Liming Yang
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Li Wei
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Mengjiao Deng
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Yunyu He
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| | - Ping Wang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and GlucoseKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious Diseasesthe Second Affiliated HospitalChongqing Medical UniversityChongqing400016P. R. China
| | - Chao Yu
- Chongqing Medical UniversityCollege of PharmacyChongqing Key Laboratory for Pharmaceutical Metabolism ResearchChongqing Pharmacodynamic Evaluation Engineering Technology Research CenterChongqing400016P. R. China
| |
Collapse
|
11
|
Sripunya A, Chittasupho C, Mangmool S, Angerhofer A, Imaram W. Gallic Acid-Encapsulated PAMAM Dendrimers as an Antioxidant Delivery System for Controlled Release and Reduced Cytotoxicity against ARPE-19 Cells. Bioconjug Chem 2024; 35:1959-1969. [PMID: 39641479 DOI: 10.1021/acs.bioconjchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Poly(amidoamine) (PAMAM) dendrimers have gained significant attention in various research fields, particularly in medicinal compound delivery. Their versatility lies in their ability to conjugate with functional molecules on their surfaces and encapsulate small molecules, making them suitable for diverse applications. Gallic acid is a potent antioxidant compound that has garnered considerable interest in recent years. Our research aims to investigate if the gallic acid-encapsulated PAMAM dendrimer generations 4 (G4(OH)-Ga) and 5 (G5(OH)-Ga) could enhance radical scavenging, which could potentially slow down the progression of age-related macular degeneration (AMD). Encapsulation of gallic acid in PAMAM dendrimers is a feasible alternative to prevent its degradation and toxicity. In vitro investigation of antioxidant activity was carried out using the DPPH and ABTS radical scavenging assays, as well as the FRAP assay. The IC50 values for DPPH and ABTS assays were determined through nonlinear dose-response curves, correlating the inhibition percentage with the concentration (μg/mL) of the sample and the concentration (μM) of gallic acid within each sample. G4(OH)-Ga and G5(OH)-Ga possess significant antioxidant activities as determined by the DPPH, ABTS, and FRAP assays. Moreover, gallic acid-encapsulated PAMAM dendrimers inhibit H2O2-induced reactive oxygen species (ROS) production in the human retinal pigment epithelium ARPE-19 cells, thereby improving antioxidant characteristics and potentially retarding AMD progression caused by ROS. In an evaluation of cell viability of ARPE-19 cells using the MTT assay, G4(OH)-Ga was found to reduce cytotoxic effects on ARPE-19 cells.
Collapse
Affiliation(s)
- Aorada Sripunya
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Advanced Magnetic Resonance, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Nemakhavhani L, Abrahamse H, Kumar SSD. A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:384-398. [PMID: 39101753 DOI: 10.1080/21691401.2024.2368033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.
Collapse
Affiliation(s)
- Lufuno Nemakhavhani
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
13
|
Liu J, Wang X, Li X, Ni C, Liu L, Bányai I, Shi X, Song C. Structural and Property Characterizations of Dual-Responsive Core-Shell Tecto Dendrimers for Tumor Penetration and Gene Delivery Applications. Macromol Rapid Commun 2024; 45:e2400251. [PMID: 38813898 DOI: 10.1002/marc.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Core-shell tecto dendrimers (CSTDs) with excellent physicochemical properties and good tumor penetration and gene transfection efficiency have been demonstrated to have the potential to replace high-generation dendrimers in biomedical applications. However, their characterization and related biological properties of CSTDs for enhanced tumor penetration and gene delivery still lack in-depth investigation. Herein, three types of dual-responsive CSTDs are designed for thorough physicochemical characterization and investigation of their tumor penetration and gene delivery efficiency. Three types of CSTDs are prepared through phenylborate ester bonds of phenylboronic acid (PBA)-decorated generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers as cores and monose (galactose, glucose, or mannose)-conjugated G3 PAMAM dendrimers as shells and thoroughly characterized via NMR and other techniques. It is shown that the produced CSTDs display strong correlation signals between the PBA and monose protons, similar hydrodynamic diameters, and dual reactive oxygen species- and pH-responsivenesses. The dual-responsive CSTDs are proven to have structure-dependent tumor penetration property and gene delivery efficiency in terms of small interference RNA for gene silencing and plasmid DNA for gene editing, thus revealing a great potential for different biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250117, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoyu Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250117, P. R. China
| | - Xiaolei Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250117, P. R. China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Liu
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, P. R. China
| | - István Bányai
- Department of Physical Chemistry, University of Debrecen, Debrecen, H-4032, Hungary
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, 250117, P. R. China
| |
Collapse
|
14
|
Sarode RJ, Mahajan HS. Dendrimers for drug delivery: An overview of its classes, synthesis, and applications. J Drug Deliv Sci Technol 2024; 98:105896. [DOI: 10.1016/j.jddst.2024.105896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery-A Confluence of Tradition and Innovation. Int J Mol Sci 2024; 25:8792. [PMID: 39201478 PMCID: PMC11354359 DOI: 10.3390/ijms25168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.
Collapse
Affiliation(s)
- Patience Chihomvu
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - A. Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz 616, Oman;
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK;
| | - Martin A. Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
16
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
17
|
Petriccone M, Laurent R, Caminade AM, Sebastián RM. Diverse Approaches for the Difunctionalization of PPH Dendrimers, Precise Versus Stochastic: How Does this Influence Catalytic Performance? ACS Macro Lett 2024; 13:853-858. [PMID: 38917088 PMCID: PMC11256758 DOI: 10.1021/acsmacrolett.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Random difunctionalization of dendrimer surfaces, frequently employed in biological applications, provides the advantage of dual functional groups through a synthetic pathway that is simpler compared to precise difunctionalization. However, is the random difunctionalization as efficient as the precise difunctionalization on the surface of dendrimers? This question is unanswered to date because most dendrimer families face challenges in achieving precise functionalization. Polyphosphorhydrazone (PPH) dendrimers present a unique opportunity to obtain precise difunctionalization at each terminal branching point. The work concerning catalysis we report with PPH dendrimers, whether precisely or randomly functionalized, addresses this question. Across PPH dendrimers, from generations 1 to 3, precise functionalization consistently outperforms random functionalization in terms of efficiency. This finding introduces a novel concept in dendrimer science, emphasizing the superiority of precise over random functionalization methodologies. Introducing a groundbreaking concept in the field of dendrimers.
Collapse
Affiliation(s)
- Massimo Petriccone
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Régis Laurent
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire
de Chimie de Coordination, CNRS, 205 Route de Narbonne, 31077 Toulouse, CEDEX 4, France
- LCC−CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Rosa María Sebastián
- Department
of Chemistry, Science Faculty, Universitat
Autònoma de Barcelona, Campus de Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
18
|
Kojima C, Yao J, Nakajima K, Suzuki M, Tsujimoto A, Kuge Y, Ogawa M, Matsumoto A. Attenuated polyethylene glycol immunogenicity and overcoming accelerated blood clearance of a fully PEGylated dendrimer. Int J Pharm 2024; 659:124193. [PMID: 38703934 DOI: 10.1016/j.ijpharm.2024.124193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polyethylene glycol (PEG) is a popular biocompatible polymer and PEGylated nanoparticles passively accumulate in tumor tissues because of their enhanced permeability and retention effects. Recently, the anti-PEG immunity of PEGylated nanoparticles has become an issue that needs to be solved for their clinical applications. Dendrimers are highly branched and well-defined polymers with many terminal groups, which act as potent drug carriers. In this study, we examined the pharmacokinetics, biodistribution, anti-PEG immunity, and tumor accumulation of a fully PEGylated polyamidoamine (PAMAM) dendrimer after the first and second injections and compared them to those of a PEGylated liposome with the same lipid component as Doxil®. The PEGylated dendrimer showed greater blood circulation than that of the PEGylated liposome after the first and second injections in rats. In mice injected with the PEGylated dendrimer, much less anti-PEG immunoglobulin M (IgM) was generated than that in mice injected with the PEGylated liposome. The PEGylated dendrimer accumulated in the tumor after both the first and second injections. Our results indicated that the PEGylated dendrimer with a small size and high PEG density showed attenuated anti-PEG immunity and overcame the accelerated blood clearance phenomenon, which is useful for drug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Junjie Yao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Ayako Tsujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Kuge
- Central Institutes of Isotope Science, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-0815, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
19
|
Shiba H, Hirose T, Sakai A, Nakase I, Matsumoto A, Kojima C. Structural Optimization of Carboxy-Terminal Phenylalanine-Modified Dendrimers for T-Cell Association and Model Drug Loading. Pharmaceutics 2024; 16:715. [PMID: 38931839 PMCID: PMC11206903 DOI: 10.3390/pharmaceutics16060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Dendrimers are potent nanocarriers in drug delivery systems because their structure can be precisely controlled. We previously reported that polyamidoamine (PAMAM) dendrimers that were modified with 1,2-cyclohexanedicarboxylic acid (CHex) and phenylalanine (Phe), PAMAM-CHex-Phe, exhibited an effective association with various immune cells, including T-cells. In this study, we synthesized various carboxy-terminal Phe-modified dendrimers with different linkers using phthalic acid and linear dicarboxylic acids to determine the association of these dendrimers with Jurkat cells, a T-cell model. PAMAM-n-hexyl-Phe demonstrated the highest association with Jurkat T-cells. In addition, dendri-graft polylysine (DGL) with CHex and Phe, DGL-CHex-Phe, was synthesized, and its association with Jurkat cells was investigated. The association of DGL-CHex-Phe with T-cells was higher than that of PAMAM-CHex-Phe. However, it was insoluble in water and thus it is unsuitable as a drug carrier. Model drugs, such as protoporphyrin IX and paclitaxel, were loaded onto these dendrimers, and the most model drug molecules could be loaded into PAMAM-CHex-Phe. PTX-loaded PAMAM-CHex-Phe exhibited cytotoxicity against Jurkat cells at a similar level to free PTX. These results suggest that PAMAM-CHex-Phe exhibited both efficient T-cell association and drug loading properties.
Collapse
Affiliation(s)
- Hiroya Shiba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Hirose
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Akinobu Sakai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuhiko Nakase
- Department of Biological Science, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Akikazu Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Chie Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
20
|
Henningfield CM, Soni N, Lee RW, Sharma R, Cleland JL, Green KN. Selective targeting and modulation of plaque associated microglia via systemic hydroxyl dendrimer administration in an Alzheimer's disease mouse model. Alzheimers Res Ther 2024; 16:101. [PMID: 38711159 PMCID: PMC11071231 DOI: 10.1186/s13195-024-01470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND In Alzheimer's disease (AD), microglia surround extracellular plaques and mount a sustained inflammatory response, contributing to the pathogenesis of the disease. Identifying approaches to specifically target plaque-associated microglia (PAMs) without interfering in the homeostatic functions of non-plaque associated microglia would afford a powerful tool and potential therapeutic avenue. METHODS Here, we demonstrated that a systemically administered nanomedicine, hydroxyl dendrimers (HDs), can cross the blood brain barrier and are preferentially taken up by PAMs in a mouse model of AD. As proof of principle, to demonstrate biological effects in PAM function, we treated the 5xFAD mouse model of amyloidosis for 4 weeks via systemic administration (ip, 2x weekly) of HDs conjugated to a colony stimulating factor-1 receptor (CSF1R) inhibitor (D-45113). RESULTS Treatment resulted in significant reductions in amyloid-beta (Aβ) and a stark reduction in the number of microglia and microglia-plaque association in the subiculum and somatosensory cortex, as well as a downregulation in microglial, inflammatory, and synaptic gene expression compared to vehicle treated 5xFAD mice. CONCLUSIONS This study demonstrates that systemic administration of a dendranib may be utilized to target and modulate PAMs.
Collapse
Affiliation(s)
- Caden M Henningfield
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Ryan W Lee
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA
| | - Rishi Sharma
- Ashvattha Therapeutics, Inc, Redwood City, CA, 94065, USA
| | | | - Kim N Green
- Department of Neurobiology and Behavior, University of California, 3208 Biological Sciences III, Irvine, CA, 92697, USA.
| |
Collapse
|
21
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
22
|
Akkaya-Ulum YZ, Sen B, Akbaba TH, Balci-Peynircioglu B. InflammamiRs in focus: Delivery strategies and therapeutic approaches. FASEB J 2024; 38:e23528. [PMID: 38441434 DOI: 10.1096/fj.202302028r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
microRNAs (miRNAs) are small non-protein-coding RNAs which are essential regulators of host genome expression at the post-transcriptional level. There is evidence of dysregulated miRNA expression patterns in a wide variety of diseases, such as autoimmune and inflammatory conditions. These miRNAs have been termed "inflammamiRs." When working with miRNAs, the method followed, the approach to treat or diagnosis, and the selected biological material are very crucial. Demonstration of the role of miRNAs in particular disease phenotypes facilitates their evaluation as potential and effective therapeutic tools. A growing number of reports suggest the significant utility of miRNAs and other small RNA drugs in clinical medicine. Most miRNAs seem promising therapeutic options, but some features associated with miRNA therapy like off-target effect, effective dosage, or differential delivery methods, mainly caused by the short target's sequence, make miRNA therapies challenging. In this review, we aim to discuss some of the inflammamiRs in diseases associated with inflammatory pathways and the challenge of identifying the most potent therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics. We also discuss the status of inflammamiRs in clinical trials.
Collapse
Affiliation(s)
- Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Basak Sen
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
23
|
Xu X, Feng J, Li WY, Wang G, Feng W, Yu H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog Polym Sci 2024; 149:101782. [DOI: 10.1016/j.progpolymsci.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Modirrousta Y, Akbari S. Amine-terminated dendrimers: A novel method for diagnose, control and treatment of cancer. CANCER EPIGENETICS AND NANOMEDICINE 2024:333-379. [DOI: 10.1016/b978-0-443-13209-4.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
He T, Duan C, Feng W, Ao J, Lu D, Li X, Zhang J. Bibliometric Analysis and Systemic Review of Cantharidin Research Worldwide. Curr Pharm Biotechnol 2024; 25:1585-1601. [PMID: 39034837 DOI: 10.2174/0113892010244101231024111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cantharidin (CTD), a natural toxic compound from blister beetle Mylabris, has been used for cancer treatment for millenary. CTD and its analogs have become mainstream adjuvant drugs with radiotherapy and chemotherapy in clinical applications. However, the detailed pharmacology mechanism of CTD was not fully elucidated. METHODS Publications of CTD were collected from the Web of Science Core Collection database from 1991 to 2023 using CiteSpace, VOSviewer, and Scimago Graphica software. RESULTS A total of 1,611 publications of CTD were mainly published in China and the United States. The University of Newcastle has published the most researches. Mcclusey, Adam, Sakoff, Jennette, and Zhang, Yalin had the most CTD publications with higher H. Notably, CTD researches were mainly published in Bioorganic & Medicinal Chemistry Letters and the Journal of Biological Chemistry. Cluster profile results revealed that protein phosphatase 2A (PP2A), human gallbladder carcinoma, Aidi injection, and cell apoptosis were the hotspots. Concentration on the pharmacology function of PP2A subunit regulation, hepatotoxicity, nephrotoxicity, and cardiotoxicity mechanism should be strengthened in the future. CONCLUSION Bibliometric analysis combined with a systemic review of CTD research first revealed that PP2A and CTD analogs were the knowledge base of CTD, and PP2A subunit regulation and toxic mechanism could be the frontiers of CTD.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Zunyi medical University, Zunyi 550025, China
- School of Basic Medicine, Guizhou Medical University, Guiyang 563000, Guizhou, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenzhong Feng
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jingwen Ao
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Dingyang Lu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi medical University, Zunyi 550025, China
- School of Basic Medicine, Guizhou Medical University, Guiyang 563000, Guizhou, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine, Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| |
Collapse
|
26
|
Pedro-Hernández LD, Barajas-Mendoza I, Castillo-Rodríguez IO, Klimova E, Ramírez-Ápan T, Martínez-García M. Janus Dendrimers as Nanocarriers of Ibuprofen, Chlorambucil and their Anticancer Activity. Pharm Nanotechnol 2024; 12:276-287. [PMID: 37592778 DOI: 10.2174/2211738511666230817160636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Janus Dendrimer represents a novel class of synthetic nanocarriers. Since it is possible to introduce multiple drugs and target moieties, this helps the designing of new biocompatible forms with pharmacological activities comprised of different drugs with tailor-made functionalities, such as anticancer and nonsteroidal anti-inflammatory, which could improve the anticancer activity with less toxicity. AIMS This study aimed to determine the anticancer activity of the Janus dendrimers formed by two dendrons. One dendron conjugates with chlorambucil, and the other dendron conjugates with Ibuprofen. METHODS The cytotoxicity of the drug carriers was determined by the sulforhodamine B (SRB) assay for three cell lines. PC-3 (human prostatic adenocarcinoma), HCT-15 (human colorectal adenocarcinoma), MFC-7 (human breast cancer) and the COS-7 African green monkey kidney (used as a control) cell lines were seeded into 96-well plates at a density of 5x103 cells/well and cultured for 24 h before use. All the obtained compounds were characterized by 1H and 13C NMR one and two dimensions, UVvis, FTIR, MALDI-TOF, Electrospray mass, and FAB+. Microscopic images were taken in an Inverted microscope Nikon, Diaphot 300, 10x4 in culture medium. RESULTS Janus dendrimers (G1 and G2) were synthesized via an azide-alkyne click-chemistry reaction attaching on one face dendrons with ibuprofen molecules and, on the other face, attached a chlorambucil- derivative. The IC50 behavior of the conjugates of the first and second generations showed anticancer activity against PC-3, HCT-15, and MFC-7 cell lines. The second generation was more active against PC-3, HCT-15 and MFC-7 with IC50 of 3.8±0.5, 3.0±0.2 and 3.7 ± 1.1 mM, respectively. CONCLUSION The new Janus dendrimers with anticancer chlorambucil and nonsteroidal antiinflammatory Ibuprofen can improve the anticancer activity of chlorambucil with less toxicity. FUTURE PROSPECTS Now, we are working on the synthesis of new Janus dendrimers using the most effective and fine methods. Moreover, we hope that we shall be able to obtain different generations that are more selective against cancer cells.
Collapse
Affiliation(s)
- Luis Daniel Pedro-Hernández
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Israel Barajas-Mendoza
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Irving Osiel Castillo-Rodríguez
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Elena Klimova
- Departmento de Química Orgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Interior, Coyoacán, C.P. 04510, México
| | - Teresa Ramírez-Ápan
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| | - Marcos Martínez-García
- Departmento de Química Orgánica, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México. Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510, México
| |
Collapse
|
27
|
Xu X, Li C, Chen W, Feng J, Li WY, Wang G, Yu H. Visible light activated dendrimers for solar thermal energy storage and release below 0 °C. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:23723-23731. [DOI: 10.1039/d4ta04022h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Molecular solar thermal (MOST) fuels offer a closed-cycle and renewable energy storage strategy that can harvest photons within the chemical conformations and release heat on demand through reversible isomerization of molecular photoswitches.
Collapse
Affiliation(s)
- Xingtang Xu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chonghua Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wenjing Chen
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jie Feng
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wen-Ying Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Kumbhar PR, Kumar P, Lasure A, Velayutham R, Mandal D. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. DISCOVER NANO 2023; 18:156. [PMID: 38112935 PMCID: PMC10730792 DOI: 10.1186/s11671-023-03913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
The recent development of nanotechnology-based formulations improved the diagnostics and therapies for various diseases including cancer where lack of specificity, high cytotoxicity with various side effects, poor biocompatibility, and increasing cases of multi-drug resistance are the major limitations of existing chemotherapy. Nanoparticle-based drug delivery enhances the stability and bioavailability of many drugs, thereby increasing tissue penetration and targeted delivery with improved efficacy against the tumour cells. Easy surface functionalization and encapsulation properties allow various antigens and tumour cell lysates to be delivered in the form of nanovaccines with improved immune response. The nanoparticles (NPs) due to their smaller size and associated optical, physical, and mechanical properties have evolved as biosensors with high sensitivity and specificity for the detection of various markers including nucleic acids, protein/antigens, small metabolites, etc. This review gives, initially, a concise update on drug delivery using different nanoscale platforms like liposomes, dendrimers, polymeric & various metallic NPs, hydrogels, microneedles, nanofibres, nanoemulsions, etc. Drug delivery with recent technologies like quantum dots (QDs), carbon nanotubes (CNTs), protein, and upconverting NPs was updated, thereafter. We also summarized the recent progress in vaccination strategy, immunotherapy involving immune checkpoint inhibitors, and biomarker detection for various cancers based on nanoplatforms. At last, we gave a detailed picture of the current nanomedicines in clinical trials and their possible success along with the existing approved ones. In short, this review provides an updated complete landscape of applications of wide NP-based drug delivery, vaccinations, immunotherapy, biomarker detection & imaging for various cancers with a predicted future of nanomedicines that are in clinical trials.
Collapse
Affiliation(s)
- Pragati Ramesh Kumbhar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | - Aarti Lasure
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India
| | | | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Hajipur, Hajipur, 844102, India.
| |
Collapse
|
29
|
Kizhakkanoodan KS, Rallapalli Y, Praveena J, Acharya S, Guru BR. Cancer nanomedicine: emergence, expansion, and expectations. SN APPLIED SCIENCES 2023; 5:385. [DOI: 10.1007/s42452-023-05593-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025] Open
Abstract
AbstractThe introduction of cancer nanomedicine has substantially enhanced the effectiveness of cancer treatments. Nano-formulations are becoming more prevalent among other treatment methods due to their improved therapeutic efficacy and low systemic toxicity. The discovery of the enhanced permeability and retention (EPR) effect has led to the development of numerous nanodrugs that passively target tumours. Then researchers identified certain cancer cells overexpress certain receptors, targeting these over-expressing receptors using targeting moiety on the surface of the nanoparticles becomes promising and surface functionalization of nanoparticles has become an important area of cancer nanomedicine. This leads to the physiochemical modification of nanoparticles for strengthening the EPR effect and active targeting. This review comprehensively outlines the origins of cancer nanomedicine, the role of the EPR effect, the tools of nanotechnology and their specifications, and the nature of passive and active targeting, which gives important direction for the progress of cancer therapy using nanomedicine. The review briefly enlists the available nano formulations for different cancers and attempts were made to account for the barriers to clinical translation. The review also briefly describes the transition of research from nanomedicine to nano-immunotherapy.
Collapse
|
30
|
Li L, Deng Y, Zeng Y, Yan B, Deng Y, Zheng Z, Li S, Yang Y, Hao J, Xiao X, Wang X. The application advances of dendrimers in biomedical field. VIEW 2023; 4. [DOI: 10.1002/viw.20230023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/24/2023] [Indexed: 01/06/2025] Open
Abstract
AbstractDendrimers are a family of nano‐sized three‐dimensional polymers with unique dendritic branching structures and compact spherical geometries. In recent years, dendrimers have made a series of breakthroughs in the biomedical field. In this review, we introduce the synthesis principles, modification methods, and new materials designed based on dendrimers; discuss the importance of cytotoxicity of dendrimers for applications; and elaborate on their applications in the field of molecular assembly and cancer diagnosis and treatment. We speculate that in the near future, more new materials based on dendrimers will be applied in the biomedical field.
Collapse
Affiliation(s)
- Longjie Li
- Department of Breast Surgery Second Hospital of Jilin University Changchun China
- Department of Biopharmaceutics, School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Yukai Deng
- Department of Biopharmaceutics, School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Yonghui Zeng
- Department of Biopharmaceutics, School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Bei Yan
- Department of Human Sperm Bank Institute of Medical Sciences General Hospital of Ningxia Medical University Yinchuan China
- Key Laboratory of Cellular Physiology (Shanxi Medical University) Ministry of Education, China Department of Physiology Shanxi Medical University Taiyuan China
- Institute of Reproductive Health Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yulian Deng
- Department of Polymer Materials and Engineering, School of Optoelectronic Materials & Technology Jianghan University Wuhan China
| | - Ziyang Zheng
- Department of Biopharmaceutics, School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Siqi Li
- Department of Biopharmaceutics, School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Yuhang Yang
- Department of Biopharmaceutics, School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Jinwei Hao
- Department of Biopharmaceutics, School of Life Science and Technology Wuhan Polytechnic University Wuhan China
| | - Xianjin Xiao
- Institute of Reproductive Health Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xinyu Wang
- Department of Breast Surgery Second Hospital of Jilin University Changchun China
| |
Collapse
|
31
|
McFadden M, Singh SK, Kinnel B, Varambally S, Singh R. The effect of paclitaxel- and fisetin-loaded PBM nanoparticles on apoptosis and reversal of drug resistance gene ABCG2 in ovarian cancer. J Ovarian Res 2023; 16:220. [PMID: 37990267 PMCID: PMC10662420 DOI: 10.1186/s13048-023-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (OvCa) is the most common type of epithelial OvCa. It is usually diagnosed in advanced stages, leaving a woman's chance of survival below 50%. Despite traditional chemotherapeutic therapies, there is often a high recurrence rate following initial treatments. Hence, a targeted drug delivery system is needed to attack the cancer cells and induce apoptosis, overcome acquired drug resistance, and protect normal cells from cytotoxicity. The present study shows that targeting folate receptor alpha (FRα) through planetary ball milling (PBM) nanoparticles (NPs) induces apoptosis in OvCa cells. RESULTS Human tissue microarrays (TMAs) show overexpression of FRα in Stage IV OvCa tissues compared to matched normal tissues. They provide a focus for a targeted delivery system. We formulated PBM nanoparticles encapsulated with paclitaxel (PTX) or fisetin (Fis) and conjugated with folic acid (FA). The cytotoxic effect of these PBM NPs reduced the concentration of the toxic chemotherapy drug PTX by five-fold. The combined treatment of PTX-FA NPs and Fis-FA NPs inhibited cell proliferation and induced apoptosis more extensively than the individual drugs alone. Apoptosis of OvCa cells, determined by flow cytometry, showed an increase from 14.4 to 80.4% (OVCAR3 cells) and from 2.69 to 90.0% (CAOV3 cells) in the number of apoptotic cells. Also, expressions of the pro-apoptotic markers, BAK and active caspase-3, were increased after PTX-FA + Fis-FA PBM NP treatment. In addition to looking at targeted treatment effects on apoptosis, drug resistance was investigated. Drug resistance in OvCa cells was reversed by ABCG2, an ABC-transporter marker. CONCLUSIONS Our study shows that PTX-FA and Fis-FA PBM NPs directly target platinum-resistant OvCa cells, induce cytotoxic/apoptotic effects, and reverse multi-drug resistance (MDR). These findings allow us to create new clinical applications using PTX-FA and Fis-FA combination nanoparticles to treat drug-resistant cancers.
Collapse
Affiliation(s)
- Melayshia McFadden
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | | | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| |
Collapse
|
32
|
Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomed Pharmacother 2023; 166:115283. [PMID: 37567073 DOI: 10.1016/j.biopha.2023.115283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The use of phytochemicals for purpose of cancer therapy has been accelerated due to resistance of tumor cells to conventional chemotherapy drugs and therefore, monotherapy does not cause significant improvement in the prognosis and survival of patients. Therefore, administration of natural products alone or in combination with chemotherapy drugs due to various mechanisms of action has been suggested. However, cancer therapy using phytochemicals requires more attention because of poor bioavailability of compounds and lack of specific accumulation at tumor site. Hence, nanocarriers for specific delivery of phytochemicals in tumor therapy has been suggested. The pharmacokinetic profile of natural products and their therapeutic indices can be improved. The nanocarriers can improve potential of natural products in crossing over BBB and also, promote internalization in cancer cells through endocytosis. Moreover, (nano)platforms can deliver both natural and synthetic anti-cancer drugs in combination cancer therapy. The surface functionalization of nanostructures with ligands improves ability in internalization in tumor cells and improving cytotoxicity of natural compounds. Interestingly, stimuli-responsive nanostructures that respond to endogenous and exogenous stimuli have been employed for delivery of natural compounds in cancer therapy. The decrease in pH in tumor microenvironment causes degradation of bonds in nanostructures to release cargo and when changes in GSH levels occur, it also mediates drug release from nanocarriers. Moreover, enzymes in the tumor microenvironment such as MMP-2 can mediate drug release from nanocarriers and more progresses in targeted drug delivery obtained by application of nanoparticles that are responsive to exogenous stimulus including light.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
33
|
Luo F, Luo X, Wang L, Qu Y, Yin XB. The Design and Applications of 1,8-naphthalimide-poly(amidoamine) Dendritic
Platforms. CURR ORG CHEM 2023; 27:1164-1178. [DOI: 10.2174/1385272827666230911115827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Poly(amidoamine) (PAMAM) is easily prepared with ethylenediamine as the
precursor to form a dendritic structure with a size of 1.4 -11.4 nm from generation 1 to
10. The terminal amino groups of PAMAM could be grafted active species, such as
1,8-naphthalimide (NI) or its derivatives, to integrate their photophysical properties
into PAMAM as NI-PAMAM. With/without metals, the new dendritic platforms can be
found for different applications, including but not limited to sensing, imaging, antibacterial,
anticancer, and liquid crystal and battery matrix. By controlling the different
generations of dendrimers, the precise size less than 10 nm can be realized. In this review,
we a) provide an overview of the 1,8-naphthalimide-poly(amidoamine) dendritic platforms and b) prospect
that functionalized dendrimers (high algebra) could act as “nanoparticles” with the precise size to bridge the gap
between functional molecules and real nanoparticles.
Collapse
Affiliation(s)
- Fangfang Luo
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| | - Xin Luo
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering,
Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| | - Yi Qu
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| |
Collapse
|
34
|
Raveendran R, Prabakaran L, Senthil R, Yesudhason BV, Dharmalingam S, Sathyaraj WV, Atchudan R. Current Innovations in Intraocular Pressure Monitoring Biosensors for Diagnosis and Treatment of Glaucoma-Novel Strategies and Future Perspectives. BIOSENSORS 2023; 13:663. [PMID: 37367028 DOI: 10.3390/bios13060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.
Collapse
Affiliation(s)
- Rubiya Raveendran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Rethinam Senthil
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
35
|
Liu C, Xianyu B, Dai Y, Pan S, Li T, Xu H. Intracellular Hyperbranched Polymerization for Circumventing Cancer Drug Resistance. ACS NANO 2023. [PMID: 37285408 DOI: 10.1021/acsnano.3c03512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymerization inside living cells provides chemists with a multitude of possibilities to modulate cell activities. Considering the advantages of hyperbranched polymers, such as a large surface area for target sites and multilevel branched structures for resistance to the efflux effect, we reported a hyperbranched polymerization in living cells based on the oxidative polymerization of organotellurides and intracellular redox environment. The intracellular hyperbranched polymerization was triggered by reactive oxygen species (ROS) in the intracellular redox microenvironment, effectively disrupting antioxidant systems in cells by an interaction between Te (+4) and selenoproteins, thus inducing selective apoptosis of cancer cells. Importantly, the obtained hyperbranched polymer aggregated into branched nanostructures in cells, which could effectively evade drug pumps and decrease drug efflux, ensuring the polymerization for persistent treatment. Finally, in vitro and in vivo studies confirmed that our strategy presented selective anticancer efficacy and well biosafety. This approach provides a way for intracellular polymerization with desirable biological applications to regulate cell activities.
Collapse
Affiliation(s)
- Chengfei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Banruo Xianyu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yiheng Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [DOI: https:/doi.org/10.3390/pharmaceutics15061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
37
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [PMID: 37376062 PMCID: PMC10301094 DOI: 10.3390/pharmaceutics15061614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore;
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
38
|
Damani M, Singh P, Sawarkar S. Delivery of Immunomodulators: Challenges and Novel Approaches. NATURAL IMMUNOMODULATORS: PROMISING THERAPY FOR DISEASE MANAGEMENT 2023:275-322. [DOI: 10.2174/9789815123258123010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Immunomodulators can be either synthetic in origin or naturally obtained.
Natural plant-based compounds can influence the immune system by either affecting
antibody secretion to control the infection or affecting the functions of immune cells,
thus contributing to maintaining immune homeostasis. Phytochemicals in plants, such
as polysaccharides, lactones, flavonoids, alkaloids, diterpenoids and glycosides, have
been reported to possess immunomodulating properties. However, there are many
challenges limiting the clinical use of natural immunomodulators. In this chapter, we
have discussed in detail standardization, formulation development, route of
administration and regulatory concerns of natural immunomodulators. In order to
overcome these challenges and ensure that natural immunomodulators reach the target
site at therapeutic concentrations, different polymer and lipid-based nanocarrier
delivery systems have been developed. These nanocarriers by virtue of their size, can
easily penetrate and reach the target site and deliver the drugs. Many nanocarriers like
liposomes, niosomes, nanoparticles, microemulsions, phytosomes and other vesicular
systems designed for natural immunomodulators are discussed in this chapter.<br>
Collapse
Affiliation(s)
- Mansi Damani
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| | - Prabha Singh
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| | - Sujata Sawarkar
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| |
Collapse
|
39
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
40
|
T Cell-Association of Carboxy-Terminal Dendrimers with Different Bound Numbers of Phenylalanine and Their Application to Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030888. [PMID: 36986747 PMCID: PMC10052534 DOI: 10.3390/pharmaceutics15030888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
T cells play important roles in various immune reactions, and their activation is necessary for cancer immunotherapy. Previously, we showed that polyamidoamine (PAMAM) dendrimers modified with 1,2-cyclohexanedicarboxylic acid (CHex) and phenylalanine (Phe) underwent effective uptake by various immune cells, including T cells and their subsets. In this study, we synthesized various carboxy-terminal dendrimers modified with different bound numbers of Phe and investigated the association of these dendrimers with T cells to evaluate the influence of terminal Phe density. Carboxy-terminal dendrimers conjugating Phe at more than half of the termini exhibited a higher association with T cells and other immune cells. The carboxy-terminal Phe-modified dendrimers at 75% Phe density tended to exhibit the highest association with T cells and other immune cells, which was related to their association with liposomes. A model drug, protoporphyrin IX (PpIX), was encapsulated into carboxy-terminal Phe-modified dendrimers, which were then used for drug delivery into T cells. Our results suggest the carboxy-terminal Phe-modified dendrimers are useful for delivery into T cells.
Collapse
|
41
|
Karpus A, Mignani S, Apartsin E, Zablocka M, Shi X, Majoral JP. Useful synthetic pathways to original, stable tunable neutral and anionic phosphorus dendrimers: new opportunities to expand dendrimer space. NEW J CHEM 2023; 47:2474-2478. [DOI: 10.1039/d2nj05157e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
High yield multistep synthesis of stable and diversely functionalized phosphorus dendrimers is reported.
Collapse
Affiliation(s)
- A. Karpus
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| | - S. Mignani
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Caen 14032, France
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| | - E. Apartsin
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| | - M. Zablocka
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, Lodz 90001, Poland
| | - X. Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - J. P. Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- LCC-CNRS Université de Toulouse, 118 route de Narbonne, Toulouse Cedex 4 31077, France
| |
Collapse
|
42
|
Yuan R, Tan Y, Sun PH, Qin B, Liang Z. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC. Front Pharmacol 2023; 14:1122890. [PMID: 36937842 PMCID: PMC10021304 DOI: 10.3389/fphar.2023.1122890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Cancer, also known as a malignant tumor, is caused by the activation of oncogenes, which leads to the uncontrolled proliferation of cells that results in swelling. According to the World Health Organization (WHO), cancer is one of the main causes of death worldwide. The main variables limiting the efficacy of anti-tumor treatments are side effects and drug resistance. The search for natural, safe, low toxicity, and efficient chemical compounds in tumor research is essential. Berberine is a pentacyclic isoquinoline quaternary ammonium alkaloid isolated from Berberis and Coptis that has long been used in clinical settings. Studies in recent years have reported the use of berberine in cancer treatment. In this study, we performed a bibliometric analysis of berberine- and tumor-related research. Materials and methods: Relevant articles from January 1, 2002, to December 31, 2021, were identified from the Web of Science Core Collection (WOSCC) of Clarivate Analytics. Microsoft Excel, CiteSpace, VOSviewer, and an online platform were used for the literary metrology analysis. Results: A total of 1368 publications had unique characteristics. Publications from China were the most common (783 articles), and Y. B. Feng (from China) was the most productive author, with the highest total citations. China Medical University (Taiwan) and Sun Yat-sen University (China) were the two organizations with the largest numbers of publications (36 each). Frontiers in Pharmacology was the most commonly occurring journal (29 articles). The present body of research is focused on the mechanism, molecular docking, and oxidative stress of berberine in tumors. Conclusion: Research on berberine and tumors was thoroughly reviewed using knowledge map and bibliometric methods. The results of this study reveal the dynamic evolution of berberine and tumor research and provide a basis for strategic planning in cancer research.
Collapse
Affiliation(s)
- Runzhu Yuan
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ping-Hui Sun
- Department of Thoracic Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| |
Collapse
|
43
|
Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M. Ionic liquid-functionalized dendrimer grafted silica for mixed-mode chromatographic separation and online solid-phase extraction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Liu C, Liu C, Bai Y, Wang J, Tian W. Drug Self-Delivery Systems: Molecule Design, Construction Strategy, and Biological Application. Adv Healthc Mater 2022; 12:e2202769. [PMID: 36538727 DOI: 10.1002/adhm.202202769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Indexed: 02/01/2023]
Abstract
Drug self-delivery systems (DSDSs) offer new ways to create novel drug delivery systems (DDSs). In typical DSDSs, therapeutic reagents are not considered passive cargos but active delivery agents of actionable targets. As an advanced drug delivery strategy, DSDSs with positive cooperativity of both free drugs and nanocarriers exhibit the clear merits of unprecedented drug-loading capacity, minimized systemic toxicity, and flexible preparation of nanoscale deliverables for passive targeted therapy. This review highlights the recent advances and future trends in DSDSs on the basis of two differently constructed structures: covalent and noncovalent bond-based DSDSs. Specifically, various chemical and architectural designs, fabrication strategies, and responsive and functional features are comprehensively discussed for these two types of DSDSs. In addition, additional comments on the current development status of DSDSs and the potential applications of their molecular designs are presented in the corresponding discussion. Finally, the promising potential of DSDSs in biological applications is revealed and the relationship between preliminary molecular design of DSDSs and therapeutic effects of subsequent DSDSs biological applications is clarified.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jingxia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
45
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MAS, Sahebkar A. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2433-2471. [PMID: 35848467 DOI: 10.1080/09205063.2022.2103627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) undoubtedly is one of the most common type of cancers amongst women, which causes about 5 million deaths annually. The treatments and diagnostic therapy choices currently available for Breast Cancer is very much limited . Advancements in novel nanocarrier could be a promising strategy for diagnosis and treatments of this deadly disease. Dendrimer nanoformulation could be functionalized and explored for efficient targeting of overexpressed receptors on Breast Cancer cells to achieve targeted drug delivery, for diagnostics and to overcome the resistance of the cells towards particular chemotherapeutic. Additionally, the dendrimer have shown promising potential in the improvement of therapeutic value for Breast Cancer therapy by achieving synergistic co-delivery of chemotherapeutics and genetic materials for multidirectional treatment. In this review, we have highlighted the application of dendrimer as novel multifunctional nanoplatforms for the treatment and diagnosis of Breast Cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Tan Q, Zhao S, Xu T, Wang Q, Lan M, Yan L, Chen X. Getting drugs to the brain: advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood-brain barrier. J Mater Chem B 2022; 10:9314-9333. [PMID: 36349976 DOI: 10.1039/d2tb01440h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The blood-brain barrier (BBB) plays an irreplaceable role in protecting the central nervous system (CNS) from bloodborne pathogens. However, the BBB complicates the treatment of CNS diseases because it prevents almost all therapeutic drugs from getting into the CNS. With the growing understanding of the physiological characteristics of the BBB and the development of nanotechnology, nanomaterial-based drug delivery systems have become promising tools for delivering drugs across the BBB to the CNS. Herein, we systematically summarize the recent progress in organic-nanoparticle delivery systems for treating CNS diseases and evaluate their mechanisms in overcoming the BBB with the aim to provide a comprehensive understanding of the advantages, disadvantages, and challenges of organic nanoparticles in delivering drugs across the BBB. This review may inspire new research ideas and directions for applying nanotechnology to treat CNS diseases.
Collapse
Affiliation(s)
- Qiuxia Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Qin Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK.
| |
Collapse
|
48
|
Sunil V, Mozhi A, Zhan W, Teoh JH, Ghode PB, Thakor NV, Wang CH. In-situ vaccination using dual responsive organelle targeted nanoreactors. Biomaterials 2022; 290:121843. [PMID: 36228516 DOI: 10.1016/j.biomaterials.2022.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
49
|
Synthesis of a Dual-Color Fluorescent Dendrimer for Diagnosis of Cancer Metastasis in Lymph Nodes. Polymers (Basel) 2022; 14:polym14204314. [PMID: 36297891 PMCID: PMC9607438 DOI: 10.3390/polym14204314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/10/2022] Open
Abstract
Detection of cancer metastasis spread in lymph nodes is important in cancer diagnosis. In this study, a fluorescence imaging probe was designed for the detection of both lymph node and tumor cells using always-ON and activatable fluorescence probes with different colors. Rhodamine B (Rho), a matrix metalloproteinase-2 (MMP-2)-responsive green fluorescence probe, and a tumor-homing peptide were conjugated to a carboxy-terminal dendrimer that readily accumulates in lymph nodes. The activatable green fluorescence signal increased in the presence of MMP-2, which is secreted by tumor cells. Both the always-ON Rho signal and the activatable green fluorescence signal were observed from tumor cells, but only the weak always-ON Rho signal was from immune cells. Thus, this type of dendrimer may be useful for non-invasive imaging to diagnose cancer metastasis in lymph nodes.
Collapse
|
50
|
Mishra Y, Amin HIM, Mishra V, Vyas M, Prabhakar PK, Gupta M, Kanday R, Sudhakar K, Saini S, Hromić-Jahjefendić A, Aljabali AAA, El-Tanani M, Serrano-Aroca Ã, Bakshi H, Tambuwala MM. Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomed Pharmacother 2022; 153:113413. [PMID: 36076482 DOI: 10.1016/j.biopha.2022.113413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Phytotherapy, based on medicinal plants, have excellent potential in managing several diseases. A vital part of the healthcare system is herbal medicines, consisting of therapeutic agents with high safety profile and no or least adverse effects. Herbs or medicinal plants show anticancer, antioxidant, and gene-protective activity, which is useful for pharmaceutical industries. In vitro, the extract of antioxidant compounds prevents the growth of colon and liver cancer cells, followed by a dose-dependent method. The screening of extracts is done by using in vitro models. Reactive oxygen species (ROS) and free radicals lead to diseases based on age which promotes oxidative stress. Different types of ROSs available have central roles in the normal physiology and functioning of processes. Herbal or traditional plant medicines have rich antioxidant activity. Despite the limited literature on the health effect of herbal extract or spices. There are many studies examining the encouraging health effects of single phytochemicals instigating from the medicinal plant. This review provides a detailed overview on herbal antioxidants and how application of nanotechnology can improve its biological activity in managing several major diseases, and having no reported side effects.
Collapse
Affiliation(s)
- Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, Salahaddin University-Erbil, Erbil, Iraq; Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Physiotherapy and Paramedical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajeev Kanday
- School of Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Ãngel Serrano-Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Hamid Bakshi
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry BT52 1SA, Northern Ireland, United Kingdom.
| |
Collapse
|