1
|
Wlaschek M, Maity P, Koroma AK, Geiger H, Singh K, Scharffetter-Kochanek K. Imbalanced redox dynamics induce fibroblast senescence leading to impaired stem cell pools and skin aging. Free Radic Biol Med 2025; 233:292-301. [PMID: 40154755 DOI: 10.1016/j.freeradbiomed.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Skin function depends on a meticulously regulated dynamic interaction of distinct skin compartments such as the epidermis and dermis. Adaptive responses at the molecular and cellular level are essential for these interactions - and if dysregulated - drive skin aging and other pathologies. After defining the role of redox homeodynamics in physiology and aging pathology, we focus on the redox distress-dependent aging of dermal fibroblasts including their progenitors. We here discuss the prime role of senescent fibroblasts in the control of their own endogenous niche and stem cell niches for epidermal stem cells, hair follicle stem cells, adipocyte precursors and muscle stem cells. We here review that redox imbalance induced reduction in Insulin-like Growth Factor-1 drives skin aging by the depletion of stem cell pools. This IGF-1 reduction is mediated via the redox-sensitive transcription factor JunB and also by the redox-dependent changes in sphingolipid-metabolism, among others. In addition, we will discuss the changes in the extracellular matrix of the skin affecting cellular senescence and the skin integrity and function in aging. The aim is a deeper understanding of the two main redox-dependent hubs such as JunB-induced depletion of IGF-1, and the sphingolipid-mediated remodeling of the cell membrane with its impact on IGF-1, fibroblast heterogeneity, function, senescence and plasticity in skin aging.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Albert Kallon Koroma
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Aging Research Institute (arc), Ulm University, Ulm, Germany; Institute for Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Jeong K, Je J, Dusabimana T, Karekezi J, Nugroho TA, Ndahigwa EN, Kim HJ, Yun SP, Kim HJ, Kim H, Park SW. Deficiency of purinergic P2Y2 receptor impairs the recovery after renal ischemia-reperfusion injury and accelerates renal fibrosis and tubular senescence in mice. Sci Rep 2024; 14:31932. [PMID: 39738595 PMCID: PMC11686187 DOI: 10.1038/s41598-024-83411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR. KO mice showed severe kidney dysfunction and structural damage compared to WT mice. KO mice showed higher senescence-associated β-galactosidase expression and shorter telomere length than WT mice. Consistently, interstitial collagen accumulation and fibrogenic mediators were significantly upregulated in KO mice. Renal apoptosis and inflammation were highly elevated in KO mice. Interestingly, cell proliferation as shown by Ki-67 and PCNA expression, was increased for 3 days after IR in WT mice, whereas it maintained increased for 14 days in KO mice. Cell cycle inhibitors, p16 and p21, and regulators JunB and cyclin E were significantly increased after IR in KO mice, suggesting that cell cycle progression was impaired during recovery after IR. Proximal tubular cells treated with JunB siRNA showed a reduced expression of fibrogenic mediators and proinflammatory cytokines, consistent with the mice treated with MRS2768, a P2Y2 agonist that downregulated JunB levels. In conclusion, P2Y2R reduces kidney tissue damage after IR and repairs the tissue properly by regulating JunB-mediated signaling during the recovery process.
Collapse
Affiliation(s)
- Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
| | - Jacques Karekezi
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Tatang Aldi Nugroho
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Edvard Ntambara Ndahigwa
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, 15, 816 Beon-gil, Jinjudaero, Jinju, 52727, Republic of Korea.
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
3
|
Ramirez DA, Lu M. Dissecting reversible and irreversible single cell state transitions from gene regulatory networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610498. [PMID: 39257745 PMCID: PMC11384016 DOI: 10.1101/2024.08.30.610498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding cell state transitions and their governing regulatory mechanisms remains one of the fundamental questions in biology. We develop a computational method, state transition inference using cross-cell correlations (STICCC), for predicting reversible and irreversible cell state transitions at single-cell resolution by using gene expression data and a set of gene regulatory interactions. The method is inspired by the fact that the gene expression time delays between regulators and targets can be exploited to infer past and future gene expression states. From applications to both simulated and experimental single-cell gene expression data, we show that STICCC-inferred vector fields capture basins of attraction and irreversible fluxes. By connecting regulatory information with systems' dynamical behaviors, STICCC reveals how network interactions influence reversible and irreversible state transitions. Compared to existing methods that infer pseudotime and RNA velocity, STICCC provides complementary insights into the gene regulation of cell state transitions.
Collapse
Affiliation(s)
- Daniel A. Ramirez
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Kanlayaprasit S, Saeliw T, Thongkorn S, Panjabud P, Kasitipradit K, Lertpeerapan P, Songsritaya K, Yuwattana W, Jantheang T, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Sex-specific impacts of prenatal bisphenol A exposure on genes associated with cortical development, social behaviors, and autism in the offspring's prefrontal cortex. Biol Sex Differ 2024; 15:40. [PMID: 38750585 PMCID: PMC11094985 DOI: 10.1186/s13293-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.
Collapse
Grants
- NRU59-031-HR National Research University Project, Office of Higher Education Commission
- HEA663700091 Thailand Science Research and Innovation Fund Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU 6506537004-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- PHD/0029/2561 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- N41A650065 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- NRCT5-RGJ63001-018 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632109D-109 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125651062D-062 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125651060D-060 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- Scholarship from the Graduate School Chulalongkorn University to commemorate the 72nd anniversary of His Majesty King Bhumibala Aduladeja Scholarship from the Graduate School Chulalongkorn University to commemorate the 72nd anniversary of His Majesty King Bhumibala Aduladeja
- Chulalongkorn University Laboratory Animal Center (CULAC) Grant Chulalongkorn University Laboratory Animal Center (CULAC) Grant
- PMU-B; B36G660008 Program Management Unit for Human Resources and Institutional Development, Research and Innovation
- CE66_046_3700_003 Ratchadapisek Somphot Fund for Supporting Center of Excellence, Chulalongkorn University
- The National Research Council of Thailand (NRCT) fund for research and innovation activity
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
| | - Thanit Saeliw
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
| | - Surangrat Thongkorn
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wasana Yuwattana
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Tewarit Sarachana
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand.
| |
Collapse
|
5
|
Nisar H, Sanchidrián González PM, Labonté FM, Schmitz C, Roggan MD, Kronenberg J, Konda B, Chevalier F, Hellweg CE. NF-κB in the Radiation Response of A549 Non-Small Cell Lung Cancer Cells to X-rays and Carbon Ions under Hypoxia. Int J Mol Sci 2024; 25:4495. [PMID: 38674080 PMCID: PMC11050661 DOI: 10.3390/ijms25084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Paulina Mercedes Sanchidrián González
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| |
Collapse
|
6
|
Wang L, Chen QG, Lu H. Jianpi Qinghua Formula Alleviates Diabetic Myocardial Injury Through Inhibiting JunB/c-Fos Expression. Curr Med Sci 2024; 44:144-155. [PMID: 38393526 DOI: 10.1007/s11596-024-2830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) represents a substantial risk factor for heart failure and increased mortality in individuals afflicted with diabetes mellitus (DM). DCM typically manifests as myocardial fibrosis, myocardial hypertrophy, and impaired left ventricular diastolic function. While the clinical utility of the Jianpi Qinghua (JPQH) formula has been established in treating diabetes and insulin resistance, its potential efficacy in alleviating diabetic cardiomyopathy remains uncertain. This study aims to investigate the impact and underlying molecular mechanisms of the JPQH formula (JPQHF) in ameliorating myocardial injury in nonobese diabetic rats, specifically focusing on apoptosis and inflammation. METHODS Wistar rats were assigned as the normal control group (CON), while Goto-Kakizaki (GK) rats were randomly divided into three groups: DM, DM treated with the JPQHF, and DM treated with metformin (MET). Following a 4-week treatment regimen, various biochemical markers related to glucose metabolism, cardiac function, cardiac morphology, and myocardial ultrastructure in GK rats were assessed. RNA sequencing was utilized to analyze differential gene expression and identify potential therapeutic targets. In vitro experiments involved high glucose to induce apoptosis and inflammation in H9c2 cells. Cell viability was evaluated using CCK-8 assay, apoptosis was monitored via flow cytometry, and the production of inflammatory cytokines was measured using quantitative real-time PCR (qPCR) and ELISA. Protein expression levels were determined by Western blotting analysis. The investigation also incorporated the use of MAPK inhibitors to further elucidate the mechanism at both the transcriptional and protein levels. RESULTS The JPQHF group exhibited significant reductions in interventricular septal thickness at end-systole (IVSs) and left ventricular internal diameter at end-systole and end-diastole (LVIDs and LVIDd). JPQHF effectively suppressed high glucose-induced activation of IL-1β and caspase 3 in cardiomyocytes. Furthermore, JPQHF downregulated the expression of myocardial JunB/c-Fos, which was upregulated in both diabetic rats and high glucose-treated H9c2 cells. CONCLUSION The JPQH formula holds promise in mitigating diabetic myocardial apoptosis and inflammation in cardiomyocytes by inhibiting JunB/c-Fos expression through suppressing the MAPK (p38 and ERK1/2) pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Qing-Guang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Adir O, Sagi-Assif O, Meshel T, Ben-Menachem S, Pasmanik-Chor M, Hoon DSB, Witz IP, Izraely S. Heterogeneity in the Metastatic Microenvironment: JunB-Expressing Microglia Cells as Potential Drivers of Melanoma Brain Metastasis Progression. Cancers (Basel) 2023; 15:4979. [PMID: 37894348 PMCID: PMC10605008 DOI: 10.3390/cancers15204979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.
Collapse
Affiliation(s)
- Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA;
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (O.A.); (O.S.-A.); (T.M.); (S.B.-M.); (I.P.W.)
| |
Collapse
|
8
|
Chakraborty A, Li Y, Zhang C, Li Y, Rebello KR, Li S, Xu S, Vasquez HG, Zhang L, Luo W, Wang G, Chen K, Coselli JS, LeMaire SA, Shen YH. Epigenetic Induction of Smooth Muscle Cell Phenotypic Alterations in Aortic Aneurysms and Dissections. Circulation 2023; 148:959-977. [PMID: 37555319 PMCID: PMC10529114 DOI: 10.1161/circulationaha.123.063332] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Smooth muscle cell (SMC) phenotypic switching has been increasingly detected in aortic aneurysm and dissection (AAD) tissues. However, the diverse SMC phenotypes in AAD tissues and the mechanisms driving SMC phenotypic alterations remain to be identified. METHODS We examined the transcriptomic and epigenomic dynamics of aortic SMC phenotypic changes in mice with angiotensin II-induced AAD by using single-cell RNA sequencing and single-cell sequencing assay for transposase-accessible chromatin. SMC phenotypic alteration in aortas from patients with ascending thoracic AAD was examined by using single-cell RNA sequencing analysis. RESULTS Single-cell RNA sequencing analysis revealed that aortic stress induced the transition of SMCs from a primary contractile phenotype to proliferative, extracellular matrix-producing, and inflammatory phenotypes. Lineage tracing showed the complete transformation of SMCs to fibroblasts and macrophages. Single-cell sequencing assay for transposase-accessible chromatin analysis indicated that these phenotypic alterations were controlled by chromatin remodeling marked by the reduced chromatin accessibility of contractile genes and the induced chromatin accessibility of genes involved in proliferation, extracellular matrix, and inflammation. IRF3 (interferon regulatory factor 3), a proinflammatory transcription factor activated by cytosolic DNA, was identified as a key driver of the transition of aortic SMCs from a contractile phenotype to an inflammatory phenotype. In cultured SMCs, cytosolic DNA signaled through its sensor STING (stimulator of interferon genes)-TBK1 (tank-binding kinase 1) to activate IRF3, which bound and recruited EZH2 (enhancer of zeste homolog 2) to contractile genes to induce repressive H3K27me3 modification and gene suppression. In contrast, double-stranded DNA-STING-IRF3 signaling induced inflammatory gene expression in SMCs. In Sting-/- mice, the aortic stress-induced transition of SMCs into an inflammatory phenotype was prevented, and SMC populations were preserved. Finally, profound SMC phenotypic alterations toward diverse directions were detected in human ascending thoracic AAD tissues. CONCLUSIONS Our study reveals the dynamic epigenetic induction of SMC phenotypic alterations in AAD. DNA damage and cytosolic leakage drive SMCs from a contractile phenotype to an inflammatory phenotype.
Collapse
Affiliation(s)
- Abhijit Chakraborty
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Yang Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Kimberly R Rebello
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Shengyu Li
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Samantha Xu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| | - Hernan G Vasquez
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, TX (S.L., G.W.)
| | - Kaifu Chen
- Department of Pediatrics, Harvard Medical School, Boston, MA (K.C.)
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery, The Texas Heart Institute, Houston (A.C., Y.L., C.Z., K.R.R., Y.L., W.L., H.G.V., L.Z., J.S.C., S.A.L.)
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (A.C., Y.L., C.Z., K.R.R., Y.L., S.X., W.L., H.G.V., L.Z., J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (J.S.C., S.A.L., Y.H.S.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
9
|
Yang Y, Xiao B, Feng X, Chen Y, Wang Q, Fang J, Zhou P, Wei X, Cheng L. Identification of hub genes and key signaling pathways by weighted gene co-expression network analysis for human aortic stenosis and insufficiency. Front Cardiovasc Med 2023; 10:857578. [PMID: 37621558 PMCID: PMC10445149 DOI: 10.3389/fcvm.2023.857578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Background Human aortic valve stenosis (AS) and insufficiency (AI) are common diseases in aging population. Identifying the molecular regulatory networks of AS and AI is expected to offer novel perspectives for AS and AI treatment. Methods Highly correlated modules with the progression of AS and AI were identified by weighted genes co-expression network analysis (WGCNA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by the clusterProfiler program package. Differentially expressed genes (DEGs) were identified by the DESeqDataSetFromMatrix function of the DESeq2 program package. The protein-protein interaction (PPI) network analyses were implemented using the STRING online tool and visualized with Cytoscape software. The DEGs in AS and AI groups were overlapped with the top 30 genes with highest connectivity to screen out ten hub genes. The ten hub genes were verified by analyzing the data in high throughput RNA-sequencing dataset and real-time PCR assay using AS and AI aortic valve samples. Results By WGCNA algorithm, 302 highly correlated genes with the degree of AS, degree of AI, and heart failure were identified from highly correlated modules. GO analyses showed that highly correlated genes had close relationship with collagen fibril organization, extracellular matrix organization and extracellular structure organization. KEGG analyses also manifested that protein digestion and absorption, and glutathione metabolism were probably involved in AS and AI pathological courses. Moreover, DEGs were picked out for 302 highly correlated genes in AS and AI groups relative to the normal control group. The PPI network analyses indicated the connectivity among these highly correlated genes. Finally, ten hub genes (CD74, COL1A1, TXNRD1, CCND1, COL5A1, SERPINH1, BCL6, ITGA10, FOS, and JUNB) in AS and AI were found out and verified. Conclusion Our study may provide the underlying molecular targets for the mechanism research, diagnosis, and treatment of AS and AI in the future.
Collapse
Affiliation(s)
- Yang Yang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of OrganTransplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bing Xiao
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Peking University, Beijing, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qunhui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhou
- Institute of OrganTransplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zúñiga TM, Baker FL, Smith KA, Batatinha H, Lau B, Burgess SC, Gustafson MP, Katsanis E, Simpson RJ. Clonal Kinetics and Single-Cell Transcriptional Profiles of T Cells Mobilized to Blood by Acute Exercise. Med Sci Sports Exerc 2023; 55:991-1002. [PMID: 36719647 DOI: 10.1249/mss.0000000000003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Acute exercise redistributes large numbers of memory T cells, which may contribute to enhanced immune surveillance in regular exercisers. It is not known, however, if acute exercise promotes a broad or oligoclonal T-cell receptor (TCR) repertoire or evokes transcriptomic changes in "exercise-responsive" T-cell clones. METHODS Healthy volunteers completed a graded bout of cycling exercise up to 80% V̇O 2max . DNA was extracted from peripheral blood mononuclear cells collected at rest, during exercise (EX), and 1 h after (+1H) exercise, and processed for deep TCR-β chain sequencing and tandem single-cell RNA sequencing. RESULTS The number of unique clones and unique rearrangements was decreased at EX compared with rest ( P < 0.01) and +1H ( P < 0.01). Productive clonality was increased compared with rest ( P < 0.05) and +1H ( P < 0.05), whereas Shannon's Index was decreased compared with rest ( P < 0.05) and +1H ( P < 0.05). The top 10 rearrangements in the repertoire were increased at EX compared with rest ( P < 0.05) and +1H ( P < 0.05). Cross-referencing TCR-β sequences with a public database (VDJdb) revealed that exercise increased the number of clones specific for the most prevalent motifs, including Epstein-Barr virus, cytomegalovirus, and influenza A. We identified 633 unique exercise-responsive T-cell clones that were mobilized and/or egressed in response to exercise. Among these clones, there was an upregulation in genes related to cell death, cytotoxicity, and activation ( P < 0.05). CONCLUSIONS Acute exercise promotes an oligoclonal T-cell repertoire by preferentially mobilizing the most dominant clones, several of which are specific to known viral antigens and display differentially expressed genes indicative of cytotoxicity, activation, and apoptosis.
Collapse
MESH Headings
- Humans
- T-Lymphocytes
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Epstein-Barr Virus Infections/metabolism
- Leukocytes, Mononuclear/metabolism
- Herpesvirus 4, Human/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Clone Cells/metabolism
- Exercise
Collapse
Affiliation(s)
- Tiffany M Zúñiga
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | - Forrest L Baker
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | - Kyle A Smith
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ
| | | | - Branden Lau
- The University of Arizona Genetics Core, The University of Arizona, Tucson, AZ
| | | | | | | | | |
Collapse
|
11
|
Roura AJ, Szadkowska P, Poleszak K, Dabrowski MJ, Ellert-Miklaszewska A, Wojnicki K, Ciechomska IA, Stepniak K, Kaminska B, Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clin Epigenetics 2023; 15:29. [PMID: 36850002 PMCID: PMC9972689 DOI: 10.1186/s13148-023-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. RESULTS We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. CONCLUSIONS GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.
Collapse
Affiliation(s)
- Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michal J. Dabrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Iwona A. Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, ul. Ludwika Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Di X, Xiang L, Jian Z. YAP-mediated mechanotransduction in urinary bladder remodeling: Based on RNA-seq and CUT&Tag. Front Genet 2023; 14:1106927. [PMID: 36741311 PMCID: PMC9895788 DOI: 10.3389/fgene.2023.1106927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Yes-associated protein (YAP) is an important transcriptional coactivator binding to transcriptional factors that engage in many downstream gene transcription. Partial bladder outlet obstruction (pBOO) causes a massive burden to patients and finally leads to bladder fibrosis. Several cell types engage in the pBOO pathological process, including urothelial cells, smooth muscle cells, and fibroblasts. To clarify the function of YAP in bladder fibrosis, we performed the RNA-seq and CUT&Tag of the bladder smooth muscle cell to analyze the YAP ablation of human bladder smooth muscle cells (hBdSMCs) and immunoprecipitation of YAP. 141 differentially expressed genes (DEGs) were identified through RNA-seq between YAP-knockdown and nature control. After matching with the results of CUT&Tag, 36 genes were regulated directly by YAP. Then we identified the hub genes in the DEGs, including CDCA5, CENPA, DTL, NCAPH, and NEIL3, that contribute to cell proliferation. Thus, our study provides a regulatory network of YAP in smooth muscle proliferation. The possible effects of YAP on hBdSMC might be a vital target for pBOO-associated bladder fibrosis.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Zhongyu Jian,
| |
Collapse
|
13
|
Pérez-Benavente B, Fathinajafabadi A, de la Fuente L, Gandía C, Martínez-Férriz A, Pardo-Sánchez JM, Milián L, Conesa A, Romero OA, Carretero J, Matthiesen R, Jariel-Encontre I, Piechaczyk M, Farràs R. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-β2. Genome Biol 2022; 23:252. [PMID: 36494864 PMCID: PMC9733061 DOI: 10.1186/s13059-022-02800-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear. RESULTS Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-β2 genes. We also show that high levels of JUNB switch the response of TGF-β2 stimulation from an antiproliferative to a pro-invasive one, induce endogenous TGF-β2 production by promoting TGF-β2 mRNA translation, and enhance tumor growth and metastasis in mice. Moreover, tumor genomic data indicate that JUNB amplification associates with poor prognosis in breast and ovarian cancer patients. CONCLUSIONS Our results reveal novel functions for JUNB in cell proliferation and tumor aggressiveness through regulation of cyclin E1 and TGF-β2 expression, which might be exploited for cancer prognosis and therapy.
Collapse
Affiliation(s)
| | | | - Lorena de la Fuente
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Present Address: PerkinElmer Informatics, Tres Cantos, Madrid, Spain
| | | | | | | | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia, Spain
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Julián Carretero
- Departament de Fisiologia, Facultat de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Present address: IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
14
|
Treatment with an antigen-specific dual microparticle system reverses advanced multiple sclerosis in mice. Proc Natl Acad Sci U S A 2022; 119:e2205417119. [PMID: 36256820 PMCID: PMC9618088 DOI: 10.1073/pnas.2205417119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antigen-specific therapies hold promise for treating autoimmune diseases such as multiple sclerosis while avoiding the deleterious side effects of systemic immune suppression due to delivering the disease-specific antigen as part of the treatment. In this study, an antigen-specific dual-sized microparticle (dMP) treatment reversed hind limb paralysis when administered in mice with advanced experimental autoimmune encephalomyelitis (EAE). Treatment reduced central nervous system (CNS) immune cell infiltration, demyelination, and inflammatory cytokine levels. Mechanistic insights using single-cell RNA sequencing showed that treatment impacted the MHC II antigen presentation pathway in dendritic cells, macrophages, B cells, and microglia, not only in the draining lymph nodes but also strikingly in the spinal cord. CD74 and cathepsin S were among the common genes down-regulated in most antigen presenting cell (APC) clusters, with B cells also having numerous MHC II genes reduced. Efficacy of the treatment diminished when B cells were absent, suggesting their impact in this therapy, in concert with other immune populations. Activation and inflammation were reduced in both APCs and T cells. This promising antigen-specific therapeutic approach advantageously engaged essential components of both innate and adaptive autoimmune responses and capably reversed paralysis in advanced EAE without the use of a broad immunosuppressant.
Collapse
|
15
|
Lu F, Hu F, Qiu B, Zou H, Xu J. Identification of novel biomarkers in septic cardiomyopathy via integrated bioinformatics analysis and experimental validation. Front Genet 2022; 13:929293. [PMID: 35957694 PMCID: PMC9358039 DOI: 10.3389/fgene.2022.929293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose: Septic cardiomyopathy (SCM) is an important world public health problem with high morbidity and mortality. It is necessary to identify SCM biomarkers at the genetic level to identify new therapeutic targets and strategies. Method: DEGs in SCM were identified by comprehensive bioinformatics analysis of microarray datasets (GSE53007 and GSE79962) downloaded from the GEO database. Subsequently, bioinformatics analysis was used to conduct an in-depth exploration of DEGs, including GO and KEGG pathway enrichment analysis, PPI network construction, and key gene identification. The top ten Hub genes were identified, and then the SCM model was constructed by treating HL-1 cells and AC16 cells with LPS, and these top ten Hub genes were examined using qPCR. Result: STAT3, SOCS3, CCL2, IL1R2, JUNB, S100A9, OSMR, ZFP36, and HAMP were significantly elevated in the established SCM cells model. Conclusion: After bioinformatics analysis and experimental verification, it was demonstrated that STAT3, SOCS3, CCL2, IL1R2, JUNB, S100A9, OSMR, ZFP36, and HAMP might play important roles in SCM.
Collapse
Affiliation(s)
- Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Baiquan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongpeng Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianjun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianjun Xu,
| |
Collapse
|
16
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Pandey A, Rajesh M, Baral P, Sarma D, Tripathi PH, Akhtar MS, Ciji A, Dubey MK, Pande V, Sharma P, Kamalam BS. Concurrent changes in thermal tolerance thresholds and cellular heat stress response reveals novel molecular signatures and markers of high temperature acclimation in rainbow trout. J Therm Biol 2021; 102:103124. [PMID: 34863487 DOI: 10.1016/j.jtherbio.2021.103124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 01/31/2023]
Abstract
The objective of this study was to better understand the molecular mechanisms which regulate acclimatory responses and thermal safety margins of rainbow trout (Oncorhynchus mykiss) at temperatures above physiological optimum. For this, we investigated the time course of changes in critical thermal tolerance thresholds and associated hepatic and renal transcript abundance of molecular markers related to cellular stress response, during high temperature acclimation. The experimental fish were initially acclimated to 17 °C and later exposed to a gradually raised elevated temperature regime (22 °C) for a period of 30 days. CTmax, CTmin and mRNA expression of candidate markers were examined before the thermal challenge (T0) and over the time-course (days) of high temperature exposure (T1, T3, T7, T15 and T30). With respect to organismal response, CTmax was significantly elevated at T3, but the degree of gain in heat tolerance was not persistent. Contrarily, we observed a gradual loss in cold tolerance with highest CTmin estimate at T30. Based on the time-course of mRNA expression, the studied markers could be categorized into those which were persistently elevated (hsp70a, hsp70b, hspa5, hsp90a, hsp90b, stip1 and serpinh1 in kidney and hsp90b in liver); those which concurred with changes in CTmin (hspbp1, hsp90b, stip1, gr1, hif1a, hyou1, tnfa and tlr5 in kidney); and those which concurred with changes in CTmax (hsp90a, serpinh1, tlr5 and lmo2 in liver). Apparently, transcriptional changes in kidney and liver reflected CTmin and CTmax trend, respectively. Expression profile of stip1 and tlr5 suggest that they are potential novel markers which could reflect thermal limits in rainbow trout. Hepatic metabolic markers were either initially elevated (alt, glud, g6pase1) or down-regulated at different time-points (ast2, gls1, fas, cpt1b, mtor), linked to gluconeogenesis and metabolic depression, respectively. Whereas, growth-axis markers showed no significant differences. Overall, this time-course analysis has revealed potential associations in organismal and tissue-specific cellular response to high temperature acclimation in a thermally sensitive coldwater ectotherm.
Collapse
Affiliation(s)
- Anupam Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal, 263136, Uttarakhand, India
| | - Manchi Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Pratibha Baral
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Debajit Sarma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Priyanka H Tripathi
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India; Department of Biotechnology, Kumaun University, Bhimtal, 263136, Uttarakhand, India
| | - Md Shahbaz Akhtar
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Alexander Ciji
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Maneesh Kumar Dubey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, 263136, Uttarakhand, India
| | - Prakash Sharma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Biju Sam Kamalam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India.
| |
Collapse
|
18
|
Nguyen HT, Najih M, Martin LJ. The AP-1 family of transcription factors are important regulators of gene expression within Leydig cells. Endocrine 2021; 74:498-507. [PMID: 34599696 DOI: 10.1007/s12020-021-02888-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Members of the AP-1 family of transcription factors are immediate early genes being modulated by different extracellular signals. The aim of this review is to highlight the important roles of AP-1 members in transcriptional regulation of genes important for testicular Leydig cell function and male testosterone production. METHODS A search of the relevant literature was performed in Google Scholar and NCBI Pubmed for AP-1 members and Leydig cells. Additional information was accessed from references of relevant articles. Only primary data from original peer-reviewed articles was considered for this review. RESULTS Different signaling pathways important for Leydig cells' functions are involved in the regulation of the activity of AP-1 members. These transcription factors participate in the regulation of genes related to different biological processes important for Leydig cells. CONCLUSIONS We conclude that members of the AP-1 family of transcription factors play critical roles in the regulation of Leydig cell proliferation, steroidogenesis, and cell-to-cell communication.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Mustapha Najih
- Biology Department, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
19
|
Xu H, Li X, Wang S, Li F, Gao J, Yan L, Zhu L. Multiomics analysis identifies key genes and pathways related to N6-methyladenosine RNA modification in ovarian cancer. Epigenomics 2021; 13:1359-1383. [PMID: 34550011 DOI: 10.2217/epi-2021-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: To explore the pathways and target genes related to N6-methyladenosine (m6A) methylation in ovarian cancer and their effect on patient prognosis. Methods & materials: The Cancer Genome Atlas was used to screen genes related to m6A regulators in terms of gene expression, mutation and copy number variation. These genes were subjected to pathway enrichment analysis. Prognosis-related genes were screened and involved in risk signature construction. Immunohistochemistry was used for verification. Results: We obtained 1408 genes dysregulated in parallel to m6A regulators, which were mainly involved in the platelet activation pathway. The m6A-related signature was constructed based on the expression of four prognosis-related genes (RPS6KA2, JUNB, HNF4A and P2RX1). Conclusion: This work provides new insights into the mechanism of m6A methylation in ovarian cancer.
Collapse
Affiliation(s)
- Haoya Xu
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province & Key Laboratory of Obstetrics & Gynecology of Higher Education of Liaoning Province, Shenyang, 110004, Liaoning, China
| | - Xianli Li
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province & Key Laboratory of Obstetrics & Gynecology of Higher Education of Liaoning Province, Shenyang, 110004, Liaoning, China
| | - Shengtan Wang
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570011, Hainan, China
| | - Feifei Li
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jian Gao
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province & Key Laboratory of Obstetrics & Gynecology of Higher Education of Liaoning Province, Shenyang, 110004, Liaoning, China
| | - Limei Yan
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province & Key Laboratory of Obstetrics & Gynecology of Higher Education of Liaoning Province, Shenyang, 110004, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province & Key Laboratory of Obstetrics & Gynecology of Higher Education of Liaoning Province, Shenyang, 110004, Liaoning, China
| |
Collapse
|
20
|
Giordano R, Petersen KK, Andersen HH, Lichota J, Valeriani M, Simonsen O, Arendt-Nielsen L. Preoperative serum circulating microRNAs as potential biomarkers for chronic postoperative pain after total knee replacement. Mol Pain 2021; 16:1744806920962925. [PMID: 33021154 PMCID: PMC7543153 DOI: 10.1177/1744806920962925] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Chronic postoperative pain affects approximately 20% of patients with knee
osteoarthritis after total knee replacement. Circulating microRNAs can be
found in serum and might act as biomarkers in a variety of diseases. The
current study aimed to investigate the preoperative expression of
circulating microRNAs as potential predictive biomarkers for the development
of chronic postoperative pain in the year following total knee
replacement. Methods Serum samples, collected preoperatively from 136 knee osteoarthritis
patients, were analyzed for 21 circulatory microRNAs. Pain intensity was
assessed using a visual analog scale before and one year after total knee
replacement. Patients were divided into a low-pain relief group (pain relief
percentage <30%) and a high-pain relief group (pain relief percentage
>30%) based on their pain relief one year after total knee replacement,
and differences in microRNAs expression were analyzed between the two
groups. Results We found that three microRNAs were preoperatively dysregulated in serum in
the low-pain relief group compared with the high-pain relief group.
MicroRNAs hsa-miR-146a-5p, -145-5p, and -130 b-3p exhibited fold changes of
1.50, 1.55, and 1.61, respectively, between the groups (all P
values < 0.05). Hsa-miR-146a-5p and preoperative pain intensity
correlated positively with postoperative pain relief (respectively,
R = 0.300, P = 0.006; R = 0.500, P < 0.001). Discussion This study showed that patients with a low postoperative pain relief present
a dysregulation of circulating microRNAs. Altered circulatory microRNAs
expression correlated with postoperative pain relief, indicating that
microRNAs can serve as predictive biomarkers of pain outcome after surgery
and hence may foster new strategies for preventing chronic postoperative
pain after total knee replacement (TKR).
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær Petersen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Hjalte Holm Andersen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Jacek Lichota
- Laboratory of Metabolism Modifying Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Massimiliano Valeriani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Child Neurology Unit, Department of Neuroscience and Neurorehabilitation, Headache Center, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Ole Simonsen
- Orthopedic Surgery Research Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
21
|
Memon A, Pyao Y, Jung Y, Choi HS, Song KD, Lee WK. The basal transcriptional activity of the murine Klf10 gene is regulated by the transcriptional factor JunB. Genes Genomics 2021; 43:343-349. [PMID: 33555508 DOI: 10.1007/s13258-020-01024-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Krüppel-like factor 10 (KLF10) belongs to the Sp1-like transcription factor family, which plays an important role in many directions, e.g., cell proliferation, apoptosis, and differentiation. Its 5' upstream regions are conserved across mammalian species. However, the regulatory mechanism has not been elucidated yet. OBJECTIVE Nonetheless the basal transcriptional regulation mechanisms of these regions are unknown. Here, we characterized it which is indispensable for the basal transcription of the Klf10 gene. METHODS Seven deletions of 5' upstream DNA fragments from the 10 kb mKlf10 genomic DNA were produced by PCR and cloned into the upstream of the luciferase (Luc) reporter gene in the pGL3 basic plasmid. RESULT The luciferase reporter assay showed that the DNA sequence at positions from -101 to +68 was required for a principle activity in the promoter of mKlf10 gene, in which transcriptional factor binding motifs, one JunB and two Sp1 sites, are included. Mutations at the sequence of JunB motif, but not at the two Sp1, abrogated the promoter activity completely, suggesting the indispensable role of JunB site for basal transcription of mKlf10 gene. Moreover, electrophoretic mobility and supershift assays (EMSA) uncovered that JunB protein bound to this region specifically. CONCLUSION Taken together, our study revealed that the JunB but not Sp1 at mKlf10 promoter functions as a positive basic factor for the transcriptional activity of the gene.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea
| | - Yuliya Pyao
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea
| | - Yerin Jung
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea
| | - Hwa-Sik Choi
- Department of Biomedical Laboratory Science, Shinhan University, Uijeongbu, 11644, South Korea
| | - Ki-Duk Song
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
22
|
Genotoxic Effects of Cylindrospermopsin, Microcystin-LR and Their Binary Mixture in Human Hepatocellular Carcinoma (HepG2) Cell Line. Toxins (Basel) 2020; 12:toxins12120778. [PMID: 33302339 PMCID: PMC7762347 DOI: 10.3390/toxins12120778] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 01/12/2023] Open
Abstract
Simultaneous occurrence of cylindrospermopsin (CYN) and microcystin-LR (MCLR) has been reported in the aquatic environment and thus human exposure to such mixtures is possible. As data on the combined effects of CYN/MCLR are scarce, we aimed to investigate the adverse effects related to genotoxic activities induced by CYN (0.125, 0.25 and 0.5 µg/mL) and MCLR (1 µg/mL) as single compounds and their combinations in HepG2 cells after 24 and 72 h exposure. CYN and CYN/MCLR induced DNA double-strand breaks after 72 h exposure, while cell cycle analysis revealed that CYN and CYN/MCLR arrested HepG2 cells in G0/G1 phase. Moreover, CYN and the combination with MCLR upregulated CYP1A1 and target genes involved in DNA-damage response (CDKN1A, GADD45A). Altogether, the results showed that after 72 h exposure genotoxic activity of CYN/MCLR mixture was comparable to the one of pure CYN. On the contrary, MCLR (1 µg/mL) had no effect on the viability of cells and had no influence on cell division. It did not induce DNA damage and did not deregulate studied genes after prolonged exposure. The outcomes of the study confirm the importance of investigating the combined effects of several toxins as the effects can differ from those induced by single compounds.
Collapse
|
23
|
Liu H, Hilliard S, Kelly E, Chen CH, Saifudeen Z, El-Dahr SS. The polycomb proteins EZH1 and EZH2 co-regulate chromatin accessibility and nephron progenitor cell lifespan in mice. J Biol Chem 2020; 295:11542-11558. [PMID: 32554463 DOI: 10.1074/jbc.ra120.013348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/09/2020] [Indexed: 01/20/2023] Open
Abstract
SIX2 (SIX homeobox 2)-positive nephron progenitor cells (NPCs) give rise to all epithelial cell types of the nephron, the filtering unit of the kidney. NPCs have a limited lifespan and are depleted near the time of birth. Epigenetic factors are implicated in the maintenance of organ-restricted progenitors such as NPCs, but the chromatin-based mechanisms are incompletely understood. Here, using a combination of gene targeting, chromatin profiling, and single-cell RNA analysis, we examined the role of the murine histone 3 Lys-27 (H3K27) methyltransferases EZH1 (enhancer of zeste 1) and EZH2 in NPC maintenance. We found that EZH2 expression correlates with NPC growth potential and that EZH2 is the dominant H3K27 methyltransferase in NPCs and epithelial descendants. Surprisingly, NPCs lacking H3K27 trimethylation maintained their progenitor state but cycled slowly, leading to a smaller NPC pool and formation of fewer nephrons. Unlike Ezh2 loss of function, dual inactivation of Ezh1 and Ezh2 triggered overexpression of the transcriptional repressor Hes-related family BHLH transcription factor with YRPW motif 1 (Hey1), down-regulation of Six2, and unscheduled activation of Wnt4-driven differentiation, resulting in early termination of nephrogenesis and severe renal dysgenesis. Double-mutant NPCs also overexpressed the SIX family member Six1 However, in this context, SIX1 failed to maintain NPC stemness. At the chromatin level, EZH1 and EZH2 restricted accessibility to AP-1-binding motifs, and their absence promoted a regulatory landscape akin to differentiated and nonlineage cells. We conclude that EZH2 is required for NPC renewal potential and that tempering of the differentiation program requires cooperation of both EZH1 and EZH2.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sylvia Hilliard
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth Kelly
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Obstetrics & Gynecology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Chao-Hui Chen
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zubaida Saifudeen
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Samir S El-Dahr
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
24
|
Kumar R, Mani AM, Singh NK, Rao GN. PKCθ-JunB axis via upregulation of VEGFR3 expression mediates hypoxia-induced pathological retinal neovascularization. Cell Death Dis 2020; 11:325. [PMID: 32382040 PMCID: PMC7206019 DOI: 10.1038/s41419-020-2522-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Pathological retinal neovascularization is the most common cause of vision loss. PKCθ has been shown to play a role in type 2 diabetes, which is linked to retinal neovascularization. Based on these clues, we have studied the role of PKCθ and its downstream target genes JunB and VEGFR3 in retinal neovascularization using global and tissue-specific knockout mouse models along with molecular biological approaches. Here, we show that vascular endothelial growth factor A (VEGFA) induces PKCθ phosphorylation in human retinal microvascular endothelial cells (HRMVECs) and downregulation of its levels attenuates VEGFA-induced HRMVECs migration, sprouting and tube formation. Furthermore, the whole body deletion of PKCθ or EC-specific deletion of its target gene JunB inhibited hypoxia-induced retinal EC proliferation, tip cell formation and neovascularization. VEGFA also induced VEGFR3 expression via JunB downstream to PKCθ in the regulation of HRMVEC migration, sprouting, and tube formation in vitro and OIR-induced retinal EC proliferation, tip cell formation and neovascularization in vivo. In addition, VEGFA-induced VEGFR3 expression requires VEGFR2 activation upstream to PKCθ-JunB axis both in vitro and in vivo. Depletion of VEGFR2 or VEGFR3 levels attenuated VEGFA-induced HRMVEC migration, sprouting and tube formation in vitro and retinal neovascularization in vivo and it appears that these events were dependent on STAT3 activation. Furthermore, the observations using soluble VEGFR3 indicate that VEGFR3 mediates its effects on retinal neovascularization in a ligand dependent and independent manner downstream to VEGFR2. Together, these observations suggest that PKCθ-dependent JunB-mediated VEGFR3 expression targeting STAT3 activation is required for VEGFA/VEGFR2-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
25
|
Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K. AP-1 cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun Biol 2019; 2:91. [PMID: 30854483 PMCID: PMC6403268 DOI: 10.1038/s42003-019-0335-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Salamanders have the remarkable ability to functionally regenerate after spinal cord transection. In response to injury, GFAP+ glial cells in the axolotl spinal cord proliferate and migrate to replace the missing neural tube and create a permissive environment for axon regeneration. Molecular pathways that regulate the pro-regenerative axolotl glial cell response are poorly understood. Here we show axolotl glial cells up-regulate AP-1cFos/JunB after injury, which promotes a pro-regenerative glial cell response. Injury induced upregulation of miR-200a in glial cells supresses c-Jun expression in these cells. Inhibition of miR-200a during regeneration causes defects in axonal regrowth and transcriptomic analysis revealed that miR-200a inhibition leads to differential regulation of genes involved with reactive gliosis, the glial scar, extracellular matrix remodeling and axon guidance. This work identifies a unique role for miR-200a in inhibiting reactive gliosis in axolotl glial cells during spinal cord regeneration. Keith Sabin et al. showed that upregulation of the AP-1 complex, composed of c-Fos and JunB, in the axolotl spinal cord promotes a pro-regenerative glial cell response. This response is impaired by inhibition of miR-200a; suggesting an important role for this microRNA in axolotl spinal cord regeneration.
Collapse
Affiliation(s)
- Keith Z Sabin
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA. .,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA.
| |
Collapse
|
26
|
Wang Y, Chu J, Yi P, Dong W, Saultz J, Wang Y, Wang H, Scoville S, Zhang J, Wu LC, Deng Y, He X, Mundy-Bosse B, Freud AG, Wang LS, Caligiuri MA, Yu J. SMAD4 promotes TGF-β-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest 2018; 128:5123-5136. [PMID: 30183689 DOI: 10.1172/jci121227] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
SMAD4 is the only common SMAD in TGF-β signaling that usually impedes immune cell activation in the tumor microenvironment. However, we demonstrated here that selective deletion of Smad4 in NK cells actually led to dramatically reduced tumor cell rejection and augmented tumor cell metastases, reduced murine CMV clearance, as well as impeded NK cell homeostasis and maturation. This was associated with a downregulation of granzyme B (Gzmb), Kit, and Prdm1 in Smad4-deficient NK cells. We further unveiled the mechanism by which SMAD4 promotes Gzmb expression. Gzmb was identified as a direct target of a transcriptional complex formed by SMAD4 and JUNB. A JUNB binding site distinct from that for SMAD4 in the proximal Gzmb promoter was required for transcriptional activation by the SMAD4-JUNB complex. In a Tgfbr2 and Smad4 NK cell-specific double-conditional KO model, SMAD4-mediated events were found to be independent of canonical TGF-β signaling. Our study identifies and mechanistically characterizes unusual functions and pathways for SMAD4 in governing innate immune responses to cancer and viral infection, as well as NK cell development.
Collapse
Affiliation(s)
- Youwei Wang
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jianhong Chu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ping Yi
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Third Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Wenjuan Dong
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jennifer Saultz
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Hongwei Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Steven Scoville
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | - Lai-Chu Wu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Youcai Deng
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | - Aharon G Freud
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology at the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
27
|
Wang P, Magdolen V, Seidl C, Dorn J, Drecoll E, Kotzsch M, Yang F, Schmitt M, Schilling O, Rockstroh A, Clements JA, Loessner D. Kallikrein-related peptidases 4, 5, 6 and 7 regulate tumour-associated factors in serous ovarian cancer. Br J Cancer 2018; 119:1-9. [PMID: 30287916 PMCID: PMC6189062 DOI: 10.1038/s41416-018-0260-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tissue kallikrein-related peptidases 4, 5, 6 and 7 (KLK4-7) strongly increase the malignancy of ovarian cancer cells. Deciphering their downstream effectors, we aimed at finding new potential prognostic biomarkers and treatment targets for ovarian cancer patients. KLK4-7-transfected (OV-KLK4-7) and vector-control OV-MZ-6 (OV-VC) ovarian cancer cells were established to select differentially regulated factors. METHODS With three independent approaches, PCR arrays, genome-wide microarray and proteome analyses, we identified 10 candidates (MSN, KRT19, COL5A2, COL1A2, BMP5, F10, KRT7, JUNB, BMP4, MMP1). To determine differential protein expression, we performed western blot analyses, immunofluorescence and immunohistochemistry for four candidates (MSN, KRT19, KRT7, JUNB) in cells, tumour xenograft and patient-derived tissues. RESULTS We demonstrated that KLK4-7 clearly regulates expression of MSN, KRT19, KRT7 and JUNB at the mRNA and protein levels in ovarian cancer cells and tissues. Protein expression of the top-upregulated effectors, MSN and KRT19, was investigated by immunohistochemistry in patients afflicted with serous ovarian cancer and related to KLK4-7 immunoexpression. Significant positive associations were found for KRT19/KLK4, KRT19/KLK5 and MSN/KLK7. CONCLUSION These findings imply that KLK4-7 exert key modulatory effects on other cancer-related genes and proteins in ovarian cancer. These downstream effectors of KLK4-7, MSN and KRT19 may represent important therapeutic targets in serous ovarian cancer.
Collapse
Affiliation(s)
- Ping Wang
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Christof Seidl
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Enken Drecoll
- Department of Pathology, Technical University of Munich, Munich, Germany
| | | | - Feng Yang
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Manfred Schmitt
- Department of Obstetrics and Gynecology, Technical University of Munich, Munich, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Judith Ann Clements
- Australian Prostate Cancer Research Centre-Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Daniela Loessner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia. .,Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
28
|
Peng M, Wang J, Zhang D, Jin H, Li J, Wu XR, Huang C. PHLPP2 stabilization by p27 mediates its inhibition of bladder cancer invasion by promoting autophagic degradation of MMP2 protein. Oncogene 2018; 37:5735-5748. [PMID: 29930380 PMCID: PMC6202328 DOI: 10.1038/s41388-018-0374-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/24/2023]
Abstract
Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) is a tumor suppressor that catalyzes the de-phosphorylation of the AGC kinases, while p27 acts as a tumor suppressor that regulates cell cycle, apoptosis, and cell motility. Our previous studies have identified that PHLPP2 participates in inhibition of transformation of human bronchial epithelial cells following lung carcinogen B[a]P/B[a]PDE exposure. However, nothing was known about the association of p27 with regulation of PHLPP2 expression and the role of PHLPP2 in bladder cancer (BC) invasion. In our current studies, we demonstrated that PHLPP2 inhibited BC invasion through promoting MMP2 degradation via p62-mediated autophagy; and p27 expression was able to stabilize PHLPP2 protein by inhibiting protein degradation of Hsp90, which could directly bind to PHLPP2 and protect it from degradation. More in-depth studies discovered that stabilization of Hsp90 by p27 was mediated by calpain1 proteolysis system, whereas p27 inhibited calpain1 gene transcription by attenuating Jak1/Stat1 cascade in human invasive BC cells. Collectively, we for the first time revealed PHLPP2 downregulation in BCs and its participating in promotion of BC invasion, as well as novel role of p27 and mechanisms underlying its regulation of PHLPP2 protein degradation through Hsp90-dependent manner. Our findings improve our understanding of p27 and PHLPP2 roles and their crosstalk in regulation of BC invasion, which further contributes to improve the current strategy for invasive bladder cancer therapy.
Collapse
Affiliation(s)
- Minggang Peng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Jingjing Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA.
| |
Collapse
|
29
|
Liu F, Lössl P, Rabbitts BM, Balaban RS, Heck AJR. The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes. Mol Cell Proteomics 2018; 17:216-232. [PMID: 29222160 PMCID: PMC5795388 DOI: 10.1074/mcp.ra117.000470] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondria exert an immense amount of cytophysiological functions, but the structural basis of most of these processes is still poorly understood. Here we use cross-linking mass spectrometry to probe the organization of proteins in native mouse heart mitochondria. Our approach provides the largest survey of mitochondrial protein interactions reported so far. In total, we identify 3,322 unique residue-to-residue contacts involving half of the mitochondrial proteome detected by bottom-up proteomics. The obtained mitochondrial protein interactome gives insights in the architecture and submitochondrial localization of defined protein assemblies, and reveals the mitochondrial localization of four proteins not yet included in the MitoCarta database. As one of the highlights, we show that the oxidative phosphorylation complexes I-V exist in close spatial proximity, providing direct evidence for supercomplex assembly in intact mitochondria. The specificity of these contacts is demonstrated by comparative analysis of mitochondria after high salt treatment, which disrupts the native supercomplexes and substantially changes the mitochondrial interactome.
Collapse
Affiliation(s)
- Fan Liu
- From the ‡Biomolecular Mass Spectrometry and Proteomics. Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- §Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- ¶Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle-Straβe 10, 13125 Berlin, Germany
| | - Philip Lössl
- From the ‡Biomolecular Mass Spectrometry and Proteomics. Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- §Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Beverley M Rabbitts
- ‖Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Balaban
- ‖Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics. Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
- §Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
30
|
Systems biology analysis of longitudinal functional response of endothelial cells to shear stress. Proc Natl Acad Sci U S A 2017; 114:10990-10995. [PMID: 28973892 DOI: 10.1073/pnas.1707517114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Blood flow and vascular shear stress patterns play a significant role in inducing and modulating physiological responses of endothelial cells (ECs). Pulsatile shear (PS) is associated with an atheroprotective endothelial phenotype, while oscillatory shear (OS) is associated with an atheroprone endothelial phenotype. Although mechanisms of endothelial shear response have been extensively studied, most studies focus on characterization of single molecular pathways, mainly at fixed time points after stress application. Here, we carried out a longitudinal time-series study to measure the transcriptome after the application of PS and OS. We performed systems analyses of transcriptional data of cultured human vascular ECs to elucidate the dynamics of endothelial responses in several functional pathways such as cell cycle, oxidative stress, and inflammation. By combining the temporal data on differentially expressed transcription factors and their targets with existing knowledge on relevant functional pathways, we infer the causal relationships between disparate endothelial functions through common transcriptional regulation mechanisms. Our study presents a comprehensive temporally longitudinal experimental study and mechanistic model of shear stress response. By comparing the relative endothelial expressions of genes between OS and PS, we provide insights and an integrated perspective into EC function in response to differential shear. This study has significant implications for the pathogenesis of vascular diseases.
Collapse
|
31
|
Nuzzo AM, Giuffrida D, Masturzo B, Mele P, Piccoli E, Eva C, Todros T, Rolfo A. Altered expression of G1/S phase cell cycle regulators in placental mesenchymal stromal cells derived from preeclamptic pregnancies with fetal-placental compromise. Cell Cycle 2016; 16:200-212. [PMID: 27937072 PMCID: PMC5283823 DOI: 10.1080/15384101.2016.1261766] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herein, we evaluated whether Placental Mesenchymal Stromal Cells (PDMSCs) derived from normal and Preeclamptic (PE) placentae presented differences in the expression of G1/S-phase regulators p16INK4A, p18INK4C, CDK4 and CDK6. Finally, we investigated normal and PE-PDMSCs paracrine effects on JunB, Cyclin D1, p16INK4A, p18INK4C, CDK4 and CDK6 expressions in physiological term villous explants. PDMSCs were isolated from physiological (n = 20) and PE (n = 24) placentae. Passage three normal and PE-PDMSC and conditioned media (CM) were collected after 48h. Physiological villous explants (n = 60) were treated for 72h with normal or PE-PDMSCs CM. Explants viability was assessed by Lactate Dehydrogenase Cytotoxicity assay. Cyclin D1 localization was evaluated by Immuofluorescence (IF) while JunB, Cyclin-D1 p16INK4A, p18INK4C, CDK4 and CDK6 levels were assessed by Real Time PCR and Western Blot assay. We reported significantly increased p16INK4A and p18INK4C expression in PE- relative to normal PDMSCs while no differences in CDK4 and CDK6 levels were detected. Explants viability was not affected by normal or PE-PDMSCs CM. Normal PDMSCs CM increased JunB, p16INK4 and p18INK4C and decreased Cyclin-D1 in placental tissues. In contrast, PE-PDMSCs CM induced JunB downregulation and Cyclin D1 increase in placental explants. Cyclin D1 IF staining showed that CM treatment targeted mainly the syncytiotrophoblast. We showed Cyclin D1-p16INK4A/p18INK4C altered pathway in PE-PDMSCs demonstrating an aberrant G1/S phase transition in these pathological cells. The abnormal Cyclin D1-p16INK4A/p18INK4C expression in explants conditioned by PE-PDMSCs media suggest a key contribution of mesenchymal cells to the altered trophoblast cell cycle regulation typical of PE pregnancies with fetal-placental compromise.
Collapse
Affiliation(s)
- Anna Maria Nuzzo
- a Department of Surgical Sciences , University of Turin , Turin , Italy
| | | | - Bianca Masturzo
- b Città della Salute & della Scienza - O.I.R.M. S.Anna Hospital , Turin , Italy
| | - Paolo Mele
- c Neurosciences Institute Cavalieri Ottolenghi (NICO), Department of Neurosciences , University of Turin, San Luigi Hospital , Orbassano , Italy
| | - Ettore Piccoli
- a Department of Surgical Sciences , University of Turin , Turin , Italy.,b Città della Salute & della Scienza - O.I.R.M. S.Anna Hospital , Turin , Italy
| | - Carola Eva
- c Neurosciences Institute Cavalieri Ottolenghi (NICO), Department of Neurosciences , University of Turin, San Luigi Hospital , Orbassano , Italy
| | - Tullia Todros
- a Department of Surgical Sciences , University of Turin , Turin , Italy.,b Città della Salute & della Scienza - O.I.R.M. S.Anna Hospital , Turin , Italy
| | - Alessandro Rolfo
- a Department of Surgical Sciences , University of Turin , Turin , Italy
| |
Collapse
|
32
|
Papoudou-Bai A, Hatzimichael E, Barbouti A, Kanavaros P. Expression patterns of the activator protein-1 (AP-1) family members in lymphoid neoplasms. Clin Exp Med 2016; 17:291-304. [PMID: 27600282 DOI: 10.1007/s10238-016-0436-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
The activator protein-1 (AP-1) is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB and JunD), Fos (c-Fos, FosB, Fra1 and Fra2) and activating transcription factor protein families. AP-1 is involved in various cellular events including differentiation, proliferation, survival and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in the pathogenesis of various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B cell lymphomas and adult T cell leukemia/lymphoma. The main purpose of this review is the analysis of the expression patterns of AP-1 transcription factors in order to gain insight into the histophysiology of lymphoid tissues and the pathology of lymphoid malignancies.
Collapse
Affiliation(s)
| | | | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
33
|
Early markers for myocardial ischemia and sudden cardiac death. Int J Legal Med 2016; 130:1265-80. [PMID: 27392959 DOI: 10.1007/s00414-016-1401-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
The post-mortem diagnosis of acute myocardial ischemia remains a challenge for both clinical and forensic pathologists. We performed an experimental study (ligation of left anterior descending coronary artery in rats) in order to identify early markers of myocardial ischemia, to further apply to forensic and clinical pathology in cases of sudden cardiac death. Using immunohistochemistry, Western blots, and gene expression analyses, we investigated a number of markers, selected among those which are currently used in emergency departments to diagnose myocardial infarction and those which are under investigation in basic research and autopsy pathology studies on cardiovascular diseases. The study was performed on 44 adult male Lewis rats, assigned to three experimental groups: control, sham-operated, and operated. The durations of ischemia ranged between 5 min and 24 h. The investigated markers were troponins I and T, myoglobin, fibronectin, C5b-9, connexin 43 (dephosphorylated), JunB, cytochrome c, and TUNEL staining. The earliest expressions (≤30 min) were observed for connexin 43, JunB, and cytochrome c, followed by fibronectin (≤1 h), myoglobin (≤1 h), troponins I and T (≤1 h), TUNEL (≤1 h), and C5b-9 (≤2 h). By this investigation, we identified a panel of true early markers of myocardial ischemia and delineated their temporal evolution in expression by employing new technologies for gene expression analysis, in addition to traditional and routine methods (such as histology and immunohistochemistry). Moreover, for the first time in the autopsy pathology field, we identified, by immunohistochemistry, two very early markers of myocardial ischemia: dephosphorylated connexin 43 and JunB.
Collapse
|
34
|
Hyakusoku H, Sano D, Takahashi H, Hatano T, Isono Y, Shimada S, Ito Y, Myers JN, Oridate N. JunB promotes cell invasion, migration and distant metastasis of head and neck squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:6. [PMID: 26754630 PMCID: PMC4709939 DOI: 10.1186/s13046-016-0284-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/04/2016] [Indexed: 01/03/2023]
Abstract
Background While treatment failure in cases of head and neck squamous cell carcinoma (HNSCC) frequently takes the form of locoregional recurrences and distant metastasis, our understanding of the mechanisms of metastasis in HNSCC is limited. We initially performed the upstream and key nodes analysis together with whole gene microarray analysis characterized by distant metastatic potential in vivo with HNSCC cell lines and identified JunB, a member of the activator protein-1 (AP-1) family, as a key molecule in the regulation of the pathways related to distant metastasis in HNSCC. We have therefore tested the hypothesis that JunB plays a crucial role in distant metastasis in HNSCC. Methods To study the role of JunB on metastatic potential of HNSCC, small interfering RNA (siRNA)-mediated knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (cas9) system (CRISPR/Cas9)-mediated knockout of JunB in HNSCC cells were established and the abilities of cell invasion and migration in vitro were examined. The efficacy of knockout of JunB was also examined using an experimental lung metastatic mouse model of HNSCC. In addition, to study if the role of JunB in HNSCC cell migration and invasiveness is related to epithelial-to-mesenchymal transition (EMT), cell morphology and expression of mesenchymal or epithelial marker on siRNA mediated JunB knockdown in HNSCC cells were examined with or without TGF-β stimulation. Results siRNA knockdown and sgRNA knockout of JunB in metastatic HNSCC cells significantly suppressed both cell invasion and migration in vitro. In addition, the knockout of JunB in metastatic HNSCC cells significantly repressed the incidence of lung metastases and prolonged the survival in vivo. However, we did not observe any change in cell morphology with the down-regulation of mesenchymal markers and up-regulation of epithelial markers in response to siRNA-mediated JunB knockdown in HNSCC cells. Conclusion These results suggested that JunB could play an important role in promoting cell invasion, migration and distant metastasis in HNSCC via pathways other than EMT and that the down-regulation of JunB may become an effective strategy for patients with invasive HNSCC. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0284-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroshi Hyakusoku
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Daisuke Sano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Hideaki Takahashi
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Takashi Hatano
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yasuhiro Isono
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Shoko Shimada
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yusuke Ito
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | - Nobuhiko Oridate
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Department of Otorhinolaryngology - Head and Neck Surgery, Yokohama City University, School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
35
|
Kim J, Kim KM, Noh JH, Yoon JH, Abdelmohsen K, Gorospe M. Long noncoding RNAs in diseases of aging. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:209-21. [PMID: 26141605 DOI: 10.1016/j.bbagrm.2015.06.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/13/2015] [Accepted: 06/24/2015] [Indexed: 12/22/2022]
Abstract
Aging is a process during which progressive deteriorating of cells, tissues, and organs over time lead to loss of function, disease, and death. Towards the goal of extending human health span, there is escalating interest in understanding the mechanisms that govern aging-associated pathologies. Adequate regulation of expression of coding and noncoding genes is critical for maintaining organism homeostasis and preventing disease processes. Long noncoding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression at all levels--transcriptional, post-transcriptional and post-translational. In this review, we discuss our emerging understanding of lncRNAs implicated in aging illnesses. We focus on diseases arising from age-driven impairment in energy metabolism (obesity, diabetes), the declining capacity to respond homeostatically to proliferative and damaging stimuli (cancer, immune dysfunction), and neurodegeneration. We identify the lncRNAs involved in these ailments and discuss the rising interest in lncRNAs as diagnostic and therapeutic targets to ameliorate age-associated pathologies and prolong health. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Jiyoung Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
36
|
Blaschke M, McKinnon R, Nguyen CH, Holzner S, Zehl M, Atanasov AG, Schelch K, Krieger S, Diaz R, Frisch R, Feistel B, Jäger W, Ecker GF, Dirsch VM, Grusch M, Zupko I, Urban E, Kopp B, Krupitza G. A eudesmane-type sesquiterpene isolated from Pluchea odorata (L.) Cass. combats three hallmarks of cancer cells: Unrestricted proliferation, escape from apoptosis and early metastatic outgrowth in vitro. Mutat Res 2015; 777:79-90. [PMID: 25989051 DOI: 10.1016/j.mrfmmm.2015.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/05/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC50 = 8.9 μM after 72 h) and 10 μM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 μM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 μM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound.
Collapse
Affiliation(s)
- Michael Blaschke
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, Austria
| | - Ruxandra McKinnon
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Chi Huu Nguyen
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, Austria; Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Silvio Holzner
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, Austria
| | - Martin Zehl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | | | - Karin Schelch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Sigurd Krieger
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, Austria
| | - Rene Diaz
- Institute for Ethnobiology, Playa Diana, San José/Petén, Guatemala
| | - Richard Frisch
- Institute for Ethnobiology, Playa Diana, San José/Petén, Guatemala
| | - Björn Feistel
- Finzelberg GmbH & Co. KG, Koblenzer Strasse 48-54, D-56626 Andernach, Germany
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Istvan Zupko
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Georg Krupitza
- Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, Austria.
| |
Collapse
|
37
|
Biswas A, Khanna S, Roy S, Pan X, Sen CK, Gordillo GM. Endothelial cell tumor growth is Ape/ref-1 dependent. Am J Physiol Cell Physiol 2015; 309:C296-307. [PMID: 26108661 DOI: 10.1152/ajpcell.00022.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
Abstract
Tumor-forming endothelial cells have highly elevated levels of Nox-4 that release H2O2 into the nucleus, which is generally not compatible with cell survival. We sought to identify compensatory mechanisms that enable tumor-forming endothelial cells to survive and proliferate under these conditions. Ape-1/ref-1 (Apex-1) is a multifunctional protein that promotes DNA binding of redox-sensitive transcription factors, such as AP-1, and repairs oxidative DNA damage. A validated mouse endothelial cell (EOMA) tumor model was used to demonstrate that Nox-4-derived H2O2 causes DNA oxidation that induces Apex-1 expression. Apex-1 functions as a chaperone to keep transcription factors in a reduced state. In EOMA cells Apex-1 enables AP-1 binding to the monocyte chemoattractant protein-1 (mcp-1) promoter and expression of that protein is required for endothelial cell tumor formation. Intraperitoneal injection of the small molecule inhibitor E3330, which specifically targets Apex-1 redox-sensitive functions, resulted in a 50% decrease in tumor volume compared with mice injected with vehicle control (n = 6 per group), indicating that endothelial cell tumor proliferation is dependent on Apex-1 expression. These are the first reported results to establish Nox-4 induction of Apex-1 as a mechanism promoting endothelial cell tumor formation.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Savita Khanna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Sashwati Roy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Xueliang Pan
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Gayle M Gordillo
- Department of Plastic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| |
Collapse
|
38
|
Papoudou-Bai A, Goussia A, Batistatou A, Stefanou D, Malamou-Mitsi V, Kanavaros P. The expression levels of JunB, JunD and p-c-Jun are positively correlated with tumor cell proliferation in diffuse large B-cell lymphomas. Leuk Lymphoma 2015; 57:143-50. [PMID: 25813203 DOI: 10.3109/10428194.2015.1034704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We analyzed the expression of Jun family in relation to CD30 expression, cell proliferation and B-cell differentiation immunophenotypes [Germinal Center and non-Germinal Center] in diffuse large B-cell lymphomas (DLBCL). Expression and high expression of phosphorylated-c-Jun (p-c-Jun), JunB, JunD and CD30 (cut-off scores 20% and 50%, respectively) was found in 18/103, 49/103, 72/101 and 26/102 cases, respectively, and in 6/103, 27/103, 60/101 and 21/102 cases, respectively. The following significant positive correlations were observed: (a) JunB with cyclin A (p = 0.046), cyclin B1 (p = 0.033), cyclin E (p = 0.003), MUM-1 (p = 0.002) and CD30 (p < 0.001), (b) JunD with Ki67 (p = 0.002) and cyclin E (p = 0.014), (c) p-c-Jun with CD30 (p = 0.015), and (d) high p-c-Jun with cyclin A (p = 0.034). The positive correlation between expression of JunB, JunD and p-c-Jun and tumor cell proliferation in DLBCL, suggests that increased JunB, JunD and p-c-Jun expression may be involved in the pathogenesis of DLBCL by increasing tumor cell proliferation.
Collapse
Affiliation(s)
| | - Anna Goussia
- a Department of Pathology , Medical Faculty , University of Ioannina, Ioannina , Greece
| | - Anna Batistatou
- a Department of Pathology , Medical Faculty , University of Ioannina, Ioannina , Greece
| | - Dimitrios Stefanou
- a Department of Pathology , Medical Faculty , University of Ioannina, Ioannina , Greece
| | | | - Panagiotis Kanavaros
- b Department of Anatomy-Histology-Embryology , Medical Faculty , University of Ioannina, Ioannina , Greece
| |
Collapse
|
39
|
Abstract
Atrophy occurs in specific muscles with inactivity (for example, during plaster cast immobilization) or denervation (for example, in patients with spinal cord injuries). Muscle wasting occurs systemically in older people (a condition known as sarcopenia); as a physiological response to fasting or malnutrition; and in many diseases, including chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal failure, cardiac failure, Cushing syndrome, sepsis, burns and trauma. The rapid loss of muscle mass and strength primarily results from excessive protein breakdown, which is often accompanied by reduced protein synthesis. This loss of muscle function can lead to reduced quality of life, increased morbidity and mortality. Exercise is the only accepted approach to prevent or slow atrophy. However, several promising therapeutic agents are in development, and major advances in our understanding of the cellular mechanisms that regulate the protein balance in muscle include the identification of several cytokines, particularly myostatin, and a common transcriptional programme that promotes muscle wasting. Here, we discuss these new insights and the rationally designed therapies that are emerging to combat muscle wasting.
Collapse
|
40
|
Immunohistological analysis of the jun family and the signal transducers and activators of transcription in thymus. ANATOMY RESEARCH INTERNATIONAL 2015; 2015:541582. [PMID: 25866678 PMCID: PMC4381968 DOI: 10.1155/2015/541582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 12/26/2022]
Abstract
The Jun family and the signal transducers and activators of transcription (STAT) are involved in proliferation and apoptosis. Moreover, c-Jun and STAT3 cooperate to regulate apoptosis. Therefore, we used double immunostaining to investigate the immunotopographical distribution of phospho-c-Jun (p-c-Jun), JunB, JunD, p-STAT3, p-STAT5, and p-STAT6 in human thymus. JunD was frequently expressed by thymocytes with higher expression in medullary compared to cortical thymocytes. p-c-Jun was frequently expressed by cortical and medullary thymic epithelial cells (TEC) and Hassall bodies (HB). p-STAT3 was frequently expressed by TEC with higher expression in cortical compared to medullary TEC and HB. p-c-Jun, JunB, p-STAT3, p-STAT5, and p-STAT6 were rarely expressed by thymocytes. JunB and JunD were expressed by rare cortical TEC with higher expression in medullary TEC. p-STAT5 and p-STAT6 were expressed by rare cortical and medullary TEC. Double immunostaining revealed p-c-Jun and JunD expression in rare CD11c positive dendritic cells. Our findings suggest a notable implication of JunD in the physiology of thymocytes and p-c-Jun and p-STAT3 in the physiology of TEC. The diversity of the immunotopographical distribution and the expression levels of p-c-Jun, JunB, JunD, p-STAT3, p-STAT5, and p-STAT6 indicates that they are differentially involved in the differentiation of TEC, thymocytes, and dendritic cells.
Collapse
|
41
|
Erliandri I, Fu H, Nakano M, Kim JH, Miga KH, Liskovykh M, Earnshaw WC, Masumoto H, Kouprina N, Aladjem MI, Larionov V. Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome. Nucleic Acids Res 2014; 42:11502-16. [PMID: 25228468 PMCID: PMC4191410 DOI: 10.1093/nar/gku835] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions.
Collapse
Affiliation(s)
- Indri Erliandri
- Developmental Therapeutics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Megumi Nakano
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Karen H Miga
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
42
|
Schlederer M, Mueller KM, Haybaeck J, Heider S, Huttary N, Rosner M, Hengstschläger M, Moriggl R, Dolznig H, Kenner L. Reliable quantification of protein expression and cellular localization in histological sections. PLoS One 2014; 9:e100822. [PMID: 25013898 PMCID: PMC4094387 DOI: 10.1371/journal.pone.0100822] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/30/2014] [Indexed: 01/05/2023] Open
Abstract
In targeted therapy, patient tumors are analyzed for aberrant activations of core cancer pathways, monitored based on biomarker expression, to ensure efficient treatment. Thus, diagnosis and therapeutic decisions are often based on the status of biomarkers determined by immunohistochemistry in combination with other clinical parameters. Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability. To make treatment decisions more reliable, automated image analysis is an attractive possibility to reproducibly quantify biomarker expression in patient tissue samples. We tested whether image analysis could detect subtle differences in protein expression levels. Gene dosage effects generate well-graded expression patterns for most gene-products, which vary by a factor of two between wildtype and haploinsufficient cells lacking one allele. We used conditional mouse models with deletion of the transcription factors Stat5ab in the liver as well Junb deletion in a T-cell lymphoma model. We quantified the expression of total or activated STAT5AB or JUNB protein in normal (Stat5ab+/+ or JunB+/+), hemizygous (Stat5ab+/Δ or JunB+/Δ) or knockout (Stat5abΔ/Δ or JunBΔ/Δ) settings. Image analysis was able to accurately detect hemizygosity at the protein level. Moreover, nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus was reliably detected and quantified using image analysis. We demonstrate that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability.
Collapse
Affiliation(s)
| | | | | | - Susanne Heider
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Nicole Huttary
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Unit for Translational Methods in Cancer Research University of Veterinary Medicine Vienna (Vetmeduni Vienna), Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- * E-mail: (HD); (LK)
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria
- Institute of Clinical Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna (Vetmeduni Vienna), Vienna, Austria
- * E-mail: (HD); (LK)
| |
Collapse
|
43
|
Donaldson MR, Hinch SG, Jeffries KM, Patterson DA, Cooke SJ, Farrell AP, Miller KM. Species- and sex-specific responses and recovery of wild, mature pacific salmon to an exhaustive exercise and air exposure stressor. Comp Biochem Physiol A Mol Integr Physiol 2014; 173C:7-16. [DOI: 10.1016/j.cbpa.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
|
44
|
JUNB promotes the survival of Flavopiridol treated human breast cancer cells. Biochem Biophys Res Commun 2014; 450:19-24. [PMID: 24858691 DOI: 10.1016/j.bbrc.2014.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/23/2022]
Abstract
Chemotherapy resistance is a major obstacle to achieving durable progression-free-survival in breast cancer patients. Identifying resistance mechanisms is crucial to the development of effective breast cancer therapies. Immediate early genes (IEGs) function in the initial cellular reprogramming response to alterations in the extracellular environment and IEGs have been implicated in cancer cell development and progression. The purpose of this study was to investigate the influence of kinase inhibitors on IEG expression in breast cancer cells. The results demonstrated that Flavopiridol (FP), a CDK9 inhibitor, effectively reduced gene expression. FP treatment, however, consistently produced a delayed induction of JUNB gene expression in multiple breast cancer cell lines. Similar results were obtained with Sorafenib, a multi-kinase inhibitor and U0126, a MEK1 inhibitor. Functional studies revealed that JUNB plays a pro-survival role in kinase inhibitor treated breast cancer cells. These results demonstrate a unique induction of JUNB in response to kinase inhibitor therapies that may be among the earliest events in the progression to treatment resistance.
Collapse
|
45
|
RNA-seq analysis of early hepatic response to handling and confinement stress in rainbow trout. PLoS One 2014; 9:e88492. [PMID: 24558395 PMCID: PMC3928254 DOI: 10.1371/journal.pone.0088492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Fish under intensive rearing conditions experience various stressors which have negative impacts on survival, growth, reproduction and fillet quality. Identifying and characterizing the molecular mechanisms underlying stress responses will facilitate the development of strategies that aim to improve animal welfare and aquaculture production efficiency. In this study, we used RNA-seq to identify transcripts which are differentially expressed in the rainbow trout liver in response to handling and confinement stress. These stressors were selected due to their relevance in aquaculture production. Total RNA was extracted from the livers of individual fish in five tanks having eight fish each, including three tanks of fish subjected to a 3 hour handling and confinement stress and two control tanks. Equal amount of total RNA of six individual fish was pooled by tank to create five RNA-seq libraries which were sequenced in one lane of Illumina HiSeq 2000. Three sequencing runs were conducted to obtain a total of 491,570,566 reads which were mapped onto the previously generated stress reference transcriptome to identify 316 differentially expressed transcripts (DETs). Twenty one DETs were selected for qPCR to validate the RNA-seq approach. The fold changes in gene expression identified by RNA-seq and qPCR were highly correlated (R2 = 0.88). Several gene ontology terms including transcription factor activity and biological process such as glucose metabolic process were enriched among these DETs. Pathways involved in response to handling and confinement stress were implicated by mapping the DETs to reference pathways in the KEGG database. Accession Numbers Raw RNA-seq reads have been submitted to the NCBI Short Read Archive under accession number SRP022881. Customized Perl Scripts All customized scripts described in this paper are available from Dr. Guangtu Gao or the corresponding author.
Collapse
|
46
|
Hsu FN, Chen MC, Lin KC, Peng YT, Li PC, Lin E, Chiang MC, Hsieh JT, Lin H. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells. Am J Physiol Endocrinol Metab 2013; 305:E975-86. [PMID: 23941877 DOI: 10.1152/ajpendo.00615.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.
Collapse
Affiliation(s)
- Fu-Ning Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Davidson CL, Cameron LE, Burshtyn DN. The AP-1 transcription factor JunD activates the leukocyte immunoglobulin-like receptor 1 distal promoter. Int Immunol 2013; 26:21-33. [PMID: 24038602 DOI: 10.1093/intimm/dxt038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukocyte immunoglobulin-like receptor 1 (LILRB1) is an inhibitory receptor that binds classical and non-classical MHC-I as well as UL18, a viral MHC-I homolog. LILRB1 is encoded within the leukocyte receptor complex and is widely expressed on immune cells. Two distinct promoters used differentially by lymphoid and myeloid cells were previously identified, but little is known regarding molecular regulation of each promoter or cell-type-specific usage. Here, we have investigated the transcriptional regulation of human LILRB1 focusing on elements that drive expression in NK cells. We found that while both the distal and proximal promoter regions are active in reporter plasmids in lymphoid and myeloid cells, the proximal promoter is used minimally to transcribe LILRB1 in NK cells compared with monocytes. We defined a 120-bp core region of transcriptional activity in the distal promoter that can bind several factors in NK cell nuclear extracts. Within this region, we investigated overlapping putative AP-1 sites. An inhibitor of JNK decreased LILRB1 transcript in a LILRB1⁺ NK cell line. Upon examining binding of specific AP-1 factors, we found JunD associated with the LILRB1 distal promoter. Finally, depletion of JunD led to a decrease in distal promoter transcript, indicating an activating role for JunD in regulation of LILRB1 transcription. This study presents the first description of regions/factors required for activity of the LILRB1 distal promoter, the first description of a role for JunD in NK cells and suggests a potential mechanism for dynamic regulation of LILRB1 by cytokines.
Collapse
Affiliation(s)
- Chelsea L Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, 6-043 Katz Building, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
48
|
Zhang H, Qu S, Li S, Wang Y, Li Y, Wang Y, Wang Z, Li R. Silencing SATB1 inhibits proliferation of human osteosarcoma U2OS cells. Mol Cell Biochem 2013; 378:39-45. [PMID: 23516037 DOI: 10.1007/s11010-013-1591-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
It has been shown that over-expression of Special AT-rich binding protein 1 (SATB1) in breast cancer predicts a poor prognosis. This study was aimed at investigating the effects of silencing SATB1 on mesenchymal derived human osteosarcoma U2OS cells and the underlying mechanisms. The expressions of SATB1 and the related genes in the cells were detected by qRT-PCR and/or Western Blotting. SATB1 silencing was achieved by stable transfection with the vectors expressing small hairpin RNA versus SATB1. Cell proliferation was detected in a microplate reader with Cell Counting Kit-8 and the cell cycle was analyzed by flow cytometry using a cell cycle detection kit. The study found that SATB1 was particularly over-expressed in human osteosarcoma U2OS. Silencing SATB1 inhibited the proliferation of U2OS. It was found that inhibition of cell proliferation resulted from cell cycle arrest due to down-regulated expression of CFGF and JunB. The over-expression of SATB1 is responsible for abnormal proliferation of mesenchymal derived human Osteosatcoma U2OS cells, indicating that silencing SATB1 expression in the cells might be developed as an efficient osteosarcoma therapy. CTGF and JunB were involved in SATB1-mediated proliferation of U2OS cells.
Collapse
Affiliation(s)
- Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mahalingam CD, Sampathi BR, Sharma S, Datta T, Das V, Abou-Samra AB, Datta NS. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs. J Endocrinol 2013; 216. [PMID: 23197743 PMCID: PMC3796767 DOI: 10.1530/joe-12-0372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.
Collapse
Affiliation(s)
- Chandrika D Mahalingam
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Lin CC, Chung YC, Hsu CP. Potential roles of longan flower and seed extracts for anti-cancer. World J Exp Med 2012; 2:78-85. [PMID: 24520538 PMCID: PMC3905590 DOI: 10.5493/wjem.v2.i4.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/21/2012] [Accepted: 07/27/2012] [Indexed: 02/06/2023] Open
Abstract
Polyphenol-rich plants are known to possess benefits to human health. Recent studies have revealed that many Traditional Chinese Medicines (TCMs) are rich sources of polyphenols and exhibit antioxidant and anti-inflammatory activities, and these TCMs have been shown experimentally to overcome some chronic diseases, including cancer. Longan flowers and seeds, two TCMs traditionally used for relieving pain and urinary diseases, have been revealed in our recent reports and other studies to possess rich amounts of polyphenolic species and exhibit strong anti-oxidant activity, and these could be applied for the treatment of diabetes and cancer. Herein, we review the recent findings regarding the benefits of these two TCMs in the treatment of human cancer and the possible cellular and molecular mechanisms of both substances.
Collapse
Affiliation(s)
- Chih-Cheng Lin
- Chih-Cheng Lin, Department of Biotechnology, Yuanpei University, Hsinchu City 30015, Taiwan, China
| | - Yuan-Chiang Chung
- Chih-Cheng Lin, Department of Biotechnology, Yuanpei University, Hsinchu City 30015, Taiwan, China
| | - Chih-Ping Hsu
- Chih-Cheng Lin, Department of Biotechnology, Yuanpei University, Hsinchu City 30015, Taiwan, China
| |
Collapse
|